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a b s t r a c t 

We propose a counter-cyclical initial margin model for option portfolios. Our model ex- 

plores the intrinsic netting within a given portfolio of European options and outputs a con- 

stant upper bound of the maximum possible loss. This feature would allow option clear- 

inghouses and regulators to gauge the tightest margin levels that are stable. We compare 

our model with the scenario-based SPAN model and the sensitivity-based SIMM model in 

terms of the netting efficiency and the procyclical property. Using the SPX options and 

the interest rate swaptions as examples, we quantify the minimum amount of additional 

margins needed to make them fully counter-cyclical. We then show how to strike a bal- 

ance between risk-sensitivity and counter-cyclicality if needed by mixing our model flexi- 

bly with a prevailing risk-sensitive margin model. 

© 2022 Elsevier B.V. All rights reserved. 

 

 

 

 

1. Introduction 

This paper studies the upper bounds of the maximum loss of an option portfolio and discusses the potential of using

them to set stable initial margins during the Margin Period of Risk (MPOR). Whether a derivative contract trades through 

an exchange or bilaterally over-the-counter (OTC), the trade needs to be cleared and settled in the subsequent one to ten

days (the MPOR). The clearing counterparties require their clearing members to post collateral in the form of initial margins 

to fend against potential loss during the settlement period, and initial margins are typically designed to be risk sensitive. 

The prevailing methodologies of setting initial margins for derivatives typically gain their risk sensitivity either through 

historical simulation 

1 , or through a set of pre-defined scenarios, or through the sensitivities of the product with respect 

to the underlying and the volatility. Examples include the Standard Portfolio Analysis of Risk (SPAN) method practiced by 

Chicago Merchandise of Exchange (CME) 2 ; the System for Theoretical Analysis and Numerical Simulation (STANS) adopted 

by the Options Clearing Corporation (OCC) 3 ; and the Standard Initial Margin Model (SIMM) proposed by the International 

Swaps and Derivatives Association (ISDA) 4 . 

Risk-sensitive margin requirements tend to be procyclical in the sense that they can amplify shocks Murphy et al. (2014) .

Volatility spikes lead to margin calls on clearing members and market stress such as elevated cost of funding is likely
∗ Corresponding author at: RM 201, 16/F, Lau Ming Wai Academic Building, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong. 

E-mail addresses: yychen@nju.edu.cn (Y. CHEN), qiwu55@cityu.edu.hk (Q. WU), dli226@cityu.edu.hk (D. LI) . 
1 In the form of Value-at-Risk (VaR) or Expected Shortfall (ES) using data from a historical window. 
2 See for more details at: https://www.cmegroup.com/clearing/span-methodology.html . 
3 See for more details at: https://www.theocc.com/Risk- Management/Margin- Methodology . 
4 See for more details at: https://www.isda.org/a/osMTE/ISDA- SIMM- v2.2- PUBLIC.pdf . 
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to be corrected with the increase of volatility. Clearing members therefore need to post additional collateral precisely at 

the time when it becomes most difficult to raise funding. As the procyclicality in margin requirements threatens financial 

stability Constâncio (2016) ; European Systemic Risk Board (2017) , global regulators propose countermeasures such as adding 

additional margin buffers, placing higher weights on stressed scenarios, and lengthening the historical look back window 

( Duffie, 2018; European Commission, 2013; Murphy et al., 2016 ). When examining these countermeasures, a key insight 

pointed by Glasserman and Wu ( Glasserman and Wu, 2018a ) is that the buffer required to offset procyclicality corresponds

to the unconditional quantile of price changes. Its magnitude depends on the tail heaviness of the unconditional distribution, 

which depends on the persistence and burstiness of the volatility dynamic. 

For linear derivatives, such as US 10 year interest rate swap and North America Investment Grade CDX, investigations in 

Glasserman and Wu (2018a) show that the stable margin level could be 35% and 65% higher respectively than the average

conditional or risk-sensitive margin levels computed from the 5-day 99 . 5% VaR metric. As of the first half of 2021, the

outstanding notional of OTC interest rate swaps alone stands at 372.4 trillion US dollars globally, with 120.9 trillion for USD-

denominated contracts and 94 trillion of EUR-denominated contracts 5 . Given the sheer size of linear derivatives alone, the 

consequences and implications of additional collateralization are already far-reaching including how loss and defaults spread 

across a collateralized financial network Ghamami et al. (2021) , and how clearinghouses can strike the balance between 

higher fees and better default protection versus decreased market volume ( Capponi and Cheng, 2018 ). 

The situation is more complex for options whose payoffs are nonlinear functions of the underlying. Although the size 

of global options market is relatively smaller than that of the linear derivatives, the degree of margin procyclicality is by

no means small or simple. Taking the sensitivity margin approach on the OTC swaption (options on interest rate swaps) as

an example, Glasserman and Wu ( Glasserman and Wu, 2018b ) show that, in a separate study, although the Standard Initial

Margin Model (SIMM) includes features to reduce procyclicality, sensitivity-based margin requirements are still exposed 

to procyclicality through the dependence of price sensitivities on current market conditions, and this indirect exposure of 

greeks (delta, gamma, vega, etc) to market volatility changes may not be obvious in advance. To access the magnitude of

stable margin for options, one needs to characterize the unconditional tail heaviness of the price changes of options, which 

depends nonlinearly on the dynamics of both the price change of the underlying and the change of the implied volatility.

This will likely to be probabilistically difficult even for a single option. 

A large portfolio of options, however, might present room for netting among payoffs if they share the same underlying. 

The observation is that the option books of many retail brokers such as Robinhood and TD Ameritrade typically contain from

hundreds of thousands to millions of positions from individual customer accounts, and at especially at turbulant times, a 

significant portion of their option books concentrate on just a few underlying names in the front expiries 6 . If one develops

constant bounds of a portfolio’s maximum potential loss and they are indeed tight enough after netting, clearing members 

whose businesses are option heavy can use them to quickly assess their margin requirements at book level before clearing 

through OCC. This assessment would be distribution- and model-free, therefore insensitive to risk and volatility. 

We therefore seek to develop a strategy-based netting algorithm 

7 to identify the best possible internal netting for a given

option portfolio and evaluate the feasibility of using it to set margins that are high enough to reduce credit exposure yet

stable enough to avoid procyclical effects. The idea of netting is not new and goes back to studies such as the tradeoff be-

tween multilateral netting across dealers versus bilateral netting across asset classes Cont and Kokholm (2014) . The essence 

of the method developed in this paper centers around how to optimally divide a given option portfolio into pre-defined sim-

ple strategies, where the margin requirements for individual simple strategies are specified by the counterparty, to achieve 

maximum netting efficiency inside the portfolio. The main issues with the existing strategy-based margin models are that 

they restrict the option portfolio to be balanced ( Section 3 discusses the detail on balanced versus unbalanced portfolios),

are computationally complex, and tend to overestimate the potential loss under normal market conditions. 

In the following, we present the idea and contributions of our approach, begining with the maximum possible loss. 

We assume individual options in a portfolio share the same maturity T and use f (S T ) to denote the portfolio payoff at

T , where S T is the underlying asset’s price at the maturity. The portfolio value at time t ∈ [0 , T ] is thus P t = E [ f (S T ) |F t ] .

Let �t be the MPOR, the portfolio loss is then the greater one between zero and the negative of the portfolio value at

t + �t , i.e., ( −P t+�t ) 
+ , with (x ) + = x , if x ≥ 0, and (x ) + = 0 otherwise. Different risk-sensitive models present different

estimation methodologies of this conditional expectation and different margin definitions based on the possible losses. For 

example, the SPAN by CME estimates the possible loss via simulating several possible scenarios of the underlying price 

changes or/and the volatility changes and identifies the maximum possible loss among these scenarios as the margin. The 

SIMM by the ISDA estimates the possible loss by approximating the change of option value via Greeks and identifies an

approximation of the 99 th percentile loss as the margin. We define the maximum portfolio loss of a given option portfolio

as m̄ := max 
S T 

− f (S T ) . With a constant interest rate r > 0 , it is easy to show that portfolio loss ( −P t+�t ) 
+ at any time before

maturity t ∈ [0 , T − �t] is bounded above by m̄ 

+ : 

(−P t+�t ) 
+ = (E [ −e −r(T −t −�t ) f ( S T ) |F t+�t ]) 

+ ≤ ( E [ e −r(T −t −�t ) m̄ |F t+�t ]) 
+ ≤ ( E [ ̄m |F t+�t ]) 

+ = m̄ 

+ . 
5 The BIS OTC derivatives statistics. https://stats.bis.org/statx/srs/table/d7 . 
6 See ”Staff Report on Equity and Options Market Structure Conditions in Early 2021” for more details at: https://www.sec.gov/files/ 

staff- report- equity- options- market- struction- conditions- early- 2021.pdf . 
7 Also known as Regulation T. See for more details at: http://www.federalreserve.gov/bankinforeg/reglisting.htm . 
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Note that this maximum is a supremum since the loss approaches m̄ 

+ when time (t + �t) approaches the maturity T , and

the underlying price approaches the one corresponding to the worst case. We thus aim to eliminate the inefficient netting 

in terms of m̄ 

+ . 
A key component of our approach is the notion of base offsets which contain two to six legs of pre-defined simple option

strategies. We prove the proposed base offsets are sufficient to capture the hedging properties inside any balanced option 

portfolio. It is a combinatorial problem to search for the optimal division of a given option portfolio into offsets so that

the maximum possible loss is minimized. We apply an integer programming model with base offsets to provide an exact 

calculation of the upper bound of the potential loss for a balanced option portfolio. Numerical studies on real historical data

show that the problem can be solved in less than one second for twenty different strike prices using ILOG CPLEX 12.6. For

problems of smaller size involving base offsets up to four legs, we further show that our formulation is equivalent to its

linear relaxation and can be solved in polynomial time. 

We then discuss the potential of using the maximum possible loss to set portfolio margins within a MPOR from the

clearning member perspective. We examine two cases. The first case is the exchange-traded products such as the SPX op- 

tions. The clearing counterparties such as CME typically use historical Value-at-Risk(VaR) method or the SPAN method to 

set portfololio margins. The second case is the OTC products such as the interest rate swaptions where the current mar-

ket standard is the SIMM method proposed by ISDA. We compare the maximum possible loss prescribed by the proposed 

model with the margin levels set by three prevailing risk-sensitive models: historical VaR, SPAN and SIMM. As expected, the 

risk-sensitive models require less conservative margin levels than our estimation of the maximum possible loss. However, 

the difference is relatively acceptable after exploring the best possible payoff netting using base offsets. The benefit of our 

approach is that margin requirements set by the minimized maximum possible loss is independence of market conditions. 

They are therefore free from the procyclicalities inherent in risk-sensitive margin models. 

If margin requirement does not need to be the most aggressive one, one can mix our approach with a risk-sensitive

model in the spirit of European Commission (2013) to allow a given degree of risk sensitivity. We compare the performances

of the mixture models with those of the risk-based models in terms of both margin level and procyclicality with SPX data

in turbulent times. With the benchmark provided by our model, we present that the risk-sensitive margin level runs up 

and approaches the objective maximum possible loss when the market becomes turbulent. We can think of the difference 

between the risk-sensitive margin level and the supremum as the result of the optimistic sentiment, which overlooks the 

possible risk in good times. Furthermore, the margin run-ups happen when market participants are faced up with the 

existence of risk. Similar to the phenomenon pointed out by Antoniou et al. (2016) in stock markets, unsophisticated trading

in risky opportunities would be more prevalent when the sentiment is optimistic, whereas market participants making such 

trades take less risk during pessimistic periods. Our strategy-based model would be on the alert guard against optimistic 

sentiment. By incorporating the risk-sensitive model with our model, we aim to reduce margin run-ups in turbulent times 

to stabilize the market. 

This paper is related to the literature on margin requirement of derivatives and the netting efficiency. 

Lopez et al. (2017) propose a new methodology to estimate the margin requirement by a derivatives central counterparty 

(CCP), by introducing the interdependence among different market participants’ profits and losses to a risk-sensitive model. 

Capponi and Cheng (2018) model the decision problem faced by a profit-maximizing clearinghouse, which sets fee and mar- 

gin requirements for heterogeneous participants who may default. Duffie and Zhu (2011) , Cont and Kokholm (2014) and 

Garratt and Zimmerman (2020) investigate how the introduction of centralized netting affects the netting efficiency, since 

the exposures to different counterparties cannot be netted. We focus on how to do the netting based on the special proper-

ties inside the option portfolio, by one specific counterparty to calculate exposures for each individual netting set. 

The rest of this paper is as follows. In Section 2 , we review the literature on the strategy-based margin calculation

approach for option portfolios. In Section 3 , we introduce the concept of base offsets and prove that the margin reduced by

the hedging property inside any balanced option portfolio can be ascribed to base offsets. We also set up our strategy-based

netting model and investigate its properties in Section 3 . In Section 4 , we apply our model to the historical data of SPX

options and swaptions to illustrate the difference between our model and the risk-sensitive models. We also incorporate 

these two methodologies to present the mixed margin calculation models. We conclude our paper in Section 5 . All the

proofs are placed in the online supplement to make the paper concise. 

2. Strategy-based Portfolio Margin 

We define an options “strategy” as a portfolio of European options with the same expiration date. The component po- 

sitions can have different strikes and different notional amounts and can take either the call or put sides. Two component

options are considered two different “types” as long as either the strike or the side is different. We refer to the total number

of option types in a strategy as the number of “legs”. We call an options strategy an offset strategy if the portfolio risk is

smaller than that of its component sum. 

The essence of the strategy-based approach is to define the margin of an arbitrary option portfolio q based on the best

combination of the recognized offsets strategies allowed by the margin counterparty. Specifically, if we denote O 1 , . . . , O k 

as the recognized offset strategies whose margins have been defined in the manual and m j as the margin of O j , then the

strategy-based approach is to identify the best partition of this arbitrary portfolio such that 
3
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Table 1 

Different MPL results corresponding to possible partitions 

with the strategy-based approach of size two. 

possible partition maximum possible loss 

O 1 + O 2 + O 3 + O 4 0 + 0 + K 2 + infinity = infinity 

O 5 + O 3 + O 4 0 + K 2 + infinity = infinity 

O 1 + O 3 + O 7 0 + K 2 + (K 2 − K 1 ) = 2 K 2 − K 1 
O 6 + O 2 + O 4 (K 2 − K 1 ) + 0+ infinity = infinity 

O 6 + O 7 (K 2 − K 1 ) + (K 2 − K 1 ) = 2(K 2 − K 1 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i) q = x 1 O 1 + . . . + x k O k where x 1 , . . . , x k are nonnegative integer multipliers; 

ii) The resulting margin m 1 x 1 + . . . + m k x k attains its minimum. 

We define the “size” of this strategy-based model, s , as the maximum number of legs among all the offset strategies

{ O i , i = 1 , . . . , k } involved in this problem. For example, if each offset strategy O i has only one option leg (one type), then

the maximum number of legs among all O 1 , . . . , O k is one. The size of this problem will be one. A strategy-based model of

greater size s could yield a lower margin requirement with the same risk protection since the greater the size s , the greater

the potential offsetting, thus making better use of the hedging properties inside the portfolio q . 

Next, we illustrate the strategy-based approach and the meaning of size s by calculating the maximum possible loss 

(MPL), corresponding to full risk protection, for a portfolio q containing four different option positions: one long put at 

strike K 1 , one short put at strike K 2 , one short call at strike K 1 and one long call at strike K 2 . In particular, denote P 1 , P 2 , P 3 
and P 4 as these four individual positions, assuming equal notional for each position. 

If we consider the strategy-based approach of size s = 1 , involved offsets can contain only one option type, and thus

are these four individual options themselves: O 1 = P 1 , O 2 = P 2 , O 3 = P 3 and O 4 = P 4 . This case is in fact corresponding to

the “gross margin” rule in the market, meaning no netting or offsetting is allowed. There is only one possible partition 

q = O 1 + O 2 + O 3 + O 4 , with the resulting MPL approaching infinity. If alternatively, we margin the long box portfolio under

the “net margin” rule with the strategy-based approach of size s = 2 , the pairing strategies are taken into consideration.

There are six possible pairing strategies with four individual option types, P i + P j , i � = j ∈ { 1 , · · · , 4 } . Among them, new offsets

are recognized as O 5 = P 1 + P 2 , O 6 = P 1 + P 3 and O 7 = P 2 + P 4 . The possible partitions of this portfolio q into combinations of

offsets O i , i = 1 , · · · , 7 , with their resulting MPLs are shown in Table 1 . The MPL of this portfolio becomes 2(K 2 − K 1 ) , since

the best partition is a bull put spread O 6 and a bear call spread O 7 . 

Finally, if we consider all the strategies with up to four legs, this portfolio itself should be recognized as a box spread

O 8 = P 1 + P 2 + P 3 + P 4 , which is an options strategy with four legs. Then, the estimated maximum possible loss of this port-

folio is reduced to K 2 − K 1 , with the partition q = O 8 . This simple case study demonstrates that i) overlooking the offsets

inside an option portfolio would lead to an overestimation of the margin and ii) recognizing strategies with more legs 

would reduce the degree of overestimation of the margin. 

Rudd and Schroeder (1982) show that the strategy-based approach of size two can be solved in polynomial time by a

reformulation. Matsypura and Timkovsky (2013) devote their paper to identify and take advantage of offsets with three or 

four legs. 8 

To formulate a mathematical model for the strategy-based approach, we adopt the vector model by Matsypura and 

Timkovsky (2013) to express the offsets. In particular, for the same expiration date on an underlying asset, a set of call

and put options with d different strike prices, K j , j = 1 , . . . , d, is considered, and an options strategy of dimension d can be

then expressed by an integer vector, 

v = (v 1 , v 2 , . . . , v d , v d+1 , v d+2 , . . . , v 2 d ) T , (1) 

whose components are associated with positions in options. More specifically, v j or v j+ d , j = 1 , . . . , d, is the number of

option contracts in the jth call or put option, respectively, with the exercise price K j . We assume that all the option contracts

have a unit notional. Furthermore, a nonzero component can be either positive or negative, which corresponds to a long or

short leg, respectively. When vector v involves only one nonzero component, it corresponds to a naked option. When vector 

v involves multiple nonzero components and has a market risk, which is less than the total position risk of its components,

it corresponds to an offset. 

With this expression, Matsypura and Timkovsky (2013) formulate such a problem as the account margin minimization 

(AMM) problem: min { m 

T x : Ox = q, x ∈ Z 

k + } . 
The optimal value of this model is defined as the estimated market risk of the portfolio q . An AMM problem of size

s is modeled as an integer programming model where the coefficient matrix O is a collection of recognized offsets with

up to s legs. Each column of O , O j , is a 2 d dimensional integer vector taking the form of a specific v in (1) . Recall that a

combination of different offsets may generate a new offset with more legs. For example, for k different options, there might
8 The definition of size in this paper may be different from that in Matsypura and Timkovsky (2013) . Although they consider the margin calculation for 

multi-leg option strategies, the strategies in the corresponding coefficient matrix in Matsypura and Timkovsky (2013) have at most four legs. 

4 
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Fig. 1. Payoff functions of basic spreads defined in Matsypura and Timkovsky (2013) . 

 

 

 

 

 

 

 

be C 1 
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offsets with up to two legs and C 1 
k 

+ C 2 
k 

+ C 3 
k 

offsets with up to three legs. As a result, both the dimension of

the coefficient matrix O and the decision variable x could be exponentially increasing with s . Therefore, the problem would

become a high-dimensional integer problem when s is large. Most importantly, the identification and construction of the 

offsets included in the coefficient matrix O are crucial to a strategy-based approach’s success. 

3. Base Offsets 

As mentioned above, redundant offsets involved in the AMM model’s coefficient matrix introduce a high complexity that 

blocks the development of fast algorithms. Furthermore, the state-of-the-art model is of size four and does not guarantee 

an exact estimation of the market risk (which implies possible overestimation). In this section, we propose a new concept 

of offsets to ensure an exact estimation of market risk and facilitate a more efficient margin calculation. 

We assume that all the options are written on the same underlying asset in this paper and denote the price of this

underlying asset at maturity by S T . For any options strategy v defined in Equation (1) , we denote f v (S T ) as its payoff

function. Thus, the maximum possible loss (MPL) is defined as 

m (v ) := (− min 

S T 
f v (S T )) 

+ , (2) 

and the number of leg of v is the number of non-zero entries of vector v , i.e., 

leg(v ) := || v || 0 , (3) 

where || v || 0 denotes the l 0 norm of v . 

3.1. Balanced Portfolio 

We focus on the options strategies generated by basic spreads, which, according to Definition 2 in Matsypura and 

Timkovsky (2013) , are defined as options strategies with two non-zero components, 1 and -1, and both of the two com-

ponents are on the same side, either call or put. A basic spread is a basic call/put spread if the two components are on the

call/put side. A basic spread is a basic bull/bear spread if the component with the lower strike price is associated with a

long/short position. The width of a basic spread is defined as the difference between the strike prices of the two non-zero
5 
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components. For example, the basic spreads shown in Figure 1 are of width K i 2 
− K i 1 

. Without loss of generality, we assume

from now that the d strike prices in options strategy v satisfy K i = i , i = 1 , · · · , d. 9 

For each kind of the four basic spreads depicted in Figure 1 , there are (d − 1) basic spreads of width one. 

1. Basic bull call spreads: 

B 1 := e 1 − e 2 , B 2 := e 2 − e 3 , ..., B d−1 := e d−1 − e d , (4) 

where e i ∈ Z 

2 d is a vector with i -th element being one and all other elements being zero; 

2. Basic bull put spreads: 

B d := e d+1 − e d+2 , B d+1 := e d+2 − e d+3 , ..., B 2(d−1) := e 2 d−1 − e 2 d ; (5) 

3. Basic bear call spreads: 

B 2 d−1 := −B 1 , B 2 d := −B 2 , · · · , B 3(d−1) := −B d−1 ; (6) 

4. Basic bear put spreads: 

B 3 d−2 := −B d , B 3 d−1 := −B d+1 , ..., B 4(d−1) := −B 2(d−1) . (7) 

We first identify the entire set of options strategy which can be generated by these four kinds of basic spreads as follows.

Definition 3.1. Options strategy v = (v 1 , . . . , v 2 d ) T ∈ Z 

2 d is called a balanced options strategy if and only if 
d ∑ 

i =1 

v i = 

2 d ∑ 

i = d+1 

v i =
0 . 

In other words, a balanced options strategy has the same number of long and short positions in calls/puts, respectively. 

We will focus on the balanced option strategies in this paper, since an unbalanced options strategy may have infinite MPL

under the definition in (2) , which makes the corresponding optimization problem ill-posed. In addition, we prove that an 

options strategy can be expressed as an integer combination of basic spreads if and only if it is balanced (Readers can

refer to the proof of Proposition 3.1 in the online supplement). In fact, we will proceed to prove that an options strategy is

balanced if and only if it can be represented as a non-negative integer combination of the basic spreads of width one. 

Proposition 3.1. Options strategy v = (v 1 , ..., v 2 d ) T ∈ Z 

2 d is a balanced options strategy if and only if there exist k i ∈ Z + , i =
1 , · · · , 4(d − 1) , such that v = 

4(d−1) ∑ 

i =1 

k i B i . 

According to Proposition 3.1 , we can always partition a balanced options strategy into a non-negative combination of the 

basic spreads of width one, which form a special class of options strategies. The strategy-based model of size two, for the

balanced option strategies, is then to identify the best candidate with the lowest resulting MPL among all these feasible

partitions into basic spreads, which have two legs. However, as discussed in Section 2 , the combinations of these basic

spreads may generate new offsets with more legs. A strategy-based model will have lower MPL results if we consider offsets

with more legs. We thus testify whether a combination of different strategies can generate a new offset by introducing the

following concept of dominance among option strategies. 

Definition 3.2. An options strategy v is dominated by a portfolio of options strategies { b 1 , . . . , b n } , n ≥ 1 , if and only if the

strategy v can be expressed into a non-negative combination of these strategies b i , i = 1 , · · · , n , with the resulting MPL no

higher than the MPL of v , i.e., there exists some non-negative integer vector z = (z 1 , z 2 , . . . , z n ) 
T such that z 1 b 

1 + · · · + z n b 
n =

v , z 1 m (b 1 ) + · · · z n m (b n ) ≤ m (v ) . 

If the strategy v is dominated by a portfolio of options strategies V , v is not a new offset given the option strategies and

thus unable to lower the MPL results of a strategy-based model with strategies V . It is obvious that any options strategy is

dominated by a portfolio of options strategies that contains itself. Moreover, if an options strategy v is dominated by a set

of options strategies, V 1 , which is in turn dominated by another set of options strategies, V 2 , then v is also dominated by V 2 .

We state this transitive property in the following proposition. 

Proposition 3.2. (Transitivity) For options strategies v , v 1 , . . . , v t , b 1 , . . . , b n , if there exist u ∈ { 1 , . . . , t} , non-negative integers z i ,

i = 1 , . . . , t, and k j , j = 1 , . . . , n , such that 

v = 

t ∑ 

i =1 

z i v i , m (v ) ≥
t ∑ 

i =1 

z i m (v i ) , v u = 

n ∑ 

j=1 

k j b 
j , m (v u ) ≥

n ∑ 

j=1 

k j m (b j ) . (8)

Then, v is dominated by { v i , i = 1 , . . . , u − 1 , u + 1 , . . . , t} ∪ { b 1 , . . . , b n } . 
9 We normalize the difference between adjacent strike prices to be one to simplify the notations, the result remains the same for cases where the 

difference K i +1 − K i is a constant for all i = 1 , · · · , d − 1 . It is common in the market to find that the strike prices of listed options on one same asset have 

a common difference. If not, one can also easily add the strike prices to make the difference a constant. 

6 
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If we can identify a set of options strategies that dominate all balanced option strategies, the MPL results calculated 

by a strategy-based model with such a set of strategies will never overestimate the market risk of balanced option strate-

gies. Thus, the formation of these base strategies is crucial, as they form a complete base for the maximum possible loss

calculation. 

In other words, we aim at identifying a “complete base”, which can not only generate all the balanced strategies by

non-negative linear combinations but also dominate all these balanced strategies in terms of the maximum possible loss. 

We prove in Proposition 3.1 that any balanced options strategy can be expressed as a non-negative combination of the four

kinds of basic spreads of width one. However, the set of these basic spreads, which have two legs, cannot dominate all

the balanced strategies (Readers can refer to the illustrative example in Section 2 ). To form a complete base, one needs to

include offsets with more legs. A trivial construction is to include all the non-negative combinations of these basic spreads 

since the set of all these combinations is precisely the set of all the balanced strategies and, thus, a dominance. However,

there will be too many possible combinations that are redundant in forming a complete base. We thus would like to remove

these redundant combinations to construct a minimum complete base. In order to achieve this goal of forming a minimum 

complete base, we define the no-hedging combinations . 

Definition 3.3. Any combination of strategies, 
n ∑ 

i =1 

k i b i , with k 1 , . . . , k n ∈ Z + , satisfying one of the following two conditions

is called a no-hedging combination : i) All the payoff functions of b i , i = 1 , . . . , n , are non-negative; ii) There exists one point

S 0 
T 

∈ [0 , ∞ ) such that the payoff functions of b i , i = 1 , . . . , n , all achieve their non-positive minimal values at S 0 
T 

. 

Lemma 3.1. If an options strategy v can be expressed into a no-hedging combination of strategies b 1 , . . . , b n , then the strategy v
is dominated by strategies b 1 , . . . , b n . 

The intuition of this fact is relatively straightforward, as i) it’s unnecessary to consider any offset when all these strategies

have zero market risks, and ii) if there is one market condition where all these strategies have their worst performances,

then it is impossible to offset each other when we consider full risk protection with the maximum possible loss. In other

words, a no-hedging combination of option strategies cannot generate a new offset, since there is no hedging property 

among these option strategies. According to the transitive property stated in Proposition 3.2 , the balanced strategies dom- 

inated by no-hedging combinations of basic spreads are also dominated by basic spreads. The no-hedging combinations of 

basic spreads are thus redundant in the sense of forming a complete base. 

We next look into combinations of basic spreads to remove the no-hedging combinations and form a minimum complete 

base. First, the combination of basic spreads of the same kind is always a no-hedging combination. For example, all the basic

bear call spreads achieve their maximum possible losses at a sufficiently large terminal price S T and thus cannot hedge each

other when we consider full risk protection. Moreover, both the maximum possible gain and loss of any basic spread of

width one are no larger than one. That is to say, for example, if we use basic bull call spreads to offset a basic bear call

spread, all of which are of width one, we only need at most one basic bull call spread. Otherwise, the combination would

become a no-hedging combination, since all the payoff functions of the other basic bull call spreads and the combination 

of the basic bull and bear call spreads are non-negative. Thus, we conjecture that the possible “base” options strategies 

should involve at most one of each of the four kinds of basic spreads of width one, and a collection of such “base” options

strategies should be sufficient to capture the hedge properties inside balanced options strategies. Following this direction, 

we now introduce a new concept of base offsets in the following definition. 

Definition 3.4. Base offsets consist of the following seven forms: 

Form 1) B i , i = 1 , ..., 4(d − 1) ; 

Form 2) B i +2(d−1) + B i −1 , where i ∈ { 2 , ..., d − 1 } ; 
Form 3) B i +2 d−3 + B i + B i +3(d−1) , where i ∈ { 2 , ..., d − 1 } ; 
Form 4) B i + d−2 + B i +3(d−1) , where i ∈ { 2 , ..., d − 1 } ; 
Form 5) B i + d−1 + B i −1 + B i +3 d−4 , where i ∈ { 2 , ..., d − 1 } ; 
Form 6) B i +2(d−1) + B i + d−1 , where i ∈ { 1 , ..., d − 1 } ; 
Form 7) ±(B i + B i + d + B i +2 d−1 + B i +3(d−1) ) , where i ∈ { 1 , ..., d − 2 } . 
For an illustration purpose, we present the payoff functions for Forms 2-7 of the base offsets in Figure 2 . In particular, the

base offsets include the basic spreads of width one and the combinations of these basic spreads, which are not no-hedging

combinations. Next, we briefly explain the intuition of how we construct the base offsets. 

As discussed above, a base offset should involve at most one of the four kinds of basic spread. We first consider the

six possible combinations of any two out of the four basic spreads of width one. From the payoffs of these basic spreads

in Figure 1 and the definition of the no-hedging combination, it is easy to find there are three combinations out of the

six that can generate new offsets: the combination of basic bull and bear call spreads, the combination of basic bull and

bear put spreads, and the combination of basic bear call and bull put spreads. The basic bull call spread can hedge any

basic bear call spread with a higher strike price. Meanwhile, according to the definition of basic bear call spreads in (6) , the

basic bear call spread with the strike price K i is B 2 d−2+ i = −B i , where B i is the basic bull call spread with the strike price K i ,

i = 1 , · · · , d − 1 . The combination of a basic bear call spread B 2 d−2+ i and a basic bull call spread B j with the difference of the

strike prices of these two spreads larger than one, i.e., 2 ≤ j + 1 < i ≤ d − 1 , can be expressed as a no-hedging combination
7
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Fig. 2. Payoff functions of Forms 2 to 7 of base offsets. 
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of B j + B 2 d −2+ j +1 , B j+1 + B 2 d −2+ j +2 , . . . , B i −1 + B 2 d−2+ i . As a result, we include the combinations of the basic bull call B i −1 

and the basic bear call B 2 d−2+ i , i = 2 , 3 , · · · , d − 1 , as Form 2 base offsets. Similarly, we also include the combinations of the

basic bull and bear put spreads and the combinations of the bear call and bull put spreads as Form 4 and Form 6 base

offsets. 

Next, we consider a combination of a basic bull call spread B j and a basic bear call spread B 2 d−2+ i with a lower strike

price. Because the bull call spread B j cannot offset the possible loss of the bear call spread B 2 d−2+ i when the terminal price

lies inside the interval [1 + K j , K i ] , we add a bear put spread to form a box spread with the bull call spread and thus hedge

the bear call spread. As a result, we include the combinations of a box spread and a bear call spread as Form 3 base offsets.

Similarly, we include the combinations of a box spread and a bull put spread as Form 5 base offsets. Because a Form 3

(5) base offset can furthermore offset a basic bull put (bear call) spread, we document such combinations by Form 7 base

offsets. 

After removing all the no-hedging combinations, it can be verified from the definition that there are 11 d − 17 base offsets

for d different strike prices. Note that the total number of balanced strategies for d different strike prices is C 1 
d 

+ C 2 
d 

+ · · · +
 

d 
d 

= 2 d − 1 . We next prove that these 11 d − 17 base offsets form a complete base for the MPL calculation of all the (2 d − 1)

balanced strategies with the help of Proposition 3.2 and Lemma 3.1 . As a result, to study the MPL of a balanced options

strategy, we only need to study these base offsets. 

Theorem 3.1. Any balanced options strategy can be expressed into a no-hedging combination of base offsets. 
8
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Let us illustrate the base offsets and the no-hedging combination introduced above by two cases with d = 3 . A bull put

spread 

ˆ v = (0 , 0 , 0 , 3 , −3 , 0) T is a simple balanced options strategy. It can be expressed into a no-hedging combination of

the basic spreads (Form 1 base offset): 

ˆ v = 3 · (0 , 0 , 0 , 1 , −1 , 0) T = 3 · B 3 , 

since all the payoff functions of these three bull put spreads B 3 achieve their minimums at S T ∈ [0 , K 1 ] . A balanced strategy

v̄ = (2 , −3 , 1 , −2 , 4 , −2) T , can be expressed into a no-hedging combination 

v̄ = (0 , 1 , −1 , 0 , 0 , 0) T + 2 · (1 , −2 , 1 , −1 , 2 , −1) T , 

where the first resulting vector is the Form 1 base offset B 2 and the second one is a Form 7 base offset. The Form 1 base

offset B 2 is a basic bull call spread with a non-negative payoff function, while the payoff of a Form 7 base offset is always 

zero. Therefore, the combination of these two base offsets is a no-hedging combination. 

One may notice that there are many different ways to express the strategy v̄ into combinations of base offsets. 

Theorem 3.1 guarantees the existence of the no-hedging combination of base offsets for each balanced strategy. To iden- 

tify the no-hedging combination out of the possible expressions, we introduce the netting model for MPL as follows. 

As we proved in Proposition 3.1 , any balanced strategy v can be expressed as a portfolio of Form 1 base offsets. Therefore,

any balanced strategy v can be expressed as a portfolio of base offsets, v = 

n ∑ 

i =1 

A i q i , q = (q 1 , . . . , q n ) 
T ∈ Z 

n + , where A i , i =
1 , . . . , n are the proposed base offsets (with up to six legs). Denote the MPL of the base offset A i by m i , i = 1 , . . . , n . For

any base offsets portfolio q , if we can find another portfolio a with the same payoff curve and lower MPL, then a makes a

better use of the offsets than q . Among all these portfolios with lower MPLs, we choose the best candidate a ∗ by solving the

following netting model of size six 10 , 

min 

a 
{ m 

T a : Aa = Aq, a ∈ Z 

n 
+ } . (NM) 

Then, the optimal value, m 

T a ∗, is the MPL of the base offsets portfolio q or the options strategy v calculated by model (NM) .

Corollary 3.1. Model (NM) always yields an exact estimation of the maximum possible loss for any balanced options strategy. 

Although we are not able to prove the tractability of the above integer programming model at this stage, our model

of size six only involves 2 d constraints and 11 d − 17 integer variables with d being the number of strike prices, which is

significantly less than the counterparts in the model by Matsypura and Timkovsky (2013) , n 2 
0 

+ n 0 integer variables and

2 dn 0 + n 0 constraints, where, according to Matsypura and Timkovsky (2013) , 

n 0 = 

d−1 ∑ 

w =1 

[6(d − w ) + 8(d − 2 w ) + + 8(d − 3 w ) + ] . (9) 

For instance, when we consider 5 different strike prices, there are only 10 constraints and 38 integer variables involved in

our size-six model, while the integer programming model in Matsypura and Timkovsky (2013) introduces 1,188 constraints 

and 11,772 integer variables. In fact, we find the computational time of our netting model of size six is less than one second

for all the cases where the number of different strike prices does not exceed twenty in our numerical experiments using

ILOG CPLEX 12.6. 

Although we cannot theoretically present the computational complexity for the netting model (NM) , we can prove that 

this model of a smaller size is solvable in polynomial time. If we limit the coefficient matrix A of model (NM) to Ā , whose

columns are base offsets with up to four legs, and the vector m to the corresponding maximum possible loss vector m̄ , we

have the following netting model of size four, 

min 

a 
{ ̄m 

T a : Ā a = Ā q, a ∈ Z 

n̄ 
+ } . NM 1 

We can prove that the netting model ( NM 1 ) of size four is equivalent to its continuous relaxation, which is of polynomial

time complexity. 

Proposition 3.3. Our netting model ( NM 1 ) is equivalent to its continuous relaxation, min 

a 
{ ̄m 

T a : Ā a = Ā q, a ∈ R ̄

n + } . 
Having a size smaller than that of our netting model (NM) , the restricted model ( NM 1 ) cannot guarantee an exact MPL

estimation for all balanced strategies. However, we can still figure out the set of balanced strategies for which model ( NM 1 )

can provide an exact estimation of the MPL. 

Proposition 3.4. If a balanced options strategy v satisfying one of the following three conditions: i) v is a call spread; ii) v is a
put spread; or iii) v is a strategy with up to four legs, then the restricted netting model ( NM 1 ) provides an exact estimation of

the MPL for the strategy v . 
10 Recall that the size of a strategy-based model is the maximum number of legs of A i , i = 1 , . . . , n , but not the number of legs of v . In other words, we 

can calculate MPLs by model (NM) for any balanced strategy v with legs possibly up to 2 d. More importantly, the model complexity does not depend on 

the legs of v . 

9 
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3.2. Unbalanced Portfolio 

As we discussed above, unbalanced option portfolios could have unbounded MPLs, defined in (2) , leading to ill-posedness 

of our optimization problem. Thereupon, one can not directly apply our netting model to unbalanced option portfolios. In 

this subsection, we show how to apply our model to unbalanced ones under the assumption that the underlying price is

bounded. 

Note that we consider the maximum possible loss in terms of all the possible underlying price S T ∈ [0 , ∞ ) , which results

in infinite possible loss of unbalanced portfolios. Thus, to deal with unbalanced ones, we have to adopt the assumption that

the underlying price is bounded. With such an assumption, we set virtual strike prices K u and K l so that S T ∈ [ K l , K u ] . The

net payoff at maturity of a naked long call option with strike price K ∈ (K l , K u ) is then also bounded by (K u − K) . As a result,

the naked long call option has the same payoff curve as a bull call spread (See Figure 1 for an illustration with K i 1 
= K and

K i 2 
= K u ). Similarly, a naked short call option would have the same payoff curve as a bear call spread. 

For example, let’s consider an unbalanced portfolio where there is one naked short call option, but no naked put option,

i.e., 

d ∑ 

i =1 

v i = −1 , 

2 d ∑ 

i = d+1 

v i = 0 . 

Without the assumption on underlying price S T , the naked position might incur infinite possible loss. With an assumption

that the price is bounded by S T < K u , the naked call option’s loss is bounded. Our model is then ready to be applied. For

an illustrative purpose, we assume in this example that the upper bound K u = K d + (K d − K d−1 ) so that we only need to

add one virtual strike price K d+1 = K u and express the options as v̄ = ( ̄v 1 , ̄v 2 , · · · , ̄v d+1 , ̄v d+2 , · · · , ̄v 2(d+1) ) 
T . A naked short call

option at strike price K i , i = 1 , . . . , d, has the same terminal payoff as the balanced portfolio v̄ = −e i + e d+1 , where e i is a

vector with i −th element being one and all other elements being zero. 

In general, with the assumption that S T ∈ [ K l , K u ] 
11 and that K l ≤ K 1 , K d ≤ K u , to keep a common difference among the

strike prices, besides the original strike prices K 1 < K 2 < · · · < K d , we add ( d + d̄ ) ( d , d̄ ∈ Z + ) virtual strike prices as 

K l = K 1 −d < K 2 −d < · · · < K 1 < K 2 < · · · < K d < K d+1 < K 

d+ ̄d = K u , (10)

where 

K 1 −i = K 1 − i (K 2 − K 1 ) , i = 1 , · · · , d , d = 

K 1 − K l 

K 2 − K 1 

, 

K d+ i = K d + i (K 2 − K 1 ) , i = 1 , · · · , d̄ , d̄ = 

K u − K d 

K 2 − K 1 

. 

The option portfolios are then expressed as a vector of dimension 2( ̄d + d + d) , 

v̄ = ( ̄v 1 , ̄v 2 , · · · , ̄v 
d̄ + d + d , ̄v d̄ + d + d+1 

, · · · , ̄v 
2( ̄d + d + d) 

) T , (11) 

where v̄ i + d and v̄ 
d+ ̄d +2 d + i are the numbers of call and put positions on the option at strike price K i , i = 1 , · · · , d. 

Proposition 3.5. Assuming that the underlying price at maturity is bounded by S T ∈ [ K 1 −d , K 

d+ ̄d ] , with the virtual strikes defined

in (10) and the options expression (11) , 

1) a naked long or short call option at strike price K i , i = 1 , . . . , d, has the same payoff function as a balanced option portfolio

v̄ = e i + d − e 
d+ ̄d + d or v̄ = −e i + d + e 

d+ ̄d + d . 
2) a naked long or short put option at strike price K i , i = 1 , . . . , d, has the same payoff function as a balanced option portfolio

v̄ = e 
d+ ̄d +2 d + i − e 

d+ ̄d + d +1 
or v̄ = −e 

d+ ̄d +2 d + i + e 
d+ ̄d + d +1 

. 

With such an expression and price bounds, the naked options are equivalent to balanced portfolios in terms of the 

maximum possible loss at maturity. As a result, the unbalanced option portfolios are turned into balanced ones, in terms of

the MPL. We can apply the models proposed above to calculate the MPLs for these unbalanced option portfolios. We will

illustrate the application in Example 4.7 . 

With the same spirit, we can also take the underlying asset into consideration by the following proposition. 

Proposition 3.6. Assuming that the underlying price at maturity is bounded by S T ∈ [ K 1 −d , K 

d+ ̄d ] , with the virtual strikes defined

in (10) and the options expression (11) , 

1) a long position of one unit of the underlying asset, up to the option multiplier, has the same payoff function as that of a

balanced option portfolio v = e 1 − e 
d+ ̄d + d plus K 1 −d ; 

2) a short position of one unit of the underlying asset, up to the option multiplier, has the same payoff function as that of a

balanced option portfolio v = −e 
d+ ̄d + d +1 

− e 
2(d+ ̄d + d ) minus K 

d+ ̄d ; 
11 Note that we still assume that the difference between upper/lower bounds and the original strike price K 1 being integer multiple of a common differ- 

ence among the strike prices in this part. However, this assumption would not be critical to our model, since one can set the common difference small 

enough to establish it. 

10 
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As we show above, the unbalanced portfolios can be turned into balanced ones, in terms of the MPL, with the assump-

tion of price bounds. A related question would be how would the price bounds’ assumption affect our main result on the

balanced portfolios? In the next proposition, we will show that, with the price bounds, the balanced portfolios are still 

dominated by the base offsets, as shown in Theorem 3.1 . As a result, the main results and our NM models still hold. 

Proposition 3.7. Assuming that the underlying price at maturity is bounded by S T ∈ [ K 1 −d , K 

d+ ̄d ] , with the virtual strikes defined

in (10) and the options expression (11) , an arbitrary balanced options strategy can be expressed into a no-hedging combination

of base offsets. 

4. Numerical Experiments and Applications 

This section compares the maximum possible loss estimated by our netting models with three prevailing portfolio margin 

models, the SPAN, the historical VaR and the SIMM, to demonstrate the netting efficiency and the procyclicality issue. In 

particular, with the historical data of both exchange-based and over-the-counter European options, we apply our netting 

model and the three different risk-sensitive margin models to illustrate how the increase of our netting model’s size from 

two to six improves the netting efficiency and why the netting model can be invoked into the prevailing risk-based models

to tackle the procyclicality issue. In addition, we propose mixed models for incorporating our model (NM) with the risk-

sensitive margin models to counter cyclicality. 

Dataset. For the comparison between our netting model and the existing methodologies for portfolio margin, we consider 

two types of European option portfolios: the options on S&P 500 index (SPX) and the USD swaptions. Our dataset includes

the underlying price and values of options on SPX from Sep. 2, 2008 to Aug. 31, 2018; and the prices of 3M ×10Y USD

forward swap and swaptions from July 1, 2011 to Aug. 20, 2019. 

4.1. Comparison with the Standard Portfolio Analysis of Risk (SPAN) 

The SPAN approach, practiced by the Chicago Mercantile Exchange, is a scenario-based methodology used by most ex- 

changes to calculate margins for option portfolios. The SPAN provides both “gross margin”, which provides the margin for 

portfolios by summarizing all the positions’ estimated maximum possible losses among prescribed potential scenarios, and 

the “net margin”, which identifies the margin for a portfolio as the estimated maximum possible loss of this portfolio as

a total among these prescribed potential scenarios. As mentioned before, the netting model of size one corresponds to the 

“gross margin”, while the netting model of a larger size reduces the estimated market risk corresponding to an inefficient 

netting and thus corresponds to the “net margin”. In this subsection, we compare the MPLs by our netting models with the

SPAN for net margin calculation. 

For each portfolio, as documented in CME (2019) , we simulate sixteen different SPAN scenarios by shocking the underly- 

ing price and its volatility up or down. For instance, if the underlying asset’s price follows geometric Brownian motion, we

set the scan range of the underlying price to be 12 

(S t × exp(−2 . 326 ×
√ 

14 / 365 σt ) , S t × exp(2 . 326 ×
√ 

14 / 365 σt )) , 

where σt is the at-the-money implied volatility at day t . The scan range of the volatility is either a fixed one 0 . 2 σt , or a

historical range to approximate a 10-day 99% VaR shock. Two extreme scenarios are generated by considering three times 

the underlying price scan range and one time of the volatility scan range. Afterward, we identify the margin by SPAN as the

maximum possible loss among the fourteen normal scenarios and two extreme scenarios, with the weight of the extreme 

scenarios is set to be 0.33. 

Example 4.1 (Netting Efficiency Compared with SPAN) . We randomly generate balanced portfolios on SPX and USD swap, 

separately, and calculate the maximum possible losses yielded by our netting model of different size s 13 to demonstrate the

importance of netting efficiency. In particular, we first randomly generate ten balanced portfolios on 21 different strike prices 

with the number of positions at each strike price uniformly distributed in [-9,9]. For each trading day t , we consider the ten

portfolios of one-month constant maturity options starting from day t with strike prices S t ± 5 i , i = 0 , 1 , · · · , 10 , where S t is

the price of SPX. We then calculate the margin levels for such ten sets of option portfolios by SPAN with historical and fixed

volatility ranges, respectively, and the MPLs by the netting model of sizes two, four, and six. The averaged margin levels and

MPLs at each trading day are documented in Figure 3 . 

Similarly, we investigate the applications of SPAN and our netting models on ten sets of randomly generated balanced 

portfolios of 3M ×10Y USD swaptions with unit notional and strike prices F t ± 5 i/ 10 0 0 0 , i = 0 , 1 , · · · , 10 , where F t is the

3M ×10Y USD forward swap price at day t . The averaged margin levels and MPLs are documented in Figure 4 . 
12 We set the scan range to approximate a 10-day 99% VaR shock. In particular, 2.326 is the multiplier for 99% confidence using a normal distribution, 

and 
√ 

14 / 365 is the scaling factor for a two-week period of risk. 
13 As we discussed in the last section, one can easily construct our model of size s (s ≤ 6 ) via limiting the coefficient matrix A to a sub-matrix consisting 

of base offsets with up to s legs. 

11 
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Fig. 3. The MPLs by netting model of different sizes and the margin levels by SPAN on ten randomly generated one-month maturity SPX option portfolios 

from Jun. 4, 2009 to Aug. 31, 2018. We apply SPAN with the historical volatility range in the left figure, based on the volatility change during the last 180 

days. In the right figure, we apply SPAN with a fixed volatility range 0 . 2 σt . With the increase of size, the MPL by netting models is significantly reduced. 

Fig. 4. The MPLs by netting models of different sizes and the margin levels by SPAN on ten randomly generated 3M ×10Y USD swaption portfolios from 

Mar. 22, 2012 to Aug. 20, 2019. In the left figure, we apply SPAN with the historical volatility range, based on the volatility change during the last 180 days. 

In the right figure, we apply SPAN with a fixed volatility range 0 . 2 σt . With the increase of size, the MPL by netting models is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have proved in Section 3 that the netting model (NM) yields an exact estimation of the maximum possible loss. In

other words, we offer the tightest upper bound for the market risk for the CCPs. However, there is often a relatively small

chance for the realized loss of an option portfolio to attain the maximum possible loss. The SPAN provides the maximum

possible loss among sixteen scenarios, which are generated by the possible shocks on the underlying price and the volatility. 

As a result, the MPL calculated by the netting model could be much higher than the margins by the SPAN, as shown in

Figures 3 - 4 . 

However, we observe from Figures 3 - 4 that the estimated MPLs tighten drastically when the model size increases from

two to six. Furthermore, we calculate the average ratios of MPLs by the netting models of sizes two, four, and six over

the margin levels by SPAN for each trading day and document the mean, the 75 th percentile, the 95 th percentile, and the

maximum of the average ratios in Table 2 . We can observe that the ratio decreases sharply when we increase the size

from two to six, which implies improved netting efficiency. The reduction is more significant for SPX options than USD 

swaptions. Meanwhile, SPAN’s margin levels on SPX options are closer to the MPLs of size six than these on USD swaptions.

Recall that our netting model aims to reduce the requirement induced by an inefficient netting, but not that by small

probability events. That is to say, by eliminating the part of inefficient netting, the maximum possible loss by our netting

model (NM) can provide a reasonable level for the margin requirement of fluctuated assets, such as the SPX options. As for

the USD swaptions, the fluctuations of both the underlying assets’ price and the volatility are less significant. The probability 

that the realized loss of this portfolio attains the MPL is relatively small. Therefore, the difference between the MPL and the

margin requirement by risk-sensitive model comes from the small probability events with significant losses for these less 

fluctuated assets. It is worth mentioning that the probability depends on the scenario setting, which is subjective. 

We illustrate the difference between the maximum possible loss and SPAN’s margin levels with a simple one-month 

maturity bull put spread on SPX starting from Oct. 14, 2014. In particular, the spread includes a long put at the strike price

S t − 50 and a short put at the strike S t − 45 , where S t is the price of SPX on Oct. 14, 2014. In Figure 5 , we plot the payoff

curve of this put spread and the probability density functions in terms of the terminal price S T of SPX conditional on the

stock price and volatility settings in the generated scenarios. In particular, Figure 5 a) corresponds to the scenario generated
12 
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Table 2 

Statistics of the ratios of MPLs by netting models over the margins by SPAN. The ratio is sig- 

nificantly reduced with the increase of size. The reduction is more significant for SPX options 

than USD swaptions. 

MPLs v.s. margins by SPAN with fixed volatility range on SPX options. 

mean 75 th percentile 95 th percentile maximum 

netting model of size two 2.1278 2.1510 2.1905 2.5001 

netting model of size four 1.2030 1.2161 1.2384 1.4135 

netting model of size six 1.1432 1.1556 1.1769 1.3432 

MPLs v.s. margins by SPAN with historical volatility range on SPX options. 

mean 75 th percentile 95 th percentile maximum 

netting model of size two 2.0157 2.0533 2.1048 2.3312 

netting model of size four 1.1396 1.1609 1.1900 1.3179 

netting model of size six 1.0829 1.1032 1.1308 1.2524 

MPLs v.s. margins by SPAN with fixed volatility range on USD swaptions. 

mean 75 th percentile 95 th percentile maximum 

netting model of size two 1.6278 1.6436 1.6664 1.6882 

netting model of size four 1.3616 1.3747 1.3938 1.4120 

netting model of size six 1.3321 1.3450 1.3636 1.3815 

MPLs v.s. margins by SPAN with historical volatility range on USD swaptions. 

mean 75 th percentile 95 th percentile maximum 

netting model of size two 1.6332 1.6683 1.7084 1.7421 

netting model of size four 1.3660 1.3954 1.4289 1.4572 

netting model of size six 1.3365 1.3653 1.3980 1.4257 

Fig. 5. Illustration of scenarios generated in SPAN to margin a one-month maturity bull put spread on SPX. The left figure presents the terminal payoff of 

the spread and the probability density function of the terminal price S T in a scenario without any price or volatility shock; the right figure corresponds 

to the scenario where the underlying price decreases by one price scan range and the volatility decreases by a third of the historical volatility scan range. 

The estimated margin in the left scenario approaches zero, while the one in the right scenario approaches MPL = −5 . 

 

 

 

without any price or volatility shock. In such a scenario, the probability of the terminal payoff of the bull put spread being

negative is extremely small. Thus, the corresponding potential loss is almost zero. 

On the other hand, by moving the underlying price down by one price scan range and the volatility down by a third of

the historical volatility scan range, another scenario can be generated for the SPAN. The corresponding probability density 

function, as shown in Figure 5 b), states that the probability of the terminal payoff of the bull put spread being −5 ap-

proaches one. Thus, the corresponding potential loss approaches the maximum possible loss identified by our netting model 

(NM) . 
13 
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Fig. 6. Procyclicality of SPAN’s margin levels with historical volatility range for SPX option portfolios from Jun. 4, 2009 to Aug. 31, 2018. We apply SPAN 

with historical volatility range to two sets of one-month maturity bull put spread on SPX: the spread corresponding to the left figure includes a long put 

at the strike price S t − 5 and a short put at the strike price S t ; the one corresponding to the right figure includes a long put at the strike price S t − 50 and 

a short put at the strike price S t − 45 . S t is the price of SPX at day t . The trend of margin levels by SPAN is similar to that of the at-the-money option 

implied volatility. As shown in the right figure, the margin levels for out-the-money portfolios are much lower but have a higher degree of procyclicality 

than those in the left figure. 

Fig. 7. Procyclicality of SPAN’s margin levels with historical volatility range for USD swaption portfolios from Mar. 22, 2012 to Aug. 20, 2019. We apply SPAN 

to two sets of 3M ×10Y USD swaption portfolios: the one corresponding to the left figure includes a long receiver swaption at the strike price F t − 5 / 10 0 0 0 

and a short receiver at the strike price F t ; the one corresponding to the right figure includes a long receiver at the strike price F t − 50 / 10 0 0 0 and a short 

receiver at the strike price F t − 45 / 10 0 0 0 . F t is the 3M ×10Y forward swap rate at day t . The trend of margin levels by SPAN is similar to that of the at-the- 

money option implied volatility. As shown in the right figure, the margin levels for out-the-money portfolios are much lower but have a higher degree of 

procyclicality than those in the left figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.2 (Procyclicality of SPAN) . We consider a simple type of balanced portfolio, a bull put spread, to present the

procyclicality of risk-sensitive margin levels for an illustrative purpose. In particular, for each trading day t , we consider two

one-month maturity bull put spreads on SPX: one includes a long put at the strike price S t − 5 and a short put at the strike

S t ; while the other includes a long put at the strike price S t − 50 and a short put at the strike S t − 45 . S t is the price of

SPX at day t . In Figure 6 , we present the comparison of margin levels by SPAN with historical volatility range 14 and at-the-

money option implied volatility, with the MPLs calculated by our netting model of size six as a benchmark level, for these

two sets of bull put spreads on SPX. 

Similarly, we also consider two sets of portfolios of the 3M ×10Y USD swaptions: one includes a long receiver swaption

at strike price F t − 5 / 10 0 0 0 and a short receiver swaption at F t ; while the other includes a long receiver swaption at strike

price F t − 50 / 10 0 0 0 and a short receiver swaption at F t − 45 / 10 0 0 0 . The results on USD swaption portfolios are shown in

Figure 7 . 

With such a setting, Figures 6 (a) and 7 (a) are corresponding to a case where the strike prices of the option portfolios are

closer to the underlying price, comparing with the case in Figure 6 (b) and Figure 7 (b). We can observe from Figures 6 (a)

and 7 (a) that the margin requirement by the risk-sensitive model SPAN is quite close to the MPL by our netting model

(NM) for these option portfolios whose strikes are close to the current underlying price. Meanwhile, the margin requirement 

by SPAN could be much lower than the MPL if the option portfolios’ strike prices are far away from the underlying price,
14 The results corresponding to SPAN with fixed volatility range can be found in our online supplement. 

14 
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Fig. 8. The MPLs by netting models of different sizes and the margin levels by historical VaR on ten randomly generated one-month maturity SPX option 

portfolios from Jun. 4, 2009 to Aug. 31, 2018 or 3M ×10Y USD swaption portfolios from Mar. 22, 2012 to Aug. 20, 2019. The left figure presents the results 

on SPX option portfolios, while the right figure shows those on USD swaption portfolios. With the increase of size, the MPL by netting models is reduced. 

Table 3 

Statistics of the ratios of MPLs by our netting model (NM) over the margins by Historical VaR. 

mean 75 th percentile 95 th percentile maximum 

Applications on SPX options 1.1853 1.2430 1.3546 1.9289 

Applications on USD swaptions 1.5721 1.6041 1.7414 1.8225 

 

 

 

 

 

 

 

 

 

 

 

 

as shown in Figures 6 (b) and 7 (b). This is consistent to the essence of the scenario-based model SPAN: it identifies the

maximum possible loss among potential scenarios generated according to the current market state, and thus may overlook 

the potential loss of these deeply out-the-money options. Meanwhile, our netting model (NM) corresponds to the worst 

case, which is independent of the current market state. 

As a result, we can observe from Figures 6 (b) and 7 (b) that the risk-sensitive margin levels are much lower than the MPL

provided by model (NM) when the at-the-money implied volatility is small and the market sentiment is optimistic. Because 

people believe that the worst case is a small probability event when the market sentiment is optimistic. When markets 

become volatile, investors face the possibility of the worst-case and thus increase the margin requirement. Therefore, the 

risk-sensitive margin requirement would be high at bad times and low at good times, and thus is pro-cyclical, especially for

these out-of-the-money option portfolios. 

4.2. Comparison with the Historical Value-at-Risk (HVAR) 

The Historical VaR approach is a historical simulation methodology, which evaluates the value at risk of a portfolio by 

simulations based on the past performance. Unlike parametric VaR models, historical VaR does not assume a particular dis- 

tribution of the asset returns. In particular, we simulate the portfolio performance, based on the 10-day price and volatility 

change in last 180 days, and identify the 99% quantile of the portfolio loss as the margin requirement. 

Example 4.3 (Netting Efficiency Compared with the Historical VaR) . With the same data set and experiment process as 

Example 4.1 , we compare the MPLs by our netting model of sizes two, four and six for twenty sets of option portfolios with

the margin levels by historical VaR. The averaged margin levels and MPLs at each trading day are documented in Figure 8 .

In addition, we calculate the average ratios of MPLs (of size six) by our netting model (NM) over the margin levels by the

historical VaR for each trading day, and document the mean, the 75 th percentile, the 95 th percentile, and the maximum of

the average ratios in Table 3 . 

Similar to Example 4.1 , we can observe from Figure 8 that the margin levels are significantly reduced by increasing the

model size from two to six. In addition, as discussed in Example 4.1 , the MPL is closer to the risk-sensitive margin levels

for fluctuated assets, such as the SPX options, than for less fluctuated ones, such as the USD swaptions. The reason is that

based on the historical performance, these less fluctuated assets are less likely to achieve the maximum possible loss. 

Example 4.4 (Procyclicality of Historical VaR) . We consider the same data and portfolio sets as Example 4.2 . In Figures 9 -

10 , we present the comparison of the margin level by historical VaR and at-the-money option implied volatility for these

two sets of bull put spreads, with the MPL by our netting model (NM) as a benchmark. 
15 
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Fig. 9. Procyclicality of the margin levels by historical VaR for SPX option portfolios from Jun. 4, 2009 to Aug. 31, 2018. We apply historical VaR to two sets 

of one-month maturity bull put spread on SPX: the spread corresponding to the left figure includes a long put at the strike price S t − 5 and a short put at 

the strike price S t ; the one corresponding to the right figure includes a long put at the strike price S t − 50 and a short put at the strike price S t − 45 . S t 
is the price of SPX at day t . The trend of margin levels by historical VaR is similar to that of the at-the-money option implied volatility. As shown in the 

right figure, the margin levels for out-the-money portfolios are much lower but have a higher degree of procyclicality than those in the left figure. 

Fig. 10. Procyclicality of the margin levels by historical VAR for USD swaption portfolios from Mar. 22, 2012 to Aug. 20, 2019. We apply historical VAR to 

two sets of 3M ×10Y USD swaption portfolios: the one corresponding to the left figure includes a long receiver swaption at the strike price F t − 5 / 10 0 0 0 

and a short receiver at the strike price F t ; the one corresponding to the right figure includes a long receiver at the strike price F t − 50 / 10 0 0 0 and a short 

receiver at the strike price F t − 45 / 10 0 0 0 . F t is the 3M ×10Y forward swap rate at day t . As shown in the right figure, the margin levels for out-the-money 

portfolios are much lower but have a higher degree of procyclicality than those in the left figure. 

 

 

 

 

 

 

Compared with the results in Figures 6 - 7 , we can find that the margin levels by the historical VaR is lower and less

procyclical than those by the SPAN. Because we do not consider stressed VaR in our historical VaR, the margin levels are

much less than the maximum possible loss, especially for the out-of-money spread and less fluctuated asset. 

4.3. Comparison with the Standard Initial Margin Model (SIMM) 

The ISDA’s SIMM approach is a sensitivity-based methodology widely used for the over-the-counter derivatives’ margin 

calculation. The idea is to approximate the potential value change by expanding the price change through local sensitivities 

with respect to risk factors (F , σ ) as follows, 

∂P 

∂F 
(t)�F + 

1 

2 

∂ 2 P 

∂F 2 
(t)(�F ) 2 + 

∂P 

∂σ
(t)�σ, 

where P is the option’s market price, F is the forward price of the underlying asset and σ is the option’s implied volatility.

Take the swaption for an example, according to Andersen and Pykhtin (2018) , we approximate the potential value change of

a swaption by 

�(F t , σt ) × �F + 0 . 5�(F t , σt ) × (�F ) 2 + V (F t , σt ) × V RW σt , 

where �(·, ·) , �(·, ·) and V (·, ·) are Delta, Gamma and Vega of the option. �F = 2 . 326 ×
√ 

14 / 365 σt , V RW = 0 . 16 and σt is

the implied volatility of the option at day t . 

Different from both our netting model (NM) and the SPAN, which provide an estimation for the possible loss, SIMM 

approximates the negative of possible value change. To compare them, we provide the SIMM-based loss as (SIMM − P t ) 
+ ,
16 
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Fig. 11. The MPLs by our size-six netting model and SIMM’s margin levels on ten randomly generated one-month maturity SPX option portfolios from 

Jun. 4, 2009 to Aug. 31, 2018 or 3M ×10Y USD swaption portfolios from Mar. 22, 2012 to Aug. 20, 2019. The left figure presents the results on SPX option 

portfolios, while the right figure shows those on USD swaption portfolios. With the MPL as a benchmark, SIMM’s margins could overestimate the market 

risk for SPX option portfolios. 

Table 4 

Statistics of the ratios of MPLs by our netting model (NM) over the SIMM-based losses. 

Applications on SPX options. 

mean 75 th percentile 95 th percentile maximum 

MPLs v.s. SIMM-based losses 1.0179 1.0476 1.0761 1.1252 

Applications on USD swaptions. 

mean 75 th percentile 95 th percentile maximum 

MPLs v.s. SIMM-based losses 1.3269 1.3332 1.3426 1.3597 

 

 

 

 

 

 

 

 

 

 

 

 

 

where P t is the portfolio value at time t . As we discussed above, SIMM estimates the negative of possible value change

�P t = −(P t+�t − P t ) , while our netting model provides MPL as ( max (−P T )) 
+ . Thus, it is easy to derive that 

(�P t − P t ) 
+ = (−P t+�t ) 

+ ≤ ( max (−P T )) 
+ = MP L. 

Meanwhile, we also provide the MPL-based possible value change as (MP L + P t ) 
+ . With the fact that (x + y ) + ≤ (x + + y ) + 

holds for arbitrary x and y , we can derive that 

(�P t ) 
+ ≤ ( max (−P T ) + P t ) 

+ ≤ (MP L + P t ) 
+ . (12) 

With the further relaxation introduced by the non-negativity operator, the MPL-based possible value change, (MP L + P t ) 
+ ,

is not the tightest upper bound for the possible value change. However, it does serve as an upper bound for the possible

value change, as shown in (12) . We present the comparison between MPLs and the SIMM-based losses in the following part

of this section and defer the comparison between MPL-based value change and the margin levels by SIMM to the online

supplement. 

Example 4.5 (Comparison between our netting model and SIMM) . With the same data set and generated portfolios as 

Example 4.1 , we compare the MPLs by our netting model of size six for such twenty sets of option portfolios with the

SIMM-based losses in this example. The SIMM-based losses and MPLs at each trading day are documented in Figure 11 . 

As discussed previously, the MPLs calculated by our netting model could be much higher than the margins by the 

risk-sensitive model. However, note that the SIMM-based loss could be higher than the MPL, for SPX option portfolios, 

in Figure 11 . The reason is that SIMM approximates the negative of possible value change by Greeks. This approximation

is based on Taylor’s formula and thus could possibly over-estimate the possible value change, especially for an underlying 

with large fluctuations, e.g., SPX. 

Furthermore, we calculate the average ratios of MPLs by our netting model (NM) over the SIMM-based losses for each

trading day, and document the mean, the 75 th percentile, the 95 th percentile, and the maximum of the average ratios in

Table 4 . Similar to Example 4.1 , we can observe that the difference between the MPLs and the SIMM-based losses is more

significant for USD swaptions than SPX options. 

Example 4.6 (Procyclicality of SIMM) . We consider the same data and portfolio sets as Example 4.2 . In Figures 12 - 13 , we

present the comparison of the SIMM-based loss and at-the-money option implied volatility for these two sets of bull put 

spreads, with the MPLs by our netting model (NM) as a benchmark. 

As shown in Figures 12 (a) and 13 (a), the magnitude of SIMM-based losses is quite close to the MPLs for these option

portfolios whose strikes are close to the underlying price. In fact, the SIMM-based losses could even possibly be higher than
17 
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Fig. 12. Pro-cyclicality of the SIMM-based losses for SPX option portfolios from Jun. 4, 2009 to Aug. 31, 2018. We apply SIMM to two sets of one-month 

maturity bull put spread on SPX: the one in the left figure includes a long put at the strike price S t − 5 and a short put at the strike price S t ; the one in 

the right figure includes a long put at the strike price S t − 50 and a short put at the strike price S t − 45 . S t is the price of SPX at day t . The SIMM-based 

losses in the left figure could overestimate the market risk, with the MPL as a benchmark. The SIMM-based losses in the right figure are lower, but of a 

higher degree of pro-cyclicality. 

Fig. 13. Pro-cyclicality of the SIMM-based losses for USD swaption portfolios from Mar. 22, 2012 to Aug. 20, 2019. We apply SIMM to two sets of 3M ×10Y 

USD swaption portfolios: the one in the left figure includes a long receiver swaption at the strike price F t − 5 and a short receiver at the strike price F t ; 

the one in the right figure includes a long receiver at the strike price F t − 50 and a short put at the strike price F t − 45 . F t is the 3M ×10Y forward swap 

rate at day t . The trend of SIMM-based losses is similar to that of the at-the-money option implied volatility. The SIMM-based losses for out-the-money 

portfolios, as shown in the right figure, are much lower, but of a higher degree of pro-cyclicality, than the ones in the left figure. 

 

 

 

 

 

 

 

 

 

 

the MPLs by our netting model for this set of portfolios. Meanwhile, the SIMM-based loss could be much lower than the MPL

if the option portfolios’ strike prices are far away from the underlying price, as shown in Figure 13 (b). This is consistent with

the essence of SIMM, as we discussed in Example 4.5 : the sensitivity-based model SIMM approximates the potential value

change by Greeks. The parameters are generated according to the current market state, and thus may overlook the potential 

loss of these deeply out-the-money options, with the belief that the worst case is a small probability event. Moreover, the

approximation could overestimate the potential loss for the at-the-money options on fluctuated assets, such as SPX options. 

Example 4.7 (Unbalanced portfolio) . Inspired by the statistics on options market by SEC 

15 , we randomly generate ten sets

unbalanced SPX option portfolios and ten sets unbalanced portfolios of 3M ×10Y USD swaptions with unit notional and 

strike prices S t ± 5 i or F t ± 5 i/ 10 0 0 0 , with 80,0 0 0 long call positions and 20,0 0 0 positions at short call or long/short put. The

bounds of underlying price at maturity, S T or F T , are set as [ S t − 50 , S t + 50] or [ F t − 50 / 10 0 0 0 , F t + 50 / 10 0 0 0] , respectively,

where S t or F t is the price of SPX or the 3M ×10Y forward swap rate at day t . We apply our netting model and the SPAN,

the historical VaR and SIMM on these unbalanced portfolios and document the results in Figure 14 . As shown in Figure 14 ,

with the bounds’ assumption, the MPLs are closer to these risk-sensitive margin levels, and could even be lower than those
by the SPAN, the SIMM-based losses and the historical VaR, especially for the option portfolios on fluctuated assets. 

15 https://www.sec.gov/files/staff- report- equity- options- market- struction- conditions- early- 2021.pdf 
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Fig. 14. The MPLs by our netting model of size six and the margin levels by SPAN with historical volatility range, SIMM and historical VaR on ten randomly 

generated one-month maturity SPX unbalanced option portfolios from Jun. 4, 2009 to Aug. 31, 2018 or one-month maturity unbalanced USD swaption 

portfolios from Mar. 22, 2012 to Aug. 20, 2019. The left figure presents the results on SPX unbalanced option portfolios, while the right figure is on 

the swaption portfolios. To apply our netting model to unbalanced portfolios, we set the bounds of SPX price or the 3M ×10Y forward swap rate to be 

[ S t − 50 , S t + 50] or [ F t − 50 / 10 0 0 0 , F t + 50 / 10 0 0 0] , where S t or F t is the SPX price or the swap rate at day t . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. The Mixed Models 

In this section, we take the MPL by our netting model (NM) as a benchmark in the margin calculation process and

incorporate it into a risk-sensitive model to balance the margin level and counter-cyclicality by proposing two simple mixed 

models. 

Denote the margin calculated by a risk-sensitive model as Riskmargin and the optimal value of the netting model (NM) as

MPL. Recall the three measures in European Union rules ( European Commission, 2013 ) referred in Section 1 . Because the

second measure is vague, we consider two simple modifications corresponding to the first and third measures as the current 

models: 

Mod. 1 (floor tool): max (Riskmargin, Riskmargin with 10-year volatility); 

Mod. 2 (buffer tool): 1.25 ∗Riskmargin. 

Next, we present two similar mixed models by incorporating a risk-sensitive model with our netting model. Regulators 

may set a multiplier to combine both a risk-sensitive model and our netting model to provide reliable risk protection against

the price fluctuation as follows: 

Mmod. 1 (floor tool): min (max (Riskmargin, β1 ∗MPL), MPL); 

Mmod. 2 (buffer tool): (1 − β2 ) ∗ Riskmargin + β2 ∗MPL. 

Similar to the weights in Murphy et al. (2016) , both multipliers β1 and β2 are adjustable parameters determined by 

regulators. A large β1 or β2 corresponds to a heavy emphasis on the counter-cyclicality rather than the risk-sensitivity. 

For an illustrative purpose, we present the application of Mmod.1 to SPAN with fixed volatility range on two simple bull

put spread on SPX in the following example. We would vary β1 to present how a large β1 can counter procyclicality by

modifying the optimistic sentiment with an objective estimation of the potential loss. The application of Mmod.2 and the 

applications to other risk-based models are similar. 

Example 4.8 (Mixed Model’s Application) . We consider two bull put spreads on SPX, starting from September 5, 2008 and

expiring on October 3, 2008. The index price was $1242.31 on Sept. 5, 2008. 

1) Bull put spread I includes a long put at the strike price $1217.31 and a short put at the strike price $1242.31; 

2) Bull put spread II includes a long put at the strike $1125 and a short put at the strike $1150. 

By buying such two bull put spreads, the investor expected to make a profit as long as the index price on the expiration

date, Oct. 3, 2008, was not too low. With the historical prices observed on Sept. 5, 2008, it is highly possible to find these

two bull put spreads profitable. However, the realized price was $1099.23 and thus induced a realized loss of $25 for each

bull put spread. 

In Figure 15 , we present the margin levels provided by SPAN, Mmod. 1 with different β1 , and the MPLs by the netting

model, for these two spreads from day 1 (Sept. 5, 2008) to day 21 (Oct. 3, 2008). We can observe from Figure 15 (a) that

the mixed model Mmod.1 provides almost the same margin levels as SPAN for bull put spread I, where the strike prices

are close to the underlying price. In other words, when the margin requirement by SPAN has already covered a large part
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Fig. 15. Margin Levels provided by mixed models with different multipliers β1 for two bull put spreads on SPX in 2008. Both spreads started from 

September 5, 2008 and expired on October 3, 2008. The bull put spread I includes a long put at the strike S 1 − 25 and a short put at the strike price S 1 , 

where S 1 = $1242.31 is the price of SPX at day 1 (September 5, 2008). The bull put spread II includes a long put at the strike S 1 − 117 . 31 and a short put 

at the strike S 1 − 92 . 31 , and thus are deeply out-the-money. The x-axis is the trading day t from September 5, 2008 to October 3, 2008. The realized price 

of SPX on October 3, 2008 was $1099.23. The investors face the possibility of the worst-case and the run-ups of the risk-sensitive margin levels during the 

trading period. The difference between the margins by SPAN and the MPL indicates the market sentiment. 

 

 

 

 

 

 

 

 

 

of the potential loss, our mixed model would not affect the margin by SPAN a lot further. However, for the cases where

the risk-sensitive model underestimates the potential loss, our mixed model would modify the margin result, as shown in 

Figure 15 (b). Because the current market condition predicts that the price is highly unlikely to drop below $1125, the risk-

sensitive model, based on the historical and current market data, determines a relatively low margin requirement for bull 

put spread II, as shown in Figure 15 (b). 

The difference between the margin levels and the MPLs is the deviation of our subjective estimation with the optimistic 

sentiment from the objective estimation. In other words, the difference can provide an indicator of the market sentiment: 

when the difference is large, the sentiment is optimistic and investors would prefer to underestimate possible risks and in- 

vest in risky opportunities; meanwhile, when the difference is small, the sentiment is pessimistic, and investors are rational, 

forced or not. With a larger β1 , our mixed model Mmod. 1 would provide a margin level closer to the MPL, which is an

objective level. A larger β1 thus corresponds to a higher margin requirement, but smaller margin run-ups when the market 

realizes that winter is coming. As a result, regulators can set a large β1 when the market sentiment is so optimistic that the

irrational tradings may be encouraged, and a small β1 when the investors are relatively rational. 

5. Conclusion 

This paper develops a novel strategy-based margin calculation model for balanced options strategies. As an alternative to 

the risk-sensitive approach, the strategy-based approach offers an objective estimation for market risks of strategies against 

all possible price movements of the underlying asset. Although the strategy-based approach enjoys a distribution-free esti- 

mation and is fully counter-cyclical, it has suffered from two crucial issues of possible overestimation and high computa- 

tional complexity and has become not too attractive in recent years. Fortunately, our proposed novel strategy-based netting 

model has satisfactorily addressed both issues for the balanced options strategies. 

With our introduction of base offsets, we have proved that our size-six model always provides an exact estimation of 

the market risk measured by the maximum possible loss, for all balanced options strategies. Although we cannot prove 

the tractability for our netting model of size six, according to our numerical experiments, the computational time of our 

netting model of size six is less than one second for all the cases where the number of strike prices is less than twenty.

Note that the number of different strike prices on one option is unlikely to be larger than twenty in the options markets.

Therefore, our model of size six, which is proved to provide an exact estimation of the market risk for every balanced

options strategy, does serve the purpose as a good netting model in practice. To conclude, by proposing the base offsets, we

1) show the essential hedging properties inside all the balanced strategies which can be easily documented into the margin 

manual book for traders’ reference, and 2) solve the strategy-based model of size six in less than one second for multi-leg

strategies. 

We also incorporate the margin level calculated by our strategy-based model with the prevalent risk-sensitive margin 

model to counter procyclicality. With data of SPX options and USD swaptions, we demonstrate the netting efficiency of 

our model and the procyclicality of the risk-sensitive margin levels. We find that incorporating the maximum possible loss 

can counter procyclicality, but also increase the margin level. We only apply simple formulations for the incorporation to 

provide a possible counter-cyclical way. Regulators can further adjust the formula and the multipliers to identify the balance 

between margin level and the degree of procyclicality. 
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Appendix A. Proofs of Properties of the Balanced Strategy and Dominance 

Proof of Proposition 3.1 

We first prove that an arbitrary given balanced option strategy can always be represented by an integer combination of 

basic spreads. If v is a balanced option strategy, i.e., v 1 + · · · + v d = v d+1 + · · · + v 2 d = 0 , then we can rewrite vector v as 

v = v 1 (e 1 − e d ) + v 2 (e 2 − e d ) + · · · + v d−1 (e d−1 − e d )+ 

v d+1 (e d+1 − e 2 d ) + v d+2 (e d+2 − e 2 d ) + · · · + v 2 d−1 (e 2 d−1 − e 2 d ) , 

where e i is the vector with i -th element being one and all other elements being zero. Because all of the vectors e i − e d and

e d+ i − e 2 d , i = 1 , · · · , d − 1 , are basic spreads, v is an integer combination of basic spreads. 

Meanwhile, any given basic spread can be easily represented by an integer combination of basic bull spreads of width 

one. For example, b = e 1 − e 3 is a basic spread of width two and can be represented as b = B 1 + B 2 , where B 1 and B 2 
are defined in Equation (4) . Therefore, there exist integers k̄ 1 , ..., ̄k 2(d−1) such that 

∑ 2(d−1) 
i =1 

k̄ i B i = v . Note that some of k̄ i ,

i = 1 , ..., 2(d − 1) , could be negative. We further define non-negative coefficients k i = ( ̄k i ) + and k 2(d−1)+ i = (−k̄ i ) + , for all

i = 1 , ..., 2(d − 1) . Also notice that B i +2(d−1) = −B i hold for all i = 1 , ..., 2(d − 1) . Thus, we can express any balanced option

strategy v as 

v = 

2(d−1) ∑ 

i =1 

k̄ i B i = 

2(d−1) ∑ 

i =1 

(k i − k i +2(d−1) ) B i = 

2(d−1) ∑ 

i =1 

(k i B i + k i +2(d−1) B i +2(d−1) ) = 

4(d−1) ∑ 

i =1 

k i B i . 

On the other hand, according to the definition, basic spreads have the same number of long and short positions in puts or

calls, and thus belong to the set of balanced option strategies. Therefore, an arbitrary integer combination of basic spreads, 

B 1 , . . . , B 4(d−1) , is also balanced. To conclude, an option strategy can be represented by a non-negative integer combination

of basic spreads, B 1 , . . . , B 4(d−1) , if and only if it is a balanced option strategy. �

Proof of Proposition 3.2 

From the relationship among v , v i and b j stated in (8), we can easily derive that 

v = 

t ∑ 

i =1 , i � = u 
z i v i + 

n ∑ 

j=1 

z u k j b 
j , m (v ) ≥

t ∑ 

i =1 , i � = u 
z i m (v i ) + 

n ∑ 

j=1 

z u k j m (b j ) , 

where z i , z u k j ≥ 0 , i = 1 , . . . , t , and j = 1 , . . . , n. Thus, according to Definition 2, v is dominated by { v i , i = 1 , · · · , u − 1 , u +
1 , · · · , t} ∪ { b 1 , · · · , b n } . �
Proof of Lemma 3.1 

According to Definition 3, there exist k 1 , . . . , k n ∈ Z + such that v = 

n ∑ 

i =1 

k i b i is a combination satisfying either condition i)

or condition ii) in Definition 3. i) If condition i) holds, denote f b i as the payoff function of b i , i = 1 , ..., n . From condition

i) stated in Definition 3, we have f b i (S T ) ≥ 0 , for all S T ∈ [0 , ∞ ) . Thus, according to the definition of maximum possible

loss(MPL) in (2), all the MPLs of these strategies b i , i = 1 , ..., n , are zeros. Meanwhile, the MPL of any strategy is non-negative.

The resulting MPL, 
n ∑ 

i =1 

k i m (b i ) , equals to zero and thus is no higher than the MPL of v . ii) If condition ii) holds, which is

to say, all the payoff functions f b i , i = 1 , ..., n , achieve their non-positive minimal values at S 0 
T 

, then the payoff function

f v (S T ) = 

n ∑ 

i =1 

k i f b i (S T ) , also achieves its non-positive minimal value at S 0 
T 

. Thus, the resulting MPL equals to the MPL of v ,

since 

m (v ) = (− min 

S T 

n ∑ 

i =1 

k i f b i (S T )) 
+ = − min 

S T 

n ∑ 

i =1 

k i f b i (S T ) = −
n ∑ 

i =1 

k i f b i (S 0 T ) 
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= 

n ∑ 

i =1 

k i (− min 

S T 
f b i (S T )) 

+ = 

n ∑ 

i =1 

k i m (b i ) . �

Appendix B. Proof of Theorem 3.1 

Our proof is based on Proposition 3.2 and Lemma 3.1 and will be carried out in a few steps. The main idea is to factorize

any balanced option strategy into a combination of option strategies whose payoff functions either are all non-negative or all 

achieve their non-positive minimal values at one same point. Then according to Lemma 3.1 , the balanced option strategy is

dominated by these option strategies. We keep on factorizing these option strategies and prove that these option strategies 

are either base offsets or dominated by base offsets. Thus, we can conclude that any balanced option strategy is dominated

by base offsets with Proposition 3.2 and can be expressed into a no-hedging combination of base offsets. 

To proceed, we firstly introduce Form 2’-7’ option strategies and prove that they are dominated by base offsets in 

Lemma Appendix B.1 . We devote Lemma Appendix B.2 to prove that box spreads are dominated by base offsets. Both the

newly introduced Form 2’-7’ option strategies and the box spread will be used in the proof of the theorem during the factor-

izing process. Then we present Lemma Appendix B.3 to describe the case where some of Form 2’-7’ option strategies achieve

their non-positive minimal values at one same point. Lemma Appendix B.4 states that if an option strategy is dominated by

base offsets, it can be expressed into a no-hedging combination of base offsets. Finally, we prove our main theorem. 

B1. Preparatory Lemmas 

Lemma B.1. Define a series of Form 2’-7’ option strategies, which are generalized base offsets, as follows: 

Form 2’: B i +2(d−1) + B j , where i, j ∈ { 1 , ..., d − 1 } , i > j; 

Form 3’: B i +2(d−1) + B j + B j +3(d −1) , where i, j ∈ { 1 , ..., d − 1 } , i < j; 

Form 4’: B i + d−1 + B j +3(d −1) , where i, j ∈ { 1 , ..., d − 1 } , i < j; 

Form 5’: B i + d−1 + B j + B j +3(d −1) , where i, j ∈ { 1 , ..., d − 1 } , i > j; 

Form 6’: B i +2(d−1) + B j + d −1 , where i, j ∈ { 1 , ..., d − 1 } , i ≥ j; 

Form 7’: B i +2(d−1) + B u + d−1 + B j + B j +3(d −1) , where i, u, j ∈ { 1 , ..., d − 1 } , u ≤ i and j ∈ [1 , u ) ∪ (i, d − 1] . 

Form 2’-7’ option strategies are all dominated by base offsets. 

Proof of Lemma Appendix B1.. We first reveal the relationship between Form 2’-7’ option strategies and Form 2-7 base 

offsets by examining the payoff functions of Form 2’-7’ option strategies in Figure B.16 . Recall the payoff functions of base

offsets presented in Figure 3 of the paper. We can observe that Form 2’-7’ option strategies are generalized Form 2-7 base

offsets. We next show that an arbitrary Form 2’ option strategy B i +2(d−1) + B j , where i, j ∈ { 1 , ..., d − 1 } , i > j, is dominated

by base offsets. Because B i +2(d−1) + B i = 0 holds for all i = 1 , · · · , 2(d − 1) , we can rewrite the Form 2’ option strategy as 

B i +2(d−1) + B j = 

i ∑ 

s = j+1 

(B s +2(d−1) + B s −1 ) . 

All these strategies B s +2(d−1) + B s −1 , s = j + 1 , · · · , i , are Form 2 base offsets. According to the payoff functions of base offsets

plotted in Figure 3 , Form 2 base offsets have zero maximum possible losses. Thus, the combination of them cannot further-

more reduce the MPL. Form 2’ option strategies are dominated by base offsets. Similar proof can be applied to all the Form

3’- Form 7’ option strategies. � �

Lemma B.2. For an arbitrary box spread b̄ = B i + B i +3(d−1) , i ∈ { 1 , . . . , d − 1 } , the following statements are true: 

i) It is dominated by base offsets; 

ii) The payoff function of b̄ + v achieves its minimal value at the same points as that of v , where v is an arbitrary option

strategy; 

iii) For any basic spread of width one or Form 2’-7’ option strategy b, b̄ + b has a non-negative payoff function and is domi-

nated by base offsets. 

Proof of Lemma Appendix B2.. i) For any i ∈ { 1 , . . . , d − 1 } , basic spreads B i and B i +3(d−1) are bull call and bear put

spreads, respectively. Recall that both basic bull call and bear put spreads have non-negative payoff functions. According 

to Lemma 3.1 , b̄ is dominated by them and thus by base offsets. ii) Box spread b̄ has the following constant payoff function,

f 
b̄ 
(S T ) = 1 , for all S T ∈ [0 , ∞ ) . As a result, for any option strategy v , the payoff function of b̄ + v , 

f 
b̄ + v (S T ) = 1 + f v (S T ) , 

achieves its minimal value at the same points as that of v . iii) Firstly, Figure B.16 shows that the payoff function of any

Form 2’-7’ option strategy b satisfies f b (S T ) ≥ −1 . Because the payoff function of b̄ is always one, the strategy b + ̄b has a

non-negative payoff function. 
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Fig. B1. Payoff functions of Forms 2’ to 7’ option strategies. 

 

 

 

 

 

 

We continue to prove the dominance part. According to Lemma 3.1 , the proof is trivial if b has a non-negative payoff

function. Otherwise, according to the payoffs of basic spreads and Form 2’-7’ option strategies presented in Figures 2 and

B.16 , strategy b is a basic bull put spread, a basic bear call spread or a Form 6’ option strategy. 

If b is a basic bull put spread, b = B j , with j ∈ { d, · · · , 2(d − 1) } . From the definitions of Form 2’-7’ option strategies

in Lemma Appendix B.1 , we know that b̄ + b is either a Form 5’ option strategy when j − d + 1 > i or dominated by B j +
B i +3(d−1) and B i otherwise, because 

b̄ + b = (B j + B i +3(d−1) ) + B i , m ( ̄b + b) ≥ 0 = m (B j + B i +3(d−1) ) + m (B i ) . 

Moreover, B j + B i +3(d−1) is either a zero vector when j − d + 1 = i or a Form 4’ option strategy otherwise. According to the

transitivity property in Proposition 3.2 and Lemma Appendix B.1 , b is dominated by the base offsets. 

If b is a basic bear call spread or a Form 6’ option strategy, the proof is similar. � �

Lemma B.3. We consider the following five types of option strategies: 

i) Basic bull call spreads B i , i ∈ I ⊆ { 1 , 2 , ..., d − 1 } ; 
ii) Basic bear call spreads, B t 1 , · · · , B t n ; 

iii) Form 2’ option strategy, ˆ b n +1 = B t n +1 
+ B j n +1 

, · · · , ̂  b c = B t c + B j c , with B t i and B j i , i = n + 1 , · · · , c, being basic bear and bull

call spreads, respectively; 

iv) Form 6’ option strategy, ˜ b 1 = B g 1 + B u 1 , · · · , ̃  b h = B g h + B u h , with B g i and B u i , i = 1 , · · · , h , being basic bull put and bear

call spreads, respectively; 

v) Basic bull put spreads, B g h +1 
, · · · , B g p . 
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Fig. B2. Illustration of a Common Worst-case Scenario in Lemma Appendix B.3 . The figure plots the payoff functions of five option strategies: the black 

solid and dot lines stand for a basic bull call and put spread, respectively. The purple line plots the payoff function of a basic bear call spread, while the 

red and blue curves are corresponding to the payoff functions of a Form 2’ and a Form 6’ option strategies, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the indices of these five types of option strategies satisfy all the following five conditions: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

C1 : t 1 ≤ t 2 ≤ · · · ≤ t n ≤ t n +1 ≤ · · · ≤ t c < g h +1 + d − 1 ;
C2 : g 1 ≤ g 2 ≤ · · · ≤ g h ≤ g h +1 ≤ · · · ≤ g p ;
C3 : Either t r < g s + d − 1 or t r ≥ u s holds for all r = 1 , · · · , c and s = 1 , · · · , h ;
C4 : For all i ∈ I, i > t n − 2(d − 1) ;
C5 : Either i > t r − 2(d − 1) or i ≤ j r holds for all i ∈ I and r = n + 1 , · · · , c, 

(B.1) 

then all the payoff functions of these five types of option strategies have (non-positive) minimal values at one common point. 

Proof of Lemma Appendix B3.. According to Figure B.16 , all the payoff functions of Form 2’-7’ option strategies have non-

positive minimal values. Denote the smallest element of I as ˆ i . We will carry out our proof for the following two different

situations: ˆ i ≤ t c − 2(d − 1) and 

ˆ i > t c − 2(d − 1) . 

Case 1. If ˆ i ≤ t c − 2(d − 1) , conditions C1 and C4 reveal that ˆ i ∈ (t n − 2(d − 1) , t c − 2(d − 1)] . Thus, there must exist l ∈
{ n, ..., c − 1 } such that ˆ i ∈ (t l − 2(d − 1) , t l+1 − 2(d − 1)] . Denote S 0 

T 
as 1 + K t l −2(d−1) . We will prove in the following that all

these five types of option strategies satisfying Conditions C1 - C5 in (B.1) achieve their minimal values at S 0 
T 

. 

We firstly illustrate the basic idea of this proof with Figure B.17 . To make the figure clear, we consider a simple case

in Figure B.17 where I contains one unique element i , and indices are set as n = h = 1 and c = p = 2 . In other words,

Figure B.17 plots the payoff curves of one basic bull call spread, B i , one basic bear call spread, B t 1 , one Form 2’ option

strategy, ˆ b 2 = B t 2 + B j 2 , one Form 6’ option strategy, ˜ b 1 = B g 1 + B u 1 , and one basic bull put spread, B g 2 , whose indices sat-

isfy conditions C1-C5. It is easy to figure out that l = 1 , since ˆ i = i ∈ (t 1 − 2(d − 1) , t 2 − 2(d − 1)) , and that all the payoff

functions of these five strategies achieve their non-positive minimal values at point S 0 
T 

= 1 + K t 1 −2(d−1) . 

The mathematical proof is then presented as follows. We invoke Figure 2 to find where the payoff functions of basic

spreads achieve their minimal values. 

Firstly, for all i ∈ I, according to Figure 2 , the payoff functions of basic bull call spreads, f B i , achieve their minimums at

S 0 
T 

, as the definitions of ˆ i and l give rise to S 0 
T 

≤ K ˆ i 
≤ K i . 

Secondly, the fact that t 1 ≤ t 2 ≤ . . . ≤ t n ≤ t l leads to a conclusion that all the payoff functions of the basic bear call

spreads B t 1 , · · · , B t n achieve their minimal values at S 0 
T 

. 

Thirdly, according to the property of Form 2’ option strategy stated in Figure B.16 , the payoff functions of ˆ b i , i = n +
1 , . . . , c, achieve their minimums at [0 , K j i 

] ∪ [1 + K t i −2(d−1) , ∞ ) . Thus, all the payoff functions of ˆ b n +1 , . . . , ̂
 b l achieve their

minimal values at S 0 
T 

, since t l ≥ t i holds for all i = n + 1 , . . . , l. 

As for i = l + 1 , . . . , c, we have ˆ i ≤ t i − 2(d − 1) , according to the definition of l. Thus, condition C5 dictates that ˆ i ≤ j i 
holds for any i = l + 1 , . . . , c. Therefore, for all i = l + 1 , . . . , c, the payoff functions of Form 2’ option strategies ˆ b i also achieve

their minimums at S 0 
T 

, since S 0 
T 

≤ K ˆ i 
≤ K j i 

. 

Fourthly, condition C3 states that either t l < g i + d − 1 or t l ≥ u i holds for all i = 1 , . . . , h . As a result, S 0 
T 

∈ [0 , K g i −d+1 ] ∪
[1 + K u i −2(d−1) , ∞ ) , ∀ i = 1 , . . . , h. According to the property of Form 6’ option strategy presented in Figure B.16 , all the payoff

functions of ˜ b i , i = 1 , . . . , h , achieve their minimal values at S 0 
T 

. 

Fifth, all the payoff functions of the basic bull put spreads B g h +1 
, . . . , B g p achieve their minimums at S 0 

T 
, because conditions

C1 and C2 require that t l − 2(d − 1) ≤ t c − 2(d − 1) < g h +1 − d + 1 ≤ · · · ≤ g p − d + 1 . 

To conclude, all the payoff functions of these five kinds of option strategies achieve their non-positive minimal values at 

S 0 
T 

= 1 + K t l −2(d−1) . 

Case 2. If ˆ i > t c − 2(d − 1) , we can prove that all the payoff functions of these option strategies achieve their non-positive

minimal values at S 0 
T 

= 1 + K t c −2(d−1) in a way similar to Case 1. � �

Lemma B.4. If an option strategy v is dominated by base offsets b 1 , . . . , b n , then v can be expressed into a no-hedging combina-

tion of b , . . . , b n . 
1 
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Proof of Lemma Appendix B4.. From the definitions of dominance and margin requirement in Definition 2 and 

Equation (2) , we know that there exist k 1 , . . . , k n ∈ Z + such that 

v = 

n ∑ 

i =1 

k i b i , m (v ) = (− min 

S T 

n ∑ 

i =1 

k i f b i (S T )) 
+ ≥

n ∑ 

i =1 

k i m (b i ) = 

n ∑ 

i =1 

k i (− min 

S T 
f b i (S T )) 

+ , (B.2)

where f b i (·) are the payoff functions of base offsets b i , i = 1 , . . . , n . Without loss of generality, we assume that k i > 0 for

all i = 1 , . . . , n . According to the payoff functions of base offsets in Figure 3, all of these payoff functions have non-positive

minimal values. If the minimal values of the payoff functions, f b i (·) , i = 1 , . . . , n , are all zeros, all of these payoff functions

are non-negative. The combination is no-hedging, since condition i) of the no-hedging definition is satisfied. 

If at least one of the minimal values of the payoff functions is negative, i.e. there exists some j ∈ { 1 , . . . , n } such that

m (b j ) > 0 , then Equation (B.2) reveals that 

m (v ) ≥
n ∑ 

i =1 

k i m (b i ) > 0 ⇒ m (v ) = − min 

S T 

n ∑ 

i =1 

k i f b i (S T ) ≥
n ∑ 

i =1 

k i (− min 

S T 
f b i (S T )) 

+ = −
n ∑ 

i =1 

k i min 

S T 
f b i (S T ) . 

The last equality follows the fact that all the payoff functions of base offsets have non-positive minimal values. Meanwhile, 

the minimum of a summation of functions is no smaller than the summation of the minimums of these functions, i.e. 

min 

S T 

n ∑ 

i =1 

k i f b i (S T ) ≥
n ∑ 

i =1 

min 

S T 
k i f b i (S T ) . 

Therefore, we have min 

S T 

n ∑ 

i =1 

k i f b i (S T ) = 

n ∑ 

i =1 

min 

S T 
k i f b i (S T ) , and thus that there exists one point S 0 

T 
∈ [0 , ∞ ) such that all of these

payoff functions, f b i , achieve their minimal values at S 0 
T 

. As a result, this combination is no-hedging with condition ii) in the

no-hedging definition being satisfied. � �

B2. Proof of Theorem 3.1 

Step 1. Express the balanced option strategy into a combination of Form 1 base offsets. From Lemma Appendix B.4 ,

to prove Theorem 1, it suffices to prove that any balanced strategy expressed in the following form, 

v = 

4(d−1) ∑ 

i =1 

k i B i , k i ∈ Z + , i = 1 , . . . , 4(d − 1) , (B.3) 

is dominated by the set of base offsets, where B i and k i , i = 1 , . . . , 4(d − 1) , are basic spreads of width one and the number of

these basic spreads involved, respectively. Note that the expression is not unique, because of the fact that B i + B i +2(d−1) = 0

holds for all i = 1 , . . . , 2(d − 1) . We thus require the expression (B.3) to satisfy that for all i = 1 , . . . , 2(d − 1) , either k i or

k i +2(d−1) equals to zero, i.e., we avoid the redundant cases where both the bull spread B i and the corresponding bear spread

B i +2(d−1) exist in the expression (B.3) . 

Define L 1 := { l ∈ { 2 d − 1 , ..., 3(d − 1) } | k l > 0 } as the set of indices of basic bear call spreads involved in v , and L 2 := { l ∈
{ d, ..., 2(d − 1) } | k l > 0 } as the set of indices of basic bull put spreads involved in v . 

If L 1 = L 2 = ∅ , no basic bear call or bull put spread is involved in v . Thus, v only contains basic bull call and bear put

spreads. Because all the basic bull call and bear put spreads have non-negative payoff functions, according to Lemma 3.1 , v 
is dominated by them and thus dominated by base offsets. Otherwise, go to Step 2. 

Step 2. Construct box spreads. For all the basic bear put spread B i , i = 3 d − 2 , . . . , 4(d − 1) , if any, construct box spreads

by adding 0 = B i −3(d−1) + B i −d+1 to v . Combine B i with B i −3(d−1) to get box spreads whose payoffs are always ones: Because

B j = −B j +2(d −1) holds for all j = 1 , ..., 2(d − 1) , we can reexpress v in (B.3) as a linear combination of basic spreads and box

spreads, 

v = 

3(d−1) ∑ 

i =1 

k 0 i B i + 

4(d−1) ∑ 

i =3 d−2 

k i (B i + B i −3(d−1) ) , (B.4) 

where k 0 
i 

= k i + k i + d−1 , for all i = 2 d − 1 , ..., 3(d − 1) and k 0 
i 

= k i , for all i = 1 , ..., 2(d − 1) . Denote all these box spreads B i +

B i −3(d−1) as b̄ 1 , ..., ̄b n̄ with n̄ = 

4(d−1) ∑ 

i =3 d−2 

k i . Because k i ≥ 0 holds in (B.3) for all i = 1 , · · · , 4(d − 1) , we have k 0 
l 

≥ 0 for all l =
1 , · · · , 3(d − 1) . Go to Step 3. 

Step 3. Combine the bear call and bull put spreads . Order all the remaining bull put spreads, if any, in a sequence

of non-decreasing strike prices of the first leg. From the first to the last in the sequence, combine the bull put spread

with the bear call spread whose first-leg strike price is the smallest among all the unpaired bear call spreads which can

generate a new offset with this bull put spread. In particular, order the bull put spreads with indices in L 2 , in terms of g i ,

as B g 1 , ..., B g p , d ≤ g 1 ≤ · · · ≤ g p ≤ 2(d − 1) . 

For example, in the case where L 2 = { 5 , 6 } , k 0 = 2 and k 0 = 1 , we have p = 3 , g 1 = g 2 = 5 and g 3 = 6 . 

5 6 
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Case 1. If there exists some bear call spread which can offset bull put spread B g 1 , i.e., 

U 1 := { u ∈ { 2 d − 1 , . . . , 3(d − 1) } | k 0 u > 0 , u ≥ g 1 + d − 1 } � = ∅ , (B.5)

denote the smallest element of U 1 as u 1 . We can combine B u 1 and B g 1 as an offset ˜ b 1 and have 

3(d−1) ∑ 

i = d 
k 0 i B i = 

˜ b 1 + B g 2 + . . . + B g p + 

3(d−1) ∑ 

u =2 d−1 

k 1 u B u , 

where k 1 u 1 
= k 0 u 1 

− 1 , k 1 
i 

= k 0 
i 
, ∀ i ∈ { 2 d − 1 , . . . , 3(d − 1) } / { u 1 } , ˜ b 1 = B u 1 + B g 1 . Note that ˜ b 1 is a Form 6’ option strategy, as

shown in Figure B.16 , whose payoff function achieves its minimum -1 at any S T ∈ [0 , K g 1 −d+1 ] ∪ [1 + K u 1 −2(d−1) , ∞ ) . Similarly

we can recursively define the set (U l ) 
p 

l=1 
, the index (u l ) 

p 

l=1 
and the coefficient (k l 

i 
) p 

l=1 
, i = 2 d − 1 , . . . , 3(d − 1) , via ⎧ ⎪ ⎨ 

⎪ ⎩ 

U l := { u ∈ { 2 d − 1 , . . . , 3(d − 1) } | k l−1 
u > 0 , u ≥ g l + d − 1 } , 

u l = min { j| j ∈ { 3 d − 2 } ∪ U l } , 
k l u l = k l−1 

u l 
− 1 , k l 

i 
= k l−1 

i 
, ∀ i ∈ { 2 d − 1 , . . . , 3(d − 1) } / { u l } , 

˜ b l = B g l + B u l , if u l ≤ 3(d − 1) . 

(B.6) 

In fact, U l is the set of indices of unpaired basic bear call spreads which can offset the bull put spread B g l . To facilitate the

proof, we define U p+1 = ∅ , g p+1 = ∞ and K ∞ 

= ∞ . There exists h ∈ { 1 , . . . , p} such that U h +1 = ∅ , U 1 , . . . , U h � = ∅ . At the end

of the iteration, we can express the bear call and bull put spreads as 

3(d−1) ∑ 

i = d 
k 0 i B i = 

˜ b 1 + . . . + ̃

 b h + B g h +1 
+ . . . + B g p + 

3(d−1) ∑ 

s =2 d−1 

k h s B s , 

with 

˜ b l = B g l + B u l , l = 1 , . . . , h . Denote c = 

3(d−1) ∑ 

s =2 d−1 

k h s ≥ 0 as the number of remaining unpaired basic bear call spreads and

order these bear call spreads, in terms of t i , as 

3(d−1) ∑ 

s =2 d−1 

k h s B s = B t 1 + . . . + B t c , 2 d − 1 ≤ t 1 ≤ . . . ≤ t c ≤ 3(d − 1) . 

Notice that there does not exist any B t i in the above representation if c = 0 . Go to Step 4 for the remaining bear call spreads.

We next show that these indices g 1 , · · · , g p , u 1 , · · · , u h , and t 1 , · · · , t c satisfy conditions C1-C3 in Lemma Appendix B.3 to

facilitate the final proof in Step 5. Condition C2 is naturally satisfied with the order of these bull put spreads. Because

 h +1 = ∅ , from the definition of U h +1 in (B.6) , we have 

(C1): g h +1 + d − 1 > t c ≥ · · · ≥ t 1 . (B.7) 

In addition, for all r = 1 , . . . , c, if t r ≥ g s + d − 1 holds for any s ∈ { 1 , . . . , h } , the definition of U s in (B.6) reveals that t r ∈ U s .

Because B t r remains unpaired after h iterations, i.e., k s −1 
r ≥ k h r > 0 , the definition of u s in (B.6) claims that u s is the smallest

element in U s , i.e., t r ≥ u s . That is to say, 

(C3): Either t r < g s + d − 1 or t r ≥ u s holds for all r = 1 , . . . , c, and s = 1 , . . . , h. (B.8)

Case 2. Otherwise, there does not exist any bear call spread which can offset the bull put spread B g 1 , i.e., U 1 = ∅ . It can

be considered as a special case of Case 1 with h = 0 . Go to Step 4. 

Step 4. Combine the bull and bear call spreads . From the bear call spread with the largest strike price to that with the

smallest one, combine the bear call spread with the bull call spread whose first-leg strike price is the largest one among all

the unpaired bull call spreads which can offset this bear call spread. In particular, order c basic bear spreads, in terms of t i ,

as B t 1 , . . . , B t c , with 2 d − 1 ≤ t 1 ≤ . . . ≤ t c ≤ 3(d − 1) . 

Case 1. If there exists a bull call spread which can offset the basic bear spread B t c , i.e., 

J c = { j ∈ { 1 , . . . , d − 1 } | k 0 j > 0 , j ≤ t c − 2(d − 1) } � = ∅ , (B.9)

denote the largest element of J c as j c . We can combine B t c and B j c as an offset ˆ b c and have 

B t 1 + . . . + B t c−1 
+ B t c + 

d−1 ∑ 

i =1 

k 0 i B i = B t 1 + . . . + B t c−1 
+ 

d−1 ∑ 

i =1 

k 1 i B i + ̂

 b c , 

where k 1 
i 

= k 0 
i 
, ∀ i ∈ { 1 , . . . , d − 1 } / { j c } , k 1 

j c 
= k 0 

j c 
− 1 . The strategy ˆ b c = B t c + B j c is either a zero vector when j c = t c − 2(d −

1) or a Form 2’ option strategy defined in Lemma Appendix B.1 otherwise. Similarly, we define the following backward

recursion of the sets J l , the indices j l and the coefficients k c−l+1 
i 

, i = 1 , ..., d − 1 , in l from c − 1 to 1: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

J l = { j ∈ { 1 , . . . , d − 1 } | k c−l 
j 

> 0 , j ≤ t l − 2(d − 1) } , 
j l = max { j| j ∈ { 0 } ∪ J l } , 
k c−l+1 

i 
= k c−l 

i 
, ∀ i ∈ { 1 , . . . , d − 1 } / { j l } , 

k c−l+1 
j l 

= k c−l 
j l 

− 1 , ˆ b l := B t l + B j l 
, if j l > 0 . 

(B.10) 
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If the iteration can be carried out for c times, i.e., all the basic bear call spreads, B t 1 , . . . , B t c , are offset by bull spreads,

define J 0 as empty set. Otherwise, the recursion must stop at some n ∈ { 1 , 2 , . . . , c} with J n = ∅ and J n +1 � = ∅ . To conclude,

there must exist some n ∈ { 0 , . . . , c} , such that J n = ∅ , J i � = ∅ , for all i ∈ Z ∩ [ n + 1 , c] . The strategy v is expressed as 

v = 

˜ b 1 + . . . + ̃

 b h + B g h +1 
+ . . . + B g p + B t 1 + . . . + B t n + ̂

 b n +1 + . . . + ̂

 b c + 

d−1 ∑ 

i =1 

k c−n 
i 

B i + 

n̄ ∑ 

i =1 

b̄ i . 

Denote a set of indices of basic bull call spreads as I n := { i ∈ { 1 , 2 , · · · , d − 1 } | k c−n 
i 

> 0 } . Similar to Step 3, we can prove

that these indices satisfy conditions C4-C5 in Lemma Appendix B.3 with the definitions of J r and j r , r = n + 1 , . . . , c, in (B.10) .

Go to Step 5. 

Case 2. Otherwise, there does not exist any bull call spread which can completely offset the basic bear spread B t c , i.e.,

J c = ∅ . This case can be considered as a special case of Case 1 with n = c. Go to Step 5. 

Step 5. Apply the box spreads to offset combinations or base offsets with positive MPLs . After the above four steps,

we can express v as 

v = 

˜ b 1 + . . . + ̃

 b h + B g h +1 
+ . . . + B g p + B t 1 + . . . + B t n + ̂

 b n +1 + . . . + ̂

 b c + 

d−1 ∑ 

i =1 

k c−n 
i 

B i + 

n̄ ∑ 

i =1 

b̄ i , (B.11)

where the involved strategies are i) Form 6’ option strategies, ˜ b 1 , . . . , ̃  b h , ii) basic bull put spreads, B g h +1 
, . . . , B g p , iii) basic

bear call spreads, B t 1 , . . . , B t n , iv) Form 2’ option strategies, ˆ b n +1 , . . . , ̂
 b c , v) basic bull call spreads, B i , i ∈ { i = 1 , . . . , d − 1 :

k c−n 
i 

> 0 } and vi) box spreads, b̄ 1 , . . . , ̄b n̄ . Note that one or several of the six kinds may not be involved in v . For example,

there is no Form 6’ option strategy if h = 0 . And strictly speaking, the strategy ˆ b l , l = n + 1 , . . . , c, is either a zero vector

when j l = t l − 2(d − 1) or a Form 2’ option strategy otherwise. We can ignore the zero vectors. The MPLs of the first three

kinds of strategies are ones, while those of the last three kinds of strategies are zeros. 

If n̄ ≥ p + n , combine the box spreads with Form 6’ option strategies, basic bull put and bear call spreads. Because the

payoffs of box spreads are always one, all these combinations have non-negative payoff functions. As a result, the strategy 

v is dominated by these strategies with non-negative payoff functions. According to Lemma 3.1 and Lemma Appendix B.2 , v 
is dominated by base offsets. 

Otherwise, to simplify the notation, we denote 

v̄ 1 = 

˜ b 1 , . . . , ̄v h = 

˜ b h , v̄ h +1 = B g h +1 
, . . . , ̄v p = B g p , v̄ p+1 = B t 1 , . . . , ̄v p+ n = B t n . 

we verify that i) Form 6’ option strategies, ˜ b 1 , . . . , ̃  b h , ii) basic bull put spreads, B g h +1 
, . . . , B g p , iii) basic bear call spreads,

B t 1 , . . . , B t n , iv) Form 2’ option strategies, ˆ b n +1 , . . . , ̂
 b c and v) basic bull call spreads, B i , i ∈ I := { i = 1 , . . . , d − 1 : k c−n 

i 
> 0 } all

satisfy conditions C1 - C5 in (B.1) of Lemma Appendix B.3 . According to Lemma Appendix B.3 and the properties of box

spreads proved in Lemma Appendix B.2 , all the payoff functions of option strategies, 

b̄ 1 + ̄v 1 , . . . , ̄b n̄ + ̄v n̄ , v̄ n̄ +1 , . . . , 
ˆ b n +1 , . . . , ˆ b c , B i , i ∈ I, 

achieve their non-positive minimal values at one same point. From Lemma 3.1 and the transitivity property, we know that 

v in (B.11) is dominated by these strategies and thus by base offsets. �

Appendix C. Proofs of Properties of Margin Calculation Model 

Proof of Proposition 3.3 

To prove this proposition, we need to investigate the special structure of the matrix Ā . In particular, we document the

structure of Ā and a supplementary matrix D in Algorithm 1. 

We then construct a null space matrix of Ā as 

N := 

( 

I 2(d−1) 

I 2(d−1) 
D 

0 I n 1 

) 

, with n 1 = n̄ − 4(d − 1) . (C.1) 

We claim two properties of this matrix N in the following two lemmas, whose proofs are deferred immediately after the 

proof of Proposition 3.3 . 

Lemma C.1. The matrix N defined in (C.1) is a null space matrix of Ā . 

Lemma C.2. The matrix N defined in (C.1) is totally unimodular. 

With these two lemmas, we can prove Proposition 3.3 as follows. Because N is a null space matrix of Ā , as stated in

Lemma Appendix C.1 , and q is a special solution to Ā a = Ā q , 

Ā a = Ā q, a ∈ Z 

n̄ 
+ ⇔ a = q − Ny ≥ 0 , Ny ∈ Z 

n̄ . (C.2) 
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Moreover, the transpose of matrix N, defined in (C.1) , 

N 

T = 

( 

I 2(d−1) I 2(d−1) 0 

D 

T I n 1 

) 

, 

is of full row rank. It is easy to verify that there exists a unimodular matrix U such that (I n 1 +2(d−1) 0 ) = UN 

T . That is to

say, the Hermite Normal Form of N 

T is (I, 0) . Denote the lattice generated by N as L (N) = { z ∈ R ̄

n | z = Ny, y ∈ Z ̄

n −2(d−1) } .
According to Observation 1 in Aardal and Wolsey (2010) , L (N) is a pure lattice, i.e., 

L (N) = { z ∈ R 

n̄ | z = Ny, y ∈ R 

n̄ −2(d−1) } ∩ Z 

n̄ . (C.3)

Therefore, 

min { ̄m 

T a : Ā a = Ā q, a ∈ Z 

n̄ 
+ } = m̄ 

T q − max { ̄m 

T Ny : Ny ≤ q, Ny ∈ Z 

n̄ } 
= m̄ 

T q − max { ̄m 

T Ny : Ny ≤ q, y ∈ Z 

n̄ −2(d−1) } , 
where the first and second equalities come from (C.2) and (C.3) , respectively. Because N is totally unimodular, as shown in

Lemma Appendix C.2 , we have the equivalence of the above model and its continuous relaxation, 

max { ̄m 

T Ny : Ny ≤ q, y ∈ Z 

n̄ −2(d−1) } = max { ̄m 

T Ny : Ny ≤ q, y ∈ R 

n̄ −2(d−1) } . 
As a result, 

min { ̄m 

T a : Ā a = Ā q, a ∈ Z 

n̄ 
+ } = m̄ 

T q − max { ̄m 

T Ny : Ny ≤ q, y ∈ Z 

n̄ −2(d−1) } 
= m̄ 

T q − max { ̄m 

T Ny : Ny ≤ q, y ∈ R 

n̄ −2(d−1) } 
= min { ̄m 

T a : Ā a = Ā q, a ∈ R 

n̄ 
+ } . �

Proof of Lemma Appendix C1.. It suffices to prove that 

i) rank (N) = n − rank ( ̄A ) and ii) M := Ā · N = 0 4(d−1) ×( ̄n −2(d−1)) . 

Recall that the first 2(d − 1) columns of the matrix Ā generated in Algorithm 1 are basic bull spreads B 1 , · · · , B 2(d−1) , and

Algorithm 1 Generate matrices Ā and D. 

Set D = 0 4(d−1) ×n 1 
, n 1 = 3 d − 5 ; 

For i = 1 : 4(d − 1) do 

Set the i-th column of matrix Ā as Ā i = B i ; 

endfor 

For i = 1 : d − 2 do 

Ā i +4(d−1) = B i +2 d−1 + B i ; D i +1 ,i = 1 ; D i +2(d−1) ,i = 1 ; 

Ā i +5 d−6 = B i + d−1 + B i +3 d−2 ; D i +3(d −1) ,i + d −2 = 1 ; D i + d ,i + d −2 = 1 ; 

endfor 

For i = 1 : d − 1 do 

Ā i +6 d−8 = B i +2(d−1) + B i + d−1 ; D i,i +2(d−2) = 1 ; D i +3(d−1) ,i +2(d−2) = 1 ; 

endfor 

that all the columns of matrix Ā are base offsets, and thus belong to the space V = { v ∈ Z 

2 d | v 1 + · · · + v d = v d+1 + · · · +
v 2 d = 0 } . Because B 1 , · · · , B 2(d−1) defined in (4) and (5) are linearly independent and form a basis for V , rank ( ̄A ) = 2(d − 1) .

Meanwhile, according to the definition of matrix N in (C.1) , we can derive that 

rank (N) = rank 

( 

0 2(d−1) 

I 2(d−1) 
0 4(d−1) ×n 1 

0 I n 1 

) 

= n̄ − 2(d − 1) . 

Thus, rank (N) = n̄ − rank ( ̄A ) . 

We next prove that for any l = 1 , · · · , ̄n − 2(d − 1) , the l-th column of M, M l = Ā · N l , is a zero vector. From Algorithm 1 ,

we know that for all i = 1 , · · · , 2(d − 1) , 

B i + B i +2(d−1) = 0 ⇒ Ā i + Ā i +2(d−1) = 0 ⇒ M i = Ā · (e i + e i +2(d−1) ) = 0 . 

Moreover, for all l = 4 d − 3 , 4 d − 2 , · · · , ̄n , according to Algorithm 1 , there exist indices i ∈ { 1 , ..., 2(d − 1) } and j ∈ { 2 d −
1 , ..., 4(d − 1) } such that 

Ā l = B i + B j , D i +2(d−1) , l = D j −2(d −1) , l = 1 . 

Therefore, M l = B i +2(d−1) + B j −2(d −1) + Ā l = 0 , for all l = 4 d − 3 , 4 d − 2 , · · · , ̄n . � �
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Proof of Lemma Appendix C2.. Note that matrix N in (C.1) is a matrix with entries 0 and 1. From Theorem 19.3 in

Schrijver (1998) , N is totally unimodular if and only if: 

Each collection of columns can be split into two parts, M 1 and M 2 , such that 
∑ 

i ∈ M 1 

N ·i −
∑ 

j∈ M 2 

N · j is a vector with only 0

and ±1 . 

Because the total unimodularity is preserved when taking the transpose, it suffices to prove the existence of such a split

for each collection of rows of N. Denote M as a collection of arbitrary rows of N. We can split it into M 1 and M 2 as follows:

Step 1: Place M ∩ { 1 , 2 , · · · , 2(d − 1) } into M 1 and M ∩ { 2 d − 1 , 2 d, · · · , 4(d − 1) } into M 2 ; 

Step 2: For any row l ∈ { 4 d − 3 , · · · , ̄n } , there exist indices i = 1 , · · · , 2(d − 1) and j = 2 d − 1 , · · · , 4(d − 1) such that 

Ā l = B i + B j , D i +2(d−1) , l = D j −2(d −1) , l = 1 . 

If i ∈ M 1 , j / ∈ M 2 , put l into M 2 ; if i / ∈ M 1 , j ∈ M 2 , put l into M 1 . Otherwise, you can arbitrarily put l into M 1 or M 2 . 

After these two steps, 
∑ 

i ∈ M 1 

N i · − ∑ 

j∈ M 2 

N j· is a vector with only 0 and ±1 . � �

Proof of Proposition 3.4 

To prove this proposition, we introduce the following lemma first. The proof of Lemma Appendix C.3 is deferred imme-

diately after the proof of Proposition 3.4 . 

Lemma C.3. If option strategy v = (v 1 , ..., v d , v d+1 , ..., v 2 d ) T satisfies one of the three conditions in Proposition 3.4 , then v is

dominated by the set of the base offsets with up to four legs. 

With this lemma, we can prove Proposition 3.4 as follows. Denote V P as the optimal value of model (NM 1 ). Firstly, we

prove that V P ≥ m (v ) . Denote the optimal solution to model (NM 1 ) as a ∗. We know that Ā a ∗ = v and that V P = 

n̄ ∑ 

i =1 

a ∗
i 
m ( ̄A i ) . If

m (v ) = 0 , it is obvious that V P ≥ m (v ) = 0 . Otherwise, 

m (v ) > 0 ⇒ m (v ) = (− min 

S T 
f v (S T )) 

+ = − min 

S T 
f v (S T ) = − min 

S T 

n̄ ∑ 

i =1 

a ∗i f Ā i (S T ) . 

The last equality in the above expression owes to the fact that Ā a ∗ = v . Note that Ā i is a base offset whose payoff function

has a non-positive minimal value, for any i = 1 , · · · , ̄n and that a ∗ is a non-negative integer vector. As a result, 

m (v ) = − min 

S T 

n̄ ∑ 

i =1 

a ∗i f Ā i (S T ) 

≤
n̄ ∑ 

i =1 

a ∗i (− min 

S T 
f Ā i (S T )) = 

n̄ ∑ 

i =1 

a ∗i (− min 

S T 
f Ā i (S T )) 

+ = 

n̄ ∑ 

i =1 

a i m ( ̄A i ) = V P . 

On the other hand, according to Lemma Appendix C.3 , the fact that the strategy v satisfies one of the three conditions in

this proposition results in that v is dominated by base offsets with up to four legs. Therefore, according to the definition of

dominance, there exists a feasible solution to model (NM 1 ), a = (a 1 , · · · , a n̄ ) 
T ∈ Z ̄

n + , such that 

v = 

n̄ ∑ 

i =1 

a i ̄A i = Ā a, m (v ) ≥
n̄ ∑ 

i =1 

a i m ( ̄A i ) = m̄ 

T a ≥ V P . 

To conclude, V P = m (v ) holds for v satisfying one of the three conditions in this proposition. �

Proof of Lemma Appendix C.3 

The proof of Lemma Appendix C.3 follows a similar idea as the proof of Theorem 3.1: factorizing the strategy v into a

no-hedging combination of base offsets and Form 2’-7’ option strategies with up to four legs. We thus introduce a useful

lemma similarly to Lemma Appendix B.3 , before giving the proof of Lemma Appendix C.3 . 

Lemma C.4. For all the following three kinds of option strategies: 

i) Basic bear put spreads, B i , i ∈ I ⊆ { 3 d − 2 , 3 d − 1 , . . . , 4(d − 1) } ; 
ii) Form 4’ option strategies, ˆ b 

′ 
1 = B g 1 + B w 1 

, . . . , ̂  b 
′ 
h 

= B g h + B w h 
, with B g i and B w i 

, i = 1 , . . . , h , being basic bull and bear put

spreads, respectively; 

iii) Basic bull put spreads, B g h +1 
, . . . , B g p , 

if their indices satisfy the following three conditions, { 

g 1 ≤ . . . ≤ g h ≤ g h +1 ≤ . . . ≤ g p , 
i < g h +1 + 2(d − 1) , ∀ i ∈ I, 
either i < g l + 2(d − 1) or i ≥ w l holds for all i ∈ I and l = 1 , . . . , h, 

(C.4) 
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Fig. C1. Illustration of a Common Worst-case Scenario in Lemma Appendix C.4 . We plot the payoff functions of three option strategies in this figure. The 

black and blue curves are the payoff functions of basic bear and bull put spreads, respectively, while the red one stands for a Form 4’ option strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

then all the payoff functions of these strategies achieve their non-negative minimal values at a common point. 

Proof. We first illustrate the basic idea of this proof in Figure C.18 . To present a clear picture, we display in Figure C.18 a

simple case where only a single strategy is involved for each kind of the three option strategies involved in this lemma.

More specifically, the set I contains one single element i and indices are h = 1 and p = 2 . Figure C.18 shows that the payoff

functions of these three strategies whose indices satisfy Conditions (C.4) achieve their non-negative minimal values at 1 + 

K i −3(d−1) . 

Denote ˆ i as the largest element of I, which is the set of indices of basic bear put spreads stated in this lemma. Similar

to the proof of Lemma Appendix B.3 , We can prove that the payoff functions of all these three kinds of strategies achieve

their minimums at S 0 
T 

= 1 + K ˆ i −3(d−1) 
by looking into the payoff functions of these strategies and the conditions (C.4) . � �

Proof of Lemma Appendix C.3 

Denote the set of the indices corresponding to the nonzero components of call options involved in the strategy v as

I 1 = { i = 1 , . . . , d, s.t. v i � = 0 } , and the set of indices corresponding to nonzero components of put options in the strategy v
as I 2 = { i = d + 1 , . . . , 2 d, s.t. v i � = 0 } . If I 1 = I 2 = ∅ , v is a zero vector and the case is trivial. We consider the cases where at

least one of I 1 and I 2 is non-empty as follows. 

Case 1. If condition i) is satisfied, i.e. v 1 + · · · + v d = 0 , v d+1 = · · · = v 2 d = 0 , then I 1 � = ∅ and I 2 = ∅ . There are only calls

but not any put involved in the strategy v . According to the proof of Theorem 3.1 , we can order the involved basic bear call

spreads, combine bear and bull call spreads as Form 2’ option strategies with (B.10) and prove that v is dominated by a set

of basic bull and bear call spreads and Form 2’ option strategies and thus is dominated by base offsets with up to four legs.

Case 2. If condition ii) is satisfied, I 1 = ∅ and I 2 � = ∅ . We can express v as 

v = ( 

2(d−1) ∑ 

i = d 
+ 

4(d−1) ∑ 

i =3 d−2 

) k 0 i B i , k 0 i ∈ Z + , ∀ i = 1 , . . . , 4(d − 1) . (C.5)

There might exist some offsets among these basic bull and bear put spreads. Similarly to Case 1, we order all these bull put

spreads in terms of the strike prices as B g 1 , . . . , B g p , d ≤ g 1 ≤ g 2 ≤ . . . ≤ g p ≤ 2(d − 1) , and combine the bull and bear put

spreads. In particular, for l = 1 , . . . , p, we recursively define that ⎧ ⎨ 

⎩ 

W l = { j = 3 d − 2 , . . . , 4(d − 1) , s.t. k l−1 
j 

> 0 , j ≥ g l + 2(d − 1) } , W (p + 1) = ∅ , 
w l = min { j| j ∈ W l ∪ { 4 d − 3 }} , 
k l w l 

= k l−1 
w l 

− 1 , k l 
i 
= k l−1 

i 
, ∀ i ∈ { 3 d − 2 , . . . , 4(d − 1) } / { w l } , ˆ b 

′ 
l 
= B g l + B w l 

. 

(C.6) 

The set W l , l = 1 , . . . , h , is the set of remaining basic bear put spreads that can offset the l-th basic bull put spread B g l .

The basic idea of this recursion is similar to the recursion (B.10) in the proof of Theorem 3.1: from the bull puts with the

smallest strike price to puts with the highest one, we combine the bull puts, B g l , with the basic bear puts, B w l 
, which have

the smallest strike prices among all the unpaired basic bear puts which can offset the bull puts. If W 1 � = ∅ , there exists

h = 1 , . . . , p, such that W h +1 = ∅ and W 1 , . . . , W h � = ∅ , i.e. there does not exist any basic bear put spreads that can offset the

put B g h +1 
. The iteration ends at h . Otherwise, we define h = 0 . 

As ˆ b 
′ 
i 
= B g i + B w i 

is either a zero vector when w l = g l + 2(d − 1) or a Form 4’ option strategy defined in Lemma Ap-

pendix B.1 otherwise, we can express v in (C.5) as a linear combination of Form 4’ option strategies, basic bull and bear put

spreads: 

v = 

ˆ b 
′ 
1 + . . . + ̂

 b 
′ 
h + B g h +1 

+ . . . + B g p + 

4(d−1) ∑ 

i =3 d−2 

k h i B i . 

Notice that there does not exist any ˆ b 
′ 
i 

in the above representation if h = 0 . Similar to the proof in Theorem 3.1 , one can

verify that the indices of these three strategies satisfy the three conditions in Lemma Appendix C.4 with the recursion form
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(C.6) . Therefore, according to Lemma Appendix C.4 , all of the payoff functions of these basic bear and bull put spreads

and Form 4’ option strategies achieve their non-negative minimal values at a common point. According to Lemma 3.1 and

Lemma Appendix B.1 , v is dominated by them. In addition, basic bear and bull put spreads are base offsets with two legs.

Form 4’ option strategies are generalized Form 4 base offsets and dominated by Form 4 base offsets, which have three legs.

According to the transitive property of dominance, the strategy v is dominated by base offsets with up to four legs. 

Case 3. As for condition iii), a similar proof can be applied for the case where only one of I 1 and I 2 is non-empty.

If both I 1 and I 2 are non-empty, i.e., the strategy v contains both calls and puts, because strategy v is balanced, i.e., v 1 +
. . . + v d = v d+1 + . . . + v 2 d = 0 , both sets I 1 and I 2 have at least two non-zero elements, respectively. That is to say, leg(v ) ≥ 4 .

Furthermore, condition iii) of Proposition 3.4 states that leg(v ) ≤ 4 . Therefore, we have leg(v ) = 4 . Without loss of generality,

we denote 

I 1 = { j 1 , j 2 } , I 2 = { j 3 , j 4 } , with v j 1 + v j 2 = v j 3 + v j 4 = 0 and v j i � = 0 , i = 1 , · · · , 4 . 

That is to say, v = v j 1 (e j 1 − e j 2 ) + v j 3 (e j 3 − e j 4 ) , where e i ∈ Z 

2 d is a vector with i -th element being one and the other ele-

ments being zero. Denote b 1 = e j 1 − e j 2 and b 2 = e j 3 − e j 4 . Then we know that 

v = v j 1 b 
1 + v j 3 b 

2 . 

According to the payoff functions of basic spreads in Figure 2 , the payoff function of the basic bull call spread b 1 achieves

its minimum, zero, at any S T ∈ [0 , K j 2 
] , and b 2 is a basic bull put spread whose payoff function achieves its minimum, −1 ,

at any S T ∈ [0 , K j 4 
] . 

Case 3.1. If v j 1 > 0 and v j 3 > 0 , applying Lemma 3.1 concludes that v is dominated by b 1 and b 2 , since both payoff

functions of b 1 and b 2 achieve their minimums at the same point S T = 0 . It is easy to verify that basic spreads, b 1 and b 2 ,

are dominated by basic spreads of width one. Thus, v is dominated by base offsets with up to two legs. 

Case 3.2. If v j 1 < 0 and v j 3 < 0 , we can rewrite v as v = (−v j 1 )(−b 1 ) + (−v j 3 )(−b 2 ) . Both the basic bear call spread −b 1 

and the bear put spread −b 2 achieve their minimums at the same point S T = 1 + max { K j 2 
, K j 4 

} . The strategy v is dominated

by basic spreads and thus base offsets with up to two legs. 

Case 3.3. If v j 1 > 0 and v j 3 < 0 , we can rewrite v as v = v j 1 b 
1 + (−v j 3 )(−b 2 ) . Then −b 2 is a basic bear put spread whose

payoff function is non-negative. Thus, v is dominated by b 1 and −b 2 and thus dominated by base offsets with up to two

legs. 

Case 3.4. If v j 1 < 0 and v j 3 > 0 , we can rewrite v as v = 

3(d−1) ∑ 

i = d 
k i B i , since there is no basic bull call or bear put spreads

involved. We thus do not have any box spreads in such a case. Similar to the proof in Step 3 of Theorem 3.1 , v is dominated

by the set of basic bear call spreads, bull put spreads and Form 6’ option strategies. In addition, we can verify from the

definition of Form 6’ option strategies in Lemma Appendix B.1 that Form 6’ option strategies are dominated by the set of

Form 4 and Form 6 base offsets. According to the transitivity in Proposition 3.2 , v is dominated by the set of basic bear call

spreads, bull put spreads, Form 4 and Form 6 base offsets, which are base offsets with up to four legs. �

Proof of Proposition 3.5 

The terminal payoffs of a naked long call option at strike K i and a balanced portfolio v = e i + d − e 
d+ ̄d + d are 

f lc (S T ) = 

{
0 , if S T < K i , 

S T − K i , if S T ∈ [ K i , ∞ ] , 
f v (S T ) = 

{ 

0 , if S T < K i , 

S T − K i , if S T ∈ [ K i , K u ] , 
K u − K i , if S T > K u . 

As a result, when we consider the bounds of future underlying price S T ∈ [ K l , K u ] , both of the payoffs are the same. Similar

analysis can be applied to a naked long/short call/put option. 

Proof of Proposition 3.6 

Similar to the proof of Proposition 3.5 , with the price bound S T ∈ [ K l , K u ] , the terminal payoffs of a long position of one

unit of the underlying asset, up to the option multiplier, is the same as 

f s (S T ) = 

{ 

K l , if S T < K l , 

S T , if S T ∈ [ K l , K u ] , 
K u , if S T > K u . 

Meanwhile, the balanced portfolio e 1 − e 
d+ ̄d + d has the terminal payoff

f v (S T ) = 

{ 

0 , if S T < K l , 

S T − K l , if S T ∈ [ K l , K u ] , 
K u − K l , if S T > K u . 

As a result, we have f s (S T ) = K l + f v (S T ) and conclude part 1). The proof of part 2) is similar. 
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Proof of Proposition 3.7 

According to Theorem 3.1 , an arbitrary balanced portfolio v can be expressed into a no-hedging combination of base

offsets A i , i ∈ I. That is to say, there exists one point S 0 
T 

∈ [0 , ∞ ) such that the payoff of all these base offsets A i , i ∈ I, all

achieve their non-positive minimal values at S 0 
T 

. Next, we will prove that there exists one point S̄ 0 
T 

∈ [ K l , K u ] such that all

the non-positive minimal values are achieved at S̄ 0 
T 

. As a result, according to the definition of the no-hedging combination

in Definition 3.3 , with such a price bound, theorem 3.1 still holds. 

If there does not exist such a point within the interval [ K l , K u ] , there must exist one base offset A k , k ∈ I, whose minimal

values all lie outside the interval. However, as shown in Figure 2 , all the base offsets achieve their non-positive minimal

values at one of the strike prices K i , i = 1 , · · · , d. That is to say, there exists at least one of the strike prices K i , i = 1 , · · · , d

lying outside the interval [ K l , K u ] , which contradicts the definition of virtual strikes (10) in the main body of our paper that

K l < K 1 < . . . < K d < K u . 

Appendix D. Comparison with the Model by Matsypura and Timkovsky (2013) 

The salient properties of our models are mainly ascribed to the introduction of base offsets. In this section, we 

furthermore compare our netting model of size four with the state-of-the-art strategy-based model of Matsypura and 

Timkovsky (2013) using their proposed main spreads to demonstrate the significant advantages of our formulation. 

We replace the columns of matrix Ā in our model (NM 1 ), which is a collection of base offsets with up to four legs,

by matrix O , whose columns, O 1 , · · · , O n 0 , are a collection of main spreads defined in Matsypura and Timkovsky (2013) .

Essentially, the main spreads are bull/bear call/put spreads, long/short box spreads, call/put condor and butterfly strate- 

gies of different widths. Denote the margin requirement m i = m (O i ) , i = 1 , ..., n 0 , we present the model in Matsypura and

Timkovsky (2013) as 

min 

a 
{ m 

T a : Oa = Oq, a ∈ Z 

n 
+ } . ( P 1 ) 

We prove in the following that, in comparison with our model (P 1 ) , the original model by Matsypura and Timkovsky (2013) ,

(P 0 ) min m 

T a 

s . t . Ox i = a i O i , i = 1 , . . . , n 0 , 

n 0 ∑ 

i =1 

x i = q, x 1 , . . . , x n 0 , a ∈ Z 

n 0 + . 

tends to overestimate the market risk. More precisely, our model (P 1 ) dominates model (P 0 ) . 

Proposition D.1. The optimal value of model (P 0 ) , V P 0 , is no less than that of model (P 1 ) , V P 1 , i.e., V P 1 ≤ V P 0 . 

Proof. Model (P 1 ) is a surrogate relaxation of the model (P 0 ) , as evidenced from the following. 

Let μ = (I 2 d , · · · , I 2 d , −O ) ∈ Z 

(2 dn + n ) ×2 d . We have 

μ ·

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

Ox 1 − a 1 O 1 

. . . 
Ox n − a n O n 

n ∑ 

i =1 

x i − q 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 0 ⇔ Oa − Oq = 0 . 

Therefore, V P 1 ≤ V P 0 because of the property of a surrogate relaxation. �

The financial implication of this finding is that model (P 0 ) by Matsypura and Timkovsky (2013) only considers the mar-

gin reduction of centipedes, which is defined as a portfolio of main spreads { x i : ∃ a i ∈ Z + s.t. Ox i = a i O i } (Definition 4 in

Matsypura and Timkovsky (2013) ), while our model (P 1 ) carries out the margin reduction by exploring all possible combina-

tions. There would exist some main spread portfolio which cannot be replicated by centipedes. Therefore, it is not surprised 

to find that model (P 1 ) provides a margin requirement no higher than (P 0 ) . More precisely, because all of the main spreads

are balanced strategies with up to four legs, according to Proposition 3.4 , they are all dominated by the base offsets with

up to four legs 16 . We can thus conclude Proposition Appendix D.2 that model (P 1 ) is dominated by model (P ) . 

Proposition D.2. The optimal value of model (P 1 ) is no less than that of model (P ) . 

Therefore, model (NM 1 ) yields a margin requirement no higher than (P 1 ) and thus also no higher than (P 0 ) by

Matsypura and Timkovsky (2013) . Recall that our netting model (NM ) is tractable, while the integer programming model 
1 

16 In fact, one can prove that the main spreads are equivalent to our base offsets with up to four legs in terms of the margin calculation, i.e., these two 

sets dominate each other. 
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(P 0 ) has n 2 0 + n 0 integer variables and 2 dn 0 + n 0 constraints. As a result, our netting model (NM 1 ) provides a margin require-

ment no higher than model (P 0 ) by Matsypura and Timkovsky (2013) , and, at the same time, achieves a significant shorter

computational time with the dominance increasing in d. We demonstrate this difference in the following example. 

Example D.1. We randomly generate 10 0 0 main spread portfolios 17 , v = (v 1 , · · · , v 2 d ) 
′ 
, with v i uniformly distributed in [0,9]

with strike prices { 45 , 50 , 55 , 60 , 65 } . Although the margins calculated by model (P ) and model (P 0 ) are the same to each

other for these 10 0 0 portfolios, the average computational times using ILOG CPLEX 12.6 are significantly different, 0.0022 

seconds for our model (P ) and 26.5178 seconds for model (P 0 ) . 

The difference between the computational time of model (P 0 ) and that of model (P ) increases in the number of strike

prices, d. Our model (P ) is equivalent to a linear programming and thus has a polynomial computational time, while the

integer programming model (P 0 ) by Matsypura and Timkovsky (2013) may take more than one hour for the cases when

d ≥ 7 . 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jedc.2022.104572 
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