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Abstract001

Large language models (LLMs) are increas-002
ingly recognized as powerful tools for scien-003
tific discovery, particularly in molecular sci-004
ence. A fundamental requirement for these005
models is the ability to accurately understand006
molecular structures, commonly encoded in007
the SMILES representation. However, current008
LLMs struggle to interpret SMILES, even fail-009
ing to carry out basic tasks such as counting010
molecular rings. To address this limitation,011
we introduce CLEANMOL, a novel framework012
that formulates SMILES parsing into a suite013
of clean and deterministic tasks explicitly de-014
signed to promote graph-level molecular com-015
prehension. These tasks span from subgraph016
matching to global graph matching, providing017
structured supervision aligned with molecular018
structural properties. We construct a molecu-019
lar pretraining dataset with adaptive difficulty020
scoring and pre-train open-source LLMs on021
these tasks. Our results show that CLEANMOL022
not only enhances structural comprehension023
but also achieves the best or competes with the024
baseline on the Mol-Instructions benchmark.025

1 Introduction026

Molecular string representations such as027

SMILES (Weininger, 1988) and SELFIES (Krenn028

et al., 2020) have become a standard format029

for applying large language models (LLMs) to030

chemistry. These one-dimensional strings flatten031

molecular graphs by traversing atoms and bonds032

and are syntactically compatible with LLMs (Xia033

et al., 2025; Taylor et al., 2022; Edwards et al.,034

2022; Christofidellis et al., 2023a; Pei et al., 2023;035

Fang et al., 2024). As a result, most molecular036

LLMs adopt training paradigms from the natural037

language processing domain, treating molecular038

strings as sequences of tokens analogous to039

sentences in natural language.040

However, molecular strings follow complex041

syntactic rules for encoding molecular structures,042

which LLMs often struggle to interpret. For in- 043

stance, SMILES grammar includes specific conven- 044

tions to denote rings and branches—often involving 045

non-contiguous tokens to represent connected sub- 046

structures. Additionally, SMILES representations 047

must satisfy structural constraints such as proper 048

valency and ring closure. As a result, current LLMs 049

often misinterpret SMILES, which implies a fail- 050

ure to capture the underlying molecule represented 051

by the SMILES string. This is reflected in their 052

inability to perform even basic tasks, such as count- 053

ing the number of rings or producing consistent 054

outputs for different SMILES strings of the same 055

molecule (Jang et al., 2024; White et al., 2023; Ga- 056

neeva et al., 2024). Our experiments revisit such 057

limitations, as shown in Figure 1 and Section 2.2. 058

One might expect such an understanding would 059

“naturally emerge” from training LLMs on large cor- 060

pora of SMILES strings for downstream tasks such 061

as molecular generation and retrosynthetic analysis. 062

However, high-quality data is limited and difficult 063

to obtain. Unlike text or image data, which can 064

be gathered at scale via web scrapping, chemical 065

data often require expensive wet lab experiments or 066

simulations for annotation. Although open-source 067

datasets such as USPTO series (Wei et al., 2010; 068

Lu and Zhang, 2022) and MoleculeNet (Wu et al., 069

2018) exist, their scale remains modest compared 070

to datasets in other domains (Deng et al., 2009; 071

Raffel et al., 2020a; Lozhkov et al., 2024). Con- 072

sequently, most chemical LLMs often rely on am- 073

biguous and indirect pretraining objectives with 074

non-deterministic and unclear tasks (e.g., masking 075

each token in SMILES and reconstruct them or 076

translation between a molecular string and its de- 077

scription) (Pei et al., 2023; Edwards et al., 2022), 078

or focus on instruction tuning with limited-scale 079

datasets (Fang et al., 2024; Yu et al., 2024). 080

In response, we propose SMILES parsing—a 081

suite of clean, deterministic, and scalable tasks that 082

require models to extract structural information 083
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(a) Illustration of SMILES parsing tasks.
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(b) Failure of LLMs on SMILES parsing.
Figure 1: Overview of SMILES parsing. (a) Each column visualizes one of the five SMILES parsing tasks:
functional group matching, ring counting, carbon chain length measurement, SMILES canonicalization, and
fragment assembly. The highlighted tokens in the SMILES correspond to the substructures involved in each task.
(b) Recent LLMs fail for SMILES parsing while the model trained with our CLEANMOL shows improvement.

from molecular strings, as illustrated in Figure 1.084

We argue that a natural and necessary candidate085

task for training LLMs to understand the SMILES086

representation is the extraction of deterministic087

graph-level information from molecular structures.088

To address this, we define five SMILES parsing089

tasks including subgraph matching (e.g., functional090

group, ring size, and chain length) and global091

graph matching (e.g., SMILES canonicalization092

and fragment assembly). Each task provides un-093

ambiguous supervision with deterministic answers.094

Based on these tasks, we construct the CLEANMOL095

dataset, consisting of 250K molecules annotated096

via lightweight molecular graph analysis tools such097

as RDKit (Landrum et al., 2024). Notably, our ap-098

proach is scalable since the annotations for these099

tasks do not require any experiment or human anno-100

tation, in principle, SMILES parsing can be applied101

to all the existing molecules in the real world.102

To evaluate and demonstrate the benefit of our103

new CLEANMOL dataset, we also introduce a two-104

stage training framework: first, the model is pre-105

trained on the proposed SMILES parsing tasks and106

then fine-tuned on downstream chemical applica-107

tions. To enhance data efficiency in the first stage,108

we propose a task-adaptive data pruning that selects109

structurally informative molecules and a curricu-110

lum learning framework that organizes them from111

easy to hard order.112

We empirically validate our approach by train-113

ing recent LLM backbones (Grattafiori et al., 2024;114

Yang et al., 2024) and evaluating them on three 115

downstream tasks from the Mol-Instructions bench- 116

mark (Fang et al., 2024), including retrosynthesis, 117

reagent prediction, and forward reaction predic- 118

tion. Surprisingly, our clean and structure-aware 119

CLEANMOL framework enables the models to 120

achieve state-of-the-art or competitive results on 121

the downstream tasks. This demonstrates that in- 122

corporating deterministic structural supervision via 123

SMILES parsing can significantly enhance molec- 124

ular generation capabilities, even without direct 125

exposure to generation-specific training data. 126

We summarize our contributions as follows: 127

• We revisit the limitations of LLMs in interpret- 128

ing molecular strings, highlighting the struc- 129

tural bottleneck. 130

• We propose five deterministic and scalable 131

SMILES parsing tasks and introduce the 132

CLEANMOL dataset to bridge the gap be- 133

tween string-level and graph-level molecular 134

understanding of LLMs. 135

• We design a two-stage training framework in- 136

coporating a task-adaptive data pruning and 137

curriculum learning strategy. 138

• We validate the impact of CLEANMOL by 139

demonstrating a consistent performance im- 140

provement across multiple downstream tasks. 141

2



Molecular SMILES

O=C(C/C(=N\\Nc1nc(-c2ccccc2)cs1)c1ccccc1)C(F)(F)F

Molecular SMILES

O=C(C/C(=N\\Nc1nc(-c2ccccc2)cs1)c1ccccc1)C(F)(F)F

Q: Tell me the 
number of SIX-
membered rings.

Q: Determine 
inclusion of the 
indicated 
functional group 
*S*.

Molecular SMILES

O=C(C/C(=N\\Nc1nc(-c2ccccc2)cs1)c1ccccc1)C(F)(F)F

Molecular SMILES

O=C(C/C(=N\\Nc1nc(-c2ccccc2)cs1)c1ccccc1)C(F)(F)F

Q: Tell me the 
number of FIVE-
membered rings.

Q: Determine 
inclusion of the 
indicated 
functional group 
CC(C)=O.

Figure 2: Complex cases in SMILES parsing. The
top green panels represent relatively simple cases, while
the bottom red panels illustrate more complex examples
with non-continuous substructures in SMILES. Orange
and teal highlights correspond to tasks involving ring
counting and functional group matching, respectively.

2 SMILES parsing task142

In this section, we introduce five SMILES parsing143

tasks designed to enhance the mapping between144

molecular SMILES strings and their corresponding145

graph structures. We then highlight two key bottle-146

necks in applying LLMs to molecular tasks: (1) the147

inability of models to extract structural informa-148

tion from SMILES strings and (2) the lack of high-149

quality, scalable molecular datasets. To address150

the first bottleneck, we show that even advanced151

LLMs such as GPT-4o (OpenAI and et al., 2024)152

and DeepSeek-V3 (Liu et al., 2024) fail to perform153

well on simple SMILES parsing tasks, revealing154

the need for explicit structure-aware supervision.155

To address the second bottleneck, we explain the156

limitation of open-source molecular datasets, moti-157

vating the need for scalable molecular datasets that158

can be generated without costly experiments.159

2.1 SMILES parsing task description160

We define SMILES parsing as a suite of deter-161

ministic, scalable, and structure-focused tasks de-162

signed to map molecular strings to their corre-163

sponding molecular graphs. The tasks fall into164

two categories—subgraph matching and global165

graph matching—as illustrated in Figure 1a. Im-166

portantly, all annotations can be generated auto-167

matically using open-source chemical tools such168

as RDKit (Landrum et al., 2024) without any ex-169

periment, making the tasks highly scalable. We170

provide more details in Appendix A.171

• Subgraph matching. This category includes172

functional group matching, ring counting, and173

carbon chain length measurement. Functional174

group matching determines the presence of175

a specified functional group. Ring count- 176

ing identifies the number of rings with spe- 177

cific sizes (e.g., five- or six-membered), and 178

chain length measurement evaluates the length 179

of the longest carbon chain excluding rings. 180

These tasks focus on local subgraphs such as 181

structural motifs, branching, and ring patterns. 182

• Global graph matching. This category con- 183

sists of SMILES canonicalization and frag- 184

ment assembly. Canonicalization involves 185

converting arbitrarily ordered SMILES into a 186

canonical form, which encourages structural 187

invariance to syntactic permutation. Frag- 188

ment assembly requires the model to combine 189

two SMILES fragments into a single valid 190

molecule, testing its ability to reorganize the 191

global structure from disjoint components. 192

2.2 Failure of existing LLMs 193

Although SMILES parsing appears simple from a 194

structural point of view, it poses significant chal- 195

lenges for existing LLMs. Complex cases involv- 196

ing nested rings or hierarchical branching often 197

disrupt token-level patterns, making it difficult for 198

models to resolve SMILES parsing accurately. In 199

detail, as shown in Figure 2, many structural fea- 200

tures are represented non-contiguously in SMILES, 201

further complicating the parsing process. Our moti- 202

vation closely aligns with that of Jang et al. (2024).1 203

We observe that even state-of-the-art general- 204

purpose LLMs, including GPT-4o (OpenAI and 205

et al., 2024) and DeepSeek-V3-Chat (Liu et al., 206

2024), struggle with SMILES parsing, achieving 207

no more than 60% accuracy across five tasks ex- 208

cept for the binary classification (functional group 209

matching), as described in Figure 1b and detailed 210

in Section 4.1. This failure is notable given the 211

strong performance of these models in other do- 212

mains such as mathematics and code. The inability 213

of these models to handle even basic molecular 214

parsing tasks underscores a critical gap in their 215

structural understanding. It motivates the need for 216

explicit pretraining strategies tailored to molecules. 217

2.3 Costly high-quality data acquirement 218

A second challenge lies in acquiring sufficient high- 219

quality training data for molecules. In contrast to 220

textual and visual domains, which benefit from 221

1Unlike Jang et al. (2024), which fine-tunes models di-
rectly on structural information and downstream tasks, we pre-
train LLMs on SMILES parsing objectives and subsequently
fine-tune them for downstream tasks.
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SMILES: c1ccc(C(F)(F)F)c(N2C(N)=C(C#N)[C@H](c3cc(OCC)ccc3OCC)C3=C2CCCC3=O)c1

# Functional group
Question: Given the SMILES, determine inclusion of the functional group COC.
Answer: Yes
# Ring
Question: Calculate the count of SIX-membered rings in the given SMILES string.
Answer: 4
# Canonicalization
Question: Give me a canonicalized SMILES that represents the same given molecule.
Answer: CCOc1ccc(OCC)c([C@H]2C(C#N)=C(N)N(c3ccccc3C(F)F)F)C3=C2C(=O)

CCC3)c1

Figure 3: Examples of CLEANMOL dataset.
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Figure 4: Overview of molecular data pruning and
ranking. Each number represents the task-specific diffi-
culty score assigned to a molecule, as defined in Table 1.
For each parsing task, molecules are ranked based on
these scores and we select the mid-difficulty samples.

large-scale web scraping (Deng et al., 2009; Raf-222

fel et al., 2020a; Lozhkov et al., 2024), chemical223

datasets often rely on costly and labor-intensive224

wet lab experiments or computational simulations.225

While resources such as the USPTO series (Wei226

et al., 2010; Lu and Zhang, 2022) and Molecu-227

leNet (Wu et al., 2018) exist, expanding them is228

expensive and labor-intensive. This highlights the229

need for scalable alternatives—datasets that can be230

automatically generated with minimal cost while231

preserving domain relevance.232

3 Training framework of CLEANMOL233

In this section, we present our framework to im-234

prove the molecular understanding of LLMs us-235

ing a new dataset, coined CLEANMOL.2 Our236

scheme consists of (1) data preparation and (2)237

a two-stage training procedure. In the data prepa-238

ration step, we prepare the CLEANMOL dataset239

with deterministic and scalable SMILES parsing240

tasks. Next, in the training step, we pre-train LLMs241

2Our framework and dataset are both termed CLEANMOL.

Functional group Ring Chain length SMILES Fragment
matching counting measurement canonicalization assembly

# of functional groups # of rings # of branches SMILES length

Table 1: Definition of each task-specific difficulty.

with the CLEANMOL dataset, followed by fine- 242

tuning downstream applications. To improve the 243

pre-training, we also introduce a task-adaptive data 244

pruning and curriculum learning strategy based on 245

task-specific difficulty measures. 246

3.1 CLEANMOL data preparation 247

First, we introduce the CLEANMOL dataset based 248

on the SMILES parsing tasks proposed in Sec- 249

tion 2.1. There exist two key advantages of our 250

proposed tasks: determinism and scalability. 251

In detail, on the one hand, in terms of determin- 252

ism, our tasks are designed to have a unique and 253

clearly defined answer (i.e., number or canonical- 254

ized SMILES) unlike previous pre-training objec- 255

tives such as masking and translation as detailed in 256

Section 6. This ensures unambiguous supervision 257

during training and facilitates reliable learning. 258

On the other hand, regarding scalability, as the 259

proposed tasks apply to any valid molecules with- 260

out any experimental data, they can be expanded 261

to a vast set of molecules. In detail, all annotations 262

can be automatically generated using open-source 263

cheminformatics tools such as RDKit (Landrum 264

et al., 2024), making the dataset extensible to virtu- 265

ally unlimited molecular corpora. We provide the 266

simplified example instructions of SMILES pars- 267

ing tasks in Figure 3 and more examples including 268

detailed instruction formats in Appendix A. 269

3.2 Training with CLEANMOL 270

Once the CLEANMOL dataset is prepared, we 271

adopt a task-specific data pruning and curricu- 272

lum learning inspired by recent work on high- 273

quality LLM data curation (Gunasekar et al., 2023; 274
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Subgraph Global graph

Task type Model FG Ring Chain Canonical Assembly

5-shot
Deepseek-V3-chat 0.8912 0.6266 0.2976 0.1484 0.1512

GPT-4o 0.8750 0.5955 0.2857 0.1078 0.1932
Galactica-6.7B 0.5000 0.0732 0.1511 0.0000 0.0046

SFT

Llama3.1-8B (Single) 0.9414 0.8612 0.9859 0.9356 0.8858
Llama3.1-8B (Multi) 0.9891 0.8707 0.9851 0.9463 0.9010

Qwen2.5-7B (Single) 0.9891 0.8674 0.9907 0.7593 0.3371
Qwen2.5-7B (Multi) 0.9901 0.8750 0.9902 0.9262 0.8835

Table 2: SMILES parsing performance. FG stands for the functional group. Background indicates the
improvement of multi-task learning compared to the single-task learning and the best results are highlighted in bold.

Marion et al., 2023; Ankner et al., 2024) to further275

enhance pre-training with CLEANMOL. As illus-276

trated in Figure 4, our approach involves: (1) sub-277

sampling sufficiently informative molecules, and278

(2) constructing a curriculum by ranking these ex-279

amples from simple to complex using task-specific280

difficulty measures.281

The difficulty measures are defined for each pars-282

ing task as summarized in Table 1. For instance, in283

the chain length measurement task, molecules with284

extensive branches often lead to SMILES where285

relevant subgraph atoms appear far apart in the286

string, increasing parsing difficulty. By excluding287

extremely easy or hard molecules (i.e., subsample288

molecules with mid-level difficulties) and organiz-289

ing the training data from simple to complex, our290

approach aligns with curriculum learning princi-291

ples (Bengio et al., 2009) and leads to improved292

performance, as validated in Section 4.2.293

Next, we adopt a two-stage training pipeline to294

effectively integrate SMILES parsing into LLM.295

In the first stage, we perform pre-training on the296

pruned CLEANMOL dataset using supervised fine-297

tuning. This allows the model to acquire core struc-298

tural understanding and compositional knowledge299

of molecular graphs. In the second stage, we fur-300

ther fine-tune this trained model on downstream301

molecular tasks. By initializing with a model that302

has already learned to parse molecular structures,303

downstream adaptation becomes more accurate.304

4 Experiments: SMILES parsing tasks305

In this section, we evaluate the effectiveness of our306

proposed SMILES parsing task as a pre-training307

signal for LLMs. The parsing task is formally de-308

fined in Section 2.1. We demonstrate that recent309

LLMs, while not inherently proficient in SMILES310

parsing, can acquire this capability through targeted311

training. We provide all experimental settings in-312

cluding prompts, hyperparameters, and computa-313

tional resources in Appendix B.314

4.1 LLMs can learn SMILES parsing 315

As described in Section 2.2, SMILES parsing poses 316

a significant challenge for general-purpose LLMs, 317

despite its foundational importance for molecular 318

understanding. Our experiments reveal that LLMs 319

lack the inductive bias to naturally understand the 320

molecular structure encoded in SMILES strings. 321

However, we show that through supervised fine- 322

tuning (SFT), LLMs can learn to accurately parse 323

and interpret SMILES representations. 324

Dataset. We construct a CLEANMOL benchmark 325

consisting of 50K molecules per SMILES parsing 326

task, totaling 250K examples across five tasks. The 327

molecules are subsampled from the ZINC250k (Ir- 328

win et al., 2012) training dataset using our proposed 329

molecular data pruning strategy described in Sec- 330

tion 3.2, which excludes extremely easy or hard 331

molecules to enhance the molecular pre-training. 332

Additionally, for the test dataset, we randomly se- 333

lected 10K molecules from the ZINC250K test split 334

and fixed this subset across all experiments. 335

Baselines. We evaluate the parsing capabilities 336

of four general-purpose LLMs—Deepseek-V3- 337

Chat (Liu et al., 2024), GPT-4o (OpenAI and 338

et al., 2024), LLaMA3.1-8B-Instruct (Grattafiori 339

et al., 2024), and Qwen2.5-7B-Instruct (Yang 340

et al., 2024)—and one chemistry-specific LLM, 341

Galactica-6.7B (Taylor et al., 2022). To assess the 342

basic molecular understanding of general-purpose 343

LLMs, we apply 5-shot prompting to Deepseek 344

and GPT-4o, which are not publicly trainable and 345

thus cannot be fine-tuned. Similarly, we apply 5- 346

shot prompting to Galactica, a chemistry-specific 347

LLM pre-trained on molecular corpora, to evaluate 348

its zero-shot capabilities without further supervi- 349

sion. In contrast, for LLaMA and Qwen, which are 350

open-weight general-purpose LLMs, we perform 351

supervised fine-tuning using our SMILES parsing 352

dataset to examine whether explicit structure-aware 353

training can bridge the gap in molecular compre- 354
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Subgraph Global graph

Pruning type FG Ring Chain Canonical Assembly Average

Random 0.9921 0.9212 0.9886 0.7845 0.7352 0.8843
Length 0.9910 0.8531 0.9785 0.8519 0.8044 0.8958

Molecular pruning (top) 0.9902 0.8123 0.9716 0.9446 0.7487 0.8934
Molecular pruning (bottom) 0.9729 0.6995 0.9597 0.5514 0.5186 0.7404

Molecular pruning (middle, ours) 0.9901 0.8750 0.9902 0.9262 0.8835 0.9330

Table 3: Effect of molecular data pruning on Qwen2.5-7B-Instruct. "Random" and "Length" refer to baselines
using random sampling and SMILES length as proxies for difficulty. "Top," "middle," and "bottom" denote
subsamples consisting of the most difficult, moderately difficult, and easiest molecules, respectively, based on
task-specific difficulty heuristics.

hension. Notably, we explore two experimental355

settings: single-task, where a separate model is356

trained for each parsing task, and multi-task, where357

a single model is jointly trained on all five tasks.358

Metrics. We evaluate performance using accu-359

racy, as SMILES parsing tasks are deterministic360

and each input has a well-defined answer.361

Results. The results are presented in Table 2. We362

observe that recent general-purpose LLMs (GPT-4o363

and Deepseek) and even a chemical LLM (Galac-364

tica) perform poorly on SMILES parsing, reveal-365

ing their limited molecular comprehension. This366

validates that the primary bottleneck in applying367

LLMs to molecular domains lies not in the absence368

of chemical knowledge, but in the lack of basic369

molecular structural understanding—specifically,370

the ability to parse and interpret SMILES strings.371

In contrast, fine-tuned LLaMA and Qwen models372

show substantial improvements, demonstrating that373

SMILES parsing can be effectively learned through374

training. Moreover, all tasks—except for chain375

length measurement—achieved higher accuracy in376

the multi-task setting, suggesting that transferable377

structural understanding across tasks contributes to378

improved performance.379

4.2 Effect of molecular data pruning380

We further investigate the impact of our molecular381

data pruning strategy on parsing performance. As382

detailed in Section 3.2, this technique aims to cu-383

rate a training set that maximizes informativeness.384

The results, shown in Table 3, demonstrate that our385

pruning method improves performance, suggesting386

that data quality plays a critical role in teaching387

LLMs the implicit grammar of SMILES.388

4.3 Ablation study389

Here, we conduct an ablation study to validate the390

impact of the increase in dataset size in our pro-391

posed CLEANMOL dataset. In detail, we evaluate392

10K 20K 50K
# of molecules per task

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Functional group
Chain
Ring
Canonical
Assembly

Figure 5: Data scale analysis for SMILES parsing.

the accuracy of the SMILES parsing task for 10K, 393

20K, and 50K data settings per task in the same 394

setting in Section 4.1. We provide the results in 395

Figure 5. Here, we observed that increasing the 396

dataset size consistently improves SMILES pars- 397

ing performance, with particularly dramatic gains 398

in the ring counting and fragment assembly tasks. 399

This validates the expandability of our framework. 400

5 Experiments: Downstream tasks 401

In this section, we evaluate the effect of pre-training 402

LLMs on CLEANMOL dataset across three molec- 403

ular generation downstream applications. We pro- 404

vide the experimental settings in Appendix B and 405

additional experimental results in Appendix C. 406

Our results demonstrate that incorporating 407

CLEANMOL as a pre-training strategy consistently 408

improves performance across diverse downstream 409

molecular tasks. These findings provide strong em- 410

pirical support for our central hypothesis: clean and 411

structurally faithful SMILES parsing serves as an 412

effective and transferable learning signal for LLMs. 413

Notably, CLEANMOL achieves state-of-the-art or 414

competitive performance despite being pre-trained 415

without any task-specific data, underscoring the 416

strength and generality of our approach. 417

5.1 Molecular generation 418

The molecular generation task aims to generate 419

molecules given prompts, including retrosynthesis, 420

reagent prediction, and forward reaction prediction. 421
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Models Exact. BLEU Levenshtein ↓ MACCS FTS RDK FST Morgan FTS Validity

Task 1: Retrosynthesis

Text+Chem T5 0.141 0.765 24.04 0.685 0.765 0.585 0.698
Mol-Instructions (Lla.2) 0.009 0.705 31.23 0.283 0.487 0.230 -
Mol-Instructions (Lla.3) 0.333 0.842 17.64 0.704 0.815 0.646 -

Mol-Instructions (Lla.3.1)* 0.255 0.890 17.76 0.813 0.690 0.644 -
InstructMol-GS 0.407 0.941 13.97 0.753 0.852 0.714 -

Llama3.1-8B 0.456 0.944 10.22 0.895 0.837 0.801 0.979
+ Mol-Instructions (SFT)* 0.541 0.955 8.25 0.915 0.878 0.843 -

+ CLEANMOL 0.581 0.959 7.86 0.923 0.890 0.856 0.998

Qwen2.5-7B 0.460 0.946 10.11 0.897 0.849 0.809 0.910
+ CLEANMOL 0.554 0.958 8.26 0.915 0.880 0.844 0.995

Task 2: Reagent prediction

Text+Chem T5 0.000 0.255 49.32 0.039 0.186 0.052 0.313
Mol-Instructions (Lla.2) 0.044 0.224 23.17 0.237 0.364 0.213 -
Mol-Instructions (Lla.3) 0.101 0.648 18.33 0.412 0.521 0.375 -

Mol-Instructions (Lla.3.1)* 0.085 0.676 22.40 0.505 0.398 0.356 -
InsturctMol 0.129 0.610 19.66 0.444 0.539 0.400 -

Llama3.1-8B 0.124 0.625 17.31 0.538 0.433 0.398 0.999
+ Mol-Instructions (SFT)* 0.142 0.678 17.14 0.562 0.467 0.430 -

+ CLEANMOL 0.147 0.687 16.89 0.564 0.472 0.434 0.999

Qwen2.5-7B 0.120 0.649 17.76 0.533 0.431 0.395 -
+ CLEANMOL 0.128 0.685 16.58 0.557 0.455 0.415 0.975

Task 3: Forward reaction prediction

Text+Chem T5 0.236 0.782 13.63 0.523 0.630 0.505 0.967
Mol-Instructions (Lla.2) 0.045 0.654 27.26 0.313 0.509 0.262 -
Mol-Instructions (Lla.3) 0.503 0.883 13.41 0.756 0.863 0.708 -

Mol-Instructions (Lla.3.1)* 0.402 0.907 13.11 0.848 0.718 0.679 -
InstructMol-GS 0.536 0.967 10.85 0.776 0.878 0.741 -

Llama3.1-8B 0.794 0.981 2.47 0.965 0.938 0.926 0.988
+ Mol-Instructions (SFT)* 0.888 0.990 1.33 0.983 0.967 0.961 -

+ CLEANMOL 0.890 0.990 1.37 0.980 0.966 0.959 0.996

Qwen2.5-7B 0.833 0.986 2.08 0.972 0.947 0.943 0.987
+ CLEANMOL 0.874 0.989 1.56 0.980 0.963 0.956 0.959

Table 4: Molecular generation performance. Background indicates the improvement compared to vanilla model.
Asterisks (*) denote reproduced results and - in validity represents the SELFIES-based methods which guarantees
the perfect validity. For each metric, the best and second-best result is highlighted with bold and underline.

Dataset. We use the Mol-Instructions dataset422

(Fang et al., 2024), which covers three molecule423

generation tasks. Specifically, retrosynthesis pre-424

dicts the possible precursors that lead to a given425

target molecule. Next, the reagent prediction task426

requires the generation of suitable catalysts, sol-427

vents, or ancillary reagents for a given chemical428

reaction. Lastly, forward reaction prediction in-429

volves the generation of a plausible product from430

given reactants and reagents. We follow the data431

splits provided in Mol-Instructions.432

Baselines. We evaluate CLEANMOL by integrat-433

ing it with two base models: LLaMA-3.1-8B-434

Instruct (Grattafiori et al., 2024) and Qwen-2.5-435

7B-Instruct (Yang et al., 2024), to test whether436

CLEANMOL consistently improves performance.437

Notably, the vanilla base models are fine-tuned on438

each downstream task without pre-training. For an439

absolute performance comparison, we include three440

baselines: Text+Chem T5 (Christofidellis et al.,441

2023a), Mol-Instructions (Fang et al., 2024) and442

InstructMol (Cao et al., 2023). Additionally, we443

include a variant of Mol-Instructions denoted as 444

Mol-Instructions (SFT), which is first instruction- 445

tuned on the same dataset size as our CLEANMOL 446

dataset (250K) and then further fine-tuned on each 447

downstream task. This ensures a fair comparison 448

for both the model and the training data size. 449

Metrics. We assess the performance by compar- 450

ing the generated molecules with the ground truth 451

based on eight metrics. These include SMILES 452

string-based metrics (Exact match, BLEU (Pap- 453

ineni et al., 2002), and Levenshtein distance (Miller 454

et al., 2009)), molecular fingerprint similarities 455

(MACCS (Durant et al., 2002), RDK (Schnei- 456

der et al., 2015), and Morgan (Rogers and Hahn, 457

2010)), distributional similarity via Fréchet Chem- 458

Net Distance (FCD) (Preuer et al., 2018), and the 459

validity of generated molecules. 460

Results. The results are summarized in Table 4. 461

Incorporating CLEANMOL consistently improves 462

performance across all backbones, demonstrating 463

the effectiveness of SMILES parsing tasks in en- 464
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Figure 6: Data scale analysis for retrosynthesis.

hancing molecular language modeling. These im-465

provements suggest that pre-training on clean and466

deterministic CLEANMOL dataset facilitates the467

model’s structural understanding required for gen-468

eration tasks. Notably, integrating CLEANMOL469

into LLaMA3.1-8B-Instruct achieves state-of-the-470

art—or at least comparable—performance to Mol-471

Instructions (SFT), despite using no molecular gen-472

eration data during pre-training.473

5.2 Ablation study474

Here, we evaluate the effect of CLEANMOL dataset475

size on retrosynthesis performance using 10K, 20K,476

and 50K molecules per parsing task following the477

setup in Section 5.1. As described in Figure 6, the478

performance grows with data scale, demonstrating479

CLEANMOL ’s scalability. As SMILES parsing re-480

quires no costly experiment, this framework easily481

extends to large molecular corpora.482

6 Related work483

LLMs for chemistry. General-purpose LLMs484

often struggle with fundamental chemistry tasks,485

particularly those requiring molecular structure un-486

derstanding (White et al., 2023; Castro Nascimento487

and Pimentel, 2023; Guo et al., 2023). To address488

this gap, several studies have proposed chemically489

specialized LLMs. Some approaches pre-train490

LLMs on molecular and biomedical corpora to in-491

ject domain-specific knowledge (Edwards et al.,492

2022; Christofidellis et al., 2023b; Liu et al., 2023a;493

Pei et al., 2023). Others explore instruction tun-494

ing on curated molecular tasks (Fang et al., 2024;495

Cao et al., 2023), or leverage retrieval-augmented496

prompting to improve few-shot performance (Li497

et al., 2024). While these methods aim to inject498

domain knowledge, they often neglect the need for499

grounding models in basic molecular understand-500

ing. In contrast, we emphasize clean and determin-501

istic structural supervision through well-defined502

SMILES parsing tasks, which can complement ex-503

isting methods and integrate with instruction tuning504

or domain adaptation.505

Pre-training of LLMs for chemistry. Effec-506

tive pre-training tasks should be well-structured507

and sufficiently simple to support generalizable 508

learning. In chemistry, many works adopt NLP- 509

inspired objectives such as masked language mod- 510

eling (MLM) (Devlin et al., 2019) and sequence-to- 511

sequence translation (Raffel et al., 2020b), applied 512

to SMILES (Weininger, 1988) or SELFIES (Krenn 513

et al., 2020). Edwards et al. (2022) used separate 514

MLM pretraining on molecular and textual data, 515

while later studies (Pei et al., 2023; Christofidellis 516

et al., 2023b) combined MLM with molecule–text 517

translation. Liu et al. (2023a) embedded SMILES 518

in natural language prompts, and other works in- 519

corporated 2D or 3D geometry (Li et al., 2023; Ji 520

et al., 2024; Zhou et al., 2023). 521

Despite these advancements, most strategies in- 522

troduce unambiguous supervision signals due to the 523

non-determinism of molecular representations. For 524

example, in masked SMILES prediction, multiple 525

chemically valid tokens can fill the same masked 526

position, leading to a noisy training signal. This 527

undermines training effectiveness and limits the 528

model’s ability to learn robust understanding. To 529

address this issue, we provide clean and determin- 530

istic SMILES parsing tasks as pre-training tasks. 531

Data pruning in LLMs. Data pruning refers to 532

selecting an informative subset of training data, 533

which is crucial for reliable LLM training (Gu- 534

nasekar et al., 2023). Most data pruning meth- 535

ods rely on rule-based filters (Wenzek et al., 2020; 536

Raffel et al., 2020a), perplexity scores (Marion 537

et al., 2023; Ankner et al., 2024), or LLM embed- 538

dings (Tirumala et al., 2023). However, these met- 539

rics are ill-defined for molecular strings, where per- 540

plexity and embeddings do not reflect the structural 541

information of the corresponding molecules. To ad- 542

dress this, we introduce task-specific difficulty mea- 543

sures and data pruning strategies for molecules. 544

7 Conclusion 545

In this paper, we revisit the key limitation in apply- 546

ing LLMs to chemistry: the inability to interpret the 547

structures encoded in SMILES. To address this, we 548

propose CLEANMOL, a framework that introduces 549

deterministic and scalable SMILES parsing tasks to 550

provide unambiguous structural supervision. Our 551

experiments show that CLEANMOL significantly 552

enhances molecular structural understanding and 553

improves performance across multiple downstream 554

tasks. These results highlight the value of incor- 555

porating clean and structure-aware objectives into 556

LLMs to support more robust applications. 557
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Broader Impact558

Our work contributes to the development of struc-559

turally grounded models for molecular applications.560

By introducing a structured, clean, and scalable561

set of SMILES parsing tasks, we aim to equip562

LLMs with a stronger inductive bias toward molec-563

ular structure understanding. This can enhance564

downstream applications such as drug discovery,565

materials design, and reaction prediction by im-566

proving the fidelity and reliability of molecular567

reasoning. However, as with any generative AI568

system in chemistry, potential misuse remains a569

concern. The capacity to generate toxic, harmful,570

or restricted compounds necessitates careful inte-571

gration of safety measures and expert oversight.572

Limitations573

Limited structural information. Our SMILES574

parsing tasks focus on graph-level molecular struc-575

tures and do not incorporate 3D conformational576

information, which is essential for many biological577

and physicochemical applications. Additionally,578

while our tasks are deterministic and scalable, they579

do not capture more nuanced chemical features580

such as stereochemistry, electronic effects, or reac-581

tivity patterns, which often require context beyond582

2D topological graphs.583

Language-specific scope. Our experiments are584

conducted exclusively in English and do not ex-585

plore the applicability of the method across other586

languages, including morphologically rich or typo-587

logically diverse ones. Given that behaviors can588

vary across languages due to linguistic structure589

and training data distributions, the generalizability590

of our approach to multilingual settings remains an591

open question.592

Model and dataset scale. Due to computational593

constraints, our experiments are limited to language594

models with up to 7.5B–8B parameters. It remains595

to be seen whether our framework scales effectively596

to larger models (e.g., 70B or beyond). Moreover,597

our pretraining is performed on a relatively modest598

dataset of 250K molecules, and while we observe599

consistent improvements, further studies on larger-600

scale datasets are necessary to assess the robustness601

and scalability of the approach.602
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Appendix918

Organization The appendix is organized as fol-919

lows: We first describe the details of SMILES920

parsing tasks in Appendix A. Next, we present921

the experimental details such as hyperparameters922

and computational resources in Appendix B. Then923

we provide the additional experimental results in-924

cluding the generated samples and additional ab-925

lation studies in Appendix C. Lastly, we present926

the usage of AI assistants and scientific artifacts in927

Appendix D and Appendix E, respectively.928

A Detailed description of SMILES929

parsing tasks930

A.1 Subgraph matching931

This category includes functional group matching,932

ring counting, and carbon chain length measure-933

ment. These tasks are designed to focus on local934

substructures within the molecular graph, such as935

common functional motifs, ring systems, and chain936

connectivity. Each task formulation is determinis-937

tic and lends itself to clear evaluation.938

Functional group matching. Functional group939

matching evaluates whether a specified functional940

group is present in a given molecule. To ensure941

determinism, we cast this task as a binary clas-942

sification problem: the model must predict “yes”943

or “no” based on the presence of the target group.944

An example of the instruction format is shown in945

Figure 7.946

Functional group matching

Answer only in ’Yes’ or ’No’ without any
other information.

**Question:** Does the molecule repre-
sented by the SMILES string contain the
specified functional group? Respond with
’Yes’ or ’No’.
**SMILES:** [SMILES]
**FUNCTIONAL GROUP:** [Functional
group SMILES]

**ANSWER:** [Yes/No]

Figure 7: An instruction format of functional group
matching.

Ring counting. Ring counting asks the model947

to determine the number of rings of a specific948

size (e.g., five- or six-membered) in the molecule.949

This task tests the model’s ability to track topologi- 950

cal cycles through non-contiguous token spans in 951

SMILES. The instruction format is illustrated in 952

Figure 8. 953

Ring counting

Answer only with the corresponding integer
number without any other information.

**Question:** Assess the SMILES below
and report how many rings consist of
[RING SIZE] atoms. Give me the integer
only.
**SMILES:** [SMILES]
**SIZE OF RINGS:** [RING SIZE]

**ANSWER:** [NUMBER OF RINGS]

Figure 8: An instruction format of ring counting.

Chain length measurement. This task requires 954

the model to identify the length of the longest 955

acyclic carbon chain in the molecule, excluding 956

atoms that are part of rings. It challenges the model 957

to distinguish between linear and branched motifs 958

and to reason about connectivity beyond localized 959

tokens. Such chains often span long syntactic dis- 960

tances in SMILES, making the task non-trivial. The 961

instruction format is shown in Figure 9. 962

Chain length measurement

Answer only with the corresponding integer
number without any other information.

**Question:** Report the size of the largest
carbon-only chain not contained within a
ring in the molecule represented by this
SMILES. Answer with an integer only.
**SMILES:** [SMILES]

**ANSWER:** [LENGTH OF CHAIN]

Figure 9: An instruction format of chain length mea-
surement.

A.2 Global graph matching 963

This category includes tasks that operate on a 964

global level: SMILES canonicalization and frag- 965

ment assembly. Unlike subgraph matching, these 966

tasks require full-graph interpretation, where suc- 967

cess depends on integrating information across the 968

entire molecular structure. 969
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This category consists of SMILES canonicaliza-970

tion and fragment assembly.971

SMILES canonicalization. Canonicalization in-972

volves transforming a randomly ordered SMILES973

string into its canonical form following the canoni-974

calization rules (Weininger et al., 1989). In detail,975

these rules typically involve assigning a unique976

ranking to atoms based on graph invariants (e.g.,977

atomic number, connectivity, bond types), select-978

ing the lexicographically smallest traversal path,979

and applying consistent numbering for ring clo-980

sures. This task encourages the model to learn981

structural invariance under permutation and rein-982

forces a graph-level understanding of molecular983

identity. The task format is provided in Figure 10.984

SMILES canonicalization

Answer only with the corresponding
SMILES string without any other informa-
tion.

**Question:** Give me a canonicalized
SMILES string that represents the same
molecule as the given one.

**SMILES:** [SMILES]
**ANSWER:** [CANONICAL SMILES]

Figure 10: An instruction format of SMILES canoni-
calization.

Fragment assembly. Fragment assembly eval-985

uates whether the model can reconstruct a full986

molecule from two disconnected SMILES frag-987

ments. This task tests global molecular coherence988

and the model’s ability to resolve attachment points989

into a chemically valid structure. The instruction990

format of the instruction is shown in Figure 11.991

B Experimental details992

In this section, we provide the details of the ex-993

periments. All experimental code related to this994

paper is available at https://anonymous.4open.995

science/r/CLEANMOL and our experiments are996

based on a single run. We use NVIDIA A100-997

80GB GPUs. We also apply low rank adaptation998

(Hu et al., 2022) and report results from a sin-999

gle run. Our implementations are based on the1000

transformers library (Wolf et al., 2020), the trl1001

library (von Werra et al., 2020), the accelerate1002

library (Gugger et al., 2022), and unsloth library1003

Fragment assembly

Answer only with the corresponding
SMILES string without any other informa-
tion.

**Question:** Connect the following two
SMILES fragments into a unified structure
at their reactive sites.
**SMILES:** [FRAGMENT 1, FRAG-
MENT 2]

**ANSWER:** [SMILES]

Figure 11: An instruction format of SMILES assem-
bly.

(Daniel Han and team, 2023). Additionally, we 1004

used the packages including rouge-score==0.1.2 1005

and nltk==3.8.1. 1006

B.1 SMILES parsing 1007

Here, we describe the detailed settings for the 1008

SMILES parsing experiments in Section 4, includ- 1009

ing the pre-trainig step with SMILES parsing tasks. 1010

Hyperparameters. The hyperparameters for all 1011

the models are provided in Table 5. We share 1012

the same hyperparameter for all the SMILES pars- 1013

ing tasks and base models. Notably, the model 1014

trained with SMILES parsing tasks is used as the 1015

pre-trained model for downstream tasks in Sec- 1016

tion 5. 1017

Hyperparameter

Batch size 16
Learning rate 5e−4

Epochs 1
Warmup ratio 0.01
Weight decay 0.1
Lr scheduler cosine

Gradient accumulation steps 1
Repetition penalty 1

Temperature 0.2

Lora r 64
Lora alpha 16

Lora dropout 0.05

Table 5: Hyperparameters for SMILES parsing.

B.2 Downstream tasks 1018

Here, we describe the detailed settings for the 1019

downstream task experiments in Section 5. 1020

Hyperparameters. The hyperparameters for all 1021

the models are provided in Table 5. We share the 1022
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same hyperparameter for all downstream tasks and1023

base models. Notably, for the reproduced Mol-1024

instructions (Fang et al., 2024) models, we follow1025

the hyperparameters given in the original paper.1026

Hyperparameter

Batch size 16
Learning rate 5e−4

Epochs 1
Warmup ratio 0.01
Weight decay 0.1
Lr scheduler cosine

Gradient accumulation steps 1
Repetition penalty 1

Temperature 0.2

Lora r 64
Lora alpha 16

Lora dropout 0.05

Table 6: Hyperparameters for downstream tasks.

C Additional experimental results1027

In this section, we provide additional experimen-1028

tal results including several concrete examples of1029

generated samples.1030

C.1 Molecular property prediction1031

The molecular property classification task aims to1032

predict binary labels for intrinsic physical or chem-1033

ical properties, such as blood-brain barrier perme-1034

ability or toxicity.1035

Dataset. We use the MoleculeNet (Wu et al.,1036

2018) dataset, focusing on three binary classifi-1037

cation tasks: BACE, HIV, and Clintox. The BACE1038

task predicts whether a molecule can inhibit human1039

β-secretase 1 (BACE-1). The HIV task involves1040

predicting the ability of compounds to inhibit HIV1041

replication. The Clintox task assesses whether a1042

compound is likely to fail clinical trials due to toxi-1043

city. We follow the splits provided in MoleculeNet.1044

Baselines. We evaluate CLEANMOL by integrat-1045

ing it with two base models: LLaMA-3.1-8B-1046

Instruct (Grattafiori et al., 2024) and Qwen-2.5-1047

7B-Instruct (Yang et al., 2024). For an absolute1048

performance comparison, we include additional1049

baselines: MolCA (Liu et al., 2023b), LlasMol (Yu1050

et al., 2024) and InstructMol (Cao et al., 2023).1051

Metrics. We evaluate the performance using ac-1052

curacy, which denotes the overall proportion of1053

correct predictions.1054

Model BACE HIV Clintox

MolCA (1D+2D) 0.798 – 0.895
LlasMolMistral – 0.967 0.931

InstructMol-GS 0.821 0.689 –

LLaMA3.1-8B 0.507 0.971 0.946
+ CLEANMOL 0.639 0.971 0.946

Qwen2.5-7B 0.533 0.969 0.946
+ CLEANMOL 0.638 0.971 0.946

Table 7: Molecular property classification perfor-
mance on the MoleculeNet dataset.

Results. We report the results in Table 7. We 1055

observe that models pre-trained with CLEANMOL 1056

achieve consistent gains, confirming that the struc- 1057

tural alignment learned during SMILES parsing 1058

transfers effectively to property classification tasks. 1059

C.2 Molecular property regression 1060

The molecular property regression task focuses on 1061

predicting continuous-valued molecular properties. 1062

Dataset. We again use the Mol-Instructions 1063

(Fang et al., 2024) dataset. We target quantum me- 1064

chanics properties: HOMO energy, LUMO energy, 1065

and the energy gap (HOMO–LUMO difference). 1066

We also follow the same split. 1067

Baselines We evaluate CLEANMOL by integrat- 1068

ing it with two base models: LLaMA-3.1-8B- 1069

Instruct (Grattafiori et al., 2024) and Qwen-2.5- 1070

7B-Instruct (Yang et al., 2024). For an absolute 1071

performance comparison, we include additional 1072

baselines: Alpaca (Tloen, 2023), Baize (Xu et al., 1073

2023), Vicuna (Chiang et al., 2023), Galactica (Tay- 1074

lor et al., 2022), and Mol-Instructions (Fang et al., 1075

2024). Here, the Mol-Instructions (SFT) follows 1076

the same training strategy described in Section 5.1. 1077

Metrics. We use mean absolute error (MAE) to 1078

evaluate prediction accuracy. 1079

Results. We report the results in Table 8. The re- 1080

sults indicate that models pre-trained on SMILES 1081

parsing consistently outperform baselines, demon- 1082

strating that structural information learned via pars- 1083

ing enhances quantitative property prediction. 1084

D Usage of AI assistants 1085

In preparing this work, we used AI-based writing 1086

assistants to improve sentence structure, correct 1087

grammatical errors, and enhance overall readabil- 1088

ity. These tools were employed solely for language 1089
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Model MAE

Alpaca 322.109
Baize 261.343

Vicuna 860.051
Galactica 0.568

Mol-Instruct. (Lla.2) 0.013
Mol-Instruct. (Lla.3) 15.059

Mol-Instruct. (Lla.3.1)* 0.011
Mol-Instruct. (SFT)* 0.005

LLaMA3.1-8B 0.005
+ CLEANMOL 0.005

Qwen2.5-7B 15.923
+ CLEANMOL 0.005

Table 8: Molecular property regression performance
on the Molinstructions dataset.

refinement and did not contribute to the develop-1090

ment of technical content, research methodology,1091

or experimental analysis. All scientific ideas, re-1092

sults, and conclusions presented in the paper were1093

conceived and authored entirely by the researchers.1094

The use of AI assistance was restricted to edito-1095

rial purposes and did not affect the originality or1096

intellectual contributions of the work.1097

E Scientific Artifacts1098

The License for artifacts. All datasets and soft-1099

ware tools used in this study comply with their re-1100

spective licenses. Specifically, we utilized publicly1101

available datasets such as ZINC250K (Irwin et al.,1102

2012) and Mol-Instructions (Fang et al., 2024) in1103

accordance with their usage terms. External tools1104

such as RDKit were employed under their permis-1105

sive open-source license. To support transparency1106

and reproducibility, we release our trained models1107

and source code at https://anonymous.4open.1108

science/r/CLEANMOL under an appropriate open-1109

source license.1110

Artifact use consistency with intended use. All1111

datasets and tools were used in a manner consistent1112

with their intended use. For instance, the Mol-1113

Instructions dataset (Fang et al., 2024)—originally1114

designed for molecule generation and property pre-1115

diction—was employed for aligned downstream1116

tasks in our study. Likewise, RDKit was used ex-1117

clusively for molecular structure analysis and data1118

preprocessing, as intended by its developers.1119
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