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ABSTRACT

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from
a labeled source domain to a different unlabeled target domain. Most existing
UDA methods focus on learning domain-invariant feature representation, either
from the domain level or category level, using convolution neural networks
(CNNs)-based frameworks. One fundamental problem for the category level
based UDA is the production of pseudo labels for samples in target domain, which
are usually too noisy for accurate domain alignment, inevitably compromising
the UDA performance. With the success of Transformer in various tasks, we
find that the cross-attention in Transformer is robust to the noisy input pairs
for better feature alignment, thus in this paper Transformer is adopted for the
challenging UDA task. Specifically, to generate accurate input pairs, we design
a two-way center-aware labeling algorithm to produce pseudo labels for target
samples. Along with the pseudo labels, a weight-sharing triple-branch transformer
framework is proposed to apply self-attention and cross-attention for source/target
feature learning and source-target domain alignment, respectively. Such design
explicitly enforces the framework to learn discriminative domain-specific and
domain-invariant representations simultaneously. The proposed method is dubbed
CDTrans (cross-domain transformer), and it provides one of the first attempts
to solve UDA tasks with a pure transformer solution. Experiments show that
our proposed method achieves the best performance on public UDA datasets,
e.g. VisDA-2017 and DomainNet. Code and models are available at https:
//github.com/CDTrans/CDTrans.

1 INTRODUCTION

Deep neural network have achieved remarkable success in a wide range of application scenar-
ios (Wang et al., 2022; Qian et al., 2021; Yiqi Jiang, 2022; Tan et al., 2019; Chen et al., 2021b;
Jiang et al., 2021; Chen et al., 2017) but it still suffers poor generalization performance to other
new domain because of the domain shift problem (Csurka, 2017; Zhao et al., 2020; Zhang et al.,
2020; Oza et al., 2021). To handle this issue and avoid the expensive laborious annotations, lots
of research efforts (Bousmalis et al., 2017; Kuroki et al., 2019; Wilson & Cook, 2020; VS et al.,
2021) are devoted on Unsupervised Domain Adaptation (UDA). The UDA task aims to transfer
knowledge learned from a labeled source domain to a different unlabeled target domain. In UDA,
most approaches focus on aligning distributions of source and target domain and learning domain-
invariant feature representations. One kind of such UDA methods are based on category-level
alignment (Kang et al., 2019; Zhang et al., 2019; Jiang et al., 2020; Li et al., 2021b), which have
achieved promising results on public UDA datasets using deep convolution neural networks (CNNs).
The fundamental problems in category-level based alignment is the production of pseudo labels for
samples in target domain to generate the input source-target pairs. However, the current CNNs-based
methods are not robust to the generated noisy pseudo labels for accurate domain alignment (Morerio
et al., 2020; Jiang et al., 2020).

With the success of Transformer in natural language processing (NLP) (Vaswani et al., 2017; Devlin
et al., 2018) and vision tasks (Dosovitskiy et al., 2020; Han et al., 2020; He et al., 2021; Khan et al.,
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2021), it is found that cross-attention in Transformer is good at aligning different distributions, even
from different modalities e.g., vision-to-vision (Li et al., 2021e), vision-to-text (Tsai et al., 2019;
Hu & Singh, 2021) and text-to-speech (Li et al., 2019). And we find that it is robust to noise in
pseudo labels to some extent. Hence, in this paper, we apply transformers to the UDA task to take
advantage of its robustness to noise and super power for feature alignment to deal with the problems
as described above in CNNs.

In our experiment, we conclude that even with noise in the labeling pair, the cross-attention can
still work well in aligning two distributions, thanks to the attention mechanism. To obtain more
accurate pseudo labels, we designed a two-way center-aware labeling algorithm for samples in the
target domain. The pseudo labels are produced based on the cross-domain similarity matrix, and a
center-aware matching is involved to weight the matrix and weaken noise into the tolerable range.
With the help of pseudo labels, we design the cross-domain transformer (CDTrans) for UDA. It
consists of three weight-sharing transformer branches, of which two branches are for source and
target data respectively and the third one is the feature alignment branch, whose inputs are from
source-target pairs. The self-attention is applied in the source/target transformer branches and cross-
attention is involved in the feature alignment branch to conduct domain alignment. Such design
explicitly enforces the framework to learn discriminative domain-specific and domain-invariant
representations simultaneously. In summary, our contributions are three-fold:

• We propose a weight-sharing triple-branch transformer framework, namely, CDTrans,
for accurate unsupervised domain adaptation, taking advantage of its robustness to noisy
labeling data and great power for feature alignment.

• To produce pseudo labels with high quality, a two-way center-aware labeling method is
proposed, and it boosts the final performance in the context of CDTrans.

• CDTrans achieves the best performance compared to state-of-the-arts with a large margin
on VisDA-2017 (Peng et al., 2017) and DomainNet (Peng et al., 2019) datasets.

2 RELATED WORK

2.1 TRANSFORMER FOR VISION

Transformer is proposed in (Vaswani et al., 2017) to model sequential data in the field of NLP.
Many works have shown its effectiveness for computer-vision tasks (Han et al., 2020; Khan et al.,
2021; Li et al., 2021d; Han et al., 2021b; Yu et al., 2021; Li et al., 2021c; Yang et al., 2021;
Qian et al., 2022). Pure Transformer based models are becoming more and more popular. For
example, ViT (Dosovitskiy et al., 2020) is proposed recently by feeding transformer with sequences
of image patches; Touvron et al. (Touvron et al., 2021) propose DeiT that introduces a distillation
strategy for transformers to help with ViT training; many other ViT variants (Yuan et al., 2021a;
Wang et al., 2021; Han et al., 2021a; Chen et al., 2021a; Ranftl et al., 2021; Liu et al., 2021) are
proposed from then, which achieve promising performance compared with its counterpart CNNs
for both image classification and downstream tasks, such as object detection (Liu et al., 2021),
semantic segmentation (Yuan et al., 2021b) and object ReID (He et al., 2021). For multi-modal
based networks, there are several works (Tsai et al., 2019; Li et al., 2021e; Hu & Singh, 2021) that
apply cross-attention for multi-modal feature fusion, which demonstrates that attention mechanism
is powerful at distilling noise and feature alignment. This paper adopts cross-attention in the context
of pure transformers for UDA tasks.

2.2 UNSUPERVISED DOMAIN ADAPTATION

There are mainly two levels for UDA methods: domain-level (Tzeng et al., 2014; Long et al., 2015;
Ghifary et al., 2016; Tzeng et al., 2017; Bousmalis et al., 2017; Hoffman et al., 2018) and category-
level (Saito et al., 2018; Kang et al., 2019; Du et al., 2021; Li et al., 2021a). Domain-level UDA
mitigates the distribution divergence between the source and target domain by pulling them into
the same distribution at different scale levels. The commonly used divergence measures include
Maximum Mean Discrepancy (MMD) (Gretton et al., 2006; Tzeng et al., 2014; Long et al., 2015)
and Correlation Alignment (CORAL) (Sun et al., 2016; Sun & Saenko, 2016). Recently, some
works (Saito et al., 2018; Du et al., 2021; Li et al., 2021a) focus on the fine-grained category-level
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label distribution alignment through an adversarial manner between the feature extractor and two
domain-specific classifiers. Unlike coarse-grained alignment at the domain scale, this approach
aligns each category distribution between the source and target domain data by pushing the target
samples to the distribution of source samples in each category. Obviously, the fine-grained alignment
results in more accurate distribution alignment within the same label space. Although the adversarial
approach achieves new improvements by fusing fine-grained alignment operations of source and
target samples at the category level, it still does not solve the problem of noisy samples in the wrong
category. Our method adopts Transformers for category-level UDA to solve the noise problem.

2.3 PSEUDO LABELING

Pseudo labeling (Lee et al., 2013) is first introduced for semi-supervised learning and gains
popularity in domain adaptation tasks. It learns to label unlabeled data using predicted probabilities
and performs fine-tuning together with labeled data. In terms of using pseudo labeling for domain
adaptation tasks, (Long et al., 2017; 2018) adopt pseudo labels to conduct conditional distribution
alignment; (Zhang et al., 2018; Choi et al., 2019) use pseudo labels as a regularization for domain
adaptation; Zou et al. (2018) designs a self-training framework by alternately solving pseudo labels;
Caron et al. (2018) propose a deep self-supervised method by generating pseudo labels via k-means
cluster to progressively train the model; Liang et al. (2020) develop a self-supervised pseudo labeling
method to alleviate the effects of noisy pseudo labels. Based on Liang et al. (2020), in this work, we
propose a two-way center-aware labeling algorithm to further filter the noisy pseudo pairs.

3 THE PROPOSED METHOD

We first introduce the cross attention module and analyze its robustness to the noise in Section 3.1.
Then the two-way center-aware labeling method is presented in Section 3.2. With the produced
pseudo labels as inputs, our cross-domain transformer (CDTrans) is proposed in Section 3.3,
consisting of three weight-sharing transformers.

3.1 THE CROSS ATTENTION IN TRANSFORMER

3.1.1 PRELIMINARY

Vision Transformer (ViT) (Dosovitskiy et al., 2020) has achieved comparable or even superior
performance on computer vision tasks. One of the most important structures in ViT is the self-
attention module (Vaswani et al., 2017). In ViT, an image I ∈ RH×W×C is reshaped into a sequence
of flattened 2D patches x ∈ RN×(P 2·C), where (H,W ) is the resolution of the original image, C
is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P 2 is the
resulting number of patches. For self-attention, the patches are first projected into three vectors,
i.e. queries Q ∈ RN×dk , keys K ∈ RN×dk and values V ∈ RN×dv . dk and dv indicates their
dimensions. The output is computed as a weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with the corresponding key. The N
patches serve as the inputs for the self-attention module, and the process can be formulated as below.
The self-attention module aims to emphasize relationships among patches of the input image.

Attnself (Q,K,V ) = softmax(
QKT

√
dk

)V (1)

The cross-attention module is derived from the self-attention module. The difference is that the input
of cross-attention is a pair of images, i.e. Is and It. Its query and key/value are from patches of Is
and It respectively. The cross-attention module can be calculated as follows:

Attncross(Qs,Kt,Vt) = softmax(
QsK

T
t√

dk
)Vt (2)

where Qs ∈RM×dk are queries from M patches of image Is, and Kt ∈RN×dk ,Vt ∈RN×dv are
keys and values from N patches of image It. The output of the cross-attention module holds the
same length M as the number of the queries. For each output, it is calculated by multiplying Vt
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Figure 1: (a): The heatmap of the cross-attention weights for a false positive pair (Car vs. Truck).
(b): The changes of UDA performance by the ratio of false positive pairs. The red/green curves
represent the model with and without the cross-attention module. The blue curve means that only
true positive pairs are involved in the cross-attention module.

with attention weights, which comes from the similarity between the corresponding query in Is and
all the keys in It. As a result, among all patches in It, the patch that is more similar to the query of
Is would hold a larger weight and contribute more to the output. In other words, the output of the
cross-attention module manages to aggregate the two input images based on their similar patches.

So far, many researchers have utilized the cross-attention for feature fusion, especially in multi-
modal tasks (Tsai et al., 2019; Li et al., 2019; Hu & Singh, 2021; Li et al., 2021e). In these works,
the inputs of the cross-attention module are from two modalities, e.g. vision-to-text (Tsai et al.,
2019; Hu & Singh, 2021), text-to-speech (Li et al., 2019) and vision-to-vision (Li et al., 2021e).
They apply the cross-attention to aggregate and align the information from two modalities. Given
its great power in feature alignment, we propose to use the cross attention module to solve the
unsupervised domain adaptation problem.

3.1.2 ROBUSTNESS TO NOISE

As mentioned above, the input of the cross-attention module is a pair of images, which usually
comes from two domains, and the cross-attention module aims to align these two images. If label
noise exists, there would be false positive pairs in the training data. Images in the false positive pairs
would have dissimilar appearance, and forcibly aligning their features would inevitably injure the
training and compromise the performance. We assume that the dissimilar patches in false positive
pairs are more harmful to the performance than the similar patches. In the cross-attention module,
two images are aligned based on their patch similarity. As shown in Fig. 1a, the cross-attention
module would assign a low weight to the dissimilar patches in false positive pairs. Thus it weakens
the negative effects of the dissimilar patches on the final performance to some extent. 1

To further analyze this issue, an experiment is carefully designed. Specifically, we randomly sample
true positive pairs from source and target domain in VisDA-2017 dataset (Peng et al., 2017) as the
training data. Then we manually replace the true positive pairs with random false positive pairs
to increase the noise, and watch the changes of the performance as shown in Fig. 1b. The x-axis
indicates the rate of false positive pairs in the training data, and the y-axis shows the performance
of different methods on the UDA task. The red curve represents the results by aligning pairs with
the cross-attention module, while the green curve is that without cross-attention, i.e. to directly train
the target data with the label of corresponding source data in the pair. It can be seen that the red
curve achieves a much better performance than the green one, which implies the robustness of the
cross-attention module to the noise. We also provide another baseline shown as the blue curve in
Fig. 1b, which is to remove the false positive pairs from the training data and train the cross-attention
with only true positive pairs. Without the noisy data, this baseline can be considered as the upper
bound to our methods. We can see the red curve is very close to the blue curve, and both of them
are much better than the green one. It further implies that the cross-attention module is robust to the
noisy input pair.

1The patches in true positive pairs, either similar and dissimilar, would bring no noise to the final
performance, which is out of the discussion of our paper.
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3.2 TWO-WAY CENTER-AWARE PSEUDO LABELING

3.2.1 TWO-WAY LABELING

To build the training pairs for the cross-attention module, an intuitive method is that for each image
in the source domain, we manage to find the most similar image from the target domain. The set PS

of selected pairs is:

PS = {(s, t)|t = min
k
d(fs,fk),∀k ∈ T, ∀s ∈ S} (3)

where S, T are the source and target data respectively. d(fi,fj) means the distance between features
of image i and j. The advantage of this strategy is to make full use of source data, while its weakness
is obvious that only a part of target data is involved. To eliminate this training bias from target
data, we introduce more pairs PT from the opposite way, consisting of all the target data and their
corresponding most similar images in the source domain.

PT = {(s, t)|s = min
k
d(ft,fk),∀t ∈ T, ∀k ∈ S} (4)

As a result the final set P is the union of two sets, i.e. P = {PS ∪ PT }, making the training pairs
include all the source and target data.

3.2.2 CENTER-AWARE FILTERING

The pairs in P are built based on the feature similarities of images from both domains, thus the
accuracy of the pseudo labels of pairs is highly dependent on the feature similarities. Inspired by
Liang et al. (2020), we find that the pre-trained model of the source data is also useful to further
improve the accuracy. Firstly, we send all the target data through the pre-trained model and obtain
their probability distributions δ on the source categories from the classifier. Similar to Liang et al.
(2020), these distributions can be used to compute initial centers of each category in the target
domain by weighted k-means clustering:

ck =

∑
t∈T δ

k
t ft∑

t∈T δ
k
t

(5)

where δkt indicates the probability of image t on category k. Pseudo labels of the target data can be
produced via the nearest neighbor classifier:

yt = argmin
k
d(ck,ft) (6)

where t ∈ T and d(i, j) is the distance of features i and j. Based on the pseudo labels, we can
calculate new centers:

c′k =

∑
t∈T 1(yt = k)ft∑
t∈T 1(yt = k)

(7)

In Liang et al. (2020), Eq. 6 and 7 could be updated for multiple rounds, and we only adopt one
round in our paper. The final pseudo labels are then used to refine the selected pairs. Specifically,
for every pair, if the pseudo label of the target image is consistent with the label of the source image,
this pair would be kept for our training, otherwise it will be discarded as a noise.

3.3 CDTRANS: CROSS-DOMAIN TRANSFORMER

The framework of the proposed Cross-domain Transformer (CDTrans) is shown in Fig. 2, which
consists of three weight-sharing transformers. There are three data flows and constraints for the
weight-sharing branches.

The inputs of the framework are the selected pairs from our labeling method mentioned above.
The three branches are named as source branch, target branch, source-target branch. As shown
in Fig. 2, the source and target images in the input pair are sent to source branch and target branch
respectively. In these two branches, the self-attention module is involved to learn the domain-specific
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Figure 2: The proposed CDTrans framework. It consists of three weight-sharing transformers fed
by inputs from the selected pairs using the two-way center-aware labeling method. Cross-entropy is
adopted to source branch (HS) and target branch (HT ), while the distillation loss is applied between
source-target branch (HS+T ) and HT .

representations. And the softmax cross-entropy loss is used to train the classification. It is worth
noting that all three branches share the same classifier due to the same label of two images.

The cross-attention module is imported in the source-target branch. The inputs of the source-target
branch are from the other two branches. In the N -th layer, the query of the cross-attention module
comes from the query in the N -th layer of the source branch, while the keys and values are from
those of the target branch. Then the cross-attention module outputs aligned features which are added
with the output of the (N−1)-th layer.2

The features of the source-target branch not only align distributions of two domains, but are robust
to the noise in the input pairs thanks to the cross-attention module. Thus we use the output of the
source-target branch to guide the training of the target branch. Specifically, the source-target branch
and target branch are denoted as teacher and student respectively. We consider the probability
distribution of the classifier in source-target branch as a soft label that can be used to further
supervise the target branch through a distillation loss (Hinton et al., 2015):

Ldtl =
∑
k

qk log pk (8)

where qk and pk are the probabilities of category k from the source-target branch and the target
branch respectively.

During inference, only the target branch is used. The input is an image from testing data, and only
the target data flow is triggered, i.e. the blue lines in Fig. 2. Its output of the classifier is utilized as
the final predicted labels.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

The proposed method is verified on four popular UDA benchmarks, including VisDA-2017 (Peng
et al., 2017), Office-Home (Venkateswara et al., 2017), Office-31 (Saenko et al., 2010) and
DomainNet (Peng et al., 2019). The input image size in our experiments is 224×224. Both the
DeiT-small and DeiT-base (Touvron et al., 2021) are adopted as our backbone for fair comparison.
We use the Stochastic Gradient Descent algorithm with the momentum of 0.9 and weight decay ratio
1e-4 to optimize the training process. The learning rate is set to 3e-3 for Office-Home, Office-31
and DomainNet, 5e-5 for VisDA-2017 since it can easily converge. The batch size is set to 64.

2The addition operation is not included in the 1st layer.

6



Published as a conference paper at ICLR 2022

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ResNet-50 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MinEnt 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

CDAN+E 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

MSTN+DSBN 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
CGDM 93.7 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3

CGDM* 92.8 85.1 76.3 64.5 91.0 93.2 81.3 79.3 92.4 83.0 85.6 44.8 80.8
SHOT 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
SHOT* 95.5 87.5 80.1 54.5 93.6 94.2 80.2 80.9 90.0 89.9 87.1 58.4 82.7
TVT◦ 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

Baseline-B 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
CGDM-B* 96.3 87.1 86.8 83.5 92.2 98.3 91.6 78.5 96.3 48.4 89.4 39.0 82.3
SHOT-B* 97.9 90.3 86.0 73.4 96.9 98.8 94.3 54.8 95.4 87.1 93.4 62.7 85.9

Ours-B 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

Table 1: Comparison with SoTA methods on VisDA-2017. “S/B” implies the DeiT-small/DeiT-base
backbone respectively. ∗ indicates the results are reproduced by ourselves. ◦ implies its pretrained
model is trained on ImageNet21K instead of ImageNet1K. The best performance is marked as bold.

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.
ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4

MinEnt 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
CDAN+E 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5

DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BNM 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1

ATDOC-NA 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

SHOT* 56.2 77.6 81.6 67.5 78.2 78.8 67.8 54.0 82.0 72.5 58.8 84.5 71.6
TVT◦ 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

Baseline-S 55.6 73.0 79.4 70.6 72.9 76.3 67.5 51.0 81.0 74.5 53.2 82.7 69.8
Ours-S 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5 74.7

Baseline-B 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8
CGDM-B* 67.1 83.9 85.4 77.2 83.3 83.7 74.6 64.7 85.6 79.3 69.5 87.7 78.5
SHOT-B* 67.1 83.5 85.5 76.6 83.4 83.7 76.3 65.3 85.3 80.4 66.7 83.4 78.1

Ours-B 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

Table 2: Comparison with SoTA methods on Office-Home. The best performance is marked as bold.

4.2 COMPARISON TO SOTA

We compare our method with state-of-the-art methods on UDA tasks, including MinEnt (Grandvalet
et al., 2005), DAN (Long et al., 2015), DANN (Ganin & Lempitsky, 2015), CDAN+E (Long et al.,
2018), CDAN+BSP (Chen et al., 2019), CDAN+TN (Wang et al., 2019), rRGrad+CAT (Deng
et al., 2019), MCD (Saito et al., 2018), SWD (Lee et al., 2019), MSTN+DSBN (Chang et al., 2019),
SAFN+ENT (Xu et al., 2019), BNM (Cui et al., 2020), DCAN (Li et al., 2020), SHOT (Liang et al.,
2020), ATDOC-NA (Liang et al., 2021), CGDM (Du et al., 2021) and TVT (Yang et al.). The results
are shown in Table 1, 2, 3 and 4.

For Office-Home, Office-31 and DomainNet, as most of the methods use ResNet-50 as their
backbones, we provide results with DeiT-small as our backbone for a fair comparison, which has
a comparable model size as ResNet-50, but we also show the results using DeiT-base. And for
VisDA-2017, we adopt the DeiT-base backbone for fair comparisons, where other methods utilize
ResNet-101 for their results.

The “Baseline-S/B” indicates directly training a DeiT-small/DeiT-base on the source domain and
testing on the target domain. The baseline shows a competitive result even compared to other SoTA
methods on most datasets. It demonstrates that Transformers has better generalization ability over
ConvNets. We also provide some insights about why transformers can generalize well from source
domain to target domain in the supplementary materials. To further eliminate the unfairness of using
different backbones, we reproduce the results of SHOT and CGDM (marked as “*”), and replace
their backbones with DeiT-base as the same as ours, denoted as “-B*”.
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MCD clp inf pnt qdr rel skt Avg. CDAN clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg.
clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 13.5 28.3 9.3 43.8 30.2 25.0 clp - 12.1 33.1 6.2 50.8 40.2 28.5
inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 18.9 - 21.4 1.9 36.3 21.3 20.0 inf 26.6 - 28.5 2.4 38.5 18.1 22.8
pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 29.6 14.4 - 4.1 45.2 27.4 24.2 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2
qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 11.8 1.2 4.0 - 9.4 9.5 7.2 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0
rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 36.4 18.3 40.9 3.4 - 24.6 24.7 rel 48.6 13.2 49.7 3.6 - 33.9 29.8
skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 38.2 14.7 33.9 7.0 36.6 - 26.1 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 27.0 12.4 25.7 5.1 34.3 22.6 21.2 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3
SWD clp inf pnt qdr rel skt Avg. CGDM clp inf pnt qdr rel skt Avg. Base-S clp inf pnt qdr rel skt Avg.

clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 16.9 35.3 10.8 53.5 36.9 30.7 clp - 21.2 44.2 15.3 59.9 46.0 37.3
inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 27.8 - 28.2 4.4 48.2 22.5 26.2 inf 36.8 - 39.4 5.4 52.1 32.6 33.3
pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 37.7 14.5 - 4.6 59.4 33.5 30.0 pnt 47.1 21.7 - 5.7 60.2 39.9 34.9
qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 14.9 1.5 6.2 - 10.9 10.2 8.7 qdr 25.0 3.3 10.4 - 18.8 14.0 14.3
rel 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 49.4 20.8 47.2 4.8 - 38.2 32.0 rel 54.8 23.9 52.6 7.4 - 40.1 35.8
skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 50.1 16.5 43.7 11.1 55.6 - 35.4 skt 55.6 18.6 42.7 14.9 55.7 - 37.5

Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg. 43.9 17.7 37.9 9.7 49.3 34.5 32.2
Ours-S clp inf pnt qdr rel skt Avg. Base-B clp inf pnt qdr rel skt Avg. Ours-B clp inf pnt qdr rel skt Avg.

clp - 25.3 52.5 23.2 68.3 53.2 44.5 clp - 24.2 48.9 15.5 63.9 50.7 40.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 47.6 - 48.3 9.9 62.8 41.1 41.9 inf 43.5 - 44.9 6.5 58.8 37.6 38.3 inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 55.4 24.5 - 11.7 67.4 48.0 41.4 pnt 52.8 23.3 - 6.6 64.6 44.5 38.4 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 36.6 5.3 19.3 - 33.8 22.7 23.5 qdr 31.8 6.1 15.6 - 23.4 18.9 19.2 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 61.5 28.1 56.8 12.8 - 47.2 41.3 rel 58.9 26.3 56.7 9.1 - 45.0 39.2 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 64.3 26.1 53.2 23.9 66.2 - 46.7 skt 60.0 21.1 48.4 16.6 61.7 - 41.6 skt 69.0 29.6 59.0 27.2 72.5 - 51.5

Avg. 53.1 21.9 46.0 16.3 59.7 42.4 39.9 Avg. 49.4 20.2 42.9 10.9 54.5 39.3 36.2 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

Table 4: Comparison with SoTA methods on DomainNet. “Base” is the Baseline.

Method A→D A→W D→A D→W W→A W→D Avg
ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1

DANN 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN+E 92.9 94.1 71.0 98.6 69.3 100. 87.7

rRGrad+CAT 90.8 94.4 72.2 98.0 70.2 100. 87.6
SAFN+ENT 90.7 90.1 73.0 98.6 70.2 99.8 87.1
CDAN+BSP 93.0 93.3 73.6 98.2 72.6 100. 88.5
CDAN+TN 94.0 95.7 73.4 98.7 74.2 100. 89.3

SHOT 94.0 90.1 74.7 98.4 74.3 99.9 88.6
SHOT* 93.8 91.8 74.8 98.2 74.1 99.8 88.8
TVT◦ 96.4 96.4 84.9 99.4 86.1 100. 93.8

Baseline-S 87.6 86.9 74.9 97.7 73.5 99.6 86.7
Ours-S 94.6 93.5 78.4 98.2 78.0 99.6 90.4

Baseline-B 90.8 90.4 76.8 98.2 76.4 100. 88.8
CGDM-B* 94.6 95.3 78.8 97.6 81.2 99.8 91.2
SHOT-B* 95.3 94.3 79.4 99.0 80.2 100. 91.4

Ours-B 97.0 96.7 81.1 99.0 81.9 100. 92.6

Table 3: Comparison with SoTA methods on Office-31.
The best performance is marked as bold.

From Table 1, 2, 3 and 4, it can be seen
that our method outperforms the baseline
with a large margin on all four datasets,
e.g. nearly 21% on VisDA. With our
improvements, the new Transformer with
cross-attention module shows a much
better generalization power, and achieves
the best performance on VisDA-2017
compared to other SoTAs methods. It
further implies the effectiveness of our
method on the UDA task.

Taking a closer look at the results, for
the hard categories, such as “person” in
VisDA-2017 dataset, the baseline is very
low, which indicates the initial model
of our method has a poor classification
ability on this category, leading to the
pseudo labels with more noise. Even with
such a poor baseline and poor quality of pseudo labels, our method can still achieve a much higher
performance boost (from 10.3% to 88.6%). It suggests that our method has a great robustness to the
labeling noise and can overcome the noise problem to some extent.

We can see that TVT achieves a better result on Office-Home and Office-31. Because TVT
utilizes ViT (Dosovitskiy et al., 2020) as backbone which is pretrained on ImageNet21K. While
the pretrained model of our CDTrans and other UDA methods are trained on ImageNet1K.

4.3 ABLATION STUDY

4.3.1 DIFFERENT PSEUDO LABELING

We have conducted experiments on different pseudo labeling methods to verify their influence on the
final performance. The results on VisDa-2017 are listed in Table. 5. RPLL (Zheng & Yang, 2021)
and MRKLD+LRENT (Zou et al., 2019) are two commonly used pseudo-label generation methods,
we reproduce their pseudo-label generations on our baseline to compare with our proposed pseudo
labeling method. Recs, Rect means the recall of the selected training pairs in the source and target
data, while Prec represents the accuracy of the pairs. “One-way-source” and “One-way-target”
denote only using the pair set PS in Eq. 3 or PT in Eq. 4 for training. “Two-way” indicates results
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Pseudo labels Recs Rect Prec plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
One-way-source 100. 6.6 90.6 96.1 52.7 85.5 69.6 95.0 90.2 95.1 66.6 88.8 54.6 95.4 29.5 76.6
One-way-target 8.0 100. 76.3 98.2 32.0 87.7 84.1 95.5 89.9 98.3 66.8 95.7 57.5 95.6 22.0 76.9

Two-way 100. 100. 81.8 97.5 49.6 88.7 73.9 94.6 85.8 96.6 58.6 93.3 63.6 94.8 27.9 77.1
Tw + Ca 97.8 94.8 91.3 98.1 86.9 87.9 80.9 97.9 97.3 96.8 85.3 97.6 83.2 94.0 54.4 88.4
RPLL - - - 98.4 63.4 85.8 68.8 97.0 95.4 97.77 59.3 96.2 57.2 96.2 48.1 80.3

MRKLD+LRENT - - - 97.8 77.3 81.4 64.3 94.6 93.9 93.3 77.5 93.1 74.9 92.6 59.0 83.3
Groundtruth 100. 100. 100. 97.9 89.1 92.3 91.9 98.4 97.2 97.5 86.8 98.6 90.7 96.3 60.0 91.5

Table 5: Comparison among different pseudo labeling methods on VisDa-2017. Recs, Rect express
the recall of pseudo labels in source and target data, while Prec represents the accuracy of the pairs.
“One-way-source/target” denotes only using the source/target pair set for training. “Tw+Ca” implies
the proposed two-way center-aware labeling method.

Ls Ls+t Lt plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
cls - - 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
- - cls 98.3 85.0 88.0 76.3 98.1 96.1 96.9 61.1 97.2 85.5 94.6 54.9 86.0

cls - cls 98.3 87.4 89.1 77.3 98.0 97.4 95.4 69.5 97.1 86.3 95.3 49.5 86.7
cls cls cls 98.2 88.4 88.0 76.8 98.2 97.2 95.6 80.1 97.1 84.7 94.5 54.1 87.7
cls dtl cls 98.0 86.9 87.9 80.9 97.9 97.3 96.8 85.3 97.6 83.2 94.0 54.4 88.4

Table 6: Comparison among different losses on VisDa-2017. Ls,Lt and Ls+t represent the loss used
in source, target and source+target branches respectively. cls and dtl imply the classification loss
and the distillation loss.

of using the union of Ps and Pt without the center-aware strategy. “Tw+Ca” implies our two-way
center-aware labeling method, and “Groundtruth” means all training pairs are from groundtruthes.

By looking atRecs andRect in Table. 5, it can be found that the one-way methods have an apparent
bias on either source or target data, and its results are lower than the two-way method. By comparing
“Two-way” and “Tw+Ca”, we can conclude that although the center-aware method filters the training
pair and slightly reduces the recall, it largely improves the precision and leads to a better final
performance. We also find that our two-way center-aware labeling method achieves a very high
result, not only better than other pseudo-label generation methods, but also very close to the upper
bound trained with groundtruth pairs.

4.3.2 DIFFERENT LOSSES

As there are three losses in our method, we conduct another experiment to verify the effectiveness of
each loss on VisDa-2017, as shown in Table. 6. “cls” in Ls+t denotes that we replace the distillation
loss with a classification loss for the source-target branch. We can see that the 3rd row with both
Ls and Lt having classification loss achieves a better result than the first row where only Ls has
the cls loss, which means the target branch with the pseudo labels is helpful to improve the UDA
result. With the addition of “cls” in Ls+t, the performance is further improved, which demonstrates
the advantages of using the cross-attention module for feature alignment. Using “dtl” instead of
“cls” on the source-target branch can further improve the results, showing the effectiveness of our
distillation loss.

5 CONCLUSION

In this paper, we tackle the problem of unsupervised domain adaptation by introducing the cross-
attention module into Transformer in a novel way. We propose a new network structure CDTrans
which is a pure transformer-based structure with three branches, and we also propose to generate
high-quality pseudo labels using a two-way center-aware labeling method. Training CDTrans using
the generated high-quality pseudo labels yields a robust solution and also achieves state-of-the-art
results on four popular UDA datasets, outperforming previous methods by a large margin. We
believe that transformer-based approaches will have great potential in the UDA community, and our
work, as one of the first attempts along this direction, has pushed forward the frontiers and shed
lights for future research.
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