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Abstract

Standard diffusion models involve an image transform – adding Gaussian noise –
and an image restoration operator that inverts this degradation. We observe that the
generative behavior of diffusion models is not strongly dependent on the choice
of image degradation, and in fact an entire family of generative models can be
constructed by varying this choice. Even when using completely deterministic
degradations (e.g., blur, masking, and more), the training and test-time update rules
that underlie diffusion models can be easily generalized to create generative models.
The success of these fully deterministic models calls into question the community’s
understanding of diffusion models, which relies on noise in either gradient Langevin
dynamics or variational inference, and paves the way for generalized diffusion
models that invert arbitrary processes.
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Figure 1: Demonstration of the forward and backward processes for both hot and cold diffusions.
While standard diffusions are built on Gaussian noise (top row), we show that generative models
can be built on arbitrary and even noiseless/cold image transforms, including the ImageNet-C
snowification operator, and an animorphosis operator that adds a random animal image from AFHQ.
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1 Introduction

Diffusion models have recently emerged as powerful tools for generative modeling [Ramesh et al.,
2022]. Diffusion models come in many flavors, but all are built around the concept of random noise
removal; one trains an image restoration/denoising network that accepts an image contaminated with
Gaussian noise, and outputs a denoised image. At test time, the denoising network is used to convert
pure Gaussian noise into a photo-realistic image using an update rule that alternates between applying
the denoiser and adding Gaussian noise. When the right sequence of updates is applied, complex
generative behavior is observed.

The origins of diffusion models, and also our theoretical understanding of these models, are strongly
based on the role played by Gaussian noise during training and generation. Diffusion has been
understood as a random walk around the image density function using Langevin dynamics [Sohl-
Dickstein et al., 2015, Song and Ermon, 2019], which requires Gaussian noise in each step. The walk
begins in a high temperature (heavy noise) state, and slowly anneals into a “cold” state with little if
any noise. Another line of work derives the loss for the denoising network using variational inference
with a Gaussian prior [Ho et al., 2020, Song et al., 2021a, Nichol and Dhariwal, 2021].

In this work, we examine the need for Gaussian noise, or any randomness at all, for diffusion models
to work in practice. We consider generalized diffusion models that live outside the confines of the
theoretical frameworks from which diffusion models arose. Rather than limit ourselves to models
built around Gaussian noise, we consider models built around arbitrary image transformations like
blurring, downsampling, etc. We train a restoration network to invert these deformations using a
simple ℓp loss. When we apply a sequence of updates at test time that alternate between the image
restoration model and the image degradation operation, generative behavior emerges, and we obtain
photo-realistic images.

The existence of cold diffusions that require no Gaussian noise (or any randomness) during training
or testing raises questions about the limits of our theoretical understanding of diffusion models. It
also unlocks the door for potentially new types of generative models with very different properties
than conventional diffusion seen so far.

2 Background

Both the Langevin dynamics and variational inference interpretations of diffusion models rely on
properties of the Gaussian noise used in the training and sampling pipelines. From the score-matching
generative networks perspective [Song and Ermon, 2019, Song et al., 2021b], noise in the training
process is critically thought to expand the support of the low-dimensional training distribution to
a set of full measure in ambient space. The noise is also thought to act as data augmentation to
improve score predictions in low density regions, allowing for mode mixing in the stochastic gradient
Langevin dynamics (SGLD) sampling. The gradient signal in low-density regions can be further
improved during sampling by injecting large magnitudes of noise in the early steps of SGLD and
gradually reducing this noise in later stages.

Kingma et al. [2021] propose a method to learn a noise schedule that leads to faster optimization.
Using a classic statistical result, Kadkhodaie and Simoncelli [2021] show the connection between
removing additive Gaussian noise and the gradient of the log of the noisy signal density in determin-
istic linear inverse problems. Here, we shed light on the role of noise in diffusion models through
theoretical and empirical results in applications to inverse problems and image generation.

Iterative neural models have been used for various inverse problems [Romano et al., 2016, Metzler
et al., 2017]. Recently, diffusion models have been applied to them [Song et al., 2021b] for the
problems of deblurring, denoising, super-resolution, and compressive sensing [Whang et al., 2021,
Kawar et al., 2021, Saharia et al., 2021, Kadkhodaie and Simoncelli, 2021].

Although not their focus, previous works on diffusion models have included experiments with
deterministic image generation [Song et al., 2021a, Dhariwal and Nichol, 2021, Karras et al.,
2022] and in selected inverse problems [Kawar et al., 2022]. Recently, Rissanen et al. [2022] use a
combination of Gaussian noise and blurring as a forward process for diffusion. Though they show
the feasibility of a different degradation, here we show definitively that noise is not a necessity in
diffusion models, and we observe the effects of removing noise for a number of inverse problems.
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Despite prolific work on generative models in recent years, methods to probe the properties of learned
distributions and measure how closely they approximate the real training data are by no means closed
fields of investigation.

Indirect feature space similarity metrics such as Inception Score [Salimans et al., 2016], Mode Score
[Che et al., 2016], Frechet inception distance (FID) [Heusel et al., 2017], and Kernel inception
distance (KID) [Bińkowski et al., 2018] have been proposed and adopted to some extent, but they
have notable limitations [Barratt and Sharma, 2018]. To adopt a popular frame of reference, we will
use FID as the feature similarity metric for our experiments.

3 Generalized Diffusion

Standard diffusion models are built around two components. First, there is an image degradation
operator that contaminates images with Gaussian noise. Second, a trained restoration operator is
created to perform denoising. The image generation process alternates between the application of
these two operators. In this work, we consider the construction of generalized diffusions built around
arbitrary degradation operations. These degradations can be randomized (as in the case of standard
diffusion) or deterministic.

3.1 Model components and training

Given an image x0 ∈ RN , consider the degradation of x0 by operator D with severity t, denoted
xt = D(x0, t). The output distribution D(x0, t) of the degradation should vary continuously in t,
and the operator should satisfy D(x0, 0) = x0.

In the standard diffusion framework, D adds Gaussian noise with variance proportional to t. In our
generalized formulation, we choose D to perform various other transformations such as blurring,
masking out pixels, downsampling, and more, with severity that depends on t. We explore a range of
choices for D in Section 4.

We also require a restoration operator R that (approximately) inverts D. This operator has the property
that R(xt, t) ≈ x0. In practice, this operator is implemented via a neural network parameterized by
θ. The restoration network is trained via the minimization problem

min
θ

Ex∼X ∥Rθ(D(x, t), t)− x∥,

where x denotes a random image sampled from distribution X and ∥ · ∥ denotes a norm, which we
take to be ℓ1 in our experiments. We have so far used the subscript Rθ to emphasize the dependence
of R on θ during training, but we will omit this symbol for simplicity in the discussion below.

3.2 Sampling from the model

Algorithm 1 Naive Sampling (Eg. DDIM)
Input: A degraded sample xt

for s = t, t− 1, . . . , 1 do
x̂0 ← R(xs, s)
xs−1 = D(x̂0, s− 1)

end for
Return: x0

Algorithm 2 Transformation Agnostic Cold Sampling
(TACoS)

Input: A degraded sample xt

for s = t, t− 1, . . . , 1 do
x̂0 ← R(xs, s)
xs−1 = xs −D(x̂0, s) +D(x̂0, s− 1)

end for

After choosing a degradation D and train-
ing a model R to perform the restoration,
these operators can be used in tandem to in-
vert severe degradations by using standard
methods borrowed from the diffusion liter-
ature. For small degradations (t ≈ 0), a
single application of R can be used to ob-
tain a restored image in one shot. However,
because R is typically trained using a sim-
ple convex loss, it yields blurry results when
used with large t. Rather, diffusion models
[Song et al., 2021a, Ho et al., 2020] per-
form generation by iteratively applying the
denoising operator and then adding noise
back to the image, with the level of added
noise decreasing over time. This is the stan-
dard update sequence in Algorithm 1.

When the restoration operator is perfect, i.e. when R(D(x0, t), t) = x0 for all t, one can easily see
that Algorithm 1 produces exact iterates of the form xs = D(x0, s). But what happens for imperfect
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restoration operators? In this case, errors can cause the iterates xs to wander away from D(x0, s),
and inaccurate reconstruction may occur.

We find that the standard sampling approach in Algorithm 1 (explained further in A.8) works well
for noise-based diffusion, possibly because the restoration operator R has been trained to correct
(random Gaussian) errors in its inputs. However, we find that it yields poor results in the case of cold
diffusions with smooth/differentiable degradations as demonstrated for a deblurring model in Figure
2. We propose Transformation Agnostic Cold Sampling (TACoS) in Algorithm 2, which we find to
be superior for inverting smooth, cold degradations.

This sampler has important mathematical properties that enable it to recover high quality results.
Specifically, for a class of linear degradation operations, it can be shown to produce exact reconstruc-
tion (i.e. xs = D(x0, s)) even when the restoration operator R fails to perfectly invert D. We discuss
this in the following section.

3.3 Properties of TACoS

Figure 2: Comparison of sampling methods for uncon-
ditional generation using cold diffusion on the CelebA
dataset. Iterations 2, 4, 8, 16, 32, 64, 128, 192, and
256 are presented. Top: Algorithm 1 produces com-
pounding artifacts and fails to generate a new image.
Bottom: TACoS succeeds in sampling a high quality
image without noise.

It is clear from inspection that both Algo-
rithms 1 and 2 perfectly reconstruct the it-
erate xs = D(x0, s) for all s < t if the
restoration operator is a perfect inverse for
the degradation operator. Hence in this sec-
tion, we will discuss the reconstruction op-
erator that fails to reconstruct the image per-
fectly i.e. incurs error. We first analyze the
stability of these algorithms to errors in the
restoration operator and then theoretically
show that for a simple blur degradation, the
error incurred using algorithm 1 is always
greater than algorithm 2.

For small values of x and s, TACoS as described in 2 is tolerant of error in the restoration operator R.
To see why, consider a problem with linear degradation function of the form D(x, s) ≈ x+ s · e for
a constant vector e. We choose this ansatz because the Taylor expansion of any smooth degradation
D(x, s) around x = x0, s = 0 has the form D(x, s) ≈ x + s · e(x) + HOT where HOT denotes
higher order terms. Note, however, the analysis below requires e to be a constant that does not depend
on x. The constant/zeroth-order term in this Taylor expansion is zero because we assumed above that
the degradation operator satisfies D(x, 0) = x.

For a degradation D(x, s) and any restoration operator R, the term xs−1 in TACoS becomes

xs −D(R(xs, s), s) +D(R(xs, s), s− 1) = D(x0, s)−D(R(xs, s), s) +D(R(xs, s), s− 1)

= x0 + s · e−R(xs, s)− s · e+R(xs, s) + (s− 1) · e = x0 + (s− 1) · e = D(x0, s− 1)

By induction, we see that the algorithm outputs the value xs = D(x0, s) for all s < t, regardless of
the choice of R. In other words, for any choice of R, the iteration behaves the same as it would when
R is a perfect inverse for the degradation D.

By contrast, Algorithm 1 does not enjoy this behavior even for small values of s. In fact, when
R is not a perfect inverse for D, x0 is not a fixed point of the update rule in Algorithm 1 because
x0 ̸= D(R(x, 0), 0) = R(x, 0) and hence errors compound. If R does not perfectly invert D, we
should expect Algorithm 1 to incur errors, even for small values of s. Meanwhile, for small values of
s, the behavior of D approaches its first-order Taylor expansion, and Algorithm 2 becomes immune
to errors in R. Figure 2 demonstrates the stability of TACoS described in Algorithm 2 vs. Algorithm
1 for a deblurring model.

The above analysis is not a complete convergence theory but rather highlights a desirable theoretical
property of our method that a naive sampler lacks. However, we can prove that for a toy problem
in which the blur operator removes one frequency at a time, the error incurred by sampling using
Algorithm 1 is greater than the error incurred from using Algorithm 2. We present the proof of this
claim in A.9.
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4 Generalized Diffusions with Various Transformations

In this section, we take the first step towards cold diffusion by reversing different degradations and
hence performing conditional generation. We will extend our methods to perform unconditional
(i.e. from scratch) generation in Section 5. We emprically evaluate generalized diffusion models
trained on different degradations with TACoS proposed in Algorithm 2. We perform experiments
on the vision tasks of deblurring, inpainting, and super-resolution. We perform our experiments on
MNIST [LeCun et al., 1998], CIFAR-10 [Krizhevsky, 2009], and CelebA [Liu et al., 2015]. In each of
these tasks, we gradually remove the information from the clean image, creating a sequence of images
such that D(x0, t) retains less information than D(x0, t− 1). For these different tasks, we present
both qualitative and quantitative results on a held-out testing dataset and demonstrate the importance
of the sampling technique described in Algorithm 2. For all quantitative results in this section, the
Frechet inception distance (FID) scores [Heusel et al., 2017] for degraded and reconstructed images
are measured with respect to the testing data. Additional information about the quantitative results,
convergence criteria, hyperparameters, and architecture of the models presented below can be found
in the appendix.

4.1 Deblurring

We consider a generalized diffusion based on a Gaussian blur operation (as opposed to Gaussian
noise) in which an image at step t has more blur than at t− 1. The forward process given the Gaussian
kernels {Gs} and the image xt−1 at step t− 1 can thus be written as

xt = Mt ◦ xt−1 = Mt ◦ . . . ◦M1 ◦ x0 = M̄t ◦ x0 = D(x0, t)

where ∗ denotes the convolution operator, which blurs an image using a kernel.

We train a deblurring model by minimizing the loss (1), and then use TACoS to invert this blurred
diffusion process for which we trained a DNN to predict the clean image x̂0. Qualitative results
are shown in Figure 3 and quantitative results in Table 1. Qualitatively, we can see that images
created using the sampling process are sharper and in some cases completely different as compared
to the direct reconstruction of the clean image. Quantitatively we can see that the reconstruction
metrics such as RMSE and PSNR get worse when we use the sampling process, but on the other hand
FID with respect to held-out test data improves. The qualitative improvements and decrease in FID
show the benefits of the generalized sampling routine, which brings the learned distribution closer
to the true data manifold. Note: we compare the images reconstructed via Algorithm 2, with direct
generation as compared to Algorithm 1. This is because the image reconstruction via Algorithm 1 is
much worse than both direct generation and Algorithm 2. Nevertheless, to back our claim, we present
their results in A.10.

In the case of blur operator, the sampling routine can be thought of adding frequencies at each step.
This is because the sampling routine involves the term D(x̂0, t) −D(x̂0, t − 1) which in the case
of blur becomes Ḡt ∗ x0 − Ḡt−1 ∗ x0. This results in a difference of Gaussians, which is a band
pass filter and contains frequencies that were removed at step t. Thus, in the sampling process, we
sequentially add the frequencies that were removed during the degradation process.

Degraded Direct TACoS Original

Figure 3: Deblurring models trained on the MNIST, CIFAR-10, and CelebA datasets. Left to right:
degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled reconstruction with TACoS
described in Algorithm 2, and original image.
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Table 1: Quantitative metrics for quality of image reconstruction using deblurring models.

Degraded Sampled Direct
Dataset FID SSIM RMSE FID SSIM RMSE FID SSIM RMSE

MNIST 438.59 0.287 0.287 4.69 0.718 0.154 5.10 0.757 0.142
CIFAR-10 298.60 0.315 0.136 80.08 0.773 0.075 83.69 0.775 0.071

CelebA 382.81 0.254 0.193 26.14 0.568 0.093 36.37 0.607 0.083

4.2 Inpainting

We define a schedule of transforms that progressively grays-out pixels from the input image. We
remove pixels using a Gaussian mask as follows: For input images of size n× n we start with a 2D
Gaussian curve of variance β, discretized into an n× n array. We normalize so the peak of the curve
has value 1, and subtract the result from 1 so the center of the mask as value 0. We randomize the
location of the Gaussian mask for MNIST and CIFAR-10, but keep it centered for CelebA. We denote
the final mask by zβ .

Input images x0 are iteratively masked for T steps via multiplication with a sequence of masks {zβi
}

with increasing βi. We can control the amount of information removed at each step by tuning the
βi parameter. In the language of Section 3, D(x0, t) = x0 ·

∏t
i=1 zβi

, where the operator · denotes
entry-wise multiplication.

Figure 4 presents results on test images and compares the output of the inpainting model to the
original image. The reconstructed images display reconstructed features qualitatively consistent
with the context provided by the unperturbed regions of the image. We quantitatively assess the
effectiveness of the inpainting models on each of the datasets by comparing distributional similarity
metrics before and after the reconstruction. Our results are summarized in Table 2. Note, the FID
scores here are computed with respect to the held-out validation set.

Degraded Direct TACoS Original

Figure 4: Inpainting models trained on the MNIST, CIFAR-10, and CelebA datasets. Left to right:
Degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled reconstruction with TACoS
described in Algorithm 2, and original image.

Table 2: Quantitative metrics for quality of image reconstruction using inpainting models.

Degraded Sampled Direct
Dataset FID SSIM RMSE FID SSIM RMSE FID SSIM RMSE

MNIST 108.48 0.490 0.262 1.61 0.941 0.068 2.24 0.948 0.060
CIFAR-10 40.83 0.615 0.143 8.92 0.859 0.068 9.97 0.869 0.063

CelebA 127.85 0.663 0.155 5.73 0.917 0.043 7.74 0.922 0.039

4.3 Super-Resolution

For this task, the degradation operator downsamples the image by a factor of two in each direction.
The final resolution of xT is 4×4 for MNIST and CIFAR-10 and 2×2 in the case of Celeb-A.
After each down-sampling, the lower-resolution image is resized to the original image size, using
nearest-neighbor interpolation. More details are available in Appendix A.3

Figure 5 presents example testing data inputs for all datasets and compares the output of the super-
resolution model to the original image. Though the reconstructed images are not perfect for the
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more challenging datasets, the reconstructed features are qualitatively consistent with the context
provided by the low resolution image. Table 3 compares the distributional similarity metrics between
degraded/reconstructed images and test samples.

Degraded Direct TACoS Original

Figure 5: Superresolution models trained on the MNIST, CIFAR-10, and CelebA datasets. Left to
right: degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled reconstruction with
TACoS described in Algorithm 2, and original image.

Table 3: Quantitative metrics for quality of image reconstruction using super-resolution models.

Degraded Sampled Direct
Dataset FID SSIM RMSE FID SSIM RMSE FID SSIM RMSE

MNIST 368.56 0.178 0.231 4.33 0.820 0.115 4.05 0.823 0.114
CIFAR-10 358.99 0.279 0.146 152.76 0.411 0.155 169.94 0.420 0.152

CelebA 349.85 0.335 0.225 96.92 0.381 0.201 112.84 0.400 0.196

5 Cold Generation

Diffusion models can successfully learn the underlying distribution of training data, and thus generate
diverse, high quality images [Song et al., 2021a, Dhariwal and Nichol, 2021, Jolicoeur-Martineau
et al., 2021, Ho et al., 2022]. We will first discuss deterministic generation using Gaussian noise
and then discuss in detail unconditional generation using deblurring. Finally, we provide a proof of
concept that the TACoS described in Algorithm 2 can be extended to other degradations.

5.1 Generation using deterministic noise degradation

Here we discuss image generation using a noise-based degradation presented in our notation from
Section 3, which we will later prove is equivalent to DDIM [Song et al., 2021a]. We use the following
degradation operator: D(x, t) =

√
αtx+

√
1− αtz.

D is an interpolation between the data point x and a sampled noise pattern z ∈ N (0, 1). During
training, D is applied once and thus z is sampled once for every image in every batch. However,
sampling involves iterative applications of the degradation operator D, which poses the question of
how to pick z for the sequence of degradations D applied in a single image generation.

There are three possible choices for z. The first would be to resample z for each application of D, but
this would make the sampling process nondeterministic for a fixed starting point. Another option is
to sample a noise pattern z once for each separate image generation and reuse it in each application
of D. In Table 4 we refer to this approach as Fixed Noise. Finally, one can calculate the noise vector
z to be used in step t of reconstruction by using the formula

ẑ(xt, t) =
xt −

√
αtR(xt, t)√
1− αt

.

This method denoted Estimated Noise in Table 4 turns out to be equivalent to the deterministic
sampling proposed in Song et al. [2021a]. We discuss this equivalence in detail in Appendix A.6.

5.2 Image generation using blur

The forward diffusion process in noise-based diffusion models has the advantage that the degraded
image distribution at the final step T is simply an isotropic Gaussian. One can therefore perform
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(unconditional) generation by first drawing a sample from the isotropic Gaussian, and sequentially
denoising it with backward diffusion.

When using blur as a degradation, the fully degraded images do not form a nice closed-form
distribution that we can sample from. They do, however, form a simple enough distribution that can
be modeled with simple methods. Note that every image x0 degenerates to an xT that is constant (i.e.,
every pixel is the same color) for large T . Furthermore, the constant value is exactly the channel-wise
mean of the RGB image x0, and can be represented with a 3-vector. This 3-dimensional distribution
is easily represented using a Gaussian mixture model (GMM). This GMM can be sampled to produce
the random pixel values of a severely blurred image, which can be deblurred using cold diffusion to
create a new image.

Our generative model uses a blurring schedule where we progressively blur each image with a
Gaussian kernel of size 27× 27 over 300 steps. The standard deviation of the kernel starts at 1 and
increases exponentially at the rate of 0.01. We then fit a simple GMM with one component to the
distribution of channel-wise means. To generate an image from scratch, we sample the channel-wise
mean from the GMM, expand the 3D vector into a 128× 128 image with three channels, and then
apply TACoS.

Empirically, the presented pipeline generates images with high fidelity but low diversity, as reflected
quantitatively by comparing the perfect symmetry column with results from hot diffusion in Table 4.
We attribute this to the perfect correlation between pixels of xT sampled from the channel-wise
mean Gaussian mixture model. To break the symmetry between pixels, we add a small amount of
Gaussian noise (of standard deviation 0.002) to each sampled xT . As shown in Table 4, the simple
trick drastically improves the quality of generated images. We also present the qualitative results
for cold diffusion using blur transformation in Figure 6, and further discuss the necessity of TACoS
proposed in Algorithm 2 for generation in Appendix A.7.

Table 4: FID scores for CelebA and AFHQ datasets using hot (noise) and cold diffusion (blur
transformation). Breaking the symmetry within pixels of the same channel further improves FID.

Hot Diffusion Cold Diffusion
Dataset Fixed Noise Estimated Noise Perfect symmetry Broken symmetry

CelebA 59.91 23.11 97.00 49.45
AFHQ 25.62 20.59 93.05 54.68

Figure 6: Examples of generated samples from 128× 128 CelebA and AFHQ datasets using cold
diffusion with blur transformation

5.3 Generation using other transformations

In this section, we provide a proof of concept that generation can be extended to other transformations.
Specifically, we show preliminary results on inpainting, super-resolution, and animorphosis. Inspired
by the simplicity of the degraded image distribution for the blurring routine presented in the previous
section, we use degradation routines with predictable final distributions here as well.

To use the Gaussian mask transformation for generation, we modify the masking routine so the
final degraded image is completely devoid of information. One might think a natural option is to
send all of the images to a completely black image xT , but this would not allow for any diversity
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in generation. To get around this maximally non-injective property, we instead make the mask turn
all pixels to a random, solid color. This still removes all of the information from the image, but it
allows us to recover different samples from the learned distribution via Algorithm 2 by starting off
with different color images. More formally, a Gaussian mask Gt =

∏t
i=1 zβi

is created in a similar
way as discussed in the Section 4.2, but instead of multiplying it directly to the image x0, we create
xt as Gt · x0 + (1−Gt) · c, where c is an image of a randomly sampled color.

For super-resolution, the routine down-samples to a resolution of 2× 2, or 4 values in each channel.
These degraded images can be represented as one-dimensional vectors, and their distribution is
modeled using one Gaussian distribution. Using the same methods described for generation using
blurring described above, we sample from this Gaussian-fitted distribution of the lower-dimensional
degraded image space and pass this sampled point through the generation process trained on super-
resolution data to create one output.

Additionally to show one can invert nearly any transformation, we include a new transformation
deemed animorphosis, where we iteratively transform a human face from CelebA to an animal
face from AFHQ. Though we chose CelebA and AFHQ for our experimentation, in principle such
interpolation can be done for any two initial data distributions.

More formally, given an image x and a random image z sampled from the AFHQ manifold, xt can
be written as xt =

√
αtx +

√
1− αtz. Note this is essentially the same as the noising procedure,

but instead of adding noise we are adding a progressively higher weighted AFHQ image. In order to
sample from the learned distribution, we sample a random image of an animal and use TACoS.

We present results for the CelebA dataset, and hence the quantitative results in terms of FID scores
for inpainting, super-resolution and animorphosis are 90.14, 92.91 and 48.51 respectively. We further
show some qualitative samples in Figure 7, and in Figure 1.

Figure 7: Preliminary demonstration of the generative abilities of other cold diffusins on the 128×128
CelebA dataset. The top row is with animorphosis models, the middle row is with inpainting models,
and the bottom row exhibits super-resolution models.

6 Conclusion
Existing diffusion models rely on Gaussian noise for both forward and reverse processes. In this
work, we find that the random noise can be removed entirely from the diffusion model framework,
and replaced with arbitrary transforms. In doing so, our generalization of diffusion models and
their sampling procedures allows us to restore images afflicted by deterministic degradations such as
blur, inpainting and downsampling. This framework paves the way for a more diverse landscape of
diffusion models beyond the Gaussian noise paradigm. The different properties of these diffusions
may prove useful for a range of applications, including image generation and beyond.
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A Appendix

A.1 Deblurring

For the deblurring experiments, we train the models on different datasets for 700,000 gradient steps.
We use the Adam Kingma and Ba [2014] optimizer with learning rate 2× 10−5. The training was
done on the batch size of 32, and we accumulate the gradients every 2 steps. Our final model is an
Exponential Moving Average of the trained model with decay rate 0.995 which is updated after every
10 gradient steps.

For the MNIST dataset, we blur recursively 40 times, with a discrete Gaussian kernel of size 11x11
and a standard deviation 7. In the case of CIFAR-10, we recursively blur with a Gaussian kernel
of fixed size 11x11, but at each step t, the standard deviation of the Gaussian kernel is given by
0.01 ∗ t+ 0.35. The blur routine for CelebA dataset involves blurring images with a Gaussian kernel
of 15x15 and the standard deviation of the Gaussian kernel grows exponentially with time t at the
rate of 0.01.

Figure 8 shows an additional nine images for each of MNIST, CIFAR-10 and CelebA. Figures 19 and
20 show the iterative sampling process using a deblurring model for ten example images from each
dataset. We further show 400 random images to demonstrate the qualitative results in the Figure 21.

Degraded Direct TACoS Original

Figure 8: Additional examples from deblurring models trained on the MNIST, CIFAR-10, and CelebA
datasets. Left to right: degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled
reconstruction with TACoS described in Algorithm 2, and original image.

A.2 Inpainting

For the inpainting transformation, models were trained on different datasets with 60,000 gradient
steps. The models were trained using Adam Kingma and Ba [2014] optimizer with learning rate
2×10−5. We use batch size 64, and the gradients are accumulated after every 2 steps. The final model
is an Exponential Moving Average of the trained model with decay rate 0.995. This EMA model
is updated after every 10 gradient steps. For all our inpainting experiments we use a randomized
Gaussian mask and T = 50 with β1 = 1 and βi+1 = βi + 0.1.

To avoid potential leakage of information due to floating point computation of the Gaussian mask,
we discretize the masked image before passing it through the inpainting model. This was done by
rounding all pixel values to the eight most significant digits.
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Figure 10 shows nine additional inpainting examples on each of the MNIST, CIFAR-10, and CelebA
datasets. Figure 9 demonstrates an example of the iterative sampling process of an inpainting model
for one image in each dataset.

A.3 Super-Resolution

We train the super-resolution model per Section 3.1 for 700,000 iterations. We use the Adam Kingma
and Ba [2014] optimizer with learning rate 2× 10−5. The batch size is 32, and we accumulate the
gradients every 2 steps. Our final model is an Exponential Moving Average of the trained model with
decay rate 0.995. We update the EMA model every 10 gradient steps.

The number of time-steps depends on the size of the input image and the final image. For MNIST and
for CIFAR10, the number of time steps is 3, as it takes three steps of halving the resolution to reduce
the initial image down to 4× 4. For CelebA, the number of time steps is 6 to reduce the initial image
down to 2× 2. For CIFAR10, we apply random crop and random horizontal flip for regularization.

Figure 12 shows an additional nine super-resolution examples on each of the MNIST, CIFAR-10, and
CelebA datasets. Figure 11 shows one example of the progressive increase in resolution achieved
with the sampling process using a super-resolution model for each dataset.

A.4 Colorization

Here we provide results for the additional task of colorization. Starting with the original RGB-
image x0, we realize colorization by iteratively desaturating for T steps until the final image xT

is a fully gray-scale image. We use a series of three-channel 1 × 1 convolution filters z(α) =
{z1(α), z2(α), z3(α)} with the form

z1(α) = α
(
1
3
1
3
1
3

)
+ (1− α) (1 0 0)

z2(α) = α
(
1
3
1
3
1
3

)
+ (1− α) (0 1 0)

z3(α) = α
(
1
3
1
3
1
3

)
+ (1− α) (0 0 1)

and obtain D(x, t) = z(αt) ∗ x via a schedule defined as α1, . . . , αt for each respective step. Notice
that a gray image is obtained when xT = z(1) ∗ x0.

We can tune the ratio αt to control the amount of information removed in each step. For our
experiment, we schedule the ratio such that for every t we have

xt = z(αt) ∗ . . . ∗ z(α1) ∗ x0 = z(
t

T
) ∗ x0.

This schedule ensures that color information lost between steps is smaller in earlier stage of the
diffusion and becomes larger as t increases.

We train the models on different datasets for 700,000 gradient steps. We use Adam Kingma and Ba
[2014] optimizer with learning rate 2× 10−5. We use batch size 32, and we accumulate the gradients
every 2 steps. Our final model is an exponential moving average of the trained model with decay rate
0.995. We update the EMA model every 10 gradient steps. For CIFAR-10 we use T = 50 and for
CelebA we use T = 20.

Figure 9: Progressive inpainting of selected masked MNIST, CIFAR-10, and CelebA images.
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Degraded Direct TACoS Original

Figure 10: Additional examples from inpainting models trained on the MNIST, CIFAR-10, and
CelebA datasets. Left to right: degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )),
sampled reconstruction with TACoS described in Algorithm 2, and original image.

Figure 11: Progressive upsampling of selected downsampled MNIST, CIFAR-10, and CelebA images.
The original image is at the left for each of these progressive upsamplings.

We illustrate our recolorization results in Figure 13. We present testing examples, as well as their
grey scale images, from all the datasets, and compare the recolorization results with the original
images. The recolored images feature correct color separation between different regions, and feature
various and yet semantically correct colorization of objects. Our sampling technique still yields
minor differences in comparison to the direct reconstruction, although the change is not visually
apparent. We attribute this to the shape restriction of colorization task, as human perception is rather
insensitive to minor color change. We also provide quantitative measurement for the effectiveness
of our recolorization results in terms of different similarity metrics, and summarize the results in
Table 5.

Table 5: Quantitative metrics for quality of image reconstruction using recolorization models for all
three channel datasets.

Degraded Image Reconstruction
Dataset FID SSIM RMSE FID SSIM RMSE

CIFAR-10 97.39 0.937 0.078 45.74 0.942 0.069
CelebA 41.20 0.942 0.089 17.50 0.973 0.042
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Degraded Direct TACoS Original

Figure 12: Additional examples from super-resolution models trained on the MNIST, CIFAR-10,
and CelebA datasets. Left to right: degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )),
sampled reconstruction with TACoS described in Algorithm 2, and original image.

Degraded Direct TACoS Original

Figure 13: Recolorization models trained on the CIFAR-10 and CelebA datasets. Left to right:
degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled reconstruction with TACoS
described in Algorithm 2, and original image.

A.5 Image Snow

Here we provide results for the additional task of snowification, which is a direct adaptation of
the offical implementation of ImageNet-C snowification process Hendrycks and Dietterich [2019].
To determine the snow pattern of a given image x0 ∈ RC×H×W , we first construct a seed matrix
SA ∈ RH×W where each entry is sampled from a Gaussian distribution N(µ, σ). The upper-left
corner of SA is then zoomed into another matrix SB ∈ RH×W with spline interpolation. Next, we
create a new matrix SC by filtering each value of SB with a given threshold c1 as

SC [i][j] =

{
0, SB [i][j] ≤ c1
SB [i][j], SB [i][j] > c1
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and clip each entry of SC into the range [0, 1]. We then convolve SC using a motion blur kernel with
standard deviation c2 to create the snow pattern S and its up-side-down rotation S′. The direction of
the motional blur kernel is randomly chosen as either vertical or horizontal. The final snow image is
created by again clipping each value of x0 + S + S′ into the range [0, 1]. For simplicity, we abstract
the process as a function h(x0, SA, c0, c1).

Degraded Direct TACoS Original

Figure 14: Additional examples from Desnowification models trained on the CIFAR-10 and CelebA
datasets. Left to right: degraded inputs D(x0, T ) , direct reconstruction R(D(x0, T )), sampled
reconstruction with TACoS described in Algorithm 2, and original image.

To create a series of T images with increasing snowification, we linearly interpolate c0 and c1 between
[cstart

0 , cend
0 ] and [cstart

1 , cend
1 ] respectively, to create c0(t) and c1(t), t = 1, . . . , T . Then for each x0, a

seed matrix Sx is sampled, the motion blur direction is randomized, and we construct each related
xt by xt = h(x0, Sx, c0(t), c1(t)). Visually, c0(t) dictates the severity of the snow, while c1(t)
determines how “windy" the snowified image seems.

For both CIFAR-10 and Celeb-A, we use the same Gaussian distribution with parameters µ = 0.55
and σ = 0.3 to generate the seed matrix. For CIFAR-10, we choose cstart

0 = 1.15, cend
0 = 0.7,

cstart
1 = 0.05 and cend

1 = 16, which generates a visually lighter snow. For Celeb-A, we choose
cstart
0 = 1.15, cend

0 = 0.55, cstart
1 = 0.05 and cend

1 = 20, which generates a visually heavier snow.

We train the models on different datasets for 700,000 gradient steps. We use Adam Kingma and Ba
[2014] optimizer with learning rate 2× 10−5. We use batch size 32, and we accumulate the gradients
every 2 steps. Our final model is an exponential moving average of the trained model with decay
rate 0.995. We update the EMA model every 10 gradient steps. For CIFAR-10 we use T = 200 and
for CelebA we use T = 200. We note that the seed matrix is resampled for each individual training
batch, and hence the snow pattern varies across the training stage.

A.6 Generation using noise : Further Details

Here we show the equivalence between the sampling method proposed in Algorithm 2 and the
deterministic sampling in DDIM Song et al. [2021a]. Given the image xt at step t, we have the
restored clean image x̂0 from the diffusion model. Hence given the estimated x̂0 and xt, we can
estimate the noise z(xt, t) (or ẑ) as

z(xt, t) =
xt −

√
αtx̂0√

1− αt
,

Thus, the D(x̂0, t) and D(x̂0, t− 1) can be written as

D(x̂0, t) =
√
αtx̂0 +

√
1− αtẑ,

D(x̂0, t− 1) =
√
αt−1x̂0 +

√
1− αt−1ẑ,

using which the sampling process in Algorithm 2 to estimate xt−1 can be written as,
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xt−1 = xt −D(x̂0, t) +D(x̂0, t− 1)

= xt − (
√
αtx̂0 +

√
1− αtẑ) + (

√
αt−1x̂0 +

√
1− αt−1ẑ)

=
√
αt−1x̂0 +

√
1− αt−1ẑ

(1)

which is same as the sampling method as described in Song et al. [2021a]. The only difference from
the original Song et al. [2021a] is the order for estimating x̂0 and ẑ. The original Song et al. [2021a]
paper estimated ẑ first and then used this to predict clean image x̂0, while we first predict the clean
image x̂0 and then estimate the noise ẑ.

A.7 Generation using blur transformation: Further Details

Figure 15: Examples of generated samples from 128×128 CelebA and AFHQ datasets using Method
2 with perfect symmetry.

Figure 15 shows that generation without breaking any symmetry within each channel is quite
promising as well.

Necessity of Algorithm 2: In the case of unconditional generation, we observe a marked superiority
in quality of the sampled reconstruction using Algorithm 2 over any other method considered. For
example, in the broken symmetry case, the FID of the directly reconstructed images is 257.69 for
CelebA and 214.24 for AFHQ, which are far worse than the scores of 49.45 and 54.68 from Table 4.
In Figure 17, we also give a qualitative comparison of this difference. We can also clearly see from
Figure 18 that Algorithm 1, the method used in Song et al. [2021b] and Ho et al. [2020], completely
fails to produce an image close to the target data distribution.

A.8 Algorithm 1 is same as DDIM/DDPM sampling

The sampling method proposed in Song et al. [2021a] in it’s equation 12 is given as

xt−1 =
√
αt−1 · “predicted x0" +

√
1− αt−1 − σ2

t ϵθ(xt) + σtϵt

where ϵθ(xt) is the noise predicted by the diffusion model given xt and t. The term “predicted x0” or
x̂0 can be computed directly given xt and ϵθ(xt) as

x̂0 =
xt −

√
1− αtϵθ(xt)√

αt
,
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Hence using ẑ instead of ϵθ(xt) and x̂0 to indicate predicted clean image, we have

xt−1 =
√
αt−1 · x̂0 +

√
1− αt−1 − σ2

t ẑ + σtϵt

Thus, the sampling step can interpreted as follows: At each step t, we start with a noisy image xt and
use the diffusion model to estimate the clean image x̂0 and the noise ẑ that was added to this clean
image x̂0 to get the noisy image xt. In order to move to lesser noisy image xt−1, one “adds back"
lesser noise to the the “predicted clean image" x̂0. Now one can add back noise in 2 ways, either the
noise which was added to the clean image x̂0 which is ẑ or sample a new uncorrelated noise ϵt. Infact
both of these noise can be added using σt as the hyperparameter that weighs the amount of each noise
added. This σt is placed in the equation such that for any choice of σt, the standard deviation of noise
added back is

√
1− αt−1. For σt = 0, we only add back the estimated noise ẑ and no uncorrelated

noise ϵt which is infact the DDIM sampling. While for σt =
√

(1− αt−1)/(1− αt)
√
1− αt/αt−1

we get the sampling method described in DDPM.
Nevertheless, for any choice of σt, the sampling method involves a denoising operation which is
shown as R(xs, s) in Algorithm 1 and adding back noise shown as xs−1 = D(x̂0, s−1) in Algorithm
1. The only difference between different sampling methods explained in DDPM or DDIM is how one
degrades the image back.

A.9 Discussion on Algorithm 2 produces lesser error than Algorithm 1

Consider the case where the degradation is a simple blur operator that removes one frequency from
an image every time t increases by one. We can write X = x0 + x1 . . . xT−1 + xT , where each
xi is the Fourier mode of X representing frequency T − i. The degradation operator for this blur
is D(X, t) = xt + . . . xT−1 + xT =

∑T
i=t xi, and when t = T the signal has been blurred into a

constant vector.

Suppose we are performing the reverse process, and we begin at step t with Xt = xt + . . . xT . Now
in order to go from Xt to Xt−1, we first use the diffusion model to predict X̂ = R(Xt, t). This X̂
has an analogous Fourier expansion X̂ =

∑T
n=0 x̂n, where x̂0 is the highest frequency mode and x̂T

is the DC mode. At step t, the error Et can be defined as ∥Xt−1 − X̂t−1∥.

For the Algorithm 1, in which Xt−1 is given by X̂t−1 = D(X̂, t− 1), we can expand the error as
follows

E2
t = ∥Xt−1 − X̂t−1∥2

= ∥
T∑

i=t−1

xi −
T∑

i=t−1

x̂i∥2

= ∥
T∑

i=t−1

(xi − x̂i)∥2

=

T∑
i=t−1

∥xi − x̂i∥2

For the Algorithm 2, in which Xt−1 is given by X̂t−1 = Xt − D(X̂, t) + D(X̂, t − 1), we can
expand the error as follows

E2
t = ∥Xt−1 − (Xt −D(X̂, t) +D(X̂, t− 1))∥2

= ∥(D(X̂, t)−D(X̂, t− 1))− (Xt −Xt−1)∥2

= ∥(
T∑
i=t

x̂i −
T∑

i=t−1

x̂i)− (

T∑
i=t

xi −
T∑

i=t−1

xi)∥2

= ∥x̂t−1 − xt−1∥2

Hence, we can see that the error incurred at step t using algorithm 1 is
∑T

i=t−1 ∥xi − x̂i∥2 which is
clearly greater than or equal to error incurred by using the algorithm 2 which is ∥x̂t−1 − xt−1∥2. We

18



now further break down the analysis based on different scenarios depending on the quality of the
reconstruction operator R:

1. R is perfect.
In this scenario, both Algorithm 1 and Algorithm 2 are indistinguishable, and the error is 0
for both.

2. R is imperfect only for xt−1 and reconstructs other signals perfectly.
In this scenario, both Algorithm 1 and Algorithm 2 incur the same error, which is (xt−1 −
x̂t−1)

2.
3. R is imperfect for more than one frequency

This is the realistic scenario. In this case, the error incurred by Algorithm 1 is strictly greater
than Algorithm 2.

Thus we prove that for the realistic scenario i.e. when R is not a perfect reconstruction operator, the
error incurred using Algorithm 1 is always greater than the Algorithm 2.

A.10 Empirical comparisons between Algorithm 2 and Algorithm 1

For all the degradations in Section 4, we compare to "Direct Sampling" which is in fact the "one step"
reconstruction of the input to Algorithm 2. One of the main contributions of our work is Algorithm
2, which outperforms Algorithm 1 across all degradations. Infact the Algorithm 1 is worse than the
one-step generation as well. To demonstrate this concretely we present the FID results in 6, where
we can clearly see that FID scores for Algorithm 1 are worse than both the one-step and Algorithm 2.
We also show qualitatively how bad the Algorithm 1 is in Figures 16 and 18. In fact, for the case
of the celebA dataset, Algorithm 1 fails drastically, while for CIFAR-10 we can see high-frequency
signals present in the image generation. Hence, we chose our baseline to be direct generation instead
of Algorithm 1.

Table 6: FIDs for blur degradation for Algorithm 1, Algorithm 2 and Direct Reconstruction. This
table demonstrates that Algorithm 1 is worse than both the one-step generation and Algorithm 2

Dataset Direct Generation Algorithm 1 Algorithm 2

MNIST 5.10 8.24 4.69
CIFAR-10 83.69 97.89 80.08

CelebA 36.37 299.61 26.14
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Figure 16: Comparison of Algorithm 1 and Algorithm 2. We demonstrate that Algorithm 1 performs
much worse than Algorithm 1 and fails completely for CelebA dataset.

Figure 17: Comparison of direct reconstruction with sampling using TACoS described in Algorithm
2 for generation with blur transformation and broken symmetry. Left-hand column is the initial cold
images generated using the simple Gaussian model. Middle column has images generated in one step
(i.e. direct reconstruction). Right-hand column are the images sampled with TACoS described in
Algorithm 2. We present results for both CelebA (top) and AFHQ (bottom) with resolution 128×128.
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Figure 18: Comparison of Algorithm 1 (top row) and Algorithm 2 (bottom row) for generation with
Method 2 and broken symmetry on 128 × 128 CelebA dataset. We demonstrate that Algorithm 1
fails completely to generate a new image.
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Figure 19: Progressive deblurring of selected blurred MNIST and CIFAR-10 images.

22



Figure 20: Progressive deblurring of selected blurred CelebA images.
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Figure 21: Deblurred Cifar10 images
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