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Abstract

Despite extensive research on adversarial training strategies to improve robustness,
the decisions of even the most robust deep learning models can still be quite
sensitive to imperceptible perturbations, creating serious risks when deploying
them for high-stakes real-world applications. While detecting such cases may be
critical, evaluating a model’s vulnerability at a per-instance level using adversarial
attacks is computationally too intensive and unsuitable for real-time deployment
scenarios. The input space margin is the exact score to detect non-robust samples
and is intractable for deep neural networks. This paper introduces the concept of
margin consistency – a property that links the input space margins and the logit
margins in robust models – for efficient detection of vulnerable samples. First,
we establish that margin consistency is a necessary and sufficient condition to
use a model’s logit margin as a score for identifying non-robust samples. Next,
through comprehensive empirical analysis of various robustly trained models
on CIFAR10 and CIFAR100 datasets, we show that they indicate high margin
consistency with a strong correlation between their input space margins and the
logit margins. Then, we show that we can effectively and confidently use the logit
margin to detect brittle decisions with such models. Finally, we address cases
where the model is not sufficiently margin-consistent by learning a pseudo-margin
from the feature representation. Our findings highlight the potential of leveraging
deep representations to assess adversarial vulnerability in deployment scenarios
efficiently.

1 Introduction

Deep neural networks are known to be vulnerable to adversarial perturbations, visually insignificant
changes in the input resulting in the so-called adversarial examples that alter the model’s prediction
(Biggio et al., 2013; Goodfellow et al., 2015). They constitute actual threats in real-world scenarios
(Evtimov et al., 2017; Gnanasambandam et al., 2021), jeopardizing their deployment in sensitive
and safety-critical systems such as autonomous driving, aeronautics, and health care. Research in
the field has been intense and produced various adversarial training strategies to defend against
the vulnerability to adversarial perturbations with bounded ℓp norm (e.g., p = 2, p = ∞) through
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augmentation, regularization, and detection (Xu et al., 2017; Madry et al., 2018; Zhang et al., 2019;
Carmon et al., 2019; Wang et al., 2020; Wu et al., 2020; Rice et al., 2020), to cite a few. The empirical
robustness (adversarial accuracy) of these adversarially trained models is still far behind their high
performance in terms of accuracy. It is typically estimated by assessing the vulnerability of samples of
a given test set using adversarial attacks (Carlini & Wagner, 2016; Madry et al., 2018) or an ensemble
of attacks such as the standard AutoAttack (Croce & Hein, 2020b). The objective of that evaluation is
to determine if, for a given normal sample, an adversarial instance exists within a given ϵ-ball around
it. Yet, this robustness evaluation over a specific test set provides a global property of the model but
not a local property specific to a single instance (Seshia et al., 2018; Dreossi et al., 2019). Beyond that
specific test set, obtaining this information for each new sample would typically involve rerunning
adversarial attacks or performing a formal robustness verification, which in certain contexts may be
computationally prohibitive in terms of resources and time. Indeed, the computational cost makes it
prohibitive to estimate robust accuracy at scale on large test sets and/or large models, for example,
when using AutoAttack in standard mode. Moreover, in high-stakes deployment scenarios, knowing
the vulnerability of single instances in real-time (i.e., their susceptibility to adversarial attacks) would
be valuable, for example, to reduce risk, prioritize resources, or monitor operations. Therefore, there
is a need for efficient and scalable ways to determine the vulnerability of a model’s decision on a
given sample.

The input space margin (i.e., the distance of the sample to the model’s decision boundary in the input
space), or input margin in short, can be used as a score to determine whether the sample is non-robust
and, as such, likely to be vulnerable to adversarial attacks. Computing the exact input margin is
intractable for deep neural networks (Katz et al., 2017; Elsayed et al., 2018; Jordan & Dimakis, 2020).
These input margins may not be meaningful for fragile models with zero adversarial accuracies as
all samples are vulnerable (close to the decision boundary). However, for robustly trained models,
where only certain instances are vulnerable, the input margin is very useful for identifying the critical
samples. Previous research studies have explored input margins of deep neural networks during
training, focusing on their temporal evolution (Mickisch et al., 2020; Xu et al., 2023), and their
exploitation in improving adversarial robustness through instance-reweighting with approximations
(Zhang et al., 2020; Liu et al., 2021) and margin maximization (Elsayed et al., 2018; Ding et al., 2020;
Xu et al., 2023). However, to the best of our knowledge, no previous research studies the relationship
between the input space margin and the logit margin of robustly trained deep classifiers in the context
of vulnerability detection.

In this paper, we investigate how the deep representation of robust models can provide information
about the vulnerability of any single sample to adversarial attacks. We specifically address whether
the logit margin as an approximation of the distance to the decision boundary in the feature space
of the deep neural network (penultimate layer) can reliably serve as a proxy of the input margin
for vulnerability detection. When this holds, we will refer to the model as being margin-consistent.
The margin consistency property implies that the model can directly identify instances where its
robustness may be compromised simply from a simple forward pass using the logit margin. Fig. 1
illustrates this idea of margin consistency. The following contributions are presented in the paper:

• We introduce the notion of margin consistency1, a property to characterize robust models that
allow the use of their logit margin as a proxy estimation for the input space margin in the context
of non-robust sample detection. We prove that margin consistency is a necessary and sufficient
condition to reliably use the logit margin for detecting non-robust samples.

• Through an extensive empirical investigation of pre-trained models on CIFAR10 and CIFAR100
with various adversarial training strategies, mainly taken from RobustBench (Croce et al., 2021),
we provide evidence that almost all the investigated models display high margin consistency, i.e.,
there is a strong correlation between the input margin and the logit margin.

• We confirm experimentally that models with high margin consistency perform well in detecting
samples vulnerable to adversarial attacks based on their logit margin. In contrast, models with
weaker margin consistency exhibit poorer performance.

• For models where margin consistency does not hold, exhibiting a weak correlation between the
input margins and the logit margins, we simulate margin consistency by learning to map the
model’s feature representation to a pseudo-margin with a better correlation through a simple
learning scheme.

1Code available at: https://github.com/ngnawejonas/margin-consistency
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Figure 1: Illustration of the input space margin, margin in the feature space and margin consistency.
The model preserves the relative position of samples to the decision boundary in the input space to
the feature space.

2 Methodology

2.1 Notation and Preliminaries

Notation We consider fθ : Rn → RK a deep neural network classifier with weights θ trained on a
dataset of samples drawn iid from a distribution D on a product space X × Y . Each sample x in the
input space X ⊂ Rn has a unique corresponding label y ∈ Y = {1, 2, . . . ,K}. The prediction of x
is given by ŷ(x) = argmaxk∈Y fkθ (x), where fkθ (x) is the k-th component of fθ(x). We consider
that a deep neural network is composed of a feature extractor hψ : X → Rm and a linear head with K
linear classifiers {wk, bk} such that fkθ (x) = wk

⊤hψ(x) + bk. The predictive distribution pθ(y|x)
is obtained by taking the softmax of the output fθ(x). A perturbed sample x′ can be obtained by
adding a perturbation δ to x within an ϵ-ball Bp(x, ϵ), an ℓp-norm ball of radius ϵ > 0 centered
at x, {x′ : ∥x′ − x∥p = ∥δ∥p < ϵ}. The distance ∥x′ − x∥p = ∥δ∥p represents the perturbation

size defined as (
∑n
i=1 |δi|p)

1
p . In this paper, we will focus on ℓ∞ norm (∥x∥∞ = maxi=1,...,n |xi|),

which is the most commonly used norm in the literature.

Local robustness Different notions of local robustness exist in the literature (Gourdeau et al.,
2021; Zhong et al., 2021; Han et al., 2023). In this paper, we equate local robustness to ℓp-robustness,
a standard notion corresponding to the invariance of the decision within the ℓp ϵ-ball around the
sample (Bastani et al., 2016; Fawzi et al., 2018) and formalized in terms of ϵ-robustness.

Definition 1. A model f is ϵ-robust at point x if for any x′ ∈ Bp(x, ϵ) (x′ in the ϵ-ball around x),
we have ŷ(x′) = ŷ(x).

For a given robustness threshold ϵ, a data instance is said to be non-robust for the model if this model
is not ϵ-robust on it. This means it is possible to construct an adversarial sample from that instance
in its vicinity (i.e., within an ϵ-ball distance from the original instance). A vulnerable sample to
adversarial attacks is necessarily non-robust. This notion of local robustness can be quantified in the
worst-case or, on average, inside the ϵ-ball. We focus here on the worst-case measurement given
by the input margin, also referred to as the minimum distortion or the robust radius (Szegedy et al.,
2014; Carlini & Wagner, 2016; Weng, 2019)

The input space margin is the distance to the decision boundary of f in the input space. It is the
norm of a minimal perturbation required to change the model’s decision at a test point x:

din(x) = inf{∥δ∥p : δ ∈ Rn s.t. ŷ(x) ̸= ŷ(x+ δ)} = sup{ϵ : f is ϵ-robust at x}. (1)

An instance x is non-robust for a robustness threshold ϵ if din(x) ≤ ϵ. Evaluating Eq. 1 for deep
networks is known to be intractable in the general case. An upper bound approximation can be
obtained using a point x′

0, the closest adversarial counterpart of x in ℓp norm by d̂in(x) = ∥x−x′
0∥p

(see Fig. 1).
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The logit margin is the difference between the two largest logits. For a sample x classified as

i = ŷ(x) = argmaxj∈Y f jθ (x) the logit margin is defined as
(
f iθ(x)−max

j,j ̸=i
f jθ (x)

)
> 0. It is an

approximation of the distance to the decision boundary of fθ in the feature space. The decision
boundary in the feature space around z = hψ(x), the feature representation of x, is composed of
(K−1) linear decision boundaries (hyperplanes) DBij = {z′ ∈ Rm : w⊤

i z
′+bi = w⊤

j z
′+bj} (j ̸=

i). The margin in the feature space is therefore the distance to the closest hyperplane min
j,j ̸=i

d(z,DBij),

where the distance d(z,DBij) from z to a hyperplane DBij has a closed-form expression:

d(z,DBij) = inf{∥η∥p : η ∈ Rm s.t. z+ η ∈ DBij} =
f iθ(x)− f jθ (x)

∥wi −wj∥q
, (2)

where ∥ · ∥q is the dual norm of p, q = p
p−1 for p > 1 (Moosavi-Dezfooli et al., 2016; Elsayed et al.,

2018).

When the classifiers wj are equidistant, i.e. ∥wi −wj∥q = C whenever i ̸= j, the margin becomes:

min
j,j ̸=i

f iθ(x)− f jθ (x)

C
=

1

C
min
j,j ̸=i

(
f iθ(x)− f jθ (x)

)
=

1

C

(
f iθ(x)−max

j,j ̸=i
f jθ (x)︸ ︷︷ ︸

logit margin

)
. (3)

Under the equidistance assumption, the logit margin is proportional (equal up to a scaling factor) to
the margin in the feature space. We will denote the logit margin of x by dout(x):

dout(x) = f iθ(x)−max
j,j ̸=i

f jθ (x). (4)

2.2 Margin Consistency

Definition 2. A model is margin-consistent if there is a monotonic relationship between the input
space margin and the logit margin, i.e., din(x1) ≤ din(x2) ⇔ dout(x1) ≤ dout(x2), ∀x1,x2 ∈ X .

A margin-consistent model preserves the relative position of samples to the decision boundary from
the input space to the feature space. A sample further from (closer to) the decision boundary in the
input space remains further from (closer to) the decision boundary in the feature space with respect
to other samples, as illustrated in Fig. 1.

We can evaluate margin consistency by computing the Kendall rank correlation (τ ∈ [−1, 1])
between the logit margins and the input margins over a test set. The Kendall rank correlation tests the
existence and strength of a monotonic relationship between two variables. It makes no assumption on
the distribution of the variables and is robust to outliers (Chattamvelli, 2024). While a positive value
of τ indicates samples are ranked similarly (or identically for τ = 1) according to logit margins and
input margins, a negative value of τ indicates that one margin’s ranking is roughly reversed. Perfect
margin consistency corresponds to the situation τ = 1.

2.3 Non-robust Samples Detection

Non-robust detection can be defined as a scored-based binary classification task where non-robust
samples constitute the positive class, and the input margin din induces a perfect discriminative
function g for that:

g(x; fθ) = 1[din(x)≤ϵ] =

{
1 if x is non-robust
0 if x is robust

.

If a model is margin-consistent, its logit margin can also be a discriminative score to detect non-
robust samples. The following theorem establishes that this is a necessary and sufficient condition.
Therefore, the degree to which a model is margin-consistent should determine the discriminative
power of the logit margin.
Theorem 1. If a model is margin-consistent, then for any robustness threshold ϵ, there exists a
threshold λ for the logit margin dout that separates perfectly non-robust samples and robust samples.
Conversely, if for any robustness threshold ϵ, dout admits a threshold λ that separates perfectly
non-robust samples from robust samples, then the model is margin-consistent.
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monotonic
(margin-consistency)

(a) Margin consistency implies dout can perfectly
separate non robust samples in Aϵ from robust
samples.

and

(b) Without margin consistency, dout cannot be
a good discriminator for robust and non-robust
samples.

Figure 2: Illustration of Theorem 1’s proof.

Proof sketch. Fig. 2 presents intuition behind the proof of Theorem 1. For the first part of the
theorem (see Fig. 2a), if there is a monotonic relationship between din and dout (margin consistency),
any point x with din less than the threshold ϵ (non-robust) will also have dout less than λ0 = dout(x0)
(with din(x0) = ϵ). For the second part (see Fig. 2b), if there are two points x1 and x2 with non-
concordant din and dout (no margin consistency), then for a threshold ϵ0 between din(x1) and
dout(x2), they will both have different classes but no threshold of dout can classify them both
correctly. The complete proof of Theorem 1 is deferred to Appendix A. Common metrics for
detection include (Hendrycks & Gimpel, 2017; Corbière et al., 2019; Zhu et al., 2023): the Area
Under the Receiver Operating Curve (AUROC), which ensures the ability of a model to distinguish
between the positive and negative classes across all possible thresholds; the Area Under the Precision-
Recall Curve (AUPR), which evaluates the trade-off between precision and recall and is less sensitive
to imbalance between positive and negative classes; and the False Positive Rate (FPR) at a 95% True
Positive Rate (TPR) (FPR@95), that is crucial in systems where missing positive cases can have
serious consequences, such as minimizing the number of vulnerable samples missed. The AUROC
and AUPR of a perfect classifier is 1, while 0.5 for a random classifier.

3 Evaluation

3.1 Experimental Setup

Datasets and models We investigate various pre-trained models on CIFAR10 and CIFAR100
datasets (Krizhevsky, 2009). The majority of models were loaded from the RobustBench model
zoo2 (Croce et al., 2021), with a few more models that are ResNet-18 (He et al., 2016) models we
trained on CIFAR10 with Standard Adversarial Training (Madry et al., 2018), TRADES (Zhang et al.,
2019), Logit Pairing (ALP and CLP, Kannan et al. (2018)), and MART (Wang et al., 2020), using the
experimental setup of Wang et al. (2020).

Input margin estimation This is done using FAB attack (Croce & Hein, 2020a), which is an attack
that minimally perturbs the initial instance. Xu et al. (2023) used it in their adversarial training
strategy as a reliable way to compute the closest boundary point given enough iterations. We perform
the untargeted FAB attack without restricting the distortion to find the boundary for all the samples in
the test set instead of constraining the perturbation inside a given ϵ-ball when evaluating robustness.
As a sanity check for the measured distances, we compare the ratio of correct samples x with
estimated input margins greater than ϵ = 8/255 and the robust accuracy in ℓ∞ norm measured with
AutoAttack (Croce & Hein, 2020b) at ϵ = 8/255. Both quantities estimate the same thing, with a
mean absolute difference over the models of 1.3 and 0.48 for CIFAR10 and CIFAR100, respectively,
which are reasonable.

The estimation of the input margins over the 10, 000 test samples allows us to create for a given
threshold ϵ a pool of vulnerable samples that can be successfully attacked at threshold ϵ and non-

2https://github.com/RobustBench/robustbench
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Figure 3: Margin consistency of various models: there is a strong correlation between input space
margin and logit margin for most ℓ∞ robust models tested, the exceptions being DI0 and XU80 on
CIFAR10. See Table 1 for the references on the models. The correlations are given with standard
error for the y-axis values in each interval.

vulnerable samples that were not able to be attacked. Training and distance estimations were run on
an NVIDIA Titan Xp GPU (1x).

3.2 Results and Analysis

Correlation analysis The results presented in Fig. 3 show that the logit margin has a strong
correlation (up to 0.86) with the input margin, which means that they have a level of margin
consistency for those models. The plots are given with standard error for the y-axis values in each
interval. However, we also observe that two models (i.e., DI0 (Ding et al., 2020) and XU80 (Xu et al.,
2023) WideResNets) have a weaker correlation. We show in Sec. 3.3 that we can learn to map the
feature representation of these models to a pseudo-margin that reflects the distance to the decision
boundary in the input space. Additional results on ImageNet with ℓ∞ norm and on ℓ2-robust models
on CIFAR10 are given in Table 5 of appendix E.

Vulnerable samples detection We present the results for the robustness threshold ϵ = 8/255 in
Table 1. As expected with the strong correlations, the performance over the non-robust detection
task is excellent. We can note that the metrics are lower for the two models with low correlations
and particularly very high FPR@95. The performance remains quite good with different values
of ϵ (cf. appendix B). Moreover, we show in appendix F.1 that the empirical robust accuracy of
margin-consistent models can be accurately estimated by attacking only a small subset of the test set.

Margin Consistency and Lipschitz Smoothness A neural network f is said to be L-Lipschitz
if ∥f(x1) − f(x2)∥ ≤ L∥x1 − x2∥, ∀x1,x2. Lipschitz smoothness is important for adversarial
robustness because a small Lipschitz constant L guarantees the network’s output cannot change
more than a factor L of the change in the input. There are strategies to directly constraint the
Lipschitz constant to achieve 1-Lipschitz networks (Cisse et al., 2017; Li et al., 2019; Serrurier
et al., 2021; Araujo et al., 2023). Empirical adversarial training strategies only indirectly encourage
Lipschitz’s smoothness of the model. However, we note that Lipschitz’s continuity of the feature
extractor hψ does not imply margin consistency of the model. Considering two points x1 and x2 with
0 < din(x1) < din(x2), the L-Lipschitz condition implies that dout(xi) ≤ Ldin(xi) for i = 1, 2.
However, as long as dout(x1) > 0, it is possible a priori to have dout(x2) < dout(x1), thus violating
the margin consistency condition, while still satisfying the previous relations. We also note that
the strength of the correlation, i.e. the level of margin consistency, does not depend on the robust
accuracy (see Fig. 4a and 4b).

Insight into when margin consistency may hold? We hypothesize that when the feature extractor
hψ behaves locally as an isometry (preserving distances, up to a scaling factor κ, at least for directions
normal to the decision boundary), i.e., ∥x− x′∥p = κ∥hψ(x)− hψ(x

′)∥p, margin consistency will
occur. Given an input sample x, by definition dout(x) = ∥z−z′∥ where z = hψ(x) and z′ the closest
point to z on the feature space decision boundary. The bijectivity of a local isometry implies that we
have hψ(x

′) = z′, i.e. the representation of the closest point to x in input space matches the closest
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Model ID Kendall τ AUROC AUPR FPR@95 Acc Rob. Acc Architecture

C
IF

A
R

10

DI0 (Wu et al., 2020) 0.28 67.49 70.91 82.56 84.36 41.44 WideResNet-28-4
XU80 (Xu et al., 2023) 0.43 83.30 80.50 83.42 93.69 63.89 WideResNet-28-10
MR0 (Wang et al., 2020) 0.68 92.95 94.92 29.76 79.69 39.12 ResNet-18
DM0 (Debenedetti et al., 2023) 0.71 94.31 93.20 32.76 91.30 57.27 XCiT-M12
AL0 (Kannan et al., 2018) 0.72 94.67 95.98 24.93 80.38 40.21 ResNet-18
CU80 (Cui et al., 2023) 0.73 96.87 94.42 17.90 92.16 67.73 WideResNet-28-10
WA80 (Wang et al., 2023) 0.74 96.82 94.33 17.60 92.44 67.31 WideResNet-28-10
SE10 (Sehwag et al., 2021) 0.74 96.03 94.66 19.13 84.59 55.54 ResNet-18
EN0 (Engstrom et al., 2019) 0.74 95.16 95.07 24.10 87.03 49.25 ResNet-50
TR0 (Zhang et al., 2019) 0.74 94.63 96.13 30.93 80.72 42.23 ResNet-18
DS0 (Debenedetti et al., 2023) 0.75 95.80 95.08 24.65 90.06 56.14 XCiT-S12
MD0 (Madry et al., 2018) 0.75 95.36 97.00 23.23 81.85 36.91 ResNet-18
ZH0 (Zhang et al., 2019) 0.75 95.86 95.65 24.91 84.92 53.08 WideResNet-34-10
HE0 (Hendrycks et al., 2019) 0.76 96.35 95.68 20.01 87.11 54.92 WideResNet-28-10
CL0 (Kannan et al., 2018) 0.77 95.93 96.98 20.01 81.12 40.08 ResNet-18
RE80 (Rebuffi et al., 2021) 0.77 97.33 95.70 13.87 87.33 60.73 WideResNet-28-10
PA20 (Pang et al., 2022) 0.78 97.65 96.39 14.40 88.61 61.04 WideResNet-28-10
AD20 (Addepalli et al., 2022) 0.81 97.67 97.46 13.42 85.71 52.48 ResNet-18
AD10 (Addepalli et al., 2021) 0.82 97.86 97.68 13.26 80.24 51.06 ResNet-18

C
IF

A
R

10
0

HE1 (Hendrycks et al., 2019) 0.74 94.43 97.39 30.40 59.23 28.42 WideResNet-28-10
WU1 (Wu et al., 2020) 0.78 95.81 98.00 23.34 60.38 28.86 WideResNet-34-10
RE81 (Rebuffi et al., 2021) 0.80 96.87 98.30 18.06 62.41 32.06 WideResNet-28-10
DS1 (Debenedetti et al., 2023) 0.81 96.78 98.30 19.18 67.34 32.19 XCiT-S12
CU41 (Cui et al., 2023) 0.82 97.07 98.48 17.21 64.08 31.65 WideResNet-34-10
CU81 (Cui et al., 2023) 0.83 97.41 98.24 15.62 73.85 39.18 WideResNet-28-10
RI1 (Rice et al., 2020) 0.83 96.61 99.05 18.14 53.83 18.95 PreActResNet-18
PA21 (Pang et al., 2022) 0.83 97.66 98.82 13.83 63.66 31.08 WideResNet-28-10
WA81 (Wang et al., 2023) 0.83 97.51 98.28 14.96 72.58 38.83 WideResNet-28-10
AD21 (Addepalli et al., 2022) 0.84 97.46 98.92 16.00 65.45 27.67 ResNet-18
AD1 (Addepalli et al., 2021) 0.84 97.65 98.99 13.88 62.02 27.14 PreActResNet-18
RE11 (Rebuffi et al., 2021) 0.85 97.97 99.05 13.21 56.87 28.50 PreActResNet-18
RA11 (Rade & Moosavi-Dezfooli, 2021) 0.85 98.01 99.08 12.36 61.50 28.88 PreActResNet-18

Table 1: Correlations and vulnerable points detection performance at ϵ = 8/255 on different
adversarially trained models.
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Figure 4: Distribution of the correlation between input margins and logit margins in ℓ∞ with robust
accuracy. The strength of the correlation, which indicates the level of margin consistency, does not
depend on the robust accuracy. References on models are given in Table 1.

point to the representation of x in the feature space. In that case we will have ∥x− x′∥ = κ∥z− z′∥
which implies margin consistency. Experimentally, what we observe is that on the one hand, the input
margin and the distance between the feature representations of x and x′ (feature distance) correlate
and on the other hand, the feature distance and the logit margin also correlate (Fig. 5a and Fig. 5b
respectively).

3.3 Learning a Pseudo-Margin

For the two models that are weakly margin-consistent, we are proposing to directly learn a mapping
that maps the feature representation of a sample to a pseudo-margin that reflects the relative position
of the samples to the decision boundary in the input space. We use a learning scheme similar to
the one of Corbière et al. (2019), with a small ad hoc neural network for learning the confidence of
the instances. Given some samples with estimations of their input margins, the objective is to learn
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Figure 5: The correlations between the input margin, the distance between the feature representations
of samples and their closest adversaries (feature distance – ∥hψ(x)− hψ(x

′)∥), and the logit margin
may be due to the local isometry of the feature extractor. See Table 1 for the specific references on
the model ID. The correlations are given with standard error for the y-axis values in each interval.

to map their feature representation to a pseudo-margin that correlates with the input margins. This
learning task can be seen as a learning-to-rank problem. We use a simple learning-to-rank algorithm
for that purpose, which is a pointwise regression approach (He et al., 2008) relying on the mean
squared error as a surrogate loss.

For the experiment, we used a similar architecture and training protocol as (Corbière et al., 2019)
with a fully connected network with five dense layers of 512 neurons, with ReLU activations for the
hidden layers and a sigmoid activation at the output layer. We learn using 5000 examples sampled
randomly from the training set, with 20% (1000 examples) held as a validation. Fig. 6 and Table 2
show the improved correlation on the learned score compared to the logit margin for both models.
The correlations are given with standard error for the y-axis values in each interval. The network has
learned to recover the relative positions of the samples from the feature representation.

4 Related Work

Detection tasks in machine learning are found to be of three main types:

• Adversarial Detection The goal of adversarial detection (Xu et al., 2017; Carlini & Wagner,
2017) is to discriminate adversarial samples from clean and noisy samples. An adversarial example
is a malicious example found by adversarially attacking a sample; it has a different class while
being close to the original sample. A vulnerable (non-robust) sample is a normal sample that
admits an adversarial example close to it. The two detection tasks are very distinct. Adversarial
detection is a defence mechanism like adversarial training; Tramer (2022) has established that both
tasks are equivalent problems with the same difficulty.

• Out-of-Distribution (OOD) detection In OOD detection (Hendrycks & Gimpel, 2017; Peng
et al., 2024; Yang et al., 2021), the objective is to detect instances far from the distribution of the
training data. These are often instances with different labels from the training labels or instances
with the same label as training labels but with a covariate shift. For example, for a model trained
on the CIFAR10 dataset, samples from the SVHN dataset (Netzer et al., 2011) or the corrupted
version of CIFAR10-C (Hendrycks & Dietterich, 2019) are OOD samples for such a model.

• Misclassification Detection (MisD) It consists in detecting whether the classifier’s prediction
is incorrect. This is also referred to as Failure Detection or Trustworthiness Detection (Corbière
et al., 2019; Jiang et al., 2018; Luo et al., 2021; Granese et al., 2021; Zhu et al., 2023). MisD is
often used for selective classification (classification with a reject option) (Geifman & El-Yaniv,
2017) to abstain from predicting samples on which the model is likely to be wrong. A score for
non-robust detection cannot tell if the sample is incorrect, as a vulnerable sample could be from
any side of the decision boundary.

Formal robustness verification aims at certifying whether a given sample is ϵ-robust or if it is not
an adversarial counter-example can be provided (Brix et al., 2023b). Some complete exact methods
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Figure 6: Correlation improvement of the learned pseudo-margin over the logit margin for DI0 (Ding
et al., 2020) and XU80 (Xu et al., 2023).

Model ID Margin Kendall tau (↑) AUROC (↑) AUPR (↑) FPR@95 (↓) Acc. Rob. Acc

DI0 (Ding et al., 2020) Logit margin 0.28 67.49 70.91 82.56 84.36 41.44Learned pseudo-margin 0.57 88.49 89.04 51.13

XU80 (Xu et al., 2023) Logit margin 0.43 83.30 80.50 83.42 93.69 63.89Learned pseudo-margin 0.62 93.66 90.22 33.00

Table 2: Comparison of the correlation and detection performance between the actual logit margin and
the pseudo-margin learned. The models are initially weakly margin-consistent, but the pseudo-margin
learned from feature representations simulates the margin consistency with higher correlation and
better discriminative power.

based on solving Satisfiability Modulo Theory problems (Katz et al., 2017; Carlini et al., 2017; Huang
et al., 2017) or Mixed-Integer Linear Programming (Cheng et al., 2017; Lomuscio & Maganti, 2017;
Fischetti & Jo, 2017) provide formal certification given enough time. However, in practice, they are
tractable only up to 100,000 activations (Tjeng et al., 2019). Incomplete but effective methods based
on linear and convex relaxation methods and Branch-and-Bound methods (Zhang et al., 2018; Salman
et al., 2019; Xu et al., 2020, 2021; Zhang et al., 2022; Shi et al., 2023) are faster but conservative,
without guaranteed certifications even if given enough time. Scaling them to bigger architectures
such as WideResNets and large Transformers is still challenging even with GPU accelartion(Brix
et al., 2023a; König et al., 2024). Weng et al. (2018) converts the problem of finding the robust radius
(input margin) as a local Lipschitz constant estimation problem. Computing the Lipschitz constant of
Deep Nets is NP-hard (Virmaux & Scaman, 2018) and Jordan & Dimakis (2020) proved that there is
no efficient algorithm to compute the local Lipschitz constant. The estimation provided by Weng
et al. (2018) requires random sampling and remains computationally expensive to obtain a good
approximation. Vulnerability detection with margin-consistent models does not provide certificates
but an empirical estimation of the robustness of a sample as evaluated by adversarial attacks. At scale,
it can help filter the samples to undergo formal verification and a more thorough adversarial attack
for resource prioritization.

5 Limitations and Perspectives

Vulnerability detection scope The scope of this work is ℓp robustness measured by the input space
margin; the minimum distortion that changes the model’s decision while this does not give a full
view of the ℓp robustness. Samples may be at the same distance to the decision boundary and have
unequal unsafe neighbourhoods given by an average estimation over the ϵ-neighbourhood considered.
The average estimation of local robustness for a given ϵ-neighborhood remains an open problem, so
whether it is possible to extract other notions of robustness from the feature representation efficiently
could be a potential avenue for further exploration.

Attack-based verification The margin consistency property does not rely on attacks; however,
its verification and the learning of a pseudo-margin with an attack-based estimation may not be
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possible if the model cannot be attacked on a sufficient number of samples. The assumption is that
we can always successfully provide the closest point to the decision with a sufficient budget. This is a
reasonable assumption since the studied models are not perfectly robust, and the empirical evidence
so far with adaptive attacks is that no defence is foolproof, which justifies the need to detect the
non-robust samples. It might occur that we need to combine with an attack such as CW-attack (Carlini
& Wagner, 2016) to find the closest adversarial sample.

Influence of terminal phase of training The work of Papyan et al. (2020) shows that when deep
neural network classifiers are trained beyond zero training error and beyond zero cross-entropy loss
(aka terminal phase of training), they fall into a state known as neural collapse. Neural collapse is a
state where the within-class variability of the feature representations collapses to their class means,
the class means, and the classifiers become self-dual and converge to a specific geometric structure,
an equiangular tight frame (ETF) simplex, and the network classifier converges to nearest train class
center. This implies that we may lose the margin consistency property. While neural collapse predicts
that all representations collapse on their class mean, in practice, perfect collapse is not quite achieved,
and it is precisely the divergence of a representation from its class mean (or equivalently its wi)
which encodes the information we seek about the distance to the decision boundary in the input space.
Exploring the impact of the neural collapse on margin consistency as models tend toward a collapsed
state could provide valuable insights into generalization and adversarial robustness.

Adaptaptive attacks and adversarial examples In this paper, we study the margin consistency
of models on their training distribution by reporting the Kendall rank correlation between the logit
margin and the input margin on the test set. The study of this property on inputs from a different
distribution or specifically crafted examples is left for future research. However, we observe that the
adversarial examples used for the input margin estimation have significantly smaller logit margins
than the detection thresholds (see Table 4 in appendix D). This indicates that these specific adversarial
examples are indeed identified as non-robust instances, together with clean non-robust samples.

6 Conclusion

This work addresses the question of efficiently estimating local robustness in the ℓp sense at a
per-instance level in robust deep neural classifiers in deployment scenarios. We introduce margin
consistency as a necessary and sufficient condition to use the logit margin of a deep classifier as a
reliable proxy estimation of the input margin for detecting non-robust samples. Our investigation of
various robustly trained models shows that they have high margin consistency, which leads to a high
performance of the logit margins in detecting vulnerable samples to adversarial attacks. We also find
that margin consistency does not always hold, with some models having a weak correlation between
the input margin and the logit margin. In such cases, we show that it is possible to learn to map the
feature representation to a better-correlated pseudo-margin that simulates the margin consistency
and performs better on vulnerability detection. Finally, we present some limitations of this work,
mainly the scope of robustness, the attack-based verification, the impact of neural collapse in terminal
phases of training, and vulnerability to adaptive attacks. Beyond its highly practical importance, we
see this as a motivation to extend the analysis of robust models and the properties of their feature
representations in the context of vulnerability detection.
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Evasion attacks against machine learning at test time. In Joint European conference on machine
learning and knowledge discovery in databases, pp. 387–402. Springer, 2013.

Brix, C., Bak, S., Liu, C., and Johnson, T. T. The fourth international verification of neural networks
competition (vnn-comp 2023): Summary and results. arXiv preprint arXiv:2312.16760, 2023a.

Brix, C., Müller, M. N., Bak, S., Johnson, T. T., and Liu, C. First three years of the international
verification of neural networks competition (vnn-comp). International Journal on Software Tools
for Technology Transfer, 25(3):329–339, 2023b.

Carlini, N. and Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp.
3–14, 2017.

Carlini, N. and Wagner, D. A. Towards evaluating the robustness of neural networks. 2017 IEEE
Symposium on Security and Privacy (SP), pp. 39–57, 2016.

Carlini, N., Katz, G., Barrett, C., and Dill, D. L. Provably minimally-distorted adversarial examples.
arXiv preprint arXiv:1709.10207, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. Unlabeled data improves
adversarial robustness. Advances in neural information processing systems, 32, 2019.

Chattamvelli, R. Correlation in Engineering and the Applied Sciences: Applications in R. Springer
Nature, 2024.

Cheng, C.-H., Nührenberg, G., and Ruess, H. Maximum resilience of artificial neural networks. In
Automated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017,
Pune, India, October 3–6, 2017, Proceedings 15, pp. 251–268. Springer, 2017.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks: Improving
robustness to adversarial examples. In International conference on machine learning, pp. 854–863.
PMLR, 2017.

Corbière, C., Thome, N., Bar-Hen, A., Cord, M., and Pérez, P. Addressing failure prediction by
learning model confidence. Advances in Neural Information Processing Systems, 32, 2019.

Croce, F. and Hein, M. Minimally distorted adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, pp. 2196–2205. PMLR, 2020a.

Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR,
2020b.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal,
P., and Hein, M. Robustbench: a standardized adversarial robustness benchmark. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
URL https://openreview.net/forum?id=SSKZPJCt7B.

Cui, J., Tian, Z., Zhong, Z., Qi, X., Yu, B., and Zhang, H. Decoupled kullback-leibler divergence
loss. arXiv preprint arXiv:2305.13948, 2023.

11

https://openreview.net/forum?id=k71IGLC8cfc
https://openreview.net/forum?id=SSKZPJCt7B


Debenedetti, E., Sehwag, V., and Mittal, P. A light recipe to train robust vision transformers. In 2023
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pp. 225–253. IEEE,
2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.
Ieee, 2009.

Ding, G. W., Sharma, Y., Lui, K. Y. C., and Huang, R. Mma training: Direct input space margin max-
imization through adversarial training. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HkeryxBtPB.

Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A., and Seshia, S. A. A formalization of robustness
for deep neural networks. arXiv preprint arXiv:1903.10033, 2019.

Elsayed, G., Krishnan, D., Mobahi, H., Regan, K., and Bengio, S. Large margin deep networks for
classification. Advances in neural information processing systems, 31, 2018.

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and Tsipras, D. Robustness (python library), 2019.
URL https://github.com/MadryLab/robustness.

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., and Song, D.
Robust physical-world attacks on machine learning models. arXiv preprint arXiv:1707.08945, 2
(3):4, 2017.

Fawzi, A., Fawzi, H., and Fawzi, O. Adversarial vulnerability for any classifier. Advances in neural
information processing systems, 31, 2018.

Fischetti, M. and Jo, J. Deep neural networks as 0-1 mixed integer linear programs: A feasibility
study. arXiv preprint arXiv:1712.06174, 2017.

Geifman, Y. and El-Yaniv, R. Selective classification for deep neural networks. Advances in neural
information processing systems, 30, 2017.

Gnanasambandam, A., Sherman, A. M., and Chan, S. H. Optical adversarial attack. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 92–101, 2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples.
In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6572.

Gourdeau, P., Kanade, V., Kwiatkowska, M., and Worrell, J. On the hardness of robust classification.
The Journal of Machine Learning Research, 22(1):12521–12549, 2021.

Granese, F., Romanelli, M., Gorla, D., Palamidessi, C., and Piantanida, P. Doctor: A simple method
for detecting misclassification errors. Advances in Neural Information Processing Systems, 34:
5669–5681, 2021.

Han, T., Srinivas, S., and Lakkaraju, H. Efficient estimation of local robustness of machine learning
models. In ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023.
URL https://openreview.net/forum?id=ZGSfAElJmp.

He, C., Wang, C., Zhong, Y.-X., and Li, R.-F. A survey on learning to rank. In 2008 International
Conference on Machine Learning and Cybernetics, volume 3, pp. 1734–1739. Ieee, 2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HJz6tiCqYm.

12

https://openreview.net/forum?id=HkeryxBtPB
https://github.com/MadryLab/robustness
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=ZGSfAElJmp
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=HJz6tiCqYm


Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=Hkg4TI9xl.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training can improve model robustness and
uncertainty. In International conference on machine learning, pp. 2712–2721. PMLR, 2019.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety verification of deep neural networks. In
International conference on computer aided verification, pp. 3–29. Springer, 2017.

Jiang, H., Kim, B., Guan, M., and Gupta, M. To trust or not to trust a classifier. Advances in neural
information processing systems, 31, 2018.

Jordan, M. and Dimakis, A. G. Exactly computing the local lipschitz constant of relu networks.
Advances in Neural Information Processing Systems, 33:7344–7353, 2020.

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. Reluplex: An efficient smt solver
for verifying deep neural networks. In Computer Aided Verification: 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pp. 97–117. Springer,
2017.

König, M., Bosman, A. W., Hoos, H. H., and van Rijn, J. N. Critically assessing the state of the art in
neural network verification. Journal of Machine Learning Research, 25(12):1–53, 2024.

Krizhevsky, A. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R. B., and Jacobsen, J.-H. Preventing gradient
attenuation in lipschitz constrained convolutional networks. Advances in neural information
processing systems, 32, 2019.

Liu, F., Han, B., Liu, T., Gong, C., Niu, G., Zhou, M., Sugiyama, M., et al. Probabilistic margins for
instance reweighting in adversarial training. Advances in Neural Information Processing Systems,
34:23258–23269, 2021.

Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward relu neural
networks. arXiv preprint arXiv:1706.07351, 2017.

Luo, Y., Wong, Y., Kankanhalli, M. S., and Zhao, Q. Learning to predict trustworthiness with steep
slope loss. Advances in Neural Information Processing Systems, 34:21533–21544, 2021.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJzIBfZAb.

Mickisch, D., Assion, F., Greßner, F., Günther, W., and Motta, M. Understanding the decision
boundary of deep neural networks: An empirical study. arXiv preprint arXiv:2002.01810, 2020.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2574–2582, 2016.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A. Y., et al. Reading digits in natural
images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, pp. 4. Granada, 2011.

Pang, T., Lin, M., Yang, X., Zhu, J., and Yan, S. Robustness and accuracy could be reconcilable by
(proper) definition. In International Conference on Machine Learning, pp. 17258–17277. PMLR,
2022.

13

https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=rJzIBfZAb


Papyan, V., Han, X., and Donoho, D. L. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663,
2020.

Peng, B., Luo, Y., Zhang, Y., Li, Y., and Fang, Z. Conjnorm: Tractable density estimation for out-of-
distribution detection. In Proceedings of the International Conference on Learning Representations,
2024.

Rade, R. and Moosavi-Dezfooli, S.-M. Helper-based adversarial training: Reducing excessive margin
to achieve a better accuracy vs. robustness trade-off. In ICML 2021 Workshop on Adversarial
Machine Learning, 2021. URL https://openreview.net/forum?id=BuD2LmNaU3a.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann, T. Fixing data
augmentation to improve adversarial robustness. arXiv preprint arXiv:2103.01946, 2021.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversarially robust deep learning. In International
Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Salman, H., Yang, G., Zhang, H., Hsieh, C.-J., and Zhang, P. A convex relaxation barrier to tight
robustness verification of neural networks. Advances in Neural Information Processing Systems,
32:9835–9846, 2019.

Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C., Chiang, M., and Mittal, P. Robust
learning meets generative models: Can proxy distributions improve adversarial robustness? arXiv
preprint arXiv:2104.09425, 2021.

Serrurier, M., Mamalet, F., González-Sanz, A., Boissin, T., Loubes, J.-M., and Del Barrio, E.
Achieving robustness in classification using optimal transport with hinge regularization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
505–514, 2021.

Seshia, S. A., Desai, A., Dreossi, T., Fremont, D. J., Ghosh, S., Kim, E., Shivakumar, S., Vazquez-
Chanlatte, M., and Yue, X. Formal specification for deep neural networks. In International
Symposium on Automated Technology for Verification and Analysis, pp. 20–34. Springer, 2018.

Shi, Z., Jin, Q., Kolter, J. Z., Jana, S., Hsieh, C.-J., and Zhang, H. Formal verification for neural
networks with general nonlinearities via branch-and-bound. 2nd Workshop on Formal Verification
of Machine Learning (WFVML 2023), 2023.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R.
Intriguing properties of neural networks. In Bengio, Y. and LeCun, Y. (eds.), 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGIdiRqtm.

Tramer, F. Detecting adversarial examples is (nearly) as hard as classifying them. In International
Conference on Machine Learning, pp. 21692–21702. PMLR, 2022.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Improving adversarial robustness requires
revisiting misclassified examples. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rklOg6EFwS.

Wang, Z., Pang, T., Du, C., Lin, M., Liu, W., and Yan, S. Better diffusion models further improve
adversarial training. In International Conference on Machine Learning (ICML), 2023.

Weng, T.-W. Proven: Verifying robustness of neural networks with a probabilistic approach - pow-
erpoint presentation. https://icml.cc/media/Slides/icml/2019/grandball(11-11-00)
-11-12-15-4739-proven_verifyi.pdf, 2019. (Accessed on 05/23/2023).

14

https://openreview.net/forum?id=BuD2LmNaU3a
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=rklOg6EFwS
https://icml.cc/media/Slides/icml/2019/grandball(11-11-00)-11-12-15-4739-proven_verifyi.pdf
https://icml.cc/media/Slides/icml/2019/grandball(11-11-00)-11-12-15-4739-proven_verifyi.pdf


Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao, Y., Hsieh, C.-J., and Daniel, L. Evaluating
the robustness of neural networks: An extreme value theory approach. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=BkUHlMZ0b.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation helps robust generalization.
Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.-W., Huang, M., Kailkhura, B., Lin, X., and Hsieh,
C.-J. Automatic perturbation analysis for scalable certified robustness and beyond. Advances in
Neural Information Processing Systems, 33, 2020.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., and Hsieh, C.-J. Fast and Complete: Enabling
complete neural network verification with rapid and massively parallel incomplete verifiers. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=nVZtXBI6LNn.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural
networks. arXiv preprint arXiv:1704.01155, 2017.

Xu, Y., Sun, Y., Goldblum, M., Goldstein, T., and Huang, F. Exploring and exploiting decision
boundary dynamics for adversarial robustness. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=aRTKuscKByJ.

Yang, J., Zhou, K., Li, Y., and Liu, Z. Generalized out-of-distribution detection: A survey. arxiv.
arXiv preprint arXiv:2110.11334, 2021.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and Daniel, L. Efficient neural network robustness
certification with general activation functions. Advances in Neural Information Processing Systems,
31:4939–4948, 2018. URL https://arxiv.org/pdf/1811.00866.pdf.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. Theoretically principled trade-off
between robustness and accuracy. In International conference on machine learning, pp. 7472–7482.
PMLR, 2019.

Zhang, H., Wang, S., Xu, K., Wang, Y., Jana, S., Hsieh, C.-J., and Kolter, Z. A branch and
bound framework for stronger adversarial attacks of ReLU networks. In Proceedings of the 39th
International Conference on Machine Learning, volume 162, pp. 26591–26604, 2022.

Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., and Kankanhalli, M. Geometry-aware instance-
reweighted adversarial training. arXiv preprint arXiv:2010.01736, 2020.

Zhong, Z., Tian, Y., and Ray, B. Understanding local robustness of deep neural networks under natural
variations. In International Conference on Fundamental Approaches to Software Engineering, pp.
313–337. Springer, Cham, 2021.

Zhu, F., Cheng, Z., Zhang, X.-Y., and Liu, C.-L. Openmix: Exploring outlier samples for misclassifi-
cation detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12074–12083, 2023.

15

https://openreview.net/forum?id=BkUHlMZ0b
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=aRTKuscKByJ
https://arxiv.org/pdf/1811.00866.pdf


A Proof of Theorem 1

Theorem 1. If a model is margin-consistent, then for any robustness threshold ϵ, there exists a
threshold λ for the logit margin dout that perfectly separates non-robust samples and robust samples.
Conversely, if for any robustness threshold ϵ, dout admits a threshold λ that perfectly separates
non-robust samples from robust samples, then the model is margin-consistent.

Proof. Formally, for a finite sample S and nonegative values ϵ ≥ 0, λ ≥ 0, we define:

ASϵ := {x ∈ S : din(x) ≤ ϵ} and BS
λ := {x ∈ S : dout(x) ≤ λ}.

We say that dout perfectly separates non-robust samples from robust samples if for any finite sample
S ⊆ X and every ϵ ≥ 0 there exists λ ≥ 0 such that ASϵ = BS

λ .

Necessity: We proceed by contraposition and assume that the model is not margin-consistent, i.e.,
there exist two samples x1 and x2 such that dout(x1) ≤ dout(x2) and din(x1) > din(x2). By taking
S = {x1,x2} and ϵ = din(x2) we have that ASϵ = {x2}. However for any λ ≥ 0, if x2 ∈ BS

λ , then
dout(x1) ≤ dout(x2) ≤ λ and so x1 ∈ BS

λ . Therefore dout does not perfectly separates non-robust
samples from robust samples.

Sufficiency: Let’s assume the model is margin-consistent. Let S be a finite sample and consider a
threshold ϵ. Let x0 be an element of the finite set ASϵ such that din(x0) = max{din(x) : x ∈ ASϵ }
and let λ = dout(x0). Since the model is margin-consistent, then for every x ∈ S:

x ∈ ASϵ ⇔ din(x) ≤ ϵ ⇔ din(x) ≤ din(x0) ⇔ dout(x) ≤ dout(x0)︸ ︷︷ ︸
margin consistency

⇔ dout(x) ≤ λ ⇔ x ∈ BS
λ .

This means we have ASϵ = BS
λ0

, which shows that dout perfectly separates non-robust samples from
robust samples.

Our formulation of perfect separation using finite samples is not fundamentally necessary, however it
avoids dealing with the intricacy of the continuum.

B Detection Performance with Different Values of ϵ

We present in Fig. 7 the performance of the detection for various values of the robustness threshold.
We can see that the high margin consistency allows the logit margin to be a good proxy for detection
at various thresholds. Note that below ϵ = 2/255 and beyond ϵ = 16/255, the ratio of vulnerable
points to non-vulnerable points becomes too imbalanced, with little to no positive instances beyond
ϵ = 32/255.

C Equidistance Assumption of the Linear Classifiers

In Eq. 3 in Sec. 2.1, we show that we can approximate the exact feature margin by the logit margin
when the classifiers wk are equidistant, i.e. ∥wi −wj∥ = C whenever i ̸= j. The results in Table 3
show that using the logit margin instead of the exact minimum feature margin has a negligible effect
on the results. However, computing the exact feature margin requires computing the minimum over
K − 1 pairs of scaled logit differences. The approximation provided by the logit margin thereby
circumvents the computational overhead of the minimum search, which can take a second instead
of just microseconds for inference. This difference can add up to hours at scale, offering scalability
when dealing with a large number of classes. We additionally provide boxplots for the K(K − 1)/2
distances between pairs of classifiers for each model (45 for CIFAR10 and 4950 for CIFAR100) in
Fig. 8 and 9.

D Logit Margins of Adversarial Examples

Adversarial examples are perturbed samples that are close to the decision boundary. Therefore, we
would expect these samples to have a very small logit margin for strongly margin-consistent models.
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Figure 7: Variation of AUROC score for different threshold values ϵ.

Here, we study the adversarial examples we used to estimate the input margin. In Table 4, we present
the 99th percentile of logit margins of adversarial examples and the detection threshold selected to
obtain 95% True Positive Rate. We can observe that the values of the adversarial logit margins are
significantly smaller than the detection threshold, so they would be detected as non-robust – just like
clean samples that lie close to the decision boundary.

E Results on ImageNet and ℓ2-robust models on CIFAR10

Table 5 shows the results with ℓ∞-robust models on ImageNet (Deng et al., 2009), a larger dataset,
and results on ℓ2-robust models (only available on CIFAR10 in Robustbench). The results extend
well in both situations.
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Model τ Lm τ Fm AUROC Lm AUROC Fm AUPR Lm AUPR Fm FPR95 Lm FPR95 Fm Acc Rob. Acc Architecture

C
IF

A
R

10

DI0 0.28 0.32 67.49 70.75 70.91 74.28 82.56 80.57 84.36 41.44 WideResNet-28-4
XU80 0.43 0.45 83.30 84.30 80.50 82.25 83.42 82.44 93.69 63.89 WideResNet-28-10
MR0 0.68 0.70 92.95 93.73 94.92 95.54 29.76 27.43 79.69 39.12 ResNet-18
AL0 0.72 0.74 94.67 95.12 95.98 96.28 24.93 22.21 80.38 40.21 ResNet-18
CU80 0.73 0.75 96.87 97.52 94.42 95.47 17.90 14.77 92.16 67.73 WideResNet-28-10
WA80 0.74 0.76 96.82 97.50 94.33 95.43 17.60 14.42 92.44 67.31 WideResNet-28-10
SE10 0.74 0.74 96.03 96.59 94.66 95.52 19.13 16.85 84.59 55.54 ResNet-18
EN0 0.74 0.76 95.16 95.90 95.07 95.85 24.10 21.22 87.03 49.25 ResNet-50
TR0 0.74 0.77 94.63 95.52 96.13 96.74 30.93 25.73 80.72 42.23 ResNet-18
DS0 0.75 0.75 95.80 95.93 95.08 95.23 24.65 23.34 90.06 56.14 XCiT-S12
MD0 0.75 0.75 95.36 95.29 97.00 97.00 23.23 23.75 81.85 36.91 ResNet-18
ZH0 0.75 0.77 95.86 96.35 95.65 96.14 24.91 21.74 84.92 53.08 WideResNet-34-10
AD10 0.82 0.84 97.86 98.26 97.68 98.09 13.26 11.50 80.24 51.06 ResNet-18

C
IF

A
R

10
0

HE1 0.74 0.74 94.43 94.41 97.39 97.39 30.40 30.40 59.23 28.42 WideResNet-28-10
WU1 0.78 0.79 95.81 95.83 98.00 98.01 23.34 22.55 60.38 28.86 WideResNet-34-10
RE812 0.80 0.80 96.87 96.91 98.30 98.32 18.06 17.49 62.41 32.06 WideResNet-28-10
DS1 0.81 0.81 96.78 96.78 98.30 98.30 19.18 18.46 67.34 32.19 XCiT-S12
CU41 0.82 0.82 97.07 97.09 98.48 98.49 17.21 17.35 64.08 31.65 WideResNet-34-10
CU81 0.83 0.83 97.41 97.43 98.24 98.25 15.62 15.67 73.85 39.18 WideResNet-28-10
RI1 0.83 0.83 96.61 96.62 99.05 99.06 18.14 17.70 53.83 18.95 PreActResNet-18
PA21 0.83 0.83 97.66 97.70 98.82 98.84 13.83 13.80 63.66 31.08 WideResNet-28-10
WA81 0.83 0.83 97.51 97.50 98.28 98.27 14.96 14.86 72.58 38.83 WideResNet-28-10
AD21 0.84 0.84 97.46 97.48 98.92 98.93 16.00 15.36 65.45 27.67 ResNet-18
AD1 0.84 0.84 97.65 97.67 98.99 98.99 13.88 13.34 62.02 27.14 PreActResNet-18
RE11 0.85 0.84 97.97 97.88 99.05 99.01 13.21 13.36 56.87 28.50 PreActResNet-18
RA11 0.85 0.85 98.01 98.01 99.08 99.08 12.36 12.20 61.50 28.88 PreActResNet-18

Table 3: Correlations between the input margin and the logit margin (Lm) or the exact Feature margin
(Fm) and detection scores on CIFAR10 (ℓ∞, ϵ = 8/255).

F Additional Applications

F.1 Sample Efficient Robust Accuracy Estimation

Margin consistency enables empirical robustness evaluation over an arbitrarily large test set by only
attacking a small subset of test samples. For a robustness evaluation at threshold ϵ (e.g., ϵ = 8/255
in ℓ∞ norm on CIFAR10 and CIFAR100), we randomly sample a small subset of the test set and
determine the threshold λ for the logit margin that best corresponds to ϵ. We propose to use this
threshold λ to estimate the standard robust accuracy by evaluating the proportion of test samples
which are correctly classified and whose logit margin is above λ (see Algorithm 1). A naive way to set

Algorithm 1 Sample Efficient Robustness Estimation with Margin Consistency

1: Input: Test Dataset (X,Y ) ∈ (X × Y)N , Robustness threshold ϵ > 0, Subset size n ≪ N .
2: Output: Robust Accuracy Estimation Ar

3: - Select uniformly at random a subset Xn of n samples from X .
4: - Compute the estimations of the input margins on Xn, Dn = {d̂in(x) : x ∈ Xs}
5: - Create ground truth labels for vulnerability at threshold ϵ i.e. 1[d̂in(x)≤ϵ](x), for x ∈ Xs.
6: - Determine the threshold λ of dout that gives best approximation of robust accuracy on Xs.
7: - Ar = |{x ∈ X : dout(x) > λ and ŷ(x) = y}|/N

the threshold λ at line 6 of Algorithm 1 would be to set it to the detection threshold at α = 95% TPR
or α = 90% TPR, but the logit margin threshold could vary from one model to another; therefore
a better way is to select it by tuning over values α ≥ 0.80 that gives the best approximation of
the robust accuracy in terms of the absolute error on the small subset Xs. The same idea allows
estimating a model’s vulnerability over a large dataset without the labels.

We show that this leads to an accurate estimation of the robust accuracy of the investigated models
evaluated with over 10, 000 by attacking only a random subset of size 500. Fig. 10 shows the absolute
error of the estimation obtained using 500 samples. As expected, the estimation over the two weakly
margin consistent models is not accurate while having a relatively small absolute difference on the
strongly margin consistent models.

F.2 Robustness Bias Analysis using the Logit Margin

Robust models often display robustness bias, namely a disparity of robustness across classes. Interest-
ingly, in a strongly margin-consistent model (see Fig. 11, top row), we show that these discrepancies
across classes with respect to input margin are reflected in the logit margin. Additionally, the margin
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Model ID
Logit margin of
Adversarial Examples
(99th percentile)

Threshold of logit margin
at 95% TPR for detection

C
IF

A
R

10

AD1 0.01 1.42
DS0 0.61 2.19
DM0 1.64 3.01
MR0 0.04 8.35
MD0 0.06 11.04
SE10 0.06 2.83
PA20 0.14 1.69
HE0 0.07 2.82
TR0 0.07 4.11
CL0 0.03 5.76
EN0 0.13 5.06
AL0 0.03 5.11
AD20 0.03 1.33
CU80 1.32 2.02
RE802 0.13 1.87
ZH0 0.17 2.87
WA80 0.70 2.14
AD10 0.01 1.20

C
IF

A
R

10
0

AD1 0.01 1.42
AD21 0.02 1.44
CU81 0.13 2.09
CU41 0.04 1.95
DS1 0.13 1.36
HE1 0.06 1.81
PA21 0.08 1.56
RA11 0.08 1.77
RE812 0.17 1.73
RE11 0.07 1.40
RI1 0.03 3.42
WA81 0.09 1.59
WU1 0.06 2.02

Table 4: Logits of the adversarial examples are very small compared to the logit margin for the logit
margin threshold for the detection at epsilon=8/255. See Table 1 for the specific references on the
model ID.

Model ID Kendall tau AUROC AUPR FPR95 Acc Rob. Acc Architecture

CIFAR10 (ℓ2)

DI02 0.66 95.91 93.05 21.94 88.02 66.09 WideResNet-28-4
AU02 0.69 95.59 87.41 19.30 91.08 72.91 ResNet-50
SE102 0.72 97.07 90.99 13.25 89.76 74.41 ResNet-18
WA802 0.74 98.55 93.59 8.00 95.16 83.68 WideResNet-28-10
RI02 0.74 96.82 92.86 13.98 88.67 67.68 PreActResNet-18
EN02 0.75 96.92 92.78 13.25 90.83 69.24 ResNet-50
RO02 0.76 98.19 96.51 10.15 89.05 66.44 WideResNet-28-10
RE802 0.77 98.72 95.02 6.66 91.79 78.80 WideResNet-28-10
RE102 0.79 98.58 95.32 7.04 90.33 75.86 PreActResNet-18
RA102 0.80 99.00 96.78 5.53 90.57 76.15 PreActResNet-18

ImageNet (ℓ∞)

SSI0 0.63 90.95 90.06 36.47 72.56 48.08 ViT-S + ConvStem
ENI0 0.73 94.95 97.34 25.07 62.56 29.22 ResNet-50
SAI1 0.74 95.00 96.50 24.88 64.02 34.96 ResNet-50
SAI0 0.77 95.16 97.99 29.31 52.92 25.32 ResNet-18
WOI0 0.78 96.28 98.34 25.65 55.62 26.24 ResNet-50

Table 5: Correlations between the input margin and the logit margin and detection scores on CIFAR10
(ℓ2, ϵ = 0.5) and ImageNet (ℓ∞, ϵ = 4/255, 1000 samples). See Table 1 for the specific references
on the model ID.
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Figure 10: Estimations of the robust accuracy reported by Robustbench using logit margins with
only 500 samples are quite accurate both on CIFAR10 and CIFAR100 for strongly margin-consistent
models. The numbers indicate the absolute difference between the two values, averaged over ten
subsets. See Table 1 for the specific references on the model ID.
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Figure 11: Robustness bias analysis with the input margin (first column) vs the logit margin (second
column) and correlation scores per class (third column). We have a margin-consistent model on the
top row, and on the bottom row, we have a weakly margin-consistent model. On the first column (resp.
second column), each boxplot represents the distribution of the input margin (resp. logit margin)
for the corresponding CIFAR10 class. The dotted blue line indicates the threshold on the first two
columns and is the correlation score computed over all classes. The threshold λ in the second column
is the logit margin threshold at 95% TPR for detection at ϵ = 8/255. The robustness bias of the
strongly margin consistent model can be detected using the logit margin, unlike the weakly margin
consistent model.

consistency remains strong for each class. However, for a weakly margin-consistent model (Fig. 11,
bottom row), significant disparities exist between the correlations across classes, making using logit
margin as a proxy for input margin problematic.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All our experiments involve CIFAR10 and CIFAR100 datasets, and the majority
of models were loaded from the RobustBench model zoo (Croce et al., 2021) and a few
models are ResNet-18 (He et al., 2016) models that we trained on CIFAR10 with Standard
Adversarial Training (Madry et al., 2018), TRADES (Zhang et al., 2019), Logit Pairing
(ALP and CLP, Kannan et al. (2018)), and MART (Wang et al., 2019). The code is available
at: https://github.com/ngnawejonas/margin-consistency.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the experiments are based on standard datasets CIFAR10, CIFAR100
and models mainly provided on RobustBench model zoo (Croce et al., 2021), https://
github.com/RobustBench/robustbench. The code is available at: https://github.
com/ngnawejonas/margin-consistency.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the first part of the experiments, the parameters for estimating the input
margins are explained. In the second part, on learning a pseudo-margin, we specified the
architecture, dataset size, and training and validation splits and gave the reference for the
choices in the training protocol.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests, at least for the experiments that support the main claims of the paper.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The article details the computing resources used for the experiments.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

10. Broader Impacts
Question: Does the paper discuss potential positive and negative societal impacts of the
work performed?

Answer: [NA]

Justification: This work aims at detecting vulnerable unseen samples for robust trained
models. There is no obivous negative societal impact per se in this task, but as for any
predictive model, inexact predictions may impact downstream decisions and thus, model
quality must be taken into account to control such situations.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that produced code package and the datasets used for eval-
uation are carefully referenced (https://github.com/RobustBench/robustbench).

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code produced to evaluate our approach is documented and the information
about training and limitations are discussed in the paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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