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ABSTRACT

Deep neural networks can struggle to learn continually in the face of non-
stationarity, a phenomenon known as loss of plasticity. In this paper, we identify
underlying principles that lead to plastic algorithms. We provide theoretical results
showing that linear function approximation, as well as a special case of deep linear
networks, do not suffer from loss of plasticity. We then propose deep Fourier fea-
tures, which are the concatenation of a sine and cosine in every layer, and we show
that this combination provides a dynamic balance between the trainability obtained
through linearity and the effectiveness obtained through the nonlinearity of neural
networks. Deep networks composed entirely of deep Fourier features are highly
trainable and sustain their trainability over the course of learning. Our empirical
results show that continual learning performance can be improved by replacing
ReLU activations with deep Fourier features combined with regularization. These
results hold for different continual learning scenarios (e.g., label noise, class incre-
mental learning, pixel permutations) on all major supervised learning datasets used
for continual learning research, such as CIFAR10, CIFAR100, and tiny-ImageNet.

1 INTRODUCTION

Continual learning is a problem setting that moves past some of the rigid assumptions found in
supervised, semi-supervised, and unsupervised learning (??). In particular, the continual learning
setting involves learning from data sampled from a changing, non-stationary distribution rather
than from a fixed distribution. A performant continual learning algorithm faces a trade-off due to
its limited capacity: it should avoid forgetting what was previously learned while also being able
to adapt to new incoming data, an ability known as plasticity (?). Current approaches that use neural
networks for continual learning are not yet capable of making this trade-off due to catastrophic
forgetting (?) and loss of plasticity (???). The training of neural networks is in fact an active research
area in the theory literature for supervised learning (???), which suggests there is much left to be
understood in training neural networks continually. Compared to the relatively well-understood
problem setting of supervised learning, even the formalization of the continual learning problem
is an active research area (???). With these uncertainties surrounding current practice, we take a
step back to better understand the inductive biases used to build algorithms for continual learning.

One fundamental capability expected from a continual learning algorithm is its sustained ability to
update its predictions on new data. Recent work has identified the phenomenon of loss of plasticity in
neural networks in which stochastic gradient-based training becomes less effective when faced with
data from a changing, non-stationary distribution (?). Several methods have been proposed to address
the loss of plasticity in neural networks, with their success demonstrated empirically across both
supervised and reinforcement learning (????). Empirically, works have identified that the plasticity
of neural networks is sensitive to different components of the training process, such as the activation
function (?). However, little is known about what is required for learning with sustained plasticity.

The goal of this paper is to identify a basic continual learning algorithm that does not lose plasticity
in both theory and practice, rather than mitigating the loss of plasticity in existing neural network
architectures. Our focus is on loss of plasticity rather than catastrophic forgetting, because plasticity
is needed to sustain continual learning from new data. In particular, we investigate the effect of the
nonlinearity of neural networks on the loss of plasticity. While loss of plasticity is a well-documented
phenomenon in neural networks, previous empirical observations suggest that linear function
approximation is capable of learning continually without suffering from loss of plasticity (??). In
this paper, we prove that linear function approximation does not suffer from loss of plasticity and
can sustain their learning ability on a sequence of tasks. We then extend our analysis to a special
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Figure 1: A neural network with deep Fourier features in every layer approximately embeds
a deep linear network. A single layer using deep Fourier features linearly combines the inputs,
x, to compute the pre-activations, z, and each pre-activation is mapped to both a cos unit and a
sin unit (Left). For each pre-activation, either the sin unit (Middle) or the cos unit (Right) is
well-approximated by a linear function.

case of deep linear networks, which provide an interesting intermediate case between deep nonlinear
networks and linear function approximation. This is because deep linear networks are linear in
representation but nonlinear in gradient dynamics (?). We provide theoretical and empirical evidence
that general deep linear networks also do not suffer from loss of plasticity. The plasticity of deep
linear networks is surprising compared to the loss of plasticity of deep nonlinear networks. This
finding suggests that loss of plasticity is not necessarily caused by the nonlinear learning dynamics,
but a combination of nonlinear learning dynamics and nonlinear representations.

Given this seemingly natural advantage of linearity for continual learning, as well as its inherent
limitation to learning only linear representations, we explore how nonlinear networks can better
emulate the dynamics of deep linear networks to sustain plasticity. We hypothesize that, to effectively
learn continually, the neural network must balance between introducing too much linearity and
suffering from loss of deep representations and introducing too much nonlinearity and suffering from
loss of plasticity. In fact, we show that previous work partially satisfies this hypothesis, such as the
concatenated ReLU (?), leaky—-ReLU activations (?), and residual connections (?), but they fail at
striking this balance. Our results build on previous work that identified issues of unit saturation (?)
and unit linearization (?) as issues in continually training neural networks with common activation
functions. In particular, we generalize both to the problem of low unit sign entropy, which indicates a
lack of diversity in the activations as measured by the entropy of the sign of the hidden units. We show
that linear networks have high unit sign entropy, meaning that the sign of a hidden unit on different
inputs is positive on approximately half the inputs. In contrast, deep nonlinear networks with most
activation functions tend to have low unit sign entropy, which indicates saturation or linearization.

Periodic activation functions (?), like the sinusoid function (sin), are a notable exception for having
high unit sign entropy despite still suffering from loss of plasticity. Thus, in addition to unit sign
entropy, we demonstrate that the network’s activation function should be well-approximated by a
linear function. We propose deep Fourier features as a means of approximating linearity dynamically,
with every pre-activation being connected to two units, one of which will always be well-approximated
by a linear function. In particular, deep Fourier features concatenate a sine and a cosine activation in
each hidden layer. The resulting network is nonlinear while also approximately embedding a deep
linear network using all of its parameters. Deep Fourier features differ from previous approaches
that use Fourier features only in the input layer (???) or that use fixed Fourier feature basis (??). We
demonstrate that networks using these shallow Fourier features still exhibit a loss of plasticity. Only
by using deep Fourier features in every layer is the network capable of sustaining and improving
trainability in a continual learning setting. Using tiny-ImageNet (?), CIFAR10, and CIFAR100 (?),
we show that deep Fourier features can be used as a drop-in replacement for improving trainability
in commonly used neural network architectures. Furthermore, the trainability of deep Fourier
features enables training with a much larger regularization strength, leading to superior generalization
performance.

2 PROBLEM SETTING

We define a deep network, fp with a a parameter set, § = {W, bl}le, as a sequence of layers, in
which each layer applies a linear transformation followed by an element-wise activation function,
¢ in each hidden layer. The output of the network, fo(z) := hp(x), is defined recursively by
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hl = [hl,la . 7hl¢w] = [(;5(21’1)7 . 7¢(zl,w)] = ¢(Zl), and, Z] = Wlhl,1 + bl where w is the
width of the network, and hy = x. We refer to a particular element of the hidden layer’s output h; ;
as a unit. The deep network is a deep linear network when the activation function is the identity,
¢(z) = z. Linear function approximation is equivalent to a linear network with L = 1.

The problem setting that we consider is continual supervised learning, where the learner does not
have information about the task boundaries. Instead, at each iteration the learner has access to a
minibatch of observation-target pairs of size M, {x;, y; }2,. This minibatch is used to update the
parameters 6 of a neural network fy using a variant of stochastic gradient descent. The learning
problem is continual because the distribution from which the data is sampled, p(z, y), is changing.
For simplicity, we assume this non-stationarity changes the distribution over the input-target pairs
every T iterations. The data is sampled from a single distribution for 7" steps, and we refer to this
particular temporary stationary problem as a task, 7. The distribution over observations and targets
that defines a task 7 is denoted by p..

Loss of plasticity can refer to two related phenomena: loss of generalization (??) or loss of trainabil-
ity (??). We focus our theoretical analysis on the problem of loss of trainability, in which we evaluate
the neural network at the end of each task using samples from the most recent task distribution, p,,
as is commonly done in previous work (?). Loss of trainability refers to the problem where the neural
network is unable to sustain its initial performance on the first task to later tasks. Specifically, we
denote the optimisation objective by J(0) = E(, )~p. [¢(fo(x),y)], for some loss function ¢, and
task-specific data distribution p,. We use t to denote the iteration count of the learning algorithm,
and thus the current task number can be written as 7(t) = [¢/T'|.

3 TRAINABILITY AND LINEARITY

In this section, we show that, unlike nonlinear networks, linear networks do not suffer from loss of
trainability. That is, if the number of iterations in each task is sufficiently large, a linear network
sustain trainability on every task in the sequence. We then show theoretically that a special case of
deep linear networks also does not suffer from loss of trainability, and we empirically validate the
theoretical findings in more general settings. These results provide a theoretical basis for previous
work that uses a linear baseline in loss of plasticity experiments.

3.1 TRAINABILITY OF LINEAR FUNCTION APPROXIMATION

We first prove that loss of trainability does not occur with linear function approximation,
fo(z) = Wiz + b;. We prove this by showing that linear function approximators can sustain
learning on a sequence of tasks, with a large enough number of iterations per task. In particular,
the performance of the solution found on the 7-th task can be upper bounded on a quantity that is
independent of the solution found on the first 7 — 1 tasks. Linear function approximation avoids loss
of trainability because the optimisation problem on each task is convex (??), with a unique global
optimum, 65. We now state the theorem, which we prove in Appendix [B|

Theorem 1. Let 00"T) denote the linear weights learned at the end of the T-th task, with the
corresponding unique global minimum for task T being denoted by 0. Assuming the objective
Sfunction is p-strongly convex, the suboptimality gap for gradient descent on the T-th task is

2D(1 — ap)T
oT(1— (1 — ap)T)’

J.(00T)) — J.(67) <

where each task lasts for T iteration, D is the assumed bound on the parameters at the global
minimum for every task, and « is the step-size.

Intuitively, this theorem states that if the problem is bounded and effectively strongly convex due
to a finite number of iterations, then the optimisation dynamics are well-behaved for every task in
the bounded set. In particular, this means that the error on each task can be upper bounded by a
quantity independent of the initialization found on previous tasks. Thus, given enough iterations,
linear function approximation can learn continually without loss of trainability.

3.2 TRAINABILITY OF DEEP LINEAR NETWORKS

We now provide evidence that, similar to linear function approximation, deep linear networks also
do not suffer from loss of trainability. Unlike deep nonlinear networks, deep linear networks use
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linear activation functions in their hidden layers (??). This means that a deep linear network can
only represent linear functions. At the same time, its gradient update dynamics are nonlinear and
non-convex, similar to deep nonlinear neural networks (?). Our central claim here is that deep linear
networks under gradient descent dynamics avoid parameter configurations that would lead to loss of
trainability.

To simplify notation, without loss of generality, we combine the weights and biases into a single
parameter for each layer in the deep linear network , 0 = {61,... ,0.}, and fo(x) = 00,1 --- 01
We denote the product of weight matrices, or simply product matrix, as ¢ = 01,0;,_1 - - - 61, which
allows us to write the deep linear network in terms of the product matrix: fy(x) = 6. The problem
setup we use for the deep linear analysis follows previous work (?), and we provide additional
technical details for optimisation dynamics of deep linear networks in Appendix

We now provide evidence to suggest that, despite deep linear networks being nonlinear in their gradient
dynamics, they do not suffer from loss of trainability. We prove this for a special case of deep diagonal
linear networks, and provide empirical evidence to support this claim in general deep linear networks.

Theorem 2. Let fo(x) = 0p05_1---61x be a deep diagonal linear network where 0, =
Diag(0;.1,. .. ,0,.4). Then, a deep diagonal linear network converges on a sequence of tasks under
the same conditions for convergence in a single task (i.e., the conditions in ?).

Theorem 2] states that a deep diagonal linear network, a special case of general deep linear networks,
can converge to a solution on each task within a sequence of tasks. The proof, provided in Appendix
shows that the minimum singular value of the product matrix stays greater than zero, 7, (6) > 0.
Hence, deep diagonal linear networks do not suffer from loss of trainability. This result provides
further evidence suggesting that linearity might be an effective inductive bias for learning continually.

While the analysis considers a special case of deep linear networks, namely deep diagonal networks,
we note that this is a common setting for the analysis of deep linear networks more generally (??). In
particular, the analysis is motivated by the fact that, under certain conditions, the evolution of the
deep linear network parameters can be analyzed through the independent singular mode dynamics
(?), which simplifies the analysis of deep linear networks to deep diagonal linear networks.

3.3 EMPIRICAL EVIDENCE FOR TRAINABILITY OF GENERAL DEEP LINEAR NETWORKS

In the previous section, we proved that a special 10
case of deep linear networks do not suffer from
loss of trainability. We now provide additional 08

empirical evidence that general deep linear
networks do not suffer from loss of trainability.
To do so, we use a linearly separable subset
of the MNIST dataset (?), in which the labels
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of each image are randomized every 100 0.4
epochs. For this experiment, the data is linearly
separable so that even a linear baseline can 02

fit the data if given enough iterations. While
MNIST is a simple classification problem, mem- 0 50 100 150
orizing random labels highlights the difficulties Number of tasks
associated with maintaining trainability (see ??).
We emphasize that the goal here is merely to
validate that linear networks remain trainable in
continual learning. We also provide results with
traditional nonlinear neural networks on the
same problem, showing that they suffer from
loss of trainability in this simple problem. Later
in Section[5] we extend our investigation of loss
of trainability to larger-scale benchmarks.

Figure 2: Trainability on a linearly separable
task. The higher opacity corresponds to deeper
networks, ranging from {1, 2, 4, 8, 16}. Deep
linear networks sustain trainability on new tasks,
with some additional depth improving trainability.
Nonlinear networks, using Re LU, suffer from loss
of trainability at any depth even on this simple
sequence of linearly separable problems.

In Figure 2] we see that deep linear networks

ranging from a depth of 1 to 16 can sustain trainability. Using a multi-layer perceptron with ReLU
activations, deep nonlinear networks quickly reach a much higher accuracy on the first few tasks.
However, due to loss of trainability, deep nonlinear networks of any depth eventually perform
worse than the corresponding deep linear network. With additional epochs, the linear networks
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could achieve perfect accuracy on this task because it is linear separable. The number of epochs
is comparatively low to showcase that, with some additional layers, a deep linear network is able
to improve its trainability as new tasks are encountered.

4 COMBINING LINEARITY AND NONLINEARITY

In the previous section, we provided empirical and theoretical evidence that linearity provides an
effective inductive bias for learning continually by avoiding loss of trainability. However, linear
methods are generally not as performant as deep nonlinear networks, meaning that their sustained
performance can be inadequate on complex tasks. Even deep linear networks have only linear
representational power, despite their nonlinear gradient dynamics. We now seek to answer the
following question:

How can the sustained trainability of linear methods be combined with
the expressive power of learned nonlinear representations?

To answer this question, we first seek to better understand the effects of replacing linear activation
functions with nonlinear ones in deep networks for continual learning. We observe that deep linear
networks have diversity in their hidden units, which can be induced in nonlinear activation functions
by adding linearity through a weighted linear component, an idea we refer to as a-linearization.
To dynamically balance linearity and nonlinearity, we propose to use deep Fourier features for every
layer in a network. We prove that such a network approximately embeds a deep linear network, a
property we refer to as adaptive linearity. We demonstrate that this adaptively-linear network is
plastic, maintaining trainability even on non-linearly-separable problems.

4.1 ADDING LINEARITY TO NONLINEAR ACTIVATION FUNCTIONS

Deep nonlinear networks can learn expressive representations because of their nonlinear activation
functions, but these nonlinearities can also lead to issues with trainability. Although several
components of common network architectures incorporate linearity, the way in which linearity is
used does not avoid loss of trainability. One example is the piecewise linearity of the ReLU activation
function (?), ReLU(z) = max(0, ), which is said to be saturated if ReLU(z) = 0 for most inputs
x, preventing gradient propagation. While saturation is generally not a problem for learning on
a single distribution, it has been noted as problematic in learning from changing distributions, for
example, in reinforcement learning (?).

A potential solution to saturation is to use a non-saturating activation function. Two noteworthy
examples of non-saturating activation functions include a periodic activation like sin(z) (?) and
leaky-ReLU,(z) = az + (1 — a)ReLU(z) (?), both of which are zero on a set of measure zero.
Surprisingly, using leaky-ReLU leads to a related issue, “unit linearization” (?), in which the
activation is only positive (or negative) for most inputs z. Unlike saturated units, linearized units can
provide non-zero gradients but render that unit effectively linear, limiting the expressive power of the
learned representation. While unit linearization seems to suggest that loss of trainability can occur
due to linearity, it is important to note that a “linearized unit” is not the same as a linear unit. This is
because a linearized unit provides mostly positive (or negative) outputs, whereas a linear unit can
output both positive and negative values.

We generalize the idea behind unit saturation and unit linearization to unit sign entropy, which is
applicable to activation functions beyond saturating and piecewise linear functions, such as periodic
activation functions. Intuitively, it measures the diversity of the activations of a hidden layer.

Definition 1 (Unit Sign Entropy). The entropy, H, of the unit’s sign, sgn(h(x)), on a distribution of
inputs to the network, p(x), is given by Hl (sgn(h(x))) = Ep,) [sgn(h(x))].

The maximum value of unit sign entropy is 1, which occurs when the unit is positive on half the
inputs. Conversely, a low sign entropy is associated with the aforementioned issues of saturation
and linearization. For example, a low sign entropy for a deep network using Re LU activations means
that the unit is almost always positive (P (sgn(h(x)) = 1) = 1, meaning it is linearized) or negative
(P (sgn(h(z)) = 1) = 0, meaning it is saturated).

With unit sign entropy, we investigate how the leak parameter for the 1eaky-ReLU activation
function influences training as pure linearity (« = 1) is traded-off for pure nonlinearity (cv = 0). The
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idea of mixing a linearity and nonlinearity can also be generalized to an arbitrary activation function,
which we refer to as the a-linearization of an activation function.

Definition 2 (a-linearization). The a-linearization of an activation function ¢, is denoted by ¢, (x) =
az + (1 — a)o(z). 10] =
A natural hypothesis is that, as « increases from 0 to 1,
and the network becomes more linear, loss of trainability
is mitigated. We emphasize that the a-linearization is pri-
marily to gain insights from empirical investigation and it
is not a solution to loss of trainability. This is because any
benefits of a-linearization depend on tuning «, and even
optimal tuning can lead to overly linear representations 02
and slow training compared to nonlinear networks.
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stand the trainability issues introduced by nonlinearity, we
present a case-study using sin and ReLU with different
values of the linearization parameter, . The same exper-
iment setup is used from Section Referring to the
results in Figure 3| we see that both ReLU and sin acti-
vation functions are able to sustain trainability for larger
values of . This verifies the hypothesis: a larger « pro-
vides more linearity to the network, allowing it to sustain trainability. Despite sustaining trainability,
a larger « can lead to overly linear representations, evidenced by worse performance and slower
training speed on the first few tasks compared to nonlinear networks (o = 0). For a-ReLU, we also
verify the hypothesis that the unit sign entropy increases for larger values of « (inset plot). The fact
that the periodic sin activation function has a high unit sign entropy despite losing trainability is
particularly interesting, which we explore in the next section.

Figure 3: Trainability on a linearly
separable task with a-linearization
Darker opacity lines correspond to
higher values of a. Unit sign entropy
increases as « increases (inset), leading
to sustained trainability for c-relu.

4.2 ADAPTIVE-LINEARITY BY CONCATENATING SINUSOID ACTIVATION FUNCTIONS

Using the insight that linearity promotes unit sign entropy, we explore an alternative approach to
sustain trainability. In particular, we found that linearity can sustain trainability but requires tuning «,
and even optimal tuning can lead to slow learning from overly linear representations. Our approach
is motivated by concatenated ReLU activations (??), CReLU(z) = [ReLU(z), ReLU(—2z)], which
avoids the problems from saturated units, but does not avoid the problem of low unit sign entropy. In
particular, we propose using a pair of activations functions such that one activation function is always
approximately linear, with a bounded error.

One way to dynamically balance the linearities and nonlinearities of a network is using periodic
activation functions. This is because, due to their periodicity, the properties of the activation function
can re-occur as the magnitude of the preactivations grows rather than staying constant, linear, or
saturating. But, as we saw in Figure[3] a single periodic activation function like sin is not enough.
Instead, we propose to use deep Fourier features, meaning that every layer in the network uses Fourier
features. This is a notable departure from previous work which considers only shallow Fourier
features in the first layer (??). In particular, each unit is a concatenation of a sinusoid basis of two
elements, Fourier(z) = [sin(z), cos(z)]. Each pre-activation is mapped to both sin(z) and cos(z),
which requires that a layer with deep Fourier features have half the output width to accomodate the
concatenation[l]

The advantage of this approach is that a network with deep Fourier features maintains approximate
linearity in all of its parameters. Moreover, deep Fourier features are closed under differentation,
meaning that the activations and their gradients provide a basis for representing periodic functions .

Proposition 1. For any z, there exists a linear function, L,(x) = a(z)x + b(2), such that either:
|sin(z) — L.(z)| < ¢ or |cos(z) — L.(7)| < ¢ forc = V27®/2® and all x € [z — 7/4, 2 + 7/4].

An intuitive description of this is provided in Figure[I] The advantage of using two sinusoids over
just a single sinusoid is that whenever cos(z) is near a critical point, 4/dz cos(z) = 0, we have that

"For a fixed width, a network with deep Fourier features has approximately half the number of parameters.
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sin(z) & z, meaning that ¢/d- sin(z) ~ 1 (and vice-versa). The argument follows from an analysis
of the Taylor series remainder, showing that the Taylor series of half the units in a deep Fourier layer
can be approximated by a linear function, with a small error of ¢ = v27*/2% & (0.05. While we found
that two sinusoids is sufficient, the approximation error can be further improved by concatenating
additional sinusoids, at the expense of reducing the effective width of the layer.

Because each pre-activation is connected to a unit that is approximately linear, we can conclude
that a deep network comprised of deep Fourier features approximately embeds a deep linear network.

Corollary 1. A network parameterized by 0, with deep Fourier features, approximately embeds a
deep linear network parameterized by 6 with a bounded error.

Notice that piecewise linear activations also embed a deep :SELE&‘; . :E‘.’Sé‘fé@?ﬁ?}.m
linear network, but these embedded deep linear networks i b

do not use the same parameter set. For example, the deep ’
linear network embedded by a ReLU network does not
depend on any of the parameters used to compute a ReLU
unit that is zero. Although the 1eaky-ReLU function
involves every parameter, the deep linear network vanishes
because the leak parameter is small, o < 1, and hence the
embedded deep linear network is multiplied by a small =
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constant, L, where L is the depth of the network. Number of tasks
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Empirical Evidence for Nonlinear Plasticity We Figure 4 Trainability on a non
now consider a similar experimental setup from Sections linearly-separable task. Deep Fourier
and except we make the problem non linearly- fea}tpres improve and sustain their train-
separable by considering random label assignments on 2Pility when other networks cannot.

the entire dataset. Each task is more difficult because

it involves memorizing more labels, and the effect of the non-stationarity is also stronger due to
randomization of more datapoints. As a result, the deep linear network can no longer fit a single
task well. Referring to Figure ] the a-linear activation functions can sustain and even improve their
trainability, albeit very slowly. See also unit sign entropy in Figure [0 Appendix In contrast,
using deep Fourier features within the network enables the network to easily memorize all the labels
for 100 tasks. Deep Fourier features surpass the trainability of the other nonlinear baselines at
initialization, CReLU and shallow Fourier features followed by ReLU. This is surprising, because
deep nonlinear networks at initialization are often a gold-standard for trainability.

5 EXPERIMENTS

Our experiments demonstrate the benefits of the adaptive linearity provided by deep Fourier features.
While trainability was the primary focus behind our theoretical results and empirical case studies,
we show that these findings generalize to other problems in continual learning. In particular,
we demonstrate that networks composed of deep Fourier features are capable of being strongly
regularized leading to improved generalization performance on diminishing levels of label noise,
and in class-incremental learning. The main results we present are on all of the major continual
supervised learning settings considered in the plasticity literature. They build on the standard
ResNet-18 architecture, widely used in practice (?).

Datasets and Non-stationarities Our experiments use the common image classification datasets
for continual learning, namely tiny-ImageNet (?), CIFAR10, and CIFAR100 (?). We augment these
datasets with commonly used non-stationarities to create continual learning problems, with the
non-stationarity creating a sequence of tasks from the dataset. Specifically, we follow recent work
that introduced the diminishing label noise problem (?), which is inspired by the warm-starting
problem: We start with half the data being corrupted by label noise and reduce the noise to clean
labels over 10 tasks. Additionally, for the datasets with a larger number of classes, tiny-ImageNet and
CIFAR100, we also consider the class-incremental setting: the first task involves only five classes,
and five new classes are added to the existing pool of classes at the beginning of each task (?). Other
results and more details on datasets and non-stationarities considered can be found in Appendix
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Figure 5: Training a ResNet-18 continually with diminishing label noise. Deep Fourier features
are particularly performant on complex tasks like tiny-ImageNet. Despite networks with deep Fourier
features having approximately half the number of parameters, they surpass the baselines in CIFAR100
and are on-par with spectral regularization on CIFARI10.

Architecture and Baselines We compare a ResNet-18 using only deep Fourier features against
a standard ResNet-18 with ReLU activations. The network with deep Fourier features has fewer
parameters because it uses a concatenation of two different activation functions, halving the effective
width compared to the network with ReLU activations. This provides an advantage to the nonlinear
baseline. We also include all prominent baselines that have previously been proposed to mitigate loss
of plasticity in the field: L2 regularization towards zero, L2 regularization towards the initialization
(?), spectral regularization (?), Concatenated ReLU (??), Dormant Neuron Recycling (ReDO, ?),
Shrink and Perturb (?), and Streaming Elastic Weight Consolidation (S-EWC, 2?).

5.1 MAIN RESULTS

Our results demonstrate that deep Fourier features, combined with regularization, are effective at
continual learning. In these set of experiments, we consider the problem of sustaining test accuracy
on a sequence of tasks. In addition to requiring trainability, methods must also sustain generalization.

Diminishing Label Noise In Figure[5] we can clearly see the benefits of deep Fourier features in
the diminishing label noise setting. At the end of training on ten tasks with diminishing levels of
label noise, the network with deep Fourier features was always among the methods with the highest
test accuracy on the the uncorrupted test set. On the first of ten tasks, deep Fourier features could
occasionally overfit to the corrupted labels leading to initially low test accuracy. However, as the
label noise diminished on future tasks, the network with deep Fourier features was able to continue to
learn to correct its previous poorly-generalizing predictions. In contrast, the improvements achieved
by the other methods that we considered was oftentimes marginal compared to the baseline Re LU
network. Two exceptions are: (i) networks with CReLU activations, which underperformed relative
to the baseline network, and (ii) Shrink and Perturb, which was the best-performing baseline method
for diminishing label noise. Interestingly, the performance benefit of deep Fourier features is most
prominent on more complex datasets, like tiny-ImageNet. In Appendix we provide an ablation
of the architecture, where we use a Wide Residual Network (?) and vary the width scale.

tiny-ImageNet CIFAR100
0.30

Class-Incremental Learning
Deep Fourier features are also
effective in the class-incremental
setting, where later tasks involve
training on a larger subset
of the classes, following the 005
experiment described in (?). The L _ _
network is evaluated at the end Number of tasks
of each task on the entire test set.

As the network is trained on later Figure 6: Class incremental learning results on tiny-Imagenet
tasks, its test set performance (Left) and CIFAR-100 (Right). On both datasets, deep Fourier
increases because it has access features substantially improve over most baselines.

to a larger subset of the training data. In Figure [6] we see that Deep Fourier features largely
outperform the baselines in this setting, particularly on tiny-ImageNet in which the first forty tasks
involve training on a growing subset of the dataset and the last forty “tasks” involve training to
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convergence on the full dataset. We use quotation marks to characterize the last forty tasks because
they are, in fact, a single task, as the data distribution stops changing after the first forty tasks. We
call them “tasks” because of the number of iterations in which they are trained. Not only are deep
Fourier features quicker to learn on earlier continual learning tasks, but they are also able to improve
their generalization performance by subsequently training on the full dataset. On CIFAR100, the
difference between methods is not as prominent, but we can see that deep Fourier features are still
among the top-performing methods. The large performance difference on tiny-ImageNet can be
attributed to the fact that it is a harder problem compared to CIFAR10 and CIFAR100, with higher
resolution images, more classes and more datapoints.

5.2 SENSITIVITY ANALYSIS

03| ===RelU
e—CReLU
leaky-ReLU

Train Accuracy

Test Accuracy

In the previous sections, we found that
deep Fourier features used in combination 1) =
with spectral regularization leads to strong

generalization performance. However, the \

theoretical analysis and case-studies that 0s \

we presented earlier concerned trainability.

We now present a sensitivity result to un-

derstand the relationship between trainabil- = = = 5 o = = =
ity and generalization. Using a ResNet-18 Regularization Strength Regularization Strength

with different activation functions, we var-

ied the regularization strength betweenno L. . .

regularization (left) and high regularization ~Figure 7 g Sensitivity gnalysns on tmy-ImageNeﬁ. Net-
(right). In Figure we can see that deep works with deep Fourier features. are highly trgunable,
Fourier features indeed have a high degree but have a t.enden.cy' to overfit without regularization,
of trainability, sustaining higher trainabil- leading to high training accuracy l?ut loyv test accuracy.
ity at every level of regularization strength. Due to deep Fourier features being highly trainable,
However, without any regularization, deep they are able to train \ylth much higher regu.larl.zatlon
Fourier features have a tendency to overfit. strengths leading to ultimately better generalization.
Over-fitting is a known issue for shallow

Fourier features (e.g., when using Fourier features only for the input layer, ?), and this can be at-
tributed to their spectral bias of learning high-frequency features (?). However, deep Fourier features
are able to use their high trainability to learn effectively even when highly regularized. Thus, while
high trainability does not always lead to high generalization, the trainability provided by deep Fourier
features can be used in combination with regularization to improve continual learning performance.
Hyperparameter sensitivity results are presented on other datasets in Appendix [D.6] We also provide
an in-depth sensitivity study on smaller-scale MLPs in Appendix [D.§]

6 CONCLUSION

In this paper, we proved that linear function approximation and a special case of deep linearity
are effective inductive biases for learning continually without loss of trainability. This surprising
finding for deep linear networks suggests that nonlinearity of representations, rather than nonlinearity
of gradient dynamics, contributes to loss of plasticity. We then investigated the issues that arise
from using nonlinear activation functions, namely the problem of low unit sign entropy, which
indicates a lack of diversity in the activations as measured by the entropy of the sign of the hidden
units. Motivated by the effectiveness of linearity in sustaining trainability, we proposed deep
Fourier features to approximately embed a deep linear network inside a deep nonlinear network.
We found that deep Fourier features dynamically balance the trainability afforded by linearity and
the effectiveness of nonlinearity, thus providing an effective inductive bias for learning continually.
Experimentally, we demonstrated that networks with deep Fourier features provided benefits for
continual learning across every dataset we considered. We found that networks with deep Fourier
features were effective plastic learners because their trainability enabled training with a much larger
regularization strength, leading to superior generalization performance.
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A ADDITIONAL DETAILS

A.1 ASSUMPTIONS FOR TRAINABIILTY OF LINEAR FUNCTION APPROXIMATION

We assume that the parameters at the global optimum for every task are bounded: ||6,||2 < D. This
is true for regression problems if the observations and targets are bounded. In classification tasks, the
global optimum can be at infinity because activation functions such as the sigmoid and the softmax
are maximized at infinity. In this case, we constrain the parameter set, {6 : ||0||2 < D}, and project
the optimum onto this set.

In addition to convexity, we assume that the objective function is -strongly convex, V3.J(6) = ul,
where V3.J;(6) denotes the Hessian. Note that neither squared nor cross-entropy loss are zi-strongly
in general. However, this assumption is satisfied in continual learning problems with a finite number
of iterations. For regression, denote the observations for task 7 as X € mathbbR¥™ N where N is the
sample size. Then the Hessian is the outer products of the data matrix, V3.JI¢9(0) = X, X € R4*4,
Thus, the squared loss is strongly-convex if the data is full rank. This is satisfied in high dimensional
image classification problems, which is what we consider.

For classification, the Hessian involves an additional diagonal matrix of the predictions for each
datapoint,

VgJﬁlass(G) — XTX: c RdXd,

where D = Diag(p1,...,pn) and p; = 20(fo(x;))(1 — o(fp(x;))). If the prediction becomes
sufficiently confident, o(fp(x;) = 1, then there can be rank deficiency in the Hessian. However,
because each task is only budgeted a finite number of iterations this bounds the predictions away
from 1.

A.2 RELATED WORK REGARDING TRAINABILITY OF DEEP LINEAR NETWORKS

Some authors have suggested deep linear networks suffer from a related issue, namely that critical
learning periods also occur for deep linear networks (?). Unlike the focus on loss of trainability in
this work where the entire network is trained, these critical learning periods are due to winner-take-all
dynamics due to manufactured defects in one half of the linear network, for which the other half
compensates.

Finally, we note that some previous work have found that gradient dynamics have a low rank bias
for deep linear networks (?). One important assumption that these works make is that the neural
network weights are initialized identically across layers, 8; = af;. Our analysis assumes that the
initialization uses small random values, such as those used in practice with common neural network
initialization schemes (?7?).

A.3 DETAILS FOR DEEP LINEAR SETUP

The gradient of the loss function with respect to the parameters of a deep linear network can be
written in terms of the gradient with respect to the product matrix 6 (?):
Vo, J(0) = 0]10] 50 V57 (0)0] 05 ---0]_1, 8))

where the term V5J(0) is the gradient of the loss with respect to the product matrix, treating it as if it
was linear function approximation. The gradient is nonlinear because of the coupling between the
gradient of the parameter at one layer and the value of the parameters of the other layers. Nevertheless,
the gradient dynamics of the individual parameters can be combined to yield the dynamics of the
product matrix (?),

VoJ(0) = P3V5J(0). 2)

The dynamics involve a preconditioner, Fp, that accelerates optimisation (?), which we empirically
demonstrate in Section On the left-hand side of the equation, we use Vy.J(6) to denote the
combined dynamics of the gradients for each layer on the dynamics of the product matrixE] This
means that the effective gradient dynamics of the deep network is related to the dynamics of linear

Note we use V because V.J(8) is not a gradient for any function of 8; see discussion by ?.

11
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function approximation with a precondition. While the dynamics are nonlinear and non-convex, the
overall dynamics are remarkably similar to that of linear function approximation, which is convex.

To simplify notation, without loss of generality, we consider a deep linear network without the bias
terms, 0 = {601,...,0.}, and fo(z) = 0L0L_1 - - - 612. We denote the product of weight matrices,
or simply product matrix, as § = 6.0y, - - - 01, which allows us to write the deep linear network
in terms of the product matrix: fy(x) = fz. The problem setup we use for the deep linear analysis
follows previous work (?), and we provide additional details in Appendix We consider the

squared error, J-(0) = E; y)op. [|ly — 02|] ; and we assume that the observations are whitened to
simplify the analysis,

Y. =E [mxT] = I, focusing on the case where the targets y are changing during continual learning.
Then we can write the squared error as

J(0) = Tr [A,A]],

where A, = 6F — 6 is the distance to the optimal linear predictor, 0F =%2yer =Eg yop, [yzrT]2,.

The convergence of gradient descent for general deep linear networks requires an assumption on the
deficiency margin, which is used to ensure that the solution found by a deep linear network, in terms
of the product matrix, is full rank (?). That is, the deep linear network converges if the minimum
singular value of the product matrix stays positive, o, (6) > 0.

We now show that a diagonal linear network maintains a positive minimum singular value under
continual learning. This is a simplified setting for analysis, where we assume that the weight matrices
are diagonal and thus the input, hidden, and output dimension are all equal. Let fp(x) be a diagonal
linear network, defined by a set of diagonal weight matrices, §; = Diag(6; 1, ... , 0;,4). The output of
the diagonal linear network is the product of the diagonal matrices, fy(z) = 61011 ...601z. Then
the product matrix is also a diagonal matrix, whose diagonals are the products of the parameters

of each layer, @ = Diag([]/_, 1.1, - , [}~ 01.4) :== Diag(0y,... ,04). The minimum singular

value of a diagonal matrix is the minimum of its absolute values, o, (f) = min; |§;|. Thus, we
must show that the minimum absolute value of the product matrix is never zero.

Lemma 1. Consider a deep diagonal linear network, fo(x) = 6r0p_1...012 and 0, =

Diag(0;.1,. .. ,0,q). Then, under gradient descent dynamics, Hl(fi) = 91(,t)Z iﬁ‘&l(g) = HZ(ngor U #1.

The proof of this proposition, and the next, can be found in Appendix [B] This first proposition states
that two parameters that are initialized to different values, such as by a random initialization, will
never have the same value under gradient descent. Conversely, if the parameters are initialized
identically, then they will stay the same value under gradient descent. This means that, in particular,
two parameters will never be simultaneously zero.

Lemma 2. Denote a deep diagonal linear network as fo(z) = Diag(0y,... ,04)x where 0; =

_ §§t+1) -0

Hlel 01,;. Then, under gradient descent dynamics, égt) iff two (or more) components

are zero, Hl(j? = Hl(,t’)i =0, forl' #1.

While the analysis considers a special case of deep linear networks, namely deep diagonal networks,
we note that this is a common setting for the analysis of deep linear networks more generally (?7?).
In particular, the analysis is motivated by the fact that, under certain conditions, the evolution of the
deep linear network parameters can be analyzed through the independent singular mode dynamics
(?), which simplify the analysis of deep linear networks to deep diagonal linear networks. The target
function being learned, y* (z) = 6*x, is represented in terms of the singular-value decomposition,

0 = US*V* = 22:1 s;u;v; . We also assume that the neural network has a fixed hidden

dimension, so that ; € R¥*%in g, € Rouwtxd g, ;€ R?*; and we apply the singular value
decomposition to the function approximator’s parameters, §; = U;S;V; € Rut*dn  To simplify
the product of weight matrices, we assume V; 1 = U;, V3 = V*, and Uy, = U*. The simplifying
result is that the squared error loss can be expressed entirely in terms of the singular values, ||y*z —
ng 5 0iz|)? o [|S* — Hzlz 1 Si|?, which is equivalent to our analysis of the deep diagonal network,
as the matrix of singular values is a diagonal matrix. These decoupled learning dynamics are closely
approximated by networks with small random weights and they persist under gradient flows (?).

12
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A.4 PSEUDOCODE FOR DEEP FOURIER FEATURE LAYER

Algorithm 1 Deep Fourier Feature Layer
1: function DEEPFOURIERFEATURES(x, W, b)

2: z+— Wz +b > Calculate pre-activation
3: a1  sin(z) > Apply sine activation
4: ag + cos(z) > Apply cosine activation
5: output < [a;as] > Concatenate activations
6: return output

7: end function

B PROOFS

Proof of Theorem|I] We first present the result for two tasks and we then generalize it to an arbitary
number of tasks. Let the linear weights learned on the first task be (), with the corresponding
unique global minimum denoted by 7. The solution found on the first task is used as an initialization

on the second task, which will end at §(7) with the corresponding unique global minimum denoted
by 65. We start from the known suboptimality gap for gradient descent on the second task (?):
105 — 07

Jo(0P1) = ho(03) < =

3
We upper bound the distance from the initialization on the second task, 6 (1) to the optimum, 63, by

165 — 6> < |l63 — 6711* + 167 — 6||> < [165 — 61)° + (1 — ap) 1167 — 6ol®. &)

Where the last inequality uses the assumption that the objective function is p-strongly convex. We
upper bound the suboptimality gap on the second task by a quantity independent of 6(T):

o 0|2 o ez - 311> + (1 — ap) |67 — 6>
ol ol ’

which implies that the parameter value learned on the previous task does not influence training on the
new task beyond a dependence on the initial distance. This is true for an arbitrary number of tasks:

S orea (1= a0y — 65 ||? 2D(1 — ap)”
aT oT(1— (1 —ap)T)’

Jo(0CT)) — J5(0%) 5)

J(07T)) — J.(67) < (6)

where we denote 0 = 6. The last inequality follows from our assumption that the distance between
the task solutions, ||0} — 05 _,||?> < 2D, is bounded and using a geometric sum in (1 — ap)?. O

Proof of Lemmall] = We first prove the lemma in the forward direction:

Assuming that Gl(ti) = l(,t)l for I’ # 1, we will show that Hl(ti_l) = 9l(,t;1).

Writing the gradient update for 91(,? with a fixed step-size o, we have that

el(,tz) = 9[(3*1) - av@z,iJ(Q) @)
=07 — aVy, i folx),y)Va,, folx) ®)
L
=60 — a0 fo(x),9) Ve, [[ 615 Ve ©)
j=1
=67 — aV, (fo(x),y) [T 04 V. (10)
J#l
(11)

13
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Similarly, the gradient update for 6/ ; is

6 =0y —avy,e ) [To8 (12)
JAV
(13)
Using our assumption that G(t) = Gl(,t ) , we set the two updates equal to eachother:

010 — aVy, 0 fo(a),y) [T 68 Ve = 017" — avipb(folx),y) [T 08 Ve (14
J#l A

We can simplify both sides of the equations where the LHS is

(t—1) (t—1)
O — aVil( H9 9@ = (15)
t—1 (t—1 L
J i Y
Similarly, the RHS of the equation is
t—1 t—1 €
91(’,1' ) 1-— avfeﬁ(fg(x),y) 0§1 )m . (17)
; 0, 76,"
J Ui 1,3
Notice that both expressions in the parenthesis on the LHS and RHS are equal. Thus, 91(,t ;1) = 91(;71)
<= The reverse direction follows directly by following the above argument in reverse.
O

Proof of Lemma|2] =- We first prove the lemma in the forward direction:

Assuming that 6 (1) él(t) = 0, we will show that Gl(j? = Gl(,t)z = 0.

We proceed by contradiction, and assume that only a single component is zero, that is Gl(,t )7 =0and
91(,? = 0 for [ # I’. We will show that the gradient update will ensure that 9§t+1) #0

First, consider the update to 9l(,t )Z-,

0T = 01 — aVp lfalw),y) [T 65 Ve as)
jil’
=Vl y [T o5 (19)
JAEU

Because we assumed that 91(71 # 0 forl # I', we have that [[,_, Q(t 2 # 0. Thus O(tﬂ) #0

Next consider the update to GZ(E-),
9(t+1) H(t (t— 1)
i =0 — oVl H 6’ 20
J#l
) Q1)

14
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Where the last line follows from the fact that [[,_, 9}:—71) = 0 because 91(,t )l =

Thus, we have shown that Gl(t;rl) 2 0 for all /, and hence, At+D) 2 (0 which is a contradiction.

< The reverse direction follows from the assumption directly. If two components are both equal

to zero, Gl(ti) = Hl(,t )Z = 0, then every sub-product is zero, [ ] il Hj(tz and so is the entire product,
L p(t—1)
Hj:l 0]‘,1‘ . O

Proof of Theorem 2] We now show that a diagonal linear network maintains a positive minimum
singular value under continual learning. This is a simplified setting for analysis, where we assume
that the weight matrices are diagonal and thus the input, hidden, and output dimension are all
equal. Let fp(x) be a diagonal linear network, defined by a set of diagonal weight matrices, §; =
Diag(6;.1, ... ,0;.4). The output of the diagonal linear network is the product of the diagonal matrices,
fo(x) =0r0L_1 ... 6012 Then the product matrix is also a diagonal matrix, whose diagonals are the

products of the parameters of each layer, § = Dzag(Hl 1001, .. Hz 101.4) :== Diag(0y,...,04).
The minimum singular value of a diagonal matrix is the minimum of its absolute values, amm(ﬂ) =
min; |0;]. Thus, we must show that the minimum absolute value of the product matrix is never zero.

This follows immediately from Lemma|I]and Lemma 2] Taken together, these two lemmas state that
with a random initialization and under gradient dynamics, a diagonal linear network will not have
more than one parameter equal to zero. This means that the minimum singular value of the product
matrix will never be zero. Thus, we have shown that a diagonal linear network trained with gradient
descent, if initialized appropriately, will be able to converge on any given task in a sequence. O

Proof of Proposition[l] We prove this by considering the remainder of a Taylor series on the given
interval. Due to periodicity of sin(z) and cos(z), we can consider z € [—, 7] without loss of
generality. We can further consider two cases, either z € [—m, =37/4] U [-7/4,7/4] U [37/4, 7| or

€ [=37/4, —7/4] U [7/4,37/4]. In the first case, z is near a critical point of cos(z) and in the second
case z is near a critical point of sin(z).

We focus on a particular subcase, where z € [~7/4, 7/4], which is close to a critical point of cos(z),
but far from a critical point of sin(h) (the other cases follow a similar argument).

Because we know that z € [~7/4, /4], by Taylor’s theorem it follows that sin(z) = z+ R (%), where
Rio(z) = (C) 22 is the 1st degree Taylor remainder centered at a = 0 for some ¢ € [~7/4, 7/4].
In the case of a smusmd, this can be upperbounded, |R; o(z)| = | —5-% Sm(°) 2% < 8\[(7f/4) using the
fact that |z| < 7/4 and sin(c) < 1/v2.

Thus, when cos(z) is close to a critical point, sin(z) is approximately linear. A similar argument

holds for the other case, when sin(z) is close to a critical point, cos(z) is approximately linear. In
this other case, the error incurred is the same.

O

Proof of Corollary[l] We prove this claim using induction.

Base case: We want to show that a single layer that outputs Fourier features embeds a deep linear
network. Using Proposition|[I] there exists one unit for each pre-activation that is approximately linear.
Because each pre-activation is used in an approximately-linear unit, the single layer approximately
embeds a deep linear network using all of its parameters.

Induction step: Assume a deep Fourier network with depth L — 1 embeds a deep linear network, we
prove that adding an additional deep Fourier layer retains the embedded deep linear network. There
are two cases to consider, corresponding to the units of the additional deep Fourier layer which are
approximately-linear and the other units that are not approximately-linear

Case 1 (approximately-linear units): For the additional deep Fourier layer, the set of approximately-
linear units already embeds a deep linear network. Because linearity is closed under composition,
the composition of the additional deep Fourier layer and the deep Fourier network with depth L — 1
simply adds an additional linear layer to the embedded deep linear network, increasing its depth to L.
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Case 2 (other units): For the units that are not well-approximated by a linear function, we can treat
them as if they were separate inputs to the deep Fourier network with depth L — 1. The network’s
parameters associated with those inputs are, by the inductive hypothesis, already embedded in the
deep linear network.

Note that case 1 embeds the parameters of the additional deep Fourier layer into the deep Fourier
network. Case 2 states that the parameters of the network associated with the nonlinear units of the
additional deep Fourier layer are already embedded in the deep Fourier network by construction.

Thus, a neural network composed of deep Fourier layers embeds a deep linear network. O

16
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C EMPIRICAL DETAILS

All of our experiments use 10 seeds and we report the standard error of the mean in the figures.
The optimiser used for all experiments was Adam, and after a sweep on each of the datasets over
[0.005,0.001,0.0005], we found that o = 0.0005 was most performant.

We used the Adam optimizer (?) for all experiments, settling on the default learning rate of 0.001 after
evaluating [0.005,0.001, 0.0005]. Results are presented with standard error of the mean, indicated by
shaded regions, based on 10 random seeds.

Dataset specifications and non-stationarity conditions:

* For MNIST, Fashion MNIST and EMNIST: we use a random sample of 25600 of the
observations and a batch size of 256 (unless otherwise indicated, such as the linearly
separable experiment).

* For CIFAR10 and CIFAR1100: Full 50000 images for training, 1000 test images for
validation, rest for testing. The batch size used was 250. Labelnoise non-stationarity: 60
epochs, 10 tasks. Class incremental learning: 6000 iterations per task, 80 tasks. Note that
the datasets on different tasks in the class incremental setting can have different sizes, and
so epochs are not comparable.

* tiny-ImageNet: All 100000 images for training, 10000 for validation, 10000 for testing as per
predetermined split. The batch size used was 250. Labelnoise experiment non-stationarity:
80 epochs per task, 10 tasks total. Class incremental learning: 10000 iterations per task,
80 tasks. Note that the datasets on different tasks in the class incremental setting can have
different sizes, and so epochs are not comparable.

Neural Network Architectures For tiny-ImageNet, CIFAR10, CIFAR100, and SVHN2: We
utilized standard ResNet-18 with batch normalization and a standard tiny Vision Transformer. The
smaller datasets use an MLP with different widths and depths, as specified in the scaling section.

Experiment Metrics All figures reporting accuracy evaluate the accuracy on the distribution given
by the current task. Figures 2, 3, 4 and 7 (top) report the training accuracy on the current task. Figures
5 and 6 report the test accuracy on the current task. Figure 5 shows the accuracy at the end of each
epoch, whereas Figure 6 shows the accuracy at the end of each task (due to too many tasks). The
accuracy reported in Figure 7 is the final accuracy at the end of the last task.

17



Published as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL DEEP LINEAR NETWORK RESULTS
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Figure 8: Minimum singular value of the product matrix for a deep general linear network on

a linearly-separable task.
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Figure 9: Average unit sign entropy on a non linearly-separable task. Deep Fourier features and
other perioidic activation functions have high average unit sign entropy compared to piecewise linear

activations like ReLU and leaky—-ReLU.

D.2 ABLATING ARCHITECTURE WITH WIDE RESIDUAL NETWORKS
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Figure 10: Investigating Wide Residual Networks with different width scales on tiny-ImageNet

with label noise.
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D.3 INVESTIGATING SINGLE TASK PERFORMANCE
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Figure 11: Investigating single task performance of ResNet-18 using different activation
functions on tiny-ImageNet.

D.4 CONTINUAL IMAGENET RESULTS
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Figure 12: Investigating sustained performance on many tasks using ResNet-18 on Continual
ImageNet. Note that loss of trainability does not occur on this problem, whereas loss of generalization
does occur.
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D.5 COMPARING CONTINUAL BACKPROP TO RECYCLING DORMANT NEURONS
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Figure 13: Recycling dormant neurons and continual backprop are both weight reinitialization

methods that perform similarly.

D.6 ADDITIONAL SENSITIVITY RESULTS
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Figure 14: Sensitivity analysis on tiny-ImageNet, CIFAR10, and CIFAR100. Networks with deep
Fourier features are highly trainable, but have a tendency to overfit without regularization, leading to
high training accuracy but low test accuracy. Due to deep Fourier features being highly trainable, they
are able to train with much higher regularization strengths leading to ultimately better generalization.
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D.7 FORGETTING RESULTS
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Figure 15: Forgetting on online label-permuted tiny-ImageNet, CIFAR10, and CIFAR100.
All networks are capable of continual online learning within a task, indicating that they maintain
plasticity and succeed in avoiding catastrophic forgetting data early within a single task. However,
deep Fourier features are particularly capable of maintaining performance on previous tasks.

D.8 ADDITIONAL TRAINABILITY RESULTS USING DEEP FOURIER FEATURES

These additional experiments validate the benefits of deep Fourier features as a means of improving
trainability. The experiments use the following datasets for continual supervised learning: MNIST (?),
Fashion MNIST (?), and EMNIST (?). We focus primarily on the problem of trainability, and thus
consider random label non-stationarity, in which the labels are randomly assigned to each observation
and must be memorized on each task. This type of non-stationarity is particular difficulty in sustaining
trainability in continual learning (??). We compare our network with deep Fourier feature against a
corresponding feed-forward neural network with ReLU activations with the same depth. Because
deep Fourier features use a concatenation of two different activation functions, it has half the width
of the ReLU network and less parameters, which provides an advantage to the ReLU baseline.
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D.8.1 DEEP FOURIER FEATURES ARE HIGHLY TRAINABLE

The main result of this appendix is presented in Figure[T6] Across different datasets, deep Fourier
feature networks are highly trainable, either achieving high accuracy and maintaining it on easier
tasks, such as MNIST, or improving their trainability on new tasks, such as on Fashion MNIST. In
contrast, the ReLU network suffered from loss of trainability in each of the problems that we studied.
This is not surprising, as loss of trainability is a well-documented issue for ReLU networks without
some additional method designed to mitigate it (???2?).
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Figure 16: Trainability across different datasets and epochs per tasks. ReLU networks lose their
trainability, whereas networks with deep Fourier features improve and sustain their trainability

D.8.2 METHODS FOR IMPROVING TRAINABILITY

Given that a ReLU network is unable to maintain its trainability in isolation, we investigate whether
recently proposed methods for mitigating loss of trainability are able to make up for the difference in
performance between a network with deep Fourier features and a network with ReLU activations. We
investigate two categories of mitigators for loss of plasticity: (i) regularization and (ii) normalization
layers.
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Figure 17: Hyperparameter Sensitivity Analysis. Deep Fourier features seem to not benefit from
regularization for trainability. While ReLU networks are more trainable with regularization, their
performance is still worse than the deep Fourier feature network. Note that the experiments in Section
5.2 indicate that deep Fourier features do benefit from regularization for generalization.
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Regularization Loss of plasticity occurs in ReLU networks when they are not regularized. Thus,
we compare the performance of the ReLU network and the deep Fourier feature network with
varying regularization strengths. In particular, we use the recently proposed L2 regularization
towards the initialization (?), because it addresses the issue of sensitivity towards zero common to L2
regularization towards zero. In Figure[T7} we find that regularization does improve the trainability of
ReLU networks, validating previous empirical findings. However, we found that deep Fourier feature
networks do not benefit substantially from regularization. That is, deep Fourier feature network with
a smaller regularization strength always outperformed the ReLU network.

Layer Normalization Training deep neural networks typically involve normalization layers, either
Batch Normalization (?) or Layer Normalization (?). Recently, it was demonstrated that layer
normalization is an effective mitigator for loss of trainability (?). We investigate whether trainability
can be improved with the addition of normalization layers, for both the ReLU and deep Fourier
feature network. In Figure [I8] we found that layer normalization increases performance but that
loss of trainability can still occur with a ReLU network. In addition to Layer Normalization, we
also tried a linear version of LayerNorm which uses a stop-gradient on the standard deviation to
maintain linearity, which improved training speed in some instances.
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Figure 18: Comparison of trainability with Layer Normalization. ReLU networks are more
trainable with Layer Normalization, but deep Fourier feature networks learn faster and achieve better
accuracy, particularly with linearized Layer Norm.
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D.8.3 SCALING PROPERTIES OF DEEP FOURIER FEATURE NETWORKS
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Figure 19: Scaling Neural Network Width and Depth. (Top) Due to the concatenation used by the
activation function in deep Fourier feature networks, they scale particularly well with width. (Bottom)

Deeper Fourire features also lead to improved average end of task performance.

Width Scaling Another source of linearity recently proposed is an increasing width of the neural
network, causing their parameter dynamics evolves as linear models in the limit (?). We investigate
whether an increase in width can close the gap between the trainability of the ReLU network and the
deep Fourier feature network. In Figure [I9](Top), we found that deep Fourier feature networks scale
particularly well with width, whereas width seems to have little effect on the trainability of ReLU
networks. Thus, our results suggest that increasing the width of a neural network does not necessarily
impact its trainability, at least not to the width values we considered.

Depth Scaling Neural networks in supervised learning tend to scale with depth, allowing them to
learn more complex predictions. We investigate whether the depth scaling of deep Fourier feature
networks also leads to similar improvements in continual learning. In Figure[T9] (Bottom), we found
that deep Fourier feature networks do improve with additional depth, but the degree of improvement
was not as pronounced as scaling the width.
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