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Abstract

The rapid growth in complex datasets within the field of psychology poses chal-
lenges for integrating observations into quantitative models of human information
processing. Other fields of research, such as physics, proposed equation discovery
techniques as a way of automating data-driven discovery of interpretable models.
One such approach is the Bayesian Machine Scientist (BMS), which employs
Bayesian inference to derive mathematical equations linking input variables to
an output variable. While BMS has shown promise, its application has been lim-
ited to a small subset of scientific domains. This study examines the utility of
BMS for model discovery in psychology. In Experiment 1, we compare BMS in
recovering four models of human information processing against two common
psychological benchmark models—linear/logit regression and a black-box neural
network—across a spectrum of noise levels. BMS outperformed the benchmark
models on the majority of noise levels and demonstrated at least equivalent perfor-
mance when considering higher levels of noise. These findings demonstrate BMS’s
potential for discovering psychological models of human information processing.
In Experiment 2, we investigated the impact of informed priors on BMS recovery,
comparing domain-specific function priors against a benchmark uniform prior.
Specifically, we investigated four priors across research domains spanning their
specificity to psychology. We observe that informed priors robustly enhanced BMS
performance for only one of the four models of human information processing.
In summary, our findings demonstrate the effectiveness of BMS in recovering
computational models of human information processing across a range of noise
levels; however, whether integrating expert knowledge into the BMS framework
improves performance remains a subject of further inquiry.

1 Introduction

Incorporating behavioral phenomena into models of human information processing is a cornerstone
of psychology. However, the task of integrating empirical data into these quantitative models has
become increasingly complex due to the rapid growth in both the amount and complexity of available
data. This challenge is not unique to psychology; fields like physics, chemistry, and materials science
have also grappled with it, leading them to explore automated methods for model discovery [1–4]. A
predominant focus in this area has been on equation discovery, also known as symbolic regression [5].
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This approach aims to identify mathematical expressions that can accurately relate the input variables
of an experiment to the observed outcomes. In this article, we assess the efficacy of using equation
discovery to derive psychological models of information processing.

There have been different algorithmic approaches to equation discovery, all of which seek to identify
computation graphs that relate input variables to an output variable. Recent approaches to equation
discovery include brute-force graph search [6], genetic algorithms [7–9], differentiable architecture
search [10], Bayesian inference [11, 12], reinforcement learning [13, 14], and sparse regression
[15–18]. Among them is the Bayesian Machine Scientist (BMS) [11], which employs Bayesian
inference to update beliefs about model parameters and structures based on observed data. The
algorithm systematically evaluates, refines, and compares mathematical expressions, focusing on
simplicity and interpretability. BMS has three key advantages: (1) its capability for a prior-informed
search that allows for the integration of existing domain expertise, (2) its Occam’s razor-inspired
approach that favors simplicity, promoting interpretable mathematical models, and (3) its successful
application to real-world scientific problems [19–27].

Although BMS has proven effective in deriving quantitative models from data, its application has
been confined to a small subset of scientific domains, such as chemical engineering [20, 21, 25–27],
systems science [19, 24], and physics [22]. Using BMS, we extend the application of equation
discovery to the realm of psychology1, specifically for recovering mathematical models of human
information processing. Our work makes three key contributions:

1. We assess the capability of BMS to accurately reconstruct well-established models of human
information processing using synthetic data. This involves a comparative analysis with
statistical models commonly employed in psychology to describe the relationships between
experimental variables and observed outcomes (Experiment 1).

2. We investigate the impact of noise on the model recovery process, quantifying the results in
terms of both mean squared error and the percentage of perfect recoveries (Experiment 1).

3. We evaluate the benefits of domain-specific function priors, sourced from Wikipedia, to
enhance the efficacy of BMS in recovering psychological models (Experiment 2).

The code for BMS described in this paper is available as an open-source Python package named
AutoRA-Theorist-BMS, which is built to be compatible with a larger package named AutoRA. Doc-
umentation of this package and all code for the simulations can be found here. Furthermore, the
code for webscraping the priors used in Experiment 2 is available as an open-source Python package
named Equation-Scraper, and documentation can be found here.

2 Equation Discovery with the Bayesian Machine Scientist

The experiments described below leverage the Bayesian Machine Scientist as described in Guimerà
et al., 2020 [11]. Here, we provide a brief overview of the method.

2.1 Expression Trees

BMS represents mathematical expressions as trees (Figure 1A). Leaf nodes indicate input variables
(e.g., experimental factors) or constants. Intermediate nodes represent unary operators (e.g., the
sine function) or binary operators (e.g., arithmetic operators, such as multiplication and division),
resulting in one or two arguments (represented as child nodes), respectively. The root node represents
the final expression element of the tree, which may be either an operator, parameter, or variable,
depending on the depth of the tree.

In addition, subtrees within expression trees are called elementary trees and are the smallest possible
expression for a given node, containing at most one operator. For input variables and constants, the
elementary tree is a single node. For unary or binary operators, an elementary tree is the operator
node with its children variables and constants.

1also see Miyazaki et al.[28] for an application of a symbolic regression model, AI-Feynman, to psychology.
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Figure 1: A: Mathematical expression trees. Nodes correspond to operations, parameters, or variables.
Edges link operations (parent nodes) with their respective arguments (child nodes). Trees can be
mutated in three ways. B: a root addition replaces the current root with an elementary tree, where the
root becomes a child node of the new root. A root removal removes the root, along with all but one
of its children nodes, which becomes the new root node. C: An elementary tree replacement replaces
one of the leaves with an elementary tree. D: A node replacement replaces any node in the tree with
another node with the same number of inputs and outputs.

2.2 Expression Tree Search

BMS uses a Markov Chain Monte Carlo (MCMC) approach to search the space of mathematical
expressions that best describe the relationship between the input variables and the output variable.
There are three sampling actions, each resembling a different tree modification : (1) add or remove
the root function from the tree (Figure 1B); (2) replace one of the elementary trees at the base of the
tree (Figure 1C); (3) replace any one of the nodes within the tree with another node with the same
number of inputs (Figure 1D).

For each tree modification, BMS evaluates the new expression tree on its description length, which
balances how well the expression fits the data with how well it represents the prior distribution. The
description length has no tractable formula, but multiple approximations exist [29, 30]. BMS uses the
following approximation [29]:

D.L.(fi)≈
1

2T
BIC(fi)− log[p(fi)] (1)

where p(fi) is the prior for the entire expression tree, and BIC is the Bayesian Information Criterion.
T corresponds to a temperature value used for parallel tempering. The BIC is calculated as follows:

BIC(fi) = klog(n)−2log[L̂(fi)] (2)

for number of parameters, k, number of data samples, n, and log-likelihood, log[L̂]. BMS further
uses an approximation of the log-likelihood [11]:

log[L̂(fi)]≈
n

2
(1+ log(2π)+ log(MSE∗(fi)) (3)

where MSE∗ is the mean squared error of model fi(θ∗), with parameters θi fit to data D. Combining
equations 1, 2, and 3 gives us the compact loss function used by BMS:

D.L.(fi(θ
∗))≈ 1

2
log

[
nk

2πp(fi)MSE(fi(θ∗))

]
−

n

2
(4)

BMS samples all operations with equal probability, with the set of operations considered limited to
those included in the priors. Once evaluated, a new expression is selected if it satisfies Metropolis’
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Rule [31]—an algorithm that ensures MCMC samples from the posterior distribution in a statistically
unbiased way.

2.2.1 Priors

Priors of an equation tree, p(fi), are calculated as the sum of the priors of its operations, p(oi):

p(fi) = Σoi∈fi [p(oi)] (5)

The priors of individual operations are determined by a back-propagation method that fits the priors
to average frequencies of the operations found in the scraped equations, outlined by Guimerà et al.,
2020 [11].

2.2.2 Parallel Tempering

MCMC is subject to local minima when traversing the space of expressions. BMS addresses this
with a parallel tempering search strategy [11] built into its loss function (eq. 1). Parallel tempering
involves considering multiple expression trees in parallel, each held at a distinct temperature. At
higher temperatures, the BIC is weighted less heavily, discouraging overfitting. This allows for larger
changes to the expression at higher temperatures and smaller changes at lower temperatures. Between
sampling steps, BMS evaluates pairs of expressions and assigns a lower temperature to ones that fit
better. After training is complete, the expression at the lowest temperature, T = 1.0, is chosen as
the best candidate model. At this temperature, the loss function most accurately approximates the
minimum description length of the expression tree.

3 Experiment 1

In Experiment 1, we sought to examine the performance of BMS in recovering four psychological
models of human information processing. Here, we evaluate the performance of BMS relative to
traditional modeling approaches in Psychology, namely a linear/logit regression and a black-box
neural network. In doing so, we examine the impact of noise on the recovery.

3.1 Methods

3.1.1 Psychological Models of Human Information Processing

We evaluated the performance of BMS in recovering psychological models of human information
processing using four ground truth models.

Steven’s Power Law Steven’s power law describes the relationship between a stimulus’s intensity x
(range : [0.01,5.00] with 100 equally spaced datapoints) and its perceived magnitude y. According
to this law, humans are less sensitive to changes in high-intensity stimuli compared to low-intensity
ones, leading to a power-law relationship between stimulus intensity and perceived magnitude:

y= xα

where α= 0.80, resulting in diminishing effects of increases in stimulus intensity.

Weber-Fechner Law The Weber-Fechner law quantifies the minimum change in a stimulus required
to be noticeable. Similar to Steven’s power law, the greater the intensity of a stimulus, the larger
the change needed to be perceivable. This relationship is hypothesized to be proportional to the
logarithm of the ratio between the two stimuli:

y= log
(
x1
x2

)
where x1 (range : [0.01,5.00] with 100 equally spaced datapoints) is the intensity of a physical
stimulus (e.g., the luminosity of a lamp), x2 (range : [0.01,5.00] with 100 equally spaced datapoints)
is a reference stimulus (e.g., the luminosity of a background light), and y is the perceived stimulus
intensity (e.g. the perception of the lamp’s luminosity).
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Shepard-Luce Choice Rule The Shepard-Luce choice rule, as adapted in [32], posits that the
likelihood of an individual assigning a target object, represented as x , to a specific response category,
represented as i, is proportional to their psychological similarity ηi(x). Here, we considered a
version of the model that computes the probability of assigning the target object x1 to one of two
response categories, given a distractor object x2:

y= p(‘‘x1 is perceived as category 1”) = η1(x1)·α
η1(x1)·α+η2(x1)·α+η1(x2)·(1−α)+η2(x2)·(1−α)

where α = 0.8 is an attentional bias toward processing the target object x1, and variables ηi(xj)
(range : [0.125,10.00] with 8 equally spaced datapoints) are the psychological similarity between
object xj and category i.

Exponential Learning The exponential learning equation is one of the standard equations to
characterize improvements on a task as a function of task practice [33, 34]. According to this law, the
performance on a task y scales as a function of time spent on the task x (range : [1,100] with 100
equally spaced datapoints), as follows:

y= β−(β−x0)∗eγ∗x

where x0 (range : [0,0.50] with 100 equally spaced datapoints) is the initial performance on the task,
β= 1.00 is the maximum (asymptotic) performance on the task, and γ= 0.03 is the learning rate.

3.1.2 Benchmark Models

In most cases, psychologists rely on simple statistical models (such as linear or logistic regression) to
examine relationships between experimental variables and observed outcomes.

Logit Regression

Our first benchmark model is a logit regression, a linear regression adapted for choice probabilities via
a logit (inverse sigmoid) transformation of the data. The logit transformation maps values from 0 to 1
onto −∞ to ∞. The data is then fit to a linear regression model, with interaction terms modelled by
a second-order polynomial features model. For each ground-truth, all experimental factors and their
interactions are included as regressors, while the observations obtained from each ground-truth are
considered the regressands. Thus, this model has relatively few coefficients, making it interpretable.

Multi-layer Neural Network

Our second benchmark model is a 3-layer neural network. We chose this "black-box" model as a
complement to the linear regression as it can capture non-linear relationships. The network model is
composed of three hidden layers with 32, 16, and 32 units, respectively, each with a tanh activation
function, followed by a linear output layer. A softmax activation function is added to the output
layer for data generated by the Shepard-Luce choice rule, to model outcomes as choice probabilities.
Training was performed with a learning rate lr = 0.0001, using a cosine-annealing learning rate
scheduler, and an ADAM optimizer, for 5000 epochs.

3.1.3 Simulation Procedure

We began by generating datasets that corresponded to four ground truth models. Gaussian noise
was added to each ground-truth model, spanning seven noise levels measured in units of standard
deviations σ: 0.010, 0.025, 0.050, 0.100, 0.250, 0.500, and 1.000. Higher values within this range
were indicative of greater variability found in real-world data. This resulted in 28 datasets, each with
the number of datapoints contingent on the range of the corresponding ground-truths independent
variables (see 3.1.1). These data were then randomly divided into 80% training and 20% testing
subsets. We employed BMS, a logit regression, and a neural network on each dataset, conducting the
recovery process 20 times. We here used the priors provided by Guimerà et al., 2020 [11].

3.1.4 Model Evaluation

First, as a proof-of-concept, we evaluated the ability for BMS to recover psychological models
of information processing in ideal conditions. Specifically, we provided BMS with all datapoints
per model with no noise, and let it run for 6000 epochs with a total of 30 parallel-tempered trees.
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Second, we evaluated the fit of each model using mean squared error (MSE), log-likelihood, Bayesian
information criterion (BIC), and minimum description length (MDL). The mean squared error
was computed by contrasting model predictions against test observations, the log-likelihood was
derived directly from the mean squared error, the BIC was calculated using log-likelihood along
with information about the number of samples and parameters (eq. 2), and MDL was determined
by combining the BIC with the priors (eq. 1). Third, we further investigated BMS’s performance
and ability to derive interpretable models by tallying whether it recovered the correct expression,
taking count of all models that were structurally equivalent to the ground truth model. We rounded
all parameters to the nearest significant value—2.7182 became e, 0.25001 became 0.25, etc.—if they
were within 5% of the absolute value of the significant value. Significant values include integers and
the parameter values included in the ground truth equation.

3.2 Results

Indeed, BMS was able to recover all models in ideal conditions (Table A1). Additionally, we found
that BMS consistently outperformed both the logit regression and the neural network across the
majority of noise levels for all evaluation metrics (Figures 2 and A1). Specifically, for both Steven’s
power law and exponential learning, BMS outperformed both benchmark models for four out of
seven noise levels before the models converged in terms of their performance at sigma= 0.250. For
Weber-Fechner law and Shepard-Luce choice rule, BMS outperformed both benchmark models for
six out of seven noise levels before the model performances converged at sigma = 1.000. In no
instances did either of the benchmark models outperform BMS.

Figure 2: Log-transformed mean squared errors of BMS, logit regression, and neural network for
four synthetic models of human information processing across noise levels. Distributions represent
the full range of data, lines represent the means, and error bars represent standard error.

Figure 3: The percentage of times that
BMS structurally recovered the models
for each ground-truth model of informa-
tion processing across noise levels.

To assess the interpretability of the equations produced
by BMS, we investigated the degree to which it could
recover each psychological model of human information
processing. We found that BMS was capable of fully re-
covering the ground-truth models of interest, albeit with
a decline as noise levels and the size of the expression
tree increased (Figure 3, also see Table A2 for example
expressions produced by BMS). To illustrate, when deal-
ing with our simplest ground truth model, Steven’s power
law, BMS consistently achieved full recovery under three
out of seven noise levels and maintained a 45% recov-
ery rate at the most challenging noise levels. With more
complex ground truth models, like exponential learning,
BMS demonstrated a 60% recovery rate at the lowest noise
levels but only 10% recovery at the highest noise levels.

4 Experiment 2

One advantage of BMS is that it allows the incorporation
of prior knowledge in the search process as a way of ad-
dressing vast search spaces. In Experiment 2, we investigated whether informed priors would aid
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BMS in model recovery against a benchmark uniform prior. Specifically, we derived four priors from
different research domains ranging in their specificity to psychology.

4.1 Methods

4.1.1 Scraping Priors

BMS uses priors as a method of estimating the plausibility of a generated expression, and thus its
possibility of being selected as the best model. The prior distribution contains the number of times
each operator and function appeared per equation.

We created four distributions of informed priors by webscraping equations from Wikipedia pages
using our open-source package Equation-Scraper. Equation-Scraper accumulates equations from
links to a certain depth and then parses scraped expressions via expression trees. We explored four
research domains that ranged in their specificity to psychology—namely, cognitive psychology,
cognitive science, neuroscience, and materials science, ordered from most to least related. We used a
search depth of two meaning that we investigated all links within the corresponding category page,
links within these links, and finally, links within these sublinks. For example, the first path of the
cognitive psychology domain was Cognitive Psychology → Cognitive Psychologists → American
Cognitive Psychologists. We then extracted equations from all levels of these links for parsing. For
each scraped expression, we tallied the following operators and functions: +, −, ∗, /, x2, x3,

√
x, ex,

sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, log, abs, max, min.

This process resulted in four informed sets of priors with the count of instances of each operator and
function across all expressions (Figure A2). We then divided these counts by the number of equations
parsed (Materials Science: 9,581, Neuroscience: 641, Cognitive Science: 609, Cognitive Psychology:
75), which was provided to BMS. Additionally, we created a benchmark uniform prior that contained
all operators and functions across all informed priors but with equal occurrences.

4.1.2 Simulation Procedure and Model Evaluation

We used the same datasets generated from the ground-truth models in Experiment 1, with the 80%-
20% train-test subsets, for the four ground-truth models at the noise level of σ= 0.0250. We then
employed BMS using the four informed sets of priors, and one benchmark uniform prior, as described
above. We conducted the recovery process 15 times, and evaluated performance using mean squared
error, log-likelihood, BIC, and MDL. BMS’s performance and interpretability was also assessed as
the percentage of times it recovered structurally equivalent expressions to the ground truth models.

4.2 Results

Integrating informed priors into the BMS framework robustly improved performance for only one of
the four models of human information processing—namely, exponential learning (Figures 4, A3).
The priors for the remaining three models performed equally to the uniform prior. When assessing
the interpretability of the equations that BMS produced, similar findings—i.e., a positive impact only
with exponential learning—were found when observing the percentage of structurally equivalent
models to the ground truth across priors (Figure 5).

5 Discussion

Our study aimed to assess the effectiveness of using the Bayesian Machine Scientist (BMS) for
the recovery of psychological models of human information processing. We observed that BMS
consistently outperformed two benchmark models, namely a logit regression and a neural network,
across the four synthetic models. This assessment involved systematically manipulating the noise
levels in our simulations, with higher noise levels approximating real-world data. BMS exhibited
superior performance compared to the benchmark models for the majority of noise levels tested
and demonstrated at least equivalent performance when considering the highest levels of noise.
Importantly, there was no instance where BMS was surpassed by the benchmark models, suggesting
that BMS may serve as a viable method for discovering psychological models of human information
processing and that it may outperform traditional modeling approaches in psychology.
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Figure 4: Log-transformed mean squared errors of BMS for four informed priors and one benchmark
uniform prior across four models of human information processing. Distributions represent the full
range of data, points represent the means, and error bars represent standard error. Dotted horizontal
line represents the outcome of the uniform prior for comparison.

Figure 5: The percentage of times that BMS structurally recovered the models for each prior across
the four ground-truth models of information processing.

We proceeded to examine whether the inclusion of priors could enhance BMS’s ability to recover
these models of human information processing. We explored four priors sourced from research
domains, each progressively more specific to psychology, and compared them to a standard, uniform
prior. Our investigation revealed that the use of informed priors led to an improvement in BMS
performance for one of the four models of human information processing compared to the uniform
prior. These findings illustrate that informed priors can be useful in increasing BMS performance
in certain contexts, but it is unclear why exponential learning was the only model impacted. Thus,
further investigations, perhaps on a wider array of ground-truth models, priors, and noise levels will
be necessary to understand the true impact of informed priors on BMS model recovery.

While our findings align with prior research on BMS’s effectiveness for model recovery [11] and
partly with its enhancement when using informed priors [35–37], several unresolved questions remain.
Our study was simulation-based and future work should validate our findings using real-world data to
assess BMS’s generalizability. Further, our comparisons were limited to a small subset of benchmark
models—future research could extend this assessment to a wider array of common psychological
modelling techniques and model discovery algorithms (e.g., symbolic regression [7–9], differentiable
architecture search [10]). Next, although BMS outperformed benchmark models, it did so with
increased computational costs and modelling time. Understanding its computational constraints
relative to other models would be critical. In addition, there exists room to optimize BMS, such as
parallel processing, to enhance its efficiency. Lastly, the examined priors offered limited information,
focusing on operation and function frequency across expressions. Expanding this research with more
informative priors, including conditional operations, would be beneficial.

In sum, we demonstrated the effectiveness of BMS in recovering psychological models of human in-
formation processing. BMS consistently outperformed benchmark models across various noise levels,
affirming its efficacy. Additionally, the inclusion of informed priors improved BMS performance for
one of the four models. We thus encourage psychology researchers to consider BMS for automated
scientific discovery, yet caution that integrating informed priors may not be robustly impactful.

8



Acknowledgments and Disclosure of Funding

S.M. was supported by Schmidt Science Fellows, in partnership with the Rhodes Trust, and all
authors were supported by the Carney BRAINSTORM program at Brown University.

9



References
[1] Pat Langley. “Data-driven discovery of physical laws”. In: Cognitive Science 5.1 (1981), pp. 31–54. URL:

https://www.sciencedirect.com/science/article/pii/S0364021381800250.
[2] Robert K. Lindsay, Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua Lederberg. “Applications of

Artificial Intelligence for Organic Chemistry: The DENDRAL Project”. In: New York, NY: McGraw-Hill
Book Co., 1980. URL: https://api.semanticscholar.org/CorpusID:60662239.

[3] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. “Scientific discovery in the age of artificial
intelligence”. In: Nature 620.7972 (2023), pp. 47–60.

[4] Yiqun Wang, Nicholas Wagner, and James M Rondinelli. “Symbolic regression in materials science”. In:
MRS Communications 9.3 (2019), pp. 793–805.

[5] L. Todorovski. “Equation discovery”. In: Encyclopedia of Machine Learning. Ed. by C. Sammut and
G. I. Webb. Boston, MA: Springer, 2011.

[6] Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-inspired method for symbolic
regression”. In: Science Advances 6.16 (2020), eaay2631. eprint: https://www.science.org/doi/
pdf/10.1126/sciadv.aay2631. URL: https://www.science.org/doi/abs/10.1126/sciadv.
aay2631.

[7] Michael Schmidt and Hod Lipson. “Distilling Free-Form Natural Laws from Experimental Data”. In:
Science 324.5923 (2009), pp. 81–85. eprint: https://www.science.org/doi/pdf/10.1126/
science.1165893. URL: https://www.science.org/doi/abs/10.1126/science.1165893.

[8] Trent McConaghy. “FFX: Fast, scalable, deterministic symbolic regression technology”. In: Genetic
Programming Theory and Practice IX (2011), pp. 235–260.

[9] Miles Cranmer. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. 2023.
arXiv: 2305.01582 [astro-ph.IM].

[10] Sebastian Musslick. “Recovering Quantitative Models of Human Information Processing with Differ-
entiable Architecture Search.” In: Proceedings of the Annual Meeting of the Cognitive Science Society.
Vol. 43. eScholarship, 2021. URL: https://escholarship.org/uc/item/9wd571ts.

[11] Roger Guimerà, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A. Massucci, Manuel Miranda,
Jordi Pallarès, and Marta Sales-Pardo. “A Bayesian machine scientist to aid in the solution of challenging
scientific problems”. In: Science Advances 6.5 (2020), eaav6971. eprint: https://www.science.org/
doi/pdf/10.1126/sciadv.aav6971. URL: https://www.science.org/doi/abs/10.1126/
sciadv.aav6971.

[12] Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. “Bayesian symbolic regression”. In: arXiv
preprint arXiv:1910.08892 (2019).

[13] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. “Discovering symbolic policies with deep reinforcement
learning”. In: International Conference on Machine Learning. PMLR. 2021, pp. 5979–5989.

[14] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and Joanne
T Kim. “Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking
policy gradients”. In: arXiv preprint arXiv:1912.04871 (2019).

[15] Markus Quade, Markus Abel, Kamran Shafi, Robert K. Niven, and Bernd R. Noack. “Prediction of
dynamical systems by symbolic regression”. In: Phys. Rev. E 94 (1 2016), p. 012214. URL: https:
//link.aps.org/doi/10.1103/PhysRevE.94.012214.

[16] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing equations from data
by sparse identification of nonlinear dynamical systems”. In: Proceedings of the national academy of
sciences 113.15 (2016), pp. 3932–3937.

[17] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Data-driven discovery of
partial differential equations”. In: Science advances 3.4 (2017), e1602614.

[18] Niall M Mangan, J Nathan Kutz, Steven L Brunton, and Joshua L Proctor. “Model selection for dynam-
ical systems via sparse regression and information criteria”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 473.2204 (2017), p. 20170009.

[19] Oriol Artime and Manlio De Domenico. “Percolation on feature-enriched interconnected systems”. In:
Nature Communications 12.1 (2021), p. 2478.

[20] Xabier Rodríguez-Martínez, Enrique Pascual-San-José, Zhuping Fei, Martin Heeney, Roger Guimerà, and
Mariano Campoy-Quiles. “Predicting the photocurrent–composition dependence in organic solar cells”.
In: Energy Environ. Sci. 14 (2 2021), pp. 986–994. URL: http://dx.doi.org/10.1039/D0EE02958K.

[21] Xabier Rodríguez-Martínez, Enrique Pascual-San-José, and Mariano Campoy-Quiles. “Accelerating
organic solar cell material’s discovery: high-throughput screening and big data”. In: Energy Environ. Sci.
14 (6 2021), pp. 3301–3322. URL: http://dx.doi.org/10.1039/D1EE00559F.

10

https://www.sciencedirect.com/science/article/pii/S0364021381800250
https://api.semanticscholar.org/CorpusID:60662239
https://www.science.org/doi/pdf/10.1126/sciadv.aay2631
https://www.science.org/doi/pdf/10.1126/sciadv.aay2631
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://www.science.org/doi/pdf/10.1126/science.1165893
https://www.science.org/doi/pdf/10.1126/science.1165893
https://www.science.org/doi/abs/10.1126/science.1165893
https://arxiv.org/abs/2305.01582
https://escholarship.org/uc/item/9wd571ts
https://www.science.org/doi/pdf/10.1126/sciadv.aav6971
https://www.science.org/doi/pdf/10.1126/sciadv.aav6971
https://www.science.org/doi/abs/10.1126/sciadv.aav6971
https://www.science.org/doi/abs/10.1126/sciadv.aav6971
https://link.aps.org/doi/10.1103/PhysRevE.94.012214
https://link.aps.org/doi/10.1103/PhysRevE.94.012214
http://dx.doi.org/10.1039/D0EE02958K
http://dx.doi.org/10.1039/D1EE00559F


[22] Julian Geiger, Albert Sabadell-Rendón, Nathan Daelman, and Núria López. “Data-driven models for
ground and excited states for Single Atoms on Ceria”. In: npj Computational Materials 8.1 (2022),
p. 171.

[23] Oscar Fajardo-Fontiveros, Ignasi Reichardt, Harry R De Los Rıos, Jordi Duch, Marta Sales-Pardo, and
Roger Guimerà. “Fundamental limits to learning closed-form mathematical models from data”. In: Nature
Communications 14.1 (2023), p. 1043.

[24] Daniel Vázquez, Roger Guimerà, Marta Sales-Pardo, and Gonzalo Guillén-Gosálbez. “Automatic mod-
eling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regres-
sion”. In: Sustainable Production and Consumption 30 (2022), pp. 596–607. URL: https://www.
sciencedirect.com/science/article/pii/S2352550921003729.

[25] Valentina Negri, Daniel Vázquez, Marta Sales-Pardo, Roger Guimerà, and Gonzalo Guillén-Gosálbez.
“Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations:
Application to CO2 Capture Technologies”. In: ACS Omega 7.45 (2022), pp. 41147–41164.

[26] Tim Forster, Daniel Vázquez, and Gonzalo Guillén-Gosálbez. “Algebraic surrogate-based process
optimization using Bayesian symbolic learning”. In: AIChE Journal 69.8 (2023), e18110. eprint: https:
//aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.18110. URL: https://aiche.
onlinelibrary.wiley.com/doi/abs/10.1002/aic.18110.

[27] Ignasi Reichardt, Jordi Pallarès, Marta Sales-Pardo, and Roger Guimerà. “Bayesian Machine Scientist to
Compare Data Collapses for the Nikuradse Dataset”. In: Phys. Rev. Lett. 124 (8 2020), p. 084503. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.124.084503.

[28] Masato Miyazaki, Ken-Ichi Ishikawa, Ken’ichiro Nakashima, Hiroshi Shimizu, Taiki Takahashi, and
Nobuyuki Takahashi. “Application of the symbolic regression program AI-Feynman to psychology”. In:
Frontiers in Artificial Intelligence 6 (2023), p. 1039438.

[29] Gideon Schwarz. “Estimating the dimension of a model”. In: The annals of statistics (1978), pp. 461–464.
[30] Tomohiro Ando. Bayesian model selection and statistical modeling. CRC Press, 2010.
[31] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth, Augusta H. Teller, and Edward

Teller. “Equation of State Calculations by Fast Computing Machines”. In: The Journal of Chemical
Physics 21.26 (1953). URL: https://www.aliquote.org/pub/metropolis-et-al-1953.pdf.

[32] Gordon D Logan and Robert D Gordon. “Executive control of visual attention in dual-task situations.”
In: Psychological review 108.2 (2001), p. 393.

[33] Andrew Heathcote, Scott Brown, and Douglas JK Mewhort. “The power law repealed: The case for an
exponential law of practice”. In: Psychonomic bulletin & review 7.2 (2000), pp. 185–207.

[34] Louis Leon Thurstone. “The learning curve equation.” In: Psychological Monographs 26.3 (1919), p. i.
[35] Deaglan Bartlett, Harry Desmond, and Pedro Ferreira. “Priors for symbolic regression”. In: Proceedings

of the Companion Conference on Genetic and Evolutionary Computation. ACM, 2023. URL: https:
//doi.org/10.1145%2F3583133.3596327.

[36] Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler R Josephson, Joao Goncalves, Kenneth L Clarkson,
Nimrod Megiddo, Bachir El Khadir, and Lior Horesh. “Combining data and theory for derivable scientific
discovery with AI-Descartes”. In: Nature Communications 14.1 (2023), p. 1777.

[37] Charles Fox, Neil Tran, Nikki Nacion, Samiha Sharlin, and Tyler R. Josephson. Incorporating Background
Knowledge in Symbolic Regression using a Computer Algebra System. 2023. arXiv: 2301.11919
[cs.LG].

11

https://www.sciencedirect.com/science/article/pii/S2352550921003729
https://www.sciencedirect.com/science/article/pii/S2352550921003729
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.18110
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.18110
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.18110
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.18110
https://link.aps.org/doi/10.1103/PhysRevLett.124.084503
https://www.aliquote.org/pub/metropolis-et-al-1953.pdf
https://doi.org/10.1145%2F3583133.3596327
https://doi.org/10.1145%2F3583133.3596327
https://arxiv.org/abs/2301.11919
https://arxiv.org/abs/2301.11919


A Appendix

Figure A1: Description length, Bayesian information criterion, and log likelihood of BMS, logit
regression, and neural network for four synthetic models of human information processing across
noise levels. Distributions represent the full range of data, lines represent the means, and error bars
represent standard error.
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Figure A2: Percentages of the frequency of each operator and function for a benchmark uniform
prior and four informed priors of materials science, neuroscience, cognitive science, and cognitive
psychology. Operators and functions are included within each prior if they were encountered at least
one time. Operators and functions with 0% indicate a value greater than 0% but smaller than 0.5%

13



Figure A3: Description length, Bayesian information criterion, and log likelihood of BMS for
four informed priors and one benchmark uniform prior across four models of human information
processing. Distributions represent the full range of data, points represent the mean, and error bars
represent standard error. Dotted horizontal line represents the outcome of the uniform prior for
comparison.
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Table A1: Proof-of-concept equation recovery using BMS in ideal conditions. Red expressions
represent the ground truth; black expressions represent the raw outputs of BMS; blue expressions
represent the simplified versions of the BMS expressions. Although the simplified versions of BMS
expressions did not always exactly match the ground-truth expressions, they were always structurally
equivalent to them. As such, BMS recovered all models given the 5% error margin threshold for
parameter values. BMS was prone to over-complicating the equation. Theoretically BMS will
simplify the model, given enough training time.

Steven’s Power Law

x0.8

x0.8

x0.8

Weber-Fechner Law

log(x1
x2

)

log(x1
x2

)+x2.192 ·0.022.81

log(x1
x2
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Shepard-Luce Choice Rule

x1·0.8
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Table A2: Featured equations recovered by BMS for each psychological model at noise level 0.025
from Experiment 1. Red equations represent the ground truth of the corresponding psychological
model of information processing.
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