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Abstract
Recent studies have shown that supervised fine-
tuning of LLMs on a small number of high-quality
datasets can yield strong reasoning capabilities.
However, full fine-tuning (Full FT), while power-
ful, is computationally expensive and susceptible
to overfitting and catastrophic forgetting, partic-
ularly when data is limited. Sparse fine-tuning,
which previously achieved notable success by up-
dating only a small subset of model parameters,
offers a promising trade-off between efficiency
and effectiveness. Yet, it has lagged behind in the
LLM era due to the difficulty of identifying pa-
rameters truly critical for reasoning. In this work,
we state that weights with the largest magnitude
after low-rank approximation are critical weights
for fine-tuning, which we call Principal Weights.
Surprisingly, while magnitude-based sparse fine-
tuning performs poorly as a baseline on LLM
fine-tuning, it becomes highly effective after rank
reduction. These insights motivate our method:
Low-rank Informed Sparse Fine-Tuning (LIFT).
LIFT only updates the top 5% Principal Weights
throughout training and consistently achieves bet-
ter performance on reasoning tasks than Full FT,
while maintaining memory efficiency on par with
popular parameter-efficient fine-tuning methods.
In addition to strong performance on target do-
mains such as arithmetic reasoning, LIFT also
retains up to 20% more source-domain knowl-
edge, compared to Full FT and LoRA. Our code is
available at: https://github.com/zihanghliu/LIFT.
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1. Introduction
Large language models have recently undergone a
revolutionary advancement in reasoning capabilities
through Supervised Fine-Tuning (SFT) (Ye et al., 2025;
Muennighoff et al., 2025) and Reinforcement Learning
(RL) (Guo et al., 2025; Face, 2025). Performing SFT on
a small, high-quality dataset delivers remarkable reasoning
performance on math problems (Muennighoff et al., 2025).
However, Full Fine-Tuning (Full FT) is prone to overfitting
on limited training data (Chu et al., 2025) and incurs
substantial computational costs due to the massive sizes of
modern LLMs (Yin et al., 2023).

On the other hand, Sparse Fine-Tuning (Sparse FT) (Guo
et al., 2020; Xu et al., 2021; Sung et al., 2021; Sanh et al.,
2020a), a standout approach for pre-LLM fine-tuning, has
demonstrated promising performance by training only a
small subset of the base model’s parameters. However, the
adoption of Sparse FT has significantly lagged behind its
low-rank counterparts in LLMs, as it struggles to identify
parameters truly critical to fine-tuning, and its memory over-
head is the same as Full FT with irregular sparse patterns.

In this paper, we propose Low-rank Informed Sparse Fine-
Tuning (LIFT), an effective and efficient approach for
reasoning-focused LLM fine-tuning. LIFT builds on a
counter-intuitive finding: the most naive baseline for Sparse
FT, i.e., magnitude-based fine-tuning, becomes remarkably
effective after applying low-rank approximation. We hence
identify the weights with the largest magnitude after rank
reduction as Principal Weights. The process of obtaining
Principal Weights is illustrated in Figure 1. Empirical results
show that LIFT outperforms state-of-the-art PEFT methods,
Sparse FT methods, and Full FT on a wide range of tasks.
LIFT solves the challenges of Sparse FT in these ways:

Prior Knowledge: LIFT identifies Principal Weights,
which are critical for retaining pre-training knowledge and
adapting to downstream tasks. The intuition aligns with
recent findings that reasoning capacity is already in base
models (Ye et al., 2025; Yue et al., 2025). LIFT further
finds that this knowledge is encoded with Principal Weights
and fine-tuning only these parameters is sufficient to achieve
comparable—or even superior—reasoning performance.
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Figure 1: Overview of LIFT. LIFT first performs SVD on the original weight matrix W to obtain a Rank-r approximation
W ′. It then selects the top-K parameters of W ′ with the highest magnitudes to create a fine-tuning mask. This mask is then
applied to the original weight matrix W for fine-tuning.

Memory Efficiency: LIFT offers significantly better
memory efficiency than Full FT and is on par with
LoRA. LIFT updates and stores only a small subset
of parameters during fine-tuning, leading to substantial
memory savings—particularly in optimizer states, which
are reduced from 27GB in Full FT to just 1.3GB (<5%)
on LLaMA-2-7B.

Our analysis reveals that Principal Weights are more impor-
tant for LLM fine-tuning compared to other weight selection
criteria: Adding random perturbation to Principal Weights
drastically affects model performance, substantially greater
than other sparse selection metrics, both for pre-training
knowledge and downstream tasks. In addition, the update
matrix of LIFT has a substantially larger magnitude than
LoRA and Full FT, and a substantially larger rank than that
of LoRA, close to Full FT, enabling a larger capacity to
acquire new knowledge in fine-tuning. Furthermore, LIFT
can strongly affect the principal eigenspace of the LLM,
making a significantly larger deviation than LoRA and Full
FT, leading to better adaptation of the downstream tasks.
We summarize our contributions as follows:

• We propose LIFT, a memory-efficient Sparse Fine-
tuning algorithm, that selects and fine-tunes Principal
Weights, as parameters with the highest magnitude after
low-rank approximation. LIFT has significantly lower
memory overhead than Full FT (less than 5% memory
for optimizer), similar to that of LoRA. We show that

Principal Weights are crucial for retaining pre-trained
knowledge and adapting to downstream tasks.

• We show that LIFT consistently yields strong perfor-
mance on diverse sets of tasks. We evaluate LIFT
on a wide range of reasoning benchmarks, including
GPQA Diamond, Commonsense Reasoning, Arith-
metic Reasoning, and Natural Language Understand-
ing. We show that LIFT outperforms state-of-the-art
PEFT methods, Full FT, and other Sparse FT strate-
gies. Specifically, LIFT achieves up to 4.42% better
performance than LoRA on commonsense reasoning,
and up to 2.02% higher overall performance than Full
FT on GPQA Diamond.

• We provide a comprehensive analysis of LIFT, and
show that LIFT has 1) Strong generalization perfor-
mance, that it balances learning and forgetting, achiev-
ing stronger performance on target domains while up to
20% better than LoRA on source domains; 2) Strong
learning capacity, that it enables larger weight up-
dates, with rank significantly higher than LoRA, close
to Full FT, as well as other fascinating observations.

2. Related Works
Low-rank Approximation of Weight Matrices. Recent
works (Sharma et al., 2024; Chen et al., 2025; Wang et al.,
2024; Wei et al., 2024; Jaiswal et al., 2024; Geva et al., 2023)
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Figure 2: Evaluating pre-trained LLaMA-2-7B model with random noise added to selected parameters.

study the low-rank structure within the weight matrices of
LLMs. Specifically, Sharma et al. (2024) and Chen et al.
(2025) found that low-rank approximation of the feedfor-
ward layer can improve reasoning capabilities. Sharma et al.
(2024) proposes that higher-order components of a weight
matrix can introduce noise in decision-making, and eliminat-
ing the higher-order components “denoises” the model and
helps recover “hidden”, less-frequent information, improv-
ing the model’s performance on questions whose answers
are supported by less frequently occurring data. Chen et al.
2025 further theoretically confirmed this point in a two-layer
transformer setting. The low-rank structures in weight up-
date also inspire a line of adapter-based PEFT methods (Hu
et al., 2022; Liu et al., 2024a; Meng et al., 2024; Huang
et al., 2025).

Eigenspectrum Analysis in Training and Fine-tuning.
Previous works (Ba et al., 2022; 2023; Wang et al., 2023)
demonstrated theoretically that a two-layer neural network
initialized with i.i.d. weights trained with one update step
tends to exhibit a bulk+spike pattern in the empirical spectral
density (i.e., the histogram of eigenvalues), which contains
important signals in the corresponding eigenvectors. Recent
works (Yang et al., 2023; Martin et al., 2020; Dandi et al.,
2024) have investigated the eigenspectrum of weight/feature
matrices of the trained model and found that shape metrics
related to the heavy-tail distribution of eigenspectrum can
reflect the quality of the model. Other works (Sanyal et al.,
2019; Nassar et al., 2020; He & Ozay, 2022; Zhou et al.,
2023; Liu et al., 2024b; Lu et al., 2024; Hu et al., 2025;
Lingam et al., 2024; Meng et al., 2024) leveraged the infor-
mation of the eigenspectrum and designed adaptive training
and fine-tuning algorithms that improve generalization.

Sparsity in Fine-tuning. Sparse Fine-tuning (Sparse FT)
aims to train a small subset of the weight matrices that are
critical for downstream tasks, while achieving a smaller
memory footprint than Full FT (Guo et al., 2020; Xu et al.,
2021; Sung et al., 2021; Sanh et al., 2020a; Ansell et al.,
2024; Song et al., 2024; He et al., 2025). Sparse FT
achieved notable success before the era of modern LLM.

However, there is a lack of metrics that identify critical
weights for fine-tuning, making it challenging to scale up.
Li et al. (2024) prioritizes layers with significant outliers
and fine-tunes models with sparse layers. Recently, Yang
et al. (2024) proposed a structured Sparse FT scheme that
achieves strong generalization performance. In this work,
our proposed LIFT identifies the Principal Weights that are
crucial to model performance.

3. Methodology
In this section, we introduce LIFT in detail. In Section 3.1,
we describe the background and foundations for our ap-
proach. Section 3.2 presents the detailed algorithm of LIFT.
An overview of LIFT is depicted in Figure 1.

3.1. Observations on Sparsity and Low-rank Structures

Sparse fine-tuning involves choosing a small subset of Prin-
cipal Weights to fine-tune. Intuitively, the Principal Weights
should be critical to model performance on different tasks.
To determine the critical components in the weight matrices,
recent works (Sharma et al., 2024; Chen et al., 2025) pro-
pose that lower-order components (corresponding to large
singular values) contain information related to the task and
context, while higher-order components (with smaller singu-
lar values) contain more generic information, which can be
considered noise. These noise terms could prevent the adap-
tation process when adapting to a domain-specific task in
fine-tuning. Based on this insight, we aim to design a sparse
fine-tuning algorithm that finetunes parts of the weight ma-
trices that contribute significantly to the model when the
“noises” are filtered out through low-rank approximation.
Essentially, the algorithm should finetune parameters with
the largest magnitude after low-rank approximation.

3.2. LIFT Algorithm

We now introduce LIFT in detail. Given a model, for all
trainable weight matrices {W1,W2, . . . ,Wn}, LIFT first
performs a rank−R approximation of the weight matrices
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Model Method Best Rank BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA Avg.

LLaMA-2-7B

Full FT – 73.8 84.2 81.0 94.7 85.2 88.9 75.6 84.8 83.53
LoRA 128 70.8 82.8 79.4 92.9 83.4 86.3 71.6 82.8 81.25
DoRA 128 71.3 83.4 80.1 92.3 84.0 86.1 71.4 85.8 81.80
PiSSA 128 72.5 85.3 80.8 87.2 86.1 87.1 74.3 85.6 82.36
S2FT 128 73.3 83.7 81.0 94.3 84.6 88.3 75.8 84.8 83.22
LIFT 128 74.8 84.7 82.2 94.4 86.0 89.2 76.4 89.6 84.66

LLaMA-3-8B

Full FT – 75.4 88.0 81.8 96.5 89.3 93.1 83.0 86.0 86.64
LoRA 64 71.8 85.3 80.9 93.4 84.5 90.0 77.0 84.8 83.46
DoRA 64 74.6 87.4 81.2 94.7 87.1 89.4 79.5 86.4 85.04
S2FT 64 67.7 89.8 82.5 95.2 87.8 93.1 84.6 88.6 86.16
LIFT 32 75.7 90.5 83.2 96.5 89.4 93.6 83.9 90.2 87.88

Table 1: Commonsense reasoning. Fine-tuning on Commonsense-170K dataset.

to obtain {W′
1,W

′
2, . . . ,W

′
n}, such that

W′
i = argmin

rank(W′
i)≤r

∥Wi −W′
i∥F . (1)

By obtaining the Rank − r approximation, we filter out
the “noisy” information in higher-order components, while
maintaining the proximity to the original weight matrix
according to the Eckart–Young–Mirsky theorem (Eckart &
Young, 1936).

Then, LIFT generates a binary mask, in which positions
with the highest magnitude are set to 1, and the rest to 0:

Mij =

{
1 if W ′

ij in top-k of W ′,

0 otherwise.
(2)

where k is the number of chosen parameters in W. The
mask is then applied to the original model during fine-tuning.
Given any optimization algorithm with stochastic gradient
updates, suppose at iteration t the gradient of the weight
matrix W t

i is gti , we apply the binary mask M t
i to only

store the gradient and corresponding optimizer states of the
selected parameters as vectors:

gti = vec(gti [M
t
i = 1]) (3)

By storing only the optimizer states of Principal Weights,
the memory expenses of optimizers such as Adam are dra-
matically reduced. The detailed algorithm can be found in
Appendix A. In Section 7.4, we show that the memory over-
head of LIFT is significantly lower than Full FT, similar to
that of LoRA.

In addition, as the low-rank approximation and its largest
components will also change, we need to adjust our estima-
tion of the Principal Weights dynamically. We choose the
update interval that balances effectiveness and efficiency. A
detailed discussion is in Appendix B.1.

4. LIFT Finds Principal Weights
We now try to provide initial insights into LIFT. We expect
that through low-rank approximation, the model weights
discard higher-order components (corresponding to smaller
singular values) and retain the parts that best represent the
encoded knowledge (Ba et al., 2022; Chen et al., 2025),
leading to LIFT identifying the Principal Weights. To de-
termine the importance of weights selected by LIFT, we
design a simple experiment to randomly perturb different
groups of weights and observe the resulting performance
changes. If a set of parameters is truly critical to the LLM,
perturbing them should cause a significant negative impact
on the model performance. We empirically show that adding
noise to parameters chosen by LIFT significantly affects
model performance, compared to other selection criteria.

Experiment Setup. For an LLM, given a subset of parame-
ters selected by a criterion, we add a Gaussian noise with a
fixed scale of 0.01 to these parameters. Then, we evaluate
the perturbed model on three tasks: 1) Wikitext Perplexity,
2) Next-token Prediction, and 3) Arithmetic Reasoning.
For 1) and 2), we use a pre-trained LLaMA-2-7B model
to verify Principal Weights’s importance for attaining pre-
trained knowledge, and for 3), we use a LLaMA-2-7B
model fine-tuned on the MATH-10K dataset to verify the
importance of Principal Weights on fitting downstream
tasks. We compare the performance of the perturbed model
under LIFT, and different parameter selection strategies.

Wikitext Perplexity. We first evaluate the perplexity of
the perturbed model on the Wikitext dataset. As shown in
Figure 2a, we see that when LIFT-selected parameters are
added noise, the perplexity increases significantly, while
other selection metrics remain stable. This implies that
parameters selected by LIFT have a significant influence
on the model’s basic language capabilities.

Next-token Prediction. Recent work (Sharma et al., 2024;
Chen et al., 2025) showed that replacing weight matrices
with their low-rank approximation improves reasoning, pre-
dicting contextual answers instead of “generic” tokens as by
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Model Method Best Rank MultiArith GSM8K AddSub AQuA SingleEQ SVAMP MAWPS Avg.

LLaMA-3.2-1B

Full FT – 98.50 33.13 92.15 24.02 94.29 51.1 87.40 68.66
LoRA 128 98.50 30.48 89.87 24.41 92.91 53.6 86.13 67.98
DoRA 128 98.50 30.48 89.87 24.41 92.91 53.6 86.13 67.98
PiSSA 128 97.33 32.15 91.90 23.23 94.09 52.3 86.97 68.28
S2FT 128 96.17 30.17 90.38 23.62 92.13 49.4 81.93 66.26
LIFT 128 98.17 32.37 90.89 26.38 92.91 56.3 86.13 69.02

LLaMA-3.2-3B

Full FT – 97.83 56.71 92.66 33.46 95.08 69.1 90.34 76.45
LoRA 128 98.50 55.95 91.39 27.95 94.29 70.3 91.60 75.71
DoRA 128 98.33 55.12 91.65 28.35 94.88 70.9 89.92 75.59
PiSSA 128 98.33 59.51 91.90 25.20 95.47 69.9 89.50 75.69
S2FT 128 98.33 55.65 91.90 29.53 96.06 68.9 88.66 75.58
LIFT 128 99.17 57.92 94.17 28.74 96.85 71.0 91.60 77.06

LLaMA-2-7B

Full FT – 98.17 46.55 93.67 22.05 96.85 63.2 89.08 72.79
LoRA 128 98.00 47.76 92.41 23.62 95.08 62.9 90.76 72.93
DoRA 64 98.00 47.38 92.41 21.26 96.06 62.3 89.50 72.42
PiSSA 128 98.83 48.45 92.66 21.26 95.87 63.4 90.76 73.03
S2FT 128 99.17 44.43 91.39 29.13 95.47 62.6 89.50 73.10
LIFT 128 98.67 47.31 92.66 26.77 96.85 63.6 90.34 73.74

LLaMA-3-8B

Full FT - 99.00 69.83 93.42 28.74 97.83 79.6 92.86 80.18
LoRA 64 99.17 71.57 92.15 24.41 96.26 80.5 92.02 79.44
DoRA 64 98.83 70.96 90.89 29.53 96.65 81.8 90.76 79.92
PiSSA 128 99.00 71.27 93.67 28.74 97.64 80.6 92.02 80.42
S2FT 64 99.67 70.89 92.91 32.68 97.64 78.2 94.12 80.87
LIFT 128 99.33 72.40 93.42 34.65 98.03 80.9 93.70 81.78

Table 2: Arithmetic reasoning. Fine-tuned on the MATH-10K dataset.

the original matrix. Inspired by this, we aim to investigate
the role of parameters selected by LIFT on the next-token
prediction task. Specifically, we use pre-trained LLaMA-2-
7B model and analyze its output probability given a prompt
such as “Madrid is located in the country of”. Given this
prompt sentence, the pre-trained model would successfully
predict the ground truth answer “Spain”. On the other hand,
if the model fails to learn the context information, it is more
likely to behave like an n-gram model and predict generic
words like “the”. As shown in Figure 2b, after more LIFT-
selected weights are added noise, the output probability
of “Spain” decays drastically, and eventually becomes zero.
While other selection metrics are not influenced by the noise,
still predict the correct answer.

Arithmetic Reasoning. Figure 2c shows the average test
accuracy on 7 arithmetic reasoning tasks of the perturbed
model. We can see that when parameters selected by LIFT
are added noise, the performance degrades drastically to 0,
compared to other metrics where adding noise doesn’t have
a significant influence.

The above experiments show that parameters selected by
LIFT are extremely crucial to model performance, and they
are sensitive to tiny perturbations. Therefore it makes sense
to focus on these parameters during fine-tuning, as they will
potentially be more adaptive to downstream tasks, and be
more robust after fine-tuning. In Appendix C, we provide
insights into LIFT from the perspective of spectral norm.

5. Experiments
In this section, we evaluate LIFT on various fine-tuning
tasks, and compare it with state-of-the-art fine-tuning meth-
ods, including Full FT, LoRA (Hu et al., 2022), DoRA (Liu
et al., 2024a), Spectral Adapters (Zhang & Pilanci, 2024),
S2FT (Yang et al., 2024), and PiSSA (Meng et al., 2024).
We also compare LIFT with sparse fine-tuning methods
such as SpIEL (Ansell et al., 2024) and SIFT (Song et al.,
2024). We demonstrate that LIFT achieves superior per-
formance than these methods across all datasets. To ensure
a fair comparison, we reproduce all results of the baseline
methods with the codebases provided in previous papers.

5.1. Experimental Setup

Tasks. We conduct experiments on domains of major inter-
ests to modern LLM communities, including: 1) Reasoning
Models, in which we perform SFT with Qwen-2.5 on s1K
dataset (Muennighoff et al., 2025) and evaluated on GPQA
Diamond (Rein et al., 2023); 2) Commonsense Reason-
ing, where we fine-tune models on Commonsense-170K
dataset (Hu et al., 2023) and evaluate them on eight com-
monsense reasoning tasks; 3) Arithmetic Reasoning, in
which we fine-tune models on the MATH-10K dataset (Hu
et al., 2023) and evaluate them on 7 arithmetic datasets; 4)
Natural Language Understanding, in which we fine-tune
and evaluate models on the GLUE datasets (Wang et al.,
2018); 5) Code generation, where we perform instruct fine-
tuning and evaluate the model on the Humaneval dataset;
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Method Best Rank MNLI SST-2 MRPC CoLA QNLI QQP RTE STSB Avg.

Full FT – 90.22 96.10 89.71 70.67 93.59 92.20 83.03 91.38 88.36
LoRA 64 89.92 95.87 89.95 68.35 92.88 90.62 81.95 90.81 87.57
DoRA 64 89.93 96.22 89.95 68.59 92.86 90.66 82.31 90.83 87.66

Spectral 64 89.89 96.22 88.73 69.65 93.45 91.21 82.67 90.92 87.84
PiSSA 128 90.12 95.87 89.46 68.48 93.48 91.72 81.95 91.10 87.77
LIFT 128 90.49 96.56 90.93 71.84 93.90 92.38 85.92 91.86 89.24

Table 3: Natural language understanding. Fine-tuning DeBERTa-v3 on GLUE datasets
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Figure 3: Comparing different sparse parameter selection metrics on GSM8K dataset.

6) Question Answering, where we fine-tune and evaluate
models with the StrategyQA dataset.

Models. For arithmetic and commonsense reasoning, we
use LLaMA models with sizes ranging from 1B to 8B (Tou-
vron et al., 2023a;b; Grattafiori et al., 2024). For reasoning
models with test-time scaling, we choose the instruction-
finetuned Qwen-2.5 (Qwen et al., 2025) 1.5B and 3B models.
For natural language understanding, we use DeBERTa-V3-
base (He et al., 2023) and RoBERTa-large (Liu et al., 2019).
For code generation, we use LLaMA-2-7B model. For ques-
tion answering, we choose LLaMA-2-7B and LLaMA-3-8B.

To ensure fair comparison, we search the rank of PEFT
methods in {16, 32, 64, 128, 256}, and LIFT with the same
parameter counts, and compare their best results among all
the ranks. For detailed dataset configurations and hyperpa-
rameter settings, please refer to Appendix D.

5.2. Reasoning Models on GPQA Diamond

Recently, reasoning models such as DeepSeek
R1 (DeepSeek-AI, 2025), and Qwen 2.5 (Qwen et al.,
2025) have shown advanced reasoning capabilities by
scaling up compute resources during test-time. This trend
incentivizes the development of more efficient and effective
methods to train these reasoning models. To evaluate
LIFT on adapting reasoning models, we follow the settings
of the recent s1 paper (Muennighoff et al., 2025), and
train instruct-finetuned Qwen-2.5 models with supervised

fine-tuning on the s1K dataset.

Metric Qwen2.5-1.5B Qwen2.5-3B

Full FT 26.77 33.33
LIFT 28.79 (r = 128) 34.85 (r = 256)

Table 4: Test accuracies of Qwen 2.5 models on GPQA-
Diamond, trained with supervised fine-tuning on the s1K
dataset.

In Table 4, we compare LIFT with Full FT, which is the
default method for supervised fine-tuning. We can see
that LIFT can achieve better performance than Full FT on
Qwen2.5 1B and 3B instruct model. This result shows the
potential of LIFT on the training of large scale reasoning
models.

5.3. Commonsense Reasoning

As shown in Table 1, LIFT achieves superior results on
commonsense reasoning tasks than other fine-tuning meth-
ods. When compared to PEFT methods, LIFT outperforms
DoRA and PiSSA by 2.86% and 2.30% with LLaMA-2-7B
model; When compared to Full FT, LIFT achieves 1.24%
and 1.13% higher overall accuracy with LLaMA-3-8B and
LLaMA-2-7B respectively. This highlights the effectiveness
of LIFT in commonsense reasoning.
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Figure 4: Generalization performance of LIFT on Near OOD and Far OOD tasks with LLaMA-3.2-3B.

5.4. Arithmetic Reasoning

In Table 2, we present evaluation results on seven arithmetic
tasks. We can see that LIFT outperforms all PEFT methods,
Sparse FT methods, and Full FT on LLaMA models. Specif-
ically, compared to LoRA, LIFT achieves 1.79% higher
overall performance on LLaMA-3.2-3B. In addition, LIFT
outperforms the recent S2FT method by 2.76% on LLaMA-
3.2-1B. More significantly, compared to Full FT, LIFT
achieves a noticeable improvement of 1.14% and 1.60% on
LLaMA-2.7B and LLaMA-3-8B, respectively. This sug-
gests that LIFT can yield better test performance across a
wide range of model sizes. Furthermore, LIFT achieves
significantly better results on the most difficult tasks, such
as GSM8K and SVAMP. This implies that LIFT can obtain
high-level arithmetic capabilities more effectively.

5.5. Natural Language Understanding

We further evaluate the performance of LIFT on Natural
Language Understanding tasks, as shown in Table 3. We can
see that LIFT achieves the highest performance on every
task, significantly better than other fine-tuning methods.
Specifically, LIFT outperforms Full FT by 0.88% overall,
and surpasses the recent Spectral Adapter method by 1.40%.

5.6. Additional Results

In addition to the results provided above, we have further
evaluated LIFT on more diverse domains. This includes
code generation under instruction fine-tuning, and question
answering, which are presented in Appendix E.2 and Ap-
pendix E.3, respectively. We have also compared LIFTwith
other sparse fine-tuning methods, namely SpIEL (Ansell
et al., 2024) and SIFT (Song et al., 2024), on diverse tasks,
which are presented in Appendix F.

6. Ablation Study
In this section, we perform extensive ablation studies to sup-
port the effectiveness of LIFT. In Section 6.1, we compare
LIFT with other sparse weight selection methods. Then in

Appendix B.1, we study the effect of update interval on the
performance of LIFT. Finally in Appendix B.2, we com-
pare the performance of different rank reduction strategies.

6.1. Comparing Different Parameter Selection Metrics

To evaluate the superiority of weight selection with LIFT,
we compare LIFT with different parameter selection met-
rics on the task of fine-tuning on the GSM8K dataset. Specif-
ically, we chose the pre-trained model of LLaMA-3.2-3B,
LLaMA-2-7B, and Mistral-7B (Jiang et al., 2023), and we
ran each experiment on four random seeds. The weight se-
lection criteria include: 1) Weight Magnitude, 2) Movement
Score (Sanh et al., 2020b), 3) Gradient Magnitude, and 4)
Random Selection. As shown in Figure 3, we can see that
LIFT outperforms all other parameter selection metrics by
a large margin while surpassing Full Fine-tuning. This sug-
gests that LIFT is a robust and effective selection metric for
fine-tuning, especially on challenging tasks like GSM8K.

6.2. More Ablation Studies

Due to page limits, we place more ablation study results
in Appendix B. In Appendix B.1 we study the effect of
update interval of LIFT on model performance, and in Ap-
pendix B.2, we compare different rank reduction strategies.

7. Discussions
In this section, we provide comprehensive analysis on LIFT.
First, in Section 7.1, we study how LIFT learns more on
the target domain and forgets less on the source domain. In
Section 7.2, we investigate the weight update of LIFT. Then
in Section 7.3, we study the eigenspace and eigenspectrum
of model fine-tuned by LIFT to investigate its learning
dynamics. In Section 7.4, we analyze the memory efficiency
of LIFT. Further discussion results are in Appendix G.

7.1. LIFT Balances Learning and Forgetting

Balancing learning and forgetting is crucial in studying
the generalization abilities of a training algorithm. Follow-
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Figure 5: Weight difference between the model before and after fine-tuning.

ing (Biderman et al., 2024; Yang et al., 2024), we study
the learning and forgetting of LIFT with pre-trained LLM
fine-tuned on MATH-10K, and evaluating it on both arith-
metic reasoning tasks (target domain), including easy (i.e,
MultiArith, AddSub, SingleEq, MAWPS) and hard (i.e,
GSM8K, AQuA, SVAMP), and commonsense reasoning
tasks (source domain). Specifically, we compare the perfor-
mance of LIFT with Full FT and LoRA. To ensure a fair
comparison, we match the number of trainable parameters
of LIFT and LoRA with the corresponding rank.

In Figure 4, we show the performance of LIFT with
LLaMA-3.2-3B model. We can see that LIFT significantly
outperforms Full FT and LoRA on both easy and hard tasks.
In addition, LIFT also surpasses the source domain per-
formance of Full FT and LoRA by a large margin, more
than 5% than Full FT and 12% than LoRA. This suggests
that LIFT is not only able to achieve superior results on the
target domain tasks but also can retain previous knowledge,
showcasing its ability to forget less. We believe that this
strong generalization might come from the fact that LIFT
only tunes parts of the weight matrices, keeping a large por-
tion of the parameters unchanged, which makes the model
forget less. In Figure 10 of Appendix G.1 we also show the
performance of LIFT with LLaMA-3-8B model.

7.2. Weight Update

To analyze the changes brought by LIFT to the model, we
plot the magnitude distribution of the weight update matrix
∆W of different layers in the model, as shown in Figure 5.
We can see that LIFT brings a significantly larger weight
update than Full FT and LoRA. These larger weight up-
dates may reflect that the model is actively exploring and
exploiting its capacity to capture new task-specific features,
improving performance on the fine-tuning dataset. In the
meantime, we can see that with LIFT, only a small set
of parameters are changed while most weights remain un-
changed (a large spike in the center of LIFT’s magnitude
distribution), the model retains its fundamental capacities
that enable it to generalize to OOD settings.

7.3. Eigenspace and Eigenspectrum Analysis

To analyze how LIFT enables superior fine-tuning results,
we investigate the dynamics of eigenspace and eigenspec-
trum before and after fine-tuning. Specifically, we compute
the 1) alignment score of top eigenspace (right singular
vectors) before and after fine-tuning to measure the devia-
tions in these directions, and 2) rank of weight update. The
definition of alignment score can be found in Appendix H.1

Eigenspace. In Figure 12, we show the alignment score
of each layer of LLaMA-3.2-3B model (a larger alignment
score means more similar eigenspace). We can see that:

• Some layers’ eigenspace are extremely robust to fine-
tuning. For example, for Query, Key and Gate layer,
the alignment score is almost 1. This implies that fine-
tuning these layers is less effective, as they don’t bring
further rotation to the top eigenspace. On the other
hand, for Output, Up, and Down layers, the change
of alignment scores is 10x larger than the other layers.
This indicates that these layers are more adaptive to
fine-tuning tasks, as fine-tuning them is more effective
in rotating their eigenvectors. In Appendix G.2, we em-
pirically demonstrate the difference in the effectiveness
of fine-tuning these layers. We note that this observa-
tion is also observed in previous works (Sharma et al.,
2024; Yang et al., 2024).

• LIFT is especially effective on highly adaptive layers.
We can see that for Output, Up and Down layers,
LIFT can bring significantly larger rotations to the top
eigenspace, resulting in much lower alignment scores
than Full FT and LoRA.

Rank. In Figure 13, we show the rank of the update matrix
of each layer, grouped by their layer type. We can see that
compared to LoRA, LIFT doesn’t have rank constraints,
and that the rank of the update is significantly higher than
LoRA, close to Full FT. On some finetune-crucial layers
such as Up and Down projection in the MLP module, LIFT
achieves almost the same rank update as Full FT on all

8
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Figure 6: Breakdown of memory consumption of LIFT, LoRA and Full Fine-tuning.

layers. This suggests that LIFT has a larger capacity to
learn task-related knowledge, which could explain its su-
perior performance than other PEFT methods. Details of
computing the rank are explained in Appendix G.3.

Combining the two metrics, we can see that LIFT serves as
a good method to 1) provide larger eigenspace rotation to
adapt to fine-tuning tasks, and 2) provide large rank update
to increase the capacity of learned knowledge in fine-tuning.

7.4. Memory Efficiency of LIFT

We analyze the memory cost of LIFT. Figure 6 shows the
memory overhead breakdown of LIFT, Full FT, and LoRA
with LLaMA-2-7B and LLaMA-3-8B. We can see that the
overall memory overhead is just slightly larger than that of
LoRA, and significantly smaller than Full FT. Specifically,
LIFT only takes up around 5% memory on the optimizer
states than Full FT, due to the usage of sparse momentum
and variance. This suggests that LIFT is able to effec-
tively balance efficiency and performance. In Appendix G.4,
we further show that the memory overhead of LIFT can
be further reduced by only fine-tuning MLP layers, while
achieving comparable performance (i.e. LIFT MLP).

7.5. More Discussions

We provide further discussions on LIFT in Appendix G.
In Appendix G.5, we create a two-layer model on a simple
regression task to simulate the fine-tuning with LIFT, and
show that LIFT has stronger generalization abilities than
Full FT. In Appendix G.6, we analyze the training loss
curve of LIFT. In Appendix G.7, we explore the potential
of LIFT for structured sparse fine-tuning. In Appendix G.8,
we analyze the influence of different ranks for rank reduction
in LIFT. In Appendix G.9, we investigate the pattern of
weights selected by LIFT compared to other methods.

8. Conclusion
In this paper, we propose that parameters with large magni-
tude after low-rank approximation of weight matrices are
Principal Weights for reasoning-focused fine-tuning. Based
on this insight, we designed a memory-efficient sparse
fine-tuning algorithm LIFT, that fine-tunes only Princi-
pal Weights. We show that LIFT has superior performance
than state-of-the-art PEFT methods, Full Fine-tuning, and
Sparse FT methods on reasoning tasks. From extensive
analysis, we find that: 1) LIFT learns more on the target
domain while forgetting less in the source domain; 2) the
weight update matrix of LIFT has a large magnitude and
rank, providing a large capacity to adapt to fine-tuning tasks;
and 3) LIFT brings large rotation to the top eigenspace of
important layers. We hope that our work can provide in-
sights into how to find critical weights in fine-tuning LLMs.
In addition, we find that there are a few limitations that bring
room for further exploration:

• How to combine LIFT with RL algorithms like GRPO
to enhance the reasoning capacity of LLMs with better
memory efficiency?

• How does the eigenvector rotation phenomenon of
LIFT connect to the learning dynamics of LLM fine-
tuning?

• Can LIFT be improved with GPU acceleration to fur-
ther improve computation efficiency?

• Currently LIFT uses a global rank to perform LRA.
However, different layers have different capacities.
Can we improve LIFT by designing adaptive rank
reduction on each layer?

We hope that these problems can inspire future research on
the development of more effective fine-tuning approaches.

9
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Deep Learning, especially the
fine-tuning of Large Language Models. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.
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A. LIFT Algorithm Detail

Algorithm 1 Adam with LIFT

1: Input: θ0, α, β1, β2 ∈ [0, 1), ϵ > 0,update mask interval, T
2: m0 ← 0, v0 ← 0, t← 0, M ← calc mask(θ0)
3: m0 update ← vec(0), v0 update ← vec(0)
4: for t = 1, 2, . . . , T do
5: if t mod update mask interval ≡ 0 then
6: Mold ←M , M ← calc mask(θt){Update binary mask}
7: mt−1, vt−1 ← 0,0
8: mt−1[Mold = 1] = mt−1 update

9: vt−1[Mold = 1] = vt−1 update

10: mt−1 update = vec(mt−1[M = 1])
11: vt−1 update = vec(vt−1[M = 1])
12: end if
13: gt ← ∇θft(θt−1)
14: gt update = vec(gt[M = 1])
15: mt update ← β1mt−1 update + (1− β1)gt update

16: vt update ← β2vt−1 update + (1− β2)g
2
t update

17: m̂t update ← mt update

1−βt
1

, v̂t update ← vt update

1−βt
2

18: θt ← θt−1, vec(θt[M = 1])← vec(θt[M = 1])− α
m̂t update√
v̂t update+ϵ

19: end for

LIFT as an adapter method. We note that LIFT selects a fixed number of parameters to fine-tune at any training step.
However, this does not guarantee LIFT has a fixed overall sparsity – the total count of parameters updated across the entire
process can still fluctuate. Nevertheless, empirical evidence suggests that the total update matrix remains sparse (Figure 5).

To obtain a fixed-size adapter like in LoRA, one can construct the update mask in an accumulative manner, by gradually
adding new principal weights to already-chosen parameters until a designated sparsity. Additionally, we can pre-determine
the principal weights and fix them during fine-tuning. Such new versions of LIFT can have better portability and adaptability,
and represent a promising direction for future research.

B. More Ablation Studies
B.1. Analyzing the update interval of LIFT

LIFT uses a dynamic scheme to update the selected parameters. To investigate the impact of update interval on model
performance, we compare different update intervals, ranging from 50 to 1000, and compare the performance of LLaMA-2-7B
model on the GSM8K dataset. Figure 7a shows the result. We can see that different intervals all significantly outperform the
baseline, indicating the robustness of LIFT. Moreover, the interval should neither be too small nor too large, and a median
interval is the best choice. This aligns with empirical insight as a smaller interval would change the fine-tuned weights more
frequently, making some weights not fully trained, and from the perspective of compute efficiency, it would be also efficient
if we don’t update the mask too frequently. On the other hand, not changing the selected weights is also inferior as some
weights may be already saturated in terms of training quality, and the low-rank approximation of the weight matrix also
changes during training, therefore the Principal Weights also changes. Therefore, choosing an update interval that is not too
small and not too large can best benefit the performance of LIFT.

B.2. Comparing Different Rank Reduction Strategies

To prove that rank reduction by preserving the largest singular values and singular vectors (or ranks) is the best choice, we
compare it with other rank reduction strategies, including randomly preserving the rank (Random), preserving the smallest
rank (Smallest), and preserving a combination of largest and smallest ranks (Hybrid). The results are shown in Figure 7b.
Specifically, we choose the setting of fine-tuning LLaMA-2-7B model on the MATH-10K dataset and compare the average
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Figure 7: More ablation results. (a) Comparing GSM8K accuracy of different update interval of sparse mask chosen by
LIFT. (b) Comparing different rank reduction methods on 7 arithmetic reasoning tasks (mean accuracy).

performance on 7 tasks. We can see that LIFT, by preserving the largest ranks, yields significantly better performance than
other rank reduction strategies.

C. More Intuitions on LIFT
In this section, we further analyze LIFT from a spectral norm perspective. The spectral norm of a matrix represents its
largest singular value, which is the largest “stretch” of the transformation by the weight matrix to input data. Several
theoretical works have also linked spectral norm to the generalization performance of the model (Neyshabur et al., 2015;
Bartlett et al., 2017; Neyshabur et al., 2018; Galanti et al., 2023). Here we show that the update brought by LIFT can
dramatically influence the spectral norm of the weight matrix, compared to other sparse update methods. We first analyze
the influence of LIFT on a random matrix. Then, we investigate the change of spectral norm corresponding to Section 4.

C.1. Random Matrix Case

To begin, we consider adding noise to LIFT selected by LIFT on a random matrix with different dimensions. Figure 8
shows the results of the spectral norm and Frobenius norm of the matrix before and after adding the noise, with different
weight selection strategies. We can see that all methods don’t differ from the Frobenius norm perspective. However, when it
comes to spectral norm, while random selection and selection by weight magnitude doesn’t change the spectral norm much,
LIFT significantly increases the spectral norm, especially when the matrix size is large.
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Figure 8: Spectral Norm and Frobenius Norm of random matrices of different dimensions after adding random noise to
selected weights.
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C.2. Adding Noise to LLM

Following the experiments in Section 4, we analyze the spectral norm of pre-trained LLM after adding random noise to
weights selected by LIFT, compared to other sparse selection strategies. In Figure 9, we show the difference in spectral
norm before and after adding the random noise with fixed scale of 0.1 to the LLaMA-2-7B model.
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Figure 9: Spectral norm difference between before and after adding random noise to selected weights on pre-trained
LLaMA-2-7B model.

We can see that LIFT brings a significantly larger change to spectral norm than other selection strategies. This indicates
that the effect of LIFT on the spectral norm of weight matrices is consistent not only in toy settings as in Appendix C.1, but
also in practical settings of LLMs.

D. Detailed Experimental Setup
In this section, we provide a detailed experimental setup of LIFT of the main results. First, in Appendix D.1 we describe
the detailed hyperparameters of experiments in Section 5. Then,

D.1. Detailed Hyperparameters

The following tables corresponds to the main results in the paper. Table 5 corresponds to the experiments shown in Table 1;
Table 6 corresponds to the experiments in Table 2 and 11; Table 7 corresponds to experiments in Table 3.

Hyperparameters (LIFT) LLAMA-2-7B LLAMA-3-8B

Optimizer AdamW
LR 1e-4 2e-4
LR Scheduler Linear
Batch size 16
Warmup Ratio 0.03
Epochs 3

Table 5: Hyperparameter configurations for different LLaMA models on Commonsense-170K dataset. Corresponding to
experiments in Table 1.
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Hyperparameters (LIFT) LLAMA-3.2-1B LLAMA-3.2-3B LLAMA-7B LLAMA-2-7B LLAMA-3-8B

Optimizer AdamW
LR 2e-4 1e-4 2e-4 1e-4 2e-4
LR Scheduler Linear
Batch size 16
Warmup Ratio 0.03
Epochs 3

Table 6: Hyperparameter configurations for different LLaMA models on MATH-10K dataset. Corresponding to experiments
in Table 2 and 11.

Hyperparameters (LIFT) MNLI SST-2 MRPC CoLA QNLI QQP RTE STSB

Optimizer AdamW
Epochs 1 5 13 8 1 2 10 30
LR {6e-5, 1e-4, 2e-4, 5e-4}
LR Scheduler Linear
Batch Size 32

Table 7: Hyperparameter configurations for different LLaMA models on GLUE datasets. Corresponding to experiments in
Table 3.

D.2. Searching Process for Number of Trainable Parameters

As shown in Section 5, we report the best result of each method with number of training parameters equivalent to LoRA rank
in range {16, 32, 64, 128, 256}. Here we present the rank search process and provide detailed results of the performance of
different methods under all ranks. Specifically, Table 8 is the rank search result of experiments in Table 1; Table 9 is the
rank search result of experiments in Table 2; Table 10 is the rank search result of experiments in Table 3.

LoRA Rank 16 32 64 128 256

Full FT 86.64 86.64 86.64 86.64 86.64
LoRA 76.23 81.86 83.46 83.21 82.63
S2FT 81.07 85.03 86.16 83.82 82.76
LIFT 86.93 87.88 87.18 84.16 83.67

Table 8: Mean test performance on 8 commonsense reasoning tasks of different methods on LLaMA-3-8B with number
of trainable parameters equivalent to various LoRA ranks. Bold numbers are the best test results of different methods.
Corresponding to experiments in Table 1.

LoRA Rank 16 32 64 128 256

Full FT 72.79 72.79 72.79 72.79 72.79
S2FT 67.78 71.78 72.48 73.10 72.63
PiSSA 71.57 71.82 72.54 73.03 72.54
DoRA 71.10 71.74 72.42 71.83 71.81
LoRA 70.91 71.74 72.81 72.93 72.24
LIFT 70.91 71.09 72.74 73.74 73.67

Table 9: Mean test performance on 7 arithmetic reasoning tasks of different methods on LLaMA-2-7B with number
of trainable parameters equivalent to various LoRA ranks. Bold numbers are the best test results of different methods.
Corresponding to experiments in Table 2.

17



Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning

LoRA Rank 16 32 64 128 256

Full FT 88.36 88.36 88.36 88.36 88.36
LoRA 87.45 87.51 87.57 87.43 87.32
DoRA 87.35 87.56 87.66 87.45 87.41
PiSSA 87.13 87.21 87.40 87.77 87.33

Spectral 87.76 87.79 87.84 87.51 87.38
LIFT 85.17 86.93 88.19 89.24 88.74

Table 10: Mean test performance on GLUE tasks of different methods on DeBERTa-v3-base with number of trainable
parameters equivalent to various LoRA ranks. Bold numbers are the best test results of different methods. Corresponding to
experiments in Table 3.

E. More Experimental Results
E.1. Arithmetic Reasoning

To complement the arithmetic reasoning results in Figure 11, we show the test performance of LIFT on another model –
LLaMA-7B, compared with the same set of fine-tuning algorithms.

Model Method Best Rank MultiArith GSM8K AddSub AQuA SingleEQ SVAMP MAWPS Avg.

LLaMA-7B

Full FT – 98.50 42.68 91.90 22.83 95.08 59.5 89.50 71.43
S2FT 128 98.50 40.49 92.15 24.80 95.28 57.2 89.50 71.13
PiSSA 128 98.17 41.77 92.66 25.98 96.26 59.5 87.81 71.74
LoRA 64 97.67 43.29 90.38 22.83 95.08 60.8 84.87 70.70
DoRA 64 98.17 43.59 91.90 23.23 95.08 60.1 86.13 71.17
LIFT 256 98.17 42.15 92.41 23.62 95.47 62.7 87.82 71.76

Table 11: Arithmatic reasoning performance on LLaMA-7B model. Fine-tuned on the MATH-10K dataset.

E.2. Code Generation

To test the code generation performance of LIFT, we adopt the settings from the recent SIFT paper (Song et al., 2024),
where we fine-tune LLaMA-2-7B with the Alpaca dataset for one epoch, and evaluate on the Humaneval dataset. From the
table below, we can see that LIFT outperforms all other methods, in both pass@1 and pass@10 settings.

LIFT Full FT SIFT LoRA DoRA

Pass@1 16.46 15.24 14.02 13.66 13.96

Pass@10 31.10 28.05 30.48 27.44 29.88

Table 12: Code generation performance of LIFT and different PEFT methods evaluated on the Humaneval dataset (↑), after
training with the Alpaca dataset.

E.3. Question Answering

To evaluate the performance of LIFT on question-answering tasks, we adopt the experimental setup of the StrategyQA
dataset following recent WeLore paper (Jaiswal et al., 2024). For PEFT methods, we consider ranks {16, 32, 64, 128, 256};
for LIFT, we use the same counts of trainable parameters. The learning rates are {1e-5, 2e-5, 5e-5, 1e-4} for Full FT and
{5e-5, 1e-4, 2e-4, 5e-4} for others. We select the best-performing config for each method and report the results below. We
can see that LIFT achieves notable performance gains than all other methods, on both LLaMA-2-7B and LLaMA-3-8B
model.
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LIFT Full FT LoRA DoRA PiSSA

LLaMA-2-7B 72.53 70.61 71.78 71.98 71.26

LLaMA-3-8B 75.85 74.81 74.44 74.27 75.19

Table 13: Question answering performance (↑) of LIFT and different PEFT methods evaluated on the StrategyQA dataset.

F. Comparison with Other Sparse Fine-tuning Methods
In this section, we further support the empirical success of LIFT by comparing with recent sparse fine-tuning algorithms,
including SpIEL (Ansell et al., 2024) and SIFT (Song et al., 2024).

F.1. Comparing LIFT with SpIEL

We compare LIFT with SpIEL on the GSM8K dataset. We use the same training setting as Figure 3 in our paper. For both
methods, we searched learning rate among {5e-5, 1e-4, 2e-4, 5e-4} and trainable parameters same as LoRA rank among
{16, 32, 64, 128, 256} to obtain the best results. The table below shows that LIFT significantly outperforms SpIEL with
both LLaMA-2-7B and LLaMA-3.2-3B.

LIFT SpIEL Full FT

LLaMA-3.2-3B 46.46 43.76 44.50

LLaMA-3-8B 24.24 21.61 22.57

Table 14: Test accuracies on GSM8K dataset of LIFT, SpIEL, and Full FT.

F.2. Comparing LIFT with SIFT

We compare LIFT with SIFT with two experimental setups following the SIFT paper. We use 1) Instruct tuning, where we
fine-tune LLaMA-2-7B with the Alpaca dataset for one epoch, and evaluate on the Humaneval dataset, which is discussed in
Appendix E.2, and 2) Natural Language Understanding, where we fine-tune the RoBERTa-large model on GLUE datasets.
For both methods, we use the same number of trainable parameters (5% total parameters). We use the RoBERTa-large
model, and search the learning rate of LIFT SIFT in {5e-5, 7e-5, 1e-4, 2e-4} and compare their best results. The table
below shows that LIFT outperforms SIFT on all GLUE tasks, while outperforming Full FT on almost all tasks.

Method # Param (%) MNLI SST-2 MRPC CoLA QNLI QQP RTE STSB Avg.

Full FT – 90.58 96.22 91.91 68.55 94.47 91.52 85.92 92.21 88.92
SIFT 5% 89.91 96.79 89.95 66.29 93.04 88.49 87.00 92.27 87.97
LIFT 5% 90.79 96.67 90.93 70.44 94.69 92.38 87.00 92.58 89.44

Table 15: GLUE results comparing LIFT, SIFT, and Full FT using RoBERTa-large.

G. Complementary Discussions
G.1. More Generalization Results

In addition to the results shown in Figure 4, we present the generalization results on the target and source domain of
LLaMA-3-8B model in Figure 10. We can see that LIFT still achieves significantly stronger generalization results than
Full Fine-tuning and LoRA fine-tuning, especially in hard target domain tasks (Figure 10b). In addition, we can see in
Figure 10d that LIFT is able to generalize to source domain extremely well, achieving more than 10% better result than
Full Fine-tuning, and almost 20% better than LoRA.
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Figure 10: Performance of LIFT on target domain (arithmetic reasoning) and source domain (commonsense reasoning)

G.2. Model Component Analysis

Following Section 7.3, we see that fine-tuning some layers is ineffective in adapting to downstream datasets. Therefore, we
further study the effectiveness of LIFT of fine-tuning different model components. Specifically, in each experiment, we
only fine-tune one layer type of the model, chosen from {Key, Query, Value, Output, Gate, Up, Down}. We evaluate the
performance on 7 arithmetic reasoning tasks with LLaMA-2-7B model. The results are shown in Figure 11.
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Figure 11: Average performance on 7 arithmetic reasoning tasks when applying LIFT with low-rank approximation of
different ranks.

We can see that compared to other modules, fine-tuning only the Query and Key module yields significantly worse results
on all tasks. In contrast, fine-tuning modules such as Value, Up, and Down modules achieves strong performance. This
phenomenon is similar to the observation on the alignment of top eigenspace in Section 7.3, where the top eigenspace of
Query and Key modules does not change much during fine-tuning, while Output, Up, and Down modules change relatively
more significant. These observations could suggest that Query and Key modules are not very adaptable to downstream
tasks, or that fine-tuning them may not be effective. This could be because the Key and Query components, as part of the
self-attention module, mostly store information related to token relations, rather than task-specific knowledge. On the other
hand, modules including the Output, Up, and Down projection layers mostly in the MLP module, tend to be more adaptive
in fine-tuning, and is able to store more task-specific knowledge.
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G.3. Eigenspace and Eigenspectrum Analysis

Figure 12 and 13 shows the results corresponding to the discussion in Section 7.3. Figure 12 presents the alignment score
between the top eigenspace before and after fine-tuning, comparing LIFT, LoRA and Full Fine-tuning. Figure 13 shows the
rank of the weight update matrix of LIFT, Full Fine-tuning and LoRA.

Rank computation. To compute the ranks of different methods in Figure 13, we use torch.linalg.matrix rank
function from PyTorch. It counts the number of singular values greater than a threshold τ , which has the default value:

τ = max (m,n)× σmax × ϵ

where (m,n) is the matrix shape, σmax is the largest singular value, and ϵ is precision of input data type. Since robust rank
comparison requires the threshold τ to exceed the rounding error incurred during the update matrix evaluation, we set it to
10 times the default value.
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Figure 12: Alignment score of the top eigenspace of the weight matrix before and after fine-tuning on LLaMA-3.2-3B
model. A lower alignment score indicates a larger deviation from the original eigenspace.
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Figure 13: Rank of the weight update matrix of each layer of the LLaMA-2-7B model trained on MATH-10K dataset.

G.4. Further memory saving of LIFT

In Appendix G.2, we show that fine-tuning MLP layers is more effective than fine-tuning attention layers. Table 16 shows
the results of LLaMA-2-7B on arithmetic datasets where we only fine-tune the MLP layers, LIFT MLP. We can see that
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LIFT MLP has similar performance to LIFT. From Figure 6, we can see that LIFT MLP further reduces the memory usage
on gradients and optimizer states, which achieves better memory efficiency than LoRA under optimal rank settings. We
realize that selecting appropriate layers for LIFT fine-tuning is a crucial problem for future research, as it provides insights
on the importance of different layers during fine-tuning, and can potentially further reduce the memory overhead.

Method Rank MultiArith GSM8K AddSub AQuA SingleEQ SVAMP MAWPS Avg.

LIFT 128 98.67 47.31 92.66 26.77 96.85 63.60 90.34 73.74
LIFT MLP 128 99.66 47.61 91.90 25.59 95.67 62.60 90.34 73.34

Full FT – 98.17 46.55 93.67 22.05 96.85 63.20 89.08 72.79
LoRA 128 98.00 47.76 92.41 23.62 95.08 62.90 90.76 72.93

Table 16: Arithmetic reasoning performance of LIFT MLP, which only fine-tunes the MLP layers of an LLM.

G.5. A Toy Model Case

To demonstrate that LIFT works not only on large models, here we consider a toy model task: a two-layer neural network
f(x) for regression:

f(X) = σ(XW)a (4)

where X ∈ Rn×d,W ∈ Rd×h,a ∈ Rh×1.

Training Pipeline. We first pre-train this toy network with a curated training dataset then Apply LIFT during fine-tuning
and compare its performance with that of Full Fine-tuning and other Sparse Fine-tuning methods. We consider AdamW
optimizer and an early stopping strategy for training and fine-tuning.

Pre-training and fine-tuning Datasets. For pre-training dataset, we first random sample Xpre ∈ Rnpre×d, where npre is
the number of pre-training samples and d is the input dimension. We construct pre-training labels

Ypre = Xpre[:, : 32].sum(dim = 1) + 0.1 ∗ sin (Xpre[:, 32 : 64]).sum(dim = 1) (5)

For fine-tuning dataset, we random sample Xft ∈ Rnft×d, where nft is the number of fine-tuning samples and d is the
input dimension. We construct fine-tuning labels.

Yft = 0.2 ∗Xft[:, : 64] ∗Xft[:, : 65] ∗Xft[:, : 66] + 0.1 ∗ sin (Xft[:, 67] ∗Xft[:, 68]) (6)

For convenince, we assume d = 512, h = 128, npre = 5000, nft = 100.

Figure 14 shows the statistics during fine-tuning of different methods. We compare LIFT with Full Fine-tuning and Sparse
Fine-tuning with parameters selected by weight magnitude and gradient magnitude. As we can see, in terms of training
and validation loss in Figure 14a and 14b, Full Fine-tuning saturates the early stage, indicating overfitting. On the other
hand, sparse fine-tuning methods are more adaptive and achieve better generalization, achieving lower validation loss.
Among the sparse fine-tuning methods, LIFT outperforms other strategies by a large margin, suggesting that LIFT has
superior generalization performance. In addition, as shown in Figure 14c LIFT achieves a more stable gradient norm,
with sharp decay towards the end, and converges to lower values. Furthermore, in Figure 14d, we can see that LIFT
achieves a substantially lower spectral norm than all other methods. This observation aligns with Appendix C, that LIFT
can significantly change the spectral norm of weight matrices. These observations on the effectiveness of LIFT pave the
way for future theoretical works.

G.6. Training Loss of LIFT

In Figure 15, we show the training loss curve of all methods of LLaMA-2-7B model from the experiments in Table 2. We
can see that the convergence speed of LIFT is on par with Full FT, notably faster than other PEFT methods.

G.7. Exploring Structured Fine-tuning of LIFT

In our paper, LIFT selects and fine-tunes model parameters in an unstructured fashion. We realize that LIFT naturally
lends itself to block-sparse fine-tuning. To validate the great potential of LIFT in this context, we conducted an experiment
with LIFT Structured that selects and fine-tunes Principal Weights in 4× 4 blocks. We compare it with two common
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Figure 14: Fine-tuning statistics on the toy model setting of different fine-tuning strategies.
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Figure 15: Training loss curves of different methods with LLaMA-2-7B model on MATH-10K dataset.

parameter selection metrics: 1) Top-k Magnitude, 2) Top-k Gradient. For all sparse methods, we fine-tune a subset of
weights with the number of parameters identical to LoRA with rank ≈ 128. We choose to fine-tune the LLaMA-2-7B model
with the MATH10K dataset and evaluate on seven arithmetic reasoning tasks. The results are in Table 17.

Method Rank MultiArith GSM8K AddSub AQuA SingleEQ SVAMP MAWPS Avg.

LIFT Structured 128 98.33 48.07 93.16 25.98 95.47 65.1 89.92 73.72
LIFT 128 98.67 47.31 92.66 26.77 96.85 63.6 90.34 73.74

Full FT – 98.17 46.55 93.67 22.05 96.85 63.2 89.08 72.79
Weight Mag 128 98.00 49.13 91.39 23.62 93.90 63.3 89.08 72.64
Grad Mag 128 97.50 45.72 92.41 23.23 95.28 60.0 88.66 71.83

Table 17: Performance of different parameter selection strategies on 7 arithmetic reasoning tasks.

We can see that LIFT Structured still achieves great performance under structured sparsity. LIFT Structured
achieves performance on par with LIFT, and outperforms Full FT and other common sparse selection metrics. This suggests
that LIFT has the potential to be adapted for structured sparse fine-tuning, enabling further computational acceleration.

G.8. Rank Reduction of LIFT

In LIFT, we employ a uniform rank to perform low-rank approximation on each weight matrix. We know that models with
different sizes possess different learning capacities, and their “Important Ranks” could potentially be different. To find the
trend of how approximation rank influences the power of LIFT, we fine-tune models with different sizes using different
approximation rank, ranging from 8 to 256.
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Figure 16: Average performance on 7 arithmetic reasoning tasks when applying LIFT with low-rank approximation of
different ranks.

Figure 16 shows the heat map of different models on seven arithmetic reasoning tasks. In each plot, the x-axis represents
the rank used for low-rank approximation, which we call the LRA rank. The y-axis rank represents the number of trained
parameters, matching the number of parameters selected by the LoRA method with corresponding ranks, which we call
Selected Rank. We can see that a larger LRA rank doesn’t yield better performance. Instead, LIFT works best when the
LRA rank is close to the Selected Rank. Moreover, when the model size is larger, the Selected Rank of best performance
tends to be smaller than that of smaller models. This suggests that smaller models store knowledge more densely, therefore
maintaining a larger effective rank, while the larger model has a larger capacity, and the effective rank for each layer may be
smaller to store the same amount of knowledge.

G.9. Parameter Selection of LIFT

To analyze the parameters chosen by LIFT, we compare them with parameters selected by Weight Magnitude, and analyze
their overlap.

In Figure 17, we present the overlap of parameters selected by LIFT and Weight Magnitude on different layers. We can
see that the overlap between the two methods is small for all layers. Specifically, for Query and Key layers, the overlap is
relatively larger, generally around 20% and at most 40%, while on the Up and Down layers in the MLP module, the overlap
is significantly smaller, around 5% and at most 20%. This suggests that the low-rank approximation of the Query and Key
matrices are close to the original matrix, as the weights with the largest magnitude are more similar. This could mean that
Query and Key modules are low-rank in nature, and fine-tuning them is not as effective as other modules. This aligns with
our observation from Section 7.3 and Appendix 11.

In addition, when selecting the same amount of parameters, if we increase the rank of low-rank approximation, the overlap
between LIFT and Weight Magnitude also becomes larger. This is also intuitive as we perform a more precise approximation
of the original matrix as we increase the LRA rank.

H. Metric Definitions
H.1. Eigenspace Alignment Score

To calculate the alignment score of the top eigenspace before and after fine-tuning, we take the top 128 right singular vectors
of each weight matrix before and after fine-tuning. For each singular vector v′

i after fine-tuning, we calculate the alignment
score di as the sum of squared cosine similarity with all top vectors of the pre-trained model v1,v2, . . . ,vn:

di =

n∑
j=1

(v′
i · vj)

2, (7)

Since all singular vectors are orthonormal, the alignment score has the range [0, 1], representing the projection length of the
fine-tuned singular vectors on the subspace spanned by the top pre-trained singular vectors. Then, the total alignment score
is the mean of the alignment score of all singular vectors,
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Figure 17: The overlap ratio of parameters selected by LIFT and by Weight Magnitude.

d =
1

n

n∑
i=1

di (8)

This should reflect the alignment of a fine-tuned singular vector and the eigensubspace spanned by the pre-trained model. An
alignment score of 1 represents that the singular vector aligns perfectly with the pre-trained eigenspectrum, and 0 represents
that the singular vector is orthogonal to the pre-trained eigenspectrum.
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