
AutoGluon–TimeSeries:
AutoML for Probabilistic Time Series Forecasting

Oleksandr Shchur1 Caner Turkmen1 Nick Erickson1 Huibin Shen2 Alexander Shirkov1

Tony Hu1 Yuyang Wang2

1
Amazon Web Services

2
AWS AI Labs

Abstract We introduce AutoGluon–TimeSeries—an open-source AutoML library for probabilistic time

series forecasting.
1
Focused on ease of use and robustness, AutoGluon–TimeSeries enables

users to generate accurate point and quantile forecasts with just 3 lines of Python code. Built

on the design philosophy of AutoGluon, AutoGluon–TimeSeries leverages ensembles of

diverse forecasting models to deliver high accuracy within a short training time. AutoGluon–

TimeSeries combines both conventional statistical models, machine-learning based

forecasting approaches, and ensembling techniques. In our evaluation on 29 benchmark

datasets, AutoGluon–TimeSeries demonstrates strong empirical performance, outperforming

a range of forecasting methods in terms of both point and quantile forecast accuracy, and

often even improving upon the best-in-hindsight combination of prior methods.

1 Introduction

Time series (TS) forecasting is a fundamental statistical problem with applications in diverse

domains such as inventory planning (Syntetos et al., 2009), smart grids (Hong et al., 2020), and

epidemiology (Nikolopoulos et al., 2021). Decades of research led to development of various

forecasting approaches, from simple statistical models (Hyndman and Athanasopoulos, 2018) to

expressive deep-learning-based architectures (Benidis et al., 2022). Despite the availability of various

forecasting approaches, practitioners often struggle with selecting the most appropriate method

and adhering to best practices when implementing and evaluating forecasting pipelines.

AutoML aims to mitigate these challenges by providing tools that enable practitioners to develop

accurate and efficient predictive models without extensive domain knowledge. While traditional

AutoML methods have focused primarily on classification and regression tasks for tabular data

(Thornton et al., 2013; Feurer et al., 2015; Olson and Moore, 2016; Erickson et al., 2020; LeDell and

Poirier, 2020; Zimmer et al., 2021), automated time series forecasting has received comparatively

less attention, with only a few open-source AutoML forecasting frameworks having been proposed

(Deng et al., 2022; Catlin, 2022). Furthermore, existing automated forecasting frameworks tend to

generate point forecasts without considering uncertainty, which is a crucial factor in many practical

applications (Gneiting and Katzfuss, 2014).

To close this gap, we introduce AutoGluon–TimeSeries (AG–TS), an open-source AutoML frame-

work for probabilistic time series forecasting written in Python. AG–TS can generate both point

and probabilistic forecasts for collections of univariate time series. Together with support for static

and time-varying covariates, this makes AG–TS applicable to most real-world forecasting tasks.

As part of the AutoGluon framework (Erickson et al., 2020; Shi et al., 2021), AG–TS adheres to

the principles of ease of use and robustness, empowering users with limited expertise in the target

domain to generate highly accurate predictions with minimal coding effort. The architecture is

1https://github.com/autogluon/autogluon

AutoML 2023 Apps, Benchmarks, Challenges, and Datasets Track © 2023 the authors, released under CC BY 4.0

mailto:shchuro@amazon.com
mailto:atturkm@amazon.com
mailto:neerick@amazon.com
mailto:huibishe@amazon.com
mailto:ashyrkou@amazon.com
mailto:tonyhu@amazon.com
mailto:yuyawang@amazon.com
https://github.com/autogluon/autogluon
https://creativecommons.org/licenses/by/4.0/

Figure 1: Point forecast (left) and quantile forecast (right) for a univariate time series.

capable of handling failures of individual models when necessary, producing a valid result as long

as any single model was trained successfully.

We evaluate the performance of AG–TS against other established forecasting methods and

AutoML systems using 29 publicly available benchmark datasets. The results demonstrate AG–

TS’s strong performance, outperforming various competing approaches in terms of both point

and probabilistic forecast accuracy. This highlights the potential of AG–TS as a valuable tool for

practitioners and researchers seeking an automated and versatile solution for time series forecasting.

2 Probabilistic Time Series Forecasting
The probabilistic time series forecasting problem can be formally stated as follows. The data

D = {y𝑖,1:𝑇𝑖 }𝑁𝑖=1 is a collection of 𝑁 univariate time series, where y𝑖,1:𝑇𝑖 = (𝑦𝑖,1, ..., 𝑦𝑖,𝑇𝑖), 𝑦𝑖,𝑡 is the
value of the 𝑖-th time series at time 𝑡 , and 𝑇𝑖 is the length of the 𝑖-th time series.

2
For example,

𝑦𝑖,𝑡 may correspond to the number of units of product 𝑖 sold on day 𝑡 . The goal of time series

forecasting is to predict the future 𝐻 values for each time series in D. The parameter 𝐻 is known

as prediction length or forecast horizon.
Each time series y𝑖,1:𝑇 may additionally be associated with covariates X𝑖,1:𝑇+𝐻 . These include

both static covariates (e.g., location of the store, product ID) and time-varying covariates. The
time-varying covariates may, in turn, be known in the future (e.g., day of the week, promotions) or

only known in the past (e.g., weather, sales of other products).

In the most general form, the goal of probabilistic forecasting is to model the conditional

distribution of the future time series values y𝑖,𝑇+1:𝑇+𝐻 given the past values y𝑖,1:𝑇 and the related

covariates X𝑖,1:𝑇+𝐻

𝑝 (y𝑖,𝑇+1:𝑇+𝐻 | y𝑖,1:𝑇 ,X𝑖,1:𝑇+𝐻) .

In practice, we are rarely interested in the full predictive distribution and rather represent the

range of possible outcomes with quantile forecasts ŷ𝑞

𝑖,𝑇+1:𝑇+𝐻 for chosen quantile levels 𝑞 ∈ (0, 1).
The quantile forecast implies that the future time series value 𝑦𝑖,𝑇+ℎ is predicted to exceed 𝑦

𝑞

𝑖,𝑇+ℎ
with probability 𝑞 (Wen et al., 2017; Lim et al., 2021).

If the uncertainty is of no interest, we can instead report a point forecast of the future time

series values. For example, we can summarize the prediction using the conditional mean

ŷ𝑖,𝑇+1:𝑇+𝐻 = E𝑝 [y𝑖,𝑇+1:𝑇+𝐻 | y𝑖,1:𝑇 ,X𝑖,1:𝑇+𝐻] .

Figure 1 demonstrates the difference between a point forecast and a quantile forecast. Finally, note

that here we consider the problem of forecasting multiple univariate time series, also known as

panel data, which is different from multivariate forecasting (Benidis et al., 2022).

2
To reduce clutter in notation, we assume that all time series have the same length 𝑇 (even though AG–TS supports

the case when time series have different lengths).

2

3 AutoGluon–TimeSeries
AutoGluon–TimeSeries enables users to generate probabilistic time series forecasts in a few lines

of code, as shown by the following minimal example.

1 from autogluon.timeseries import TimeSeriesDataFrame , TimeSeriesPredictor
2

3 train_data = TimeSeriesDataFrame.from_path("train.csv")
4 predictor = TimeSeriesPredictor(prediction_length =30).fit(train_data)
5 predictions = predictor.predict(train_data) # forecast next 30 time steps

Loading the data. A TimeSeriesDataFrame object stores a collection of univariate time series and

provides utilities such as loading data from disk and train-test splitting. Internally, time series data

is represented as a pandas.DataFrame (pandas development team, 2020) in long format (Table 1),

but loaders are also available for other formats. Besides the target time series that need to be

forecast, TimeSeriesDataFrame can also store the static and time-varying covariates.

Table 1: Collection of univariate time series stored as a TimeSeriesDataFrame. Each row contains

unique ID of the time series, timestamp, and the value of the target time series.

item_id timestamp target
T1 2020-03-02 23

T1 2020-03-03 43

· · · · · · · · ·
T999 2020-08-29 15

T999 2020-08-31 27

Defining the task. Users can specify the forecasting task by creating a TimeSeriesPredictor
object. Task definition includes information such as prediction length, list of quantile levels to
be predicted, and the evaluation metric. The evaluation metric should be chosen based on the

downstream application. For example, mean weighted quantile loss (wQL) measures the accuracy of

quantile forecasts, and mean absolute scaled error (MASE) reports the accuracy of the point forecast
relative to a naive baseline. When creating the predictor, users can also specify what time-varying

covariates are known in the future—the remainder will be treated as past-only covariates.

Fitting the predictor. Inside the fit() method, the predictor preprocesses the data, fits and

evaluates various models using cross-validation, optionally performs hyperparameter optimization

(HPO) on selected models, and trains an ensemble of the individual forecasting models. By default,

AG–TS provides user-friendly presets users can choose from to manage the training time–accuracy

tradeoff. Advanced users can also explicitly specify the models to use and their hyperparameters,

or specify search spaces in which optimal hyperparameters will be searched.

Making predictions. After the predictor has been fit, the predict()method can be used to generate

predictions on new data—including time series that haven’t been seen during training. Like the

input data, the predictions are stored in a long-format data frame, where the columns contain the

mean (expected value) and quantile forecasts at the desired quantile levels (Table 2).

Documentation. We provide various additional resources on the official website auto.gluon.ai.

These include installation instructions, tutorials, and a cheatsheet summarizing the main features.

3.1 Design Considerations
AG–TS was launched as a part of the AutoGluon suite (Erickson et al., 2020) in v0.5, building on

the foundation of AutoGluon and borrowing some design elements from other forecasting libraries

like GluonTS (Alexandrov et al., 2020). Since then, AG–TS has evolved into a full solution for time

series forecasting. Below, we highlight some of AG–TS’s key design principles.

3

https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html
https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.fit.html
https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.predict.html
https://auto.gluon.ai
https://auto.gluon.ai/stable/install.html
https://auto.gluon.ai/stable/tutorials/timeseries/index.html
https://auto.gluon.ai/stable/cheatsheet.html#time-series

Table 2: Mean and quantile forecasts generated by a TimeSeriesPredictor. The forecasts include the
next prediction_length many time steps of each time series in the dataset.

item_id timestamp mean 0.1 0.5 0.9
T1 2020-09-01 17 10 16 23

T1 2020-09-02 25 15 23 31

· · · · · · · · · · · · · · · · · ·
T999 2020-09-29 33 21 33 36

T999 2020-09-30 30 24 28 34

Ensembles over HPO. AG–TS follows the AutoGluon philosophy, relying on ensembling techniques

instead of HPO or neural architecture search. The library features a broad selection of models

whose probabilistic forecasts are combined in an ensemble selection step (Caruana et al., 2004).

AG–TS favors broadening the portfolio of forecasters over exploring the hyperparameter space of

any particular model. While AG–TS does support HPO techniques, HPO is excluded from most

preset configurations to reduce training time and minimize overfitting on the validation data.

Presets and default hyperparameters. In order to provide defaults that work well out of the box for

users that are not familiar with forecasting, AG–TS includes various presets—high-level configura-
tion options that allow users to trade off between fast training and higher accuracy. AG–TS follows

the convention-over-configuration principle: all models feature default configurations of hyperpa-

rameters that are expected to work well given the selected preset. At the same time, advanced users

have an option to manually configure individual models and use the TimeSeriesPredictor as a
unified API for training, evaluating and combining various forecasting models (see documentation

for details).

Model selection. Time series forecasting introduces unique challenges in model validation and

selection. Importantly, as the main aim of the model is to generalize into the future, special care
has to be taken to define validation sets that are held out across time. The AG–TS API is designed
with this consideration. If the user does not explicitly specify a validation set, the library holds the

window with last prediction_length time steps of each time series as a validation set. Optionally,

multiple windows can be used to perform so-called backtesting.

3.2 Forecasting Models

There are two families of approaches to forecasting in large panels of time series. The first approach

is to fit local classical parametric statistical models to each individual time series. A second approach

is built on expressive machine-learning-based approaches that are fit globally on all time series at

once. AG–TS features both approaches, incorporating forecasting models from both families and

combining them in an ensemble.

Local models. This category contains conventional methods that capture simple patterns like

trend and seasonality. Examples include ARIMA (Box et al., 1970), Theta (Assimakopoulos and

Nikolopoulos, 2000) and ETS (Hyndman et al., 2008), as well as simple baselines like Seasonal Naive
(Hyndman and Athanasopoulos, 2018). AG–TS relies on implementations of these provided by

StatsForecast (Garza et al., 2022).
The defining characteristic of local models is that a separate model is fit to each individual

time series in the dataset (Januschowski et al., 2020). This means that local models need to be re-fit

when making predictions for new time series not seen during training. To mitigate this limitation,

AG–TS caches the model predictions and parallelizes their fitting across CPU cores using Joblib

(Joblib Development Team, 2020).

4

https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-model-zoo.html
https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-indepth.html

Global models. Unlike local models, a single global model is fitted to the entire dataset and used

to make predictions for all time series. Global models used by AG–TS can be subdivided into

two categories: deep learning and tabular models. Deep-learning models such as DeepAR (Salinas

et al., 2020), PatchTST (Nie et al., 2023), and Temporal Fusion Transformer (Lim et al., 2021) use

neural networks to generate probabilistic forecasts for future data. AG–TS uses PyTorch-based

deep learning models from GluonTS (Alexandrov et al., 2020). Tabular models like LightGBM (Ke

et al., 2017) operate by first converting the time series forecasting task into a tabular regression

problem. This can be done either recursively—by predicting future time series values one at a

time—or by directly forecasting all future values simultaneously (Januschowski et al., 2022). AG–TS

relies on regression models provided by AutoGluon–Tabular and uses MLForecast (Nixtla, 2023)
for converting them into tabular forecasters.

Global models typically provide faster inference compared to local models, since there is

no need for re-training at prediction time. This, however, comes at the cost of longer training

times since more parameters need to be estimated. Global models also naturally handle various

types of covariates and utilize information present across different time series, which is known as

cross-learning (Semenoglou et al., 2021).

Ensembling. After AG–TS finishes sequentially fitting the individual models, they are combined

using 100 steps of the forward selection algorithm (Caruana et al., 2004). The output of the ensemble

is a convex combination of the model predictions:

ŷensemble

𝑖,𝑇+1:𝑇+𝐻 =

𝑀∑︁
𝑚=1

𝑤𝑚 · ŷ (𝑚)
𝑖,𝑇+1:𝑇+𝐻 subject to𝑤𝑚 ≥ 0,

𝑀∑︁
𝑚=1

𝑤𝑚 = 1,

where ŷ (𝑚)
𝑖,𝑇+1:𝑇+𝐻 are either point or quantile forecasts generated by each of the𝑀 trained models.

Note that in case of probabilistic forecasting, the ensemble computes a weighted average of the

quantile forecasts of the individual models—method known as Vincentization (Ratcliff, 1979).

The ensemble weights 𝑤𝑚 are tuned to optimize the chosen evaluation metric (e.g., wQL,

MASE) on the out-of-fold predictions generated using time series cross-validation (Hyndman and

Athanasopoulos, 2018). The main advantages of the forward selection algorithm are its simplicity,

compatibility with arbitrary evaluation metrics, and the sparsity of the final ensemble.

4 Related work
Time series forecasting is a challenging task, and the idea of automated forecasting has long intrigued

statistics and ML researchers. An early influential work on automated forecasting was the R package
forecast (Hyndman and Khandakar, 2008) that introduced the AutoETS and AutoARIMA models.

These models automatically tune their parameters (e.g., trend, seasonality) for each individual time

series using an in-sample information criterion.

The following decade saw the growing focus on deep learning models for time series (Benidis

et al., 2022; Wen et al., 2017; Salinas et al., 2020; Lim et al., 2021; Oreshkin et al., 2020). Several works

have explored how such neural-network-based models can be combined with AutoML techniques to

generate automated forecasting solutions (Van Kuppevelt et al., 2020; Shah et al., 2021; Javeri et al.,

2021). Another line of research focused on optimizing the entire forecasting pipeline—including

data preprocessing and feature engineering—not just hyperparameter tuning for individual models

(Dahl, 2020; Kurian et al., 2021; da Silva et al., 2022). A recent survey by Meisenbacher et al. (2022)

provides an overview of such automated pipelines.

Even though AutoML for forecasting is becoming an active research topic, few of the recent

developments have found their way from academic papers to software packages. Available open-

source AutoML forecasting libraries include AutoPyTorch–Forecasting (Deng et al., 2022), AutoTS

(Catlin, 2022) and PyCaret (Ali, 2020). In contrast to these frameworks, AG–TS supports probabilistic

forecasting and focuses on ease of use, allowing users to generate forecasts in a few lines of code.

5

5 Experiments

5.1 Setup

The goal of our experiments is to evaluate the point and probabilistic forecast accuracy of AG–TS.

As baselines, we use various statistical and ML-based forecasting methods.

Baseline methods. AutoARIMA, AutoETS, and AutoTheta are established statistical forecasting

models that automatically tune model parameters for each time series individually based on an

information criterion (Hyndman et al., 2008). This means, such models do not require a validation

set and use in-sample statistics for model tuning. StatEnsemble is defined by taking the median of

the predictions of the three statistical models. Such statistical ensembles, despite their simplicity,

have been shown to achieve competitive results in forecasting competitions (Makridakis et al.,

2018). We use Python implementations of all these methods provided by the StatsForecast library

(Garza et al., 2022). We additionally use Seasonal Naive as a sanity-check baseline that all other

methods are compared against (Hyndman and Athanasopoulos, 2018).

For ML-based methods, we include two established deep learning forecasting models, DeepAR
(Salinas et al., 2020) and Temporal Fusion Transformer (TFT) (Lim et al., 2021). We use the PyTorch

implementations of these models provided by GluonTS (Alexandrov et al., 2020). Finally, we include

the AutoML forecasting frameworkAutoPyTorch–Forecasting (Deng et al., 2022) to our comparison.

AutoPyTorch builds deep learning forecasting models by combining neural architecture search (e.g.,

by trying various encoder modules) and hyperparameter optimization (e.g., by tuning the learning

rate). The search process is powered by a combination of Bayesian and multi-fidelity optimization.

Similar to AutoGluon, the models are combined using ensemble selection (Caruana et al., 2004).

Datasets. In our evaluation we use 29 publicly available forecasting benchmark datasets provided

via GluonTS. These include datasets from the Monash Forecasting Repository (Godahewa et al.,

2021), such as the M1, M3 and M4 competition data (Makridakis and Hibon, 2000; Makridakis et al.,

2018). We selected the datasets from the Monash Repository that contain more than a single time

series and fewer than 15M total time steps. Our selection of datasets covers various scenarios that

can be encountered in practice—from small datasets (M1 and M3), to datasets with a few long time

series (Electricity, Pedestrian Counts) and large collections of medium-sized time series (M4). A

comprehensive list of dataset statistics are provided in Table 8 in the appendix.

Configuration. We train the TimeSeriesPredictor from AG–TS with best_quality presets, as
these are designed to produce the most accurate forecasts, and set the time_limit to 4 hours. Note

that the presets were fixed a priori and not optimized using the benchmark datasets. DeepAR and

TFT are also trained for up to 4 hours with early stopping on validation loss with patience set to

200. For these models, the model checkpoint achieving the best validation loss is used to generate

the test predictions. The time limit for AutoPyTorch is similarly set to 4 hours. We set no time limit

for the remaining statistical models, as they do not support such functionality. In case the runtime

of a single experiment exceeds 6 hours, the job is interrupted and the result is marked as failure.

More details about the configuration are available in Appendix A.3.

All models are trained using AWS m6i.4xlarge cloud instances (16 vCPU cores, 64 GB RAM).We

use CPU instances to fairly evaluate the CPU-only baselines, though AG–TS additionally supports

GPU training. Each run is repeated 5 times using different random seeds for non-deterministic

models. We run all experiments using AutoMLBenchmark (Gijsbers et al., 2022). In the supplement,

we provide full configuration details and the scripts for reproducing all experiments.

5.2 Forecasting Accuracy

We measure the accuracy of the point forecasts by reporting the mean absolute scaled error
(MASE) of all forecasting methods on all benchmark datasets. AG–TS and AutoPyTorch are trained

6

Table 3: Point forecast accuracy comparison of baseline methods with AutoGluon (based on the MASE

metric) on 29 datasets. Listed are the number datasets where each method produced: lower

error than AutoGluon (Wins), higher error (Losses), error within 0.001 (Ties), error during

prediction (Failures), or the lowest error among all methods (Champion). Average rank and

average error are computed using the datasets where no method failed. We rescale the errors

for each dataset between [0, 1] to ensure that averaging is meaningful. The final column

reports the win rate versus the Seasonal Naive baseline. Individual results are given in Table 9.

Framework Wins Losses Ties Failures Champion

Average

rank

Average

rescaled error

Win rate vs.

baseline

AutoGluon (MASE) - - - 0 19 2.08 0.073 100.0%
StatEnsemble 6 20 0 3 3 3.12 0.238 82.8 %

AutoPyTorch (MASE) 4 25 0 0 2 4.12 0.257 93.1%

AutoETS 4 25 0 0 1 4.64 0.374 75.9 %

AutoTheta 4 23 0 2 0 4.92 0.427 72.4 %

DeepAR 4 24 0 1 2 5.08 0.434 93.1 %

AutoARIMA 4 22 0 3 1 5.92 0.612 79.3 %

TFT 2 27 0 0 1 6.12 0.635 75.9 %

Table 4: Probabilistic forecast accuracy comparison of each baseline method with AutoGluon (based on

the wQL metric) on 29 datasets. The columns are defined as in Table 3. Results for individual

models and datasets are given in Table 10.

Framework Wins Losses Ties Failures Champion

Average

rank

Average

rescaled error

Win rate vs.

baseline

AutoGluon (wQL) - - - 0 19 1.80 0.086 100.0%
StatEnsemble 3 23 0 3 0 3.36 0.330 86.2%

DeepAR 5 23 0 1 1 4.08 0.455 89.7%

TFT 5 24 0 0 5 4.24 0.487 89.7%

AutoETS 3 26 0 0 2 4.40 0.489 69.0%

AutoTheta 2 25 0 2 1 5.00 0.545 69.0%

AutoARIMA 4 22 0 3 1 5.12 0.641 82.8%

to optimize the MASE metric, while all other models are trained using their normal training

procedure. We report the aggregate statistics in Table 3, and provide the full results for individual

models and datasets in Table 9 in the appendix.

We measure the accuracy of the probabilistic (quantile) forecasts by reporting the mean
weighted quantile loss (wQL) averaged over 9 quantile levels 𝑞 ∈ {0.1, 0.2, ..., 0.9}. AG–TS is

configured to optimize the wQL metric. We exclude AutoPyTorch from this comparison since this

framework does not support probabilistic forecasting. We report the aggregate statistics in Table 4,

and provide the full results for individual models and datasets in Table 10 in the appendix.

Some of the frameworks failed to generate forecasts on certain datasets. AutoARIMA, AutoTheta

and StatEnsemble did not finish training on some datasets (Electricity–Hourly, KDD Cup 2018,

and Pedestrian Counts) within 6 hours. This is caused by the poor scaling of these models to very

long time series. DeepAR model fails on one dataset (Web Traffic Weekly) due to numerical errors

encountered during training.

Discussion. The results demonstrate that AG–TS outperforms all other frameworks, achieving the

best average rank and rescaled error for both point and probabilistic forecasts, and even beating

the best-in-hindsight competing method on 19 out of 29 datasets.

StatEnsemble places second after AG–TS. The statistical ensemble performs especially well on

small datasets such as M1 andM3. This demonstrates that in the low-data regime simple approaches,

7

Figure 2: Total runtime of each framework across all datasets. AutoGluon always completes training

and prediction under the time limit and achieves a mean runtime of 33 minutes. AutoPyTorch

is always trained for the full 4 hour time limit. Statistical models train faster in most cases,

but may take an extremely long time to train on datasets with long time series. The runtimes

for individual models and datasets are provided in Table 11.

like ensembling by taking the median, may perform better than the learned ensemble selection

strategy employed by both AutoML frameworks.

AutoPyTorch achieves similar performance to StatEnsemble in point forecasting across most

performance indicators. Interestingly, AG–TS tends to outperform AutoPyTorch on larger datasets

like M4. This means that AG–TS’s strategy of training various light-weight models performs well

in this setting under the limited time budget. Also note, configuring AutoPyTorch requires more

code and domain knowledge, compared to the 3 lines of code necessary to reproduce the above

results by AG–TS.

Deep learning models DeepAR and TFT perform well in terms of probabilistic forecasting, but

fall behind simple statistical approaches in point forecasts. This makes sense, since the objective

functions optimized by these deep learning models are designed for probabilistic forecasting.

5.3 Runtime Comparison

High accuracy is not the only important property of an AutoML system—the ability to generate

predictions in a reasonable amount of time is often necessary in practice. To evaluate the efficiency of

AG–TS, we compare its runtimewith other frameworks. We visualize the runtime of each framework

across all datasets in Figure 2. Note that here we compare the total runtime defined as the sum

of training and prediction times. This reflects the typical forecasting workflow in practice, where

the forecast is generated once for each time series. Moreover, it’s hard to distinguish between the

training and prediction time for local models, where a new model is trained for each new time series.

AG–TS completes training and prediction under the 4-hour time limit for all 29 datasets, and

achieves mean runtime of 33 minutes. While statistical models are faster on average, they can be

extremely slow to train on datasets consisting of long time series. For instance, the runtimes of

AutoARIMA, AutoTheta and StatEnsemble exceed 6 hours for 3 datasets with long time series. The

deep learning models DeepAR and TFT have higher median runtime compared to the statistical

models, but never reach the 4 hour time limit due to early stopping. Finally, AutoPyTorch always

consumes the entire 4 hour time budget due to its design.

To summarize, AG–TS is able to produce accurate forecasts under mild time budgets. While, on

average, AG–TS takes more time than the individual models, it produces more accurate forecasts

and avoids the extremely long runtimes sometimes exhibited by local models. The results also

demonstrate that limited training time is better spent training and ensembling many diverse models

(as done by AG–TS), rather than hyperparameter tuning a restricted set of models (as done by

AutoPyTorch).

8

Table 5: Ablation study. We compare the point forecast accuracy of AutoGluon, where certain compo-

nent models are removed, ensembling is disabled, or the time limit is reduced. All versions

except AutoGluon-1h and AutoGluon-10m are trained for 4 hours. The columns are defined

and the scores are computed as in Table 3.

Framework Champion Average rank Average rescaled error

AutoGluon-1h 19 2.04 0.070
AutoGluon-4h 19 2.08 0.073

NoStatModels 16 2.12 0.094

NoTabularModels 15 2.12 0.085

NoDeepModels 15 2.28 0.124

AutoGluon-10m 14 2.50 0.099

NoEnsemble 7 3.52 0.177

5.4 Ablations

Finally, we perform ablations to understand the effect of different components on the final perfor-

mance. We compare the point forecast accuracy of the TimeSeriesPredictor trained for 4 hours

with MASE evalauation metric (Section 5.2) against several variations with certain disabled com-

ponents. First, we exclude some base models from the presets: statistical models (NoStatModels),
deep learning models (NoDeepModels), and tabular models (NoTabularModels). We also consider

reducing the time limit to 1 hour (AutoGluon-1h) or 10 minutes (AutoGluon-10m), as well disabling

the final ensembling step (NoEnsemble). In the latter case, AG–TS predicts using the model with

the best validation score. The rest of the setup is identical to Section 5.2.

Table 5 shows the metrics for the different model variations, each compared to the baselines

from Section 5.2. AutoGluon-4h and AutoGluon-1h produce nearly identical results. This is

not surprising, as the 4-hour version finishes training under 1 hour for most datasets (Figure 2).

Interestingly, AutoGluon achieves strong results even with a 10-minute time limit, achieving the

best average rank and outperforming the best-in-hindsight model on 14 out of 29 datasets.

Removing the ensembling step has the most detrimental effect on the overall accuracy. This

highlights the importance of ensembling, confirming the findings of other works (Makridakis et al.,

2018; Borchert et al., 2022). The ablations also show that all 3 classes of models used by AutoGluon

are important for the overall performance, deep learning models being the most critical component.

6 Future Work
Our experiments demonstrate the strong forecasting accuracy achieved by AG–TS. Despite these

encouraging initial results, we aim to continue developing the library, adding new functionality

and further boost the forecasting performance. This includes incorporating the various ideas in the

space of AutoML for forecasting (Meisenbacher et al., 2022), with focus on the following directions.

Ensembling. Advanced ensembling strategies, such as stacking (Ting and Witten, 1997), lie at the

core of modern high-performing AutoML systems (Erickson et al., 2020). How to best generalize

these techniques to probabilistic forecasting is an active, but still open research question (Gastinger

et al., 2021; Wang et al., 2022).

Calibration. Many practical tasks require guarantees on the uncertainty estimates associated with

the forecasts. Conformal prediction methods (Stankeviciute et al., 2021; Xu and Xie, 2021) provide

one way to obtain such guarantees, and we plan to incorporate them into AG–TS in the future.

New problem types. AG–TS supports the most common types of forecasting tasks, such as proba-

bilistic forecasting or handling covariates. However, there are several settings that are currently (as

9

of v0.8) not supported. These include so-called cold-start forecasting (where little historic data is

available) and generating forecast explanations (Rojat et al., 2021). Another interesting potential

application for AG–TS is assisting judgemental forecasting. In this context, AG–TS could serve as a

“tool” queried by a large language model (LLM) (Schick et al., 2023) to generate qualitative forecasts.

More generally, combinations of LLM with AutoML frameworks are an exciting direction for future

work (Tornede et al., 2023).

Scalability. In our experiments we consider datasets with up to≈ 10
7
time steps across all time series.

Modern applications, however, sometimes require operating on even larger scales. This would

require improving efficiency of existing models and developing new efficient AutoML techniques.

7 Conclusions
In this work, we introduced AutoGluon–TimeSeries, a powerful and user-friendly open-source

AutoML library for probabilistic time series forecasting. By combining statistical models and deep

learning forecasting approaches with ensembling techniques, AutoGluon–TimeSeries is able to

achieve strong empirical results on a range of benchmark datasets. With the ability to generate

accurate point and quantile forecasts with just 3 lines of Python code, this framework is poised to

make time series forecasting more accessible and efficient for a wide range of users.

8 Broader Impact Statement
AutoGluon–TimeSeries enables users to generate accurate forecasts in a few lines of code. This

democratizes machine learning, lowering the barrier to entry to forecasting for non-experts. At

the same time, AutoGluon–TimeSeries can be used by experienced users to design highly accurate

forecasting pipelines. More accurate forecasts can directly translate to real-world impact in various

domains. For example, forecasting renewable energy generation is a crucial component of smart

grid management (Tripathy and Prusty, 2021); accurately predicting demand leads to more efficient

inventory management and increased revenue (Makridakis et al., 2022).

The potential negative impacts of the proposed approach are similar to those of other forecasting

models. One such danger arises when the limitations of forecasting methods are not taken into

account in the context of decision making (e.g., when guiding policy decisions). As forecasting

models only capture statistical dependencies, they may be misleading when trying to estimate

effects of actions or interventions.

9 Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All claims are supported by the experimental evaluation in

Section 5.

(b) Did you describe the limitations of your work? [Yes] See Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 8.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper con-

forms to them? https://automl.cc/ethics-accessibility/ [Yes] The paper conforms

to the guidelines.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] The paper contains

no theoretical results.

10

https://automl.cc/ethics-accessibility/

(b) Did you include complete proofs of all theoretical results? [N/A] The paper contains no

theoretical results.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] All of the above included in the supplementary material.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] Results are provided in CSV format.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [No]

We provide the raw data and describe the procedure in the paper, which should make

reproducing the results and figures straightforward.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] The code is properly documented and we made sure

that it can be executed in a fresh environment.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] We use the standard evaluation

protocol: For all datasets, the last prediction_length time steps of each time series are

held out and used to evaluate the forecasts produced by each method. For hyperparameters,

see Section A.3.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We carefully made sure that this is the case.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Section 5.4.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] All

methods use an identical evaluation protocol.

(i) Did you compare performance over time? [Yes] We allocate the same runtime budget of 4

hours to all methods. An ablation study is performed where the time limit is reduced to 1

hour and 10 minutes for AutoGluon.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

For all non-deterministic methods, the experiments are repeated with five random seeds:

1,2,3,4,5.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] Error metrics produced by all non-deterministic methods include the

mean and the standard deviation (see Tables 9 and 10).

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] These are not

available for probabilistic time series forecasting.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] The compute infrastructure is described

in Section 5.1. The total runtime of all experiments equals approximately 6000 hours (≈ #

models × # seeds × # of datasets).

11

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] We describe the hyperparameter settings

in Appendix A.3, in addition to providing the code that can be used to reproduce the results.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] References for all used

datasets and methods are provided in Section 5.1.

(b) Did you mention the license of the assets? [Yes] This paper does not introduce any new

public assets. The AutoGluon library is released under the Apache 2.0 License.

(c) Did you include any new assets either in the supplemental material or as a url? [No] This

paper does not introduce any new public assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The evaluation was performed using public benchmark datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The evaluation was performed using public

benchmark datasets.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not use crowdsourcing or conduct research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not use crowdsourcing or conduct research

with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not use crowdsourcing or conduct research

with human subjects.

References

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., Januschowski, T.,

Maddix, D. C., Rangapuram, S., Salinas, D., Schulz, J., et al. (2020). GluonTS: Probabilistic and

neural time series modeling in Python. The Journal of Machine Learning Research, 21(1):4629–4634.

Ali, M. (2020). PyCaret: An open source, low-code machine learning library in Python. https:
//www.pycaret.org.

Assimakopoulos, V. and Nikolopoulos, K. (2000). The Theta model: A decomposition approach to

forecasting. International journal of forecasting, 16(4):521–530.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J.,

Bohlke-Schneider, M., Salinas, D., Stella, L., et al. (2022). Deep learning for time series forecasting:

Tutorial and literature survey. ACM Computing Surveys, 55(6):1–36.

Borchert, O., Salinas, D., Flunkert, V., Januschowski, T., and Günnemann, S. (2022). Multi-objective

model selection for time series forecasting. arXiv preprint arXiv:2202.08485.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (1970). Time series analysis: forecasting
and control. John Wiley & Sons.

12

https://www.pycaret.org
https://www.pycaret.org

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. (2004). Ensemble selection from libraries

of models. In Proceedings of the twenty-first international conference on Machine learning, page 18.

Catlin, C. (2022). AutoTS: Automated time series forecasting. https://github.com/winedarksea/
AutoTS.

da Silva, F. R., Vieira, A. B., Bernardino, H. S., Alencar, V. A., Pessamilio, L. R., and Barbosa, H.

J. C. (2022). Automated machine learning for time series prediction. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–7. IEEE.

Dahl, S. M. J. (2020). TSPO: an autoML approach to time series forecasting. PhD thesis.

Deng, D., Karl, F., Hutter, F., Bischl, B., and Lindauer, M. (2022). Efficient automated deep learning

for time series forecasting. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part III, pages
664–680. Springer.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020). AutoGluon-

Tabular: Robust and accurate AutoML for structured data. arXiv preprint arXiv:2003.06505.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). Efficient

and robust automated machine learning. Advances in neural information processing systems, 28.

Garza, F., Mergenthaler Canseco, M., Challu, C., and Olivares, K. G. (2022). StatsForecast: Light-

ning fast forecasting with statistical and econometric models. https://github.com/Nixtla/
statsforecast (v1.15.0).

Gastinger, J., Nicolas, S., Stepić, D., Schmidt, M., and Schülke, A. (2021). A study on ensemble

learning for time series forecasting and the need for meta-learning. In 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Gijsbers, P., Bueno, M. L., Coors, S., LeDell, E., Poirier, S., Thomas, J., Bischl, B., and Vanschoren, J.

(2022). AMLB: An AutoML benchmark. arXiv preprint arXiv:2207.12560.

Gneiting, T. and Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its
Application, 1:125–151.

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J., and Montero-Manso, P. (2021). Monash

time series forecasting archive. In Neural Information Processing Systems Track on Datasets and
Benchmarks.

Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., and Zareipour, H. (2020). Energy forecasting: A

review and outlook. IEEE Open Access Journal of Power and Energy, 7:376–388.

Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media.

Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

Hyndman, R. J. and Khandakar, Y. (2008). Automatic time series forecasting: the forecast package

for R. Journal of statistical software, 27:1–22.

Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., and Callot,

L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting,
36(1):167–177.

13

https://github.com/winedarksea/AutoTS
https://github.com/winedarksea/AutoTS
https://github.com/Nixtla/statsforecast
https://github.com/Nixtla/statsforecast

Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., and Gasthaus, J. (2022). Forecasting

with trees. International Journal of Forecasting, 38(4):1473–1481.

Javeri, I. Y., Toutiaee, M., Arpinar, I. B., Miller, J. A., and Miller, T. W. (2021). Improving neural

networks for time-series forecasting using data augmentation and AutoML. In 2021 IEEE Seventh
International Conference on Big Data Computing Service and Applications (BigDataService), pages
1–8. IEEE.

Joblib Development Team (2020). Joblib: Running Python functions as pipeline jobs. https:
//joblib.readthedocs.io/ (v1.2.0).

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm:

A highly efficient gradient boosting decision tree. Advances in Neural Information Processing
Systems, 30.

Kurian, J. J., Dix, M., Amihai, I., Ceusters, G., and Prabhune, A. (2021). BOAT: A Bayesian optimiza-

tion autoML time-series framework for industrial applications. In 2021 IEEE Seventh International
Conference on Big Data Computing Service and Applications (BigDataService), pages 17–24. IEEE.

LeDell, E. and Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020.

Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T. (2021). Temporal fusion transformers for interpretable

multi-horizon time series forecasting. International Journal of Forecasting, 37(4):1748–1764.

Makridakis, S. and Hibon, M. (2000). The M3 competition: Results, conclusions and implications.

International journal of forecasting, 16(4):451–476.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018). The M4 competition: Results, findings,

conclusion and way forward. International Journal of Forecasting, 34(4):802–808.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2022). The M5 competition: Background,

organization, and implementation. International Journal of Forecasting, 38(4):1325–1336.

Meisenbacher, S., Turowski, M., Phipps, K., Rätz, M., Müller, D., Hagenmeyer, V., and Mikut, R.

(2022). Review of automated time series forecasting pipelines. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 12(6):e1475.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. (2023). A time series is worth 64 words:

Long-term forecasting with transformers. International Conference on Learning Representations.

Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., and Vasilakis, C. (2021). Forecasting and

planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmen-

tal decisions. European journal of operational research, 290(1):99–115.

Nixtla (2023). MLForecast scalable machine learning for time series forecasting. v0.7.2.

Olson, R. S. and Moore, J. H. (2016). TPOT: A tree-based pipeline optimization tool for automating

machine learning. InWorkshop on automatic machine learning, pages 66–74. PMLR.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y. (2020). N-beats: Neural basis expansion

analysis for interpretable time series forecasting.

pandas development team (2020). pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.
3509134 (v1.5.3).

14

https://joblib.readthedocs.io/
https://joblib.readthedocs.io/
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.

Psychological bulletin, 86(3):446.

Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., and Díaz-Rodríguez, N. (2021). Explainable

artificial intelligence (XAI) on timeseries data: A survey. arXiv preprint arXiv:2104.00950.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). DeepAR: Probabilistic forecasting

with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191.

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., and

Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv preprint
arXiv:2302.04761.

Semenoglou, A.-A., Spiliotis, E., Makridakis, S., and Assimakopoulos, V. (2021). Investigating the

accuracy of cross-learning time series forecasting methods. International Journal of Forecasting,
37(3):1072–1084.

Shah, S. Y., Patel, D., Vu, L., Dang, X.-H., Chen, B., Kirchner, P., Samulowitz, H., Wood, D., Bramble,

G., Gifford, W. M., et al. (2021). AutoAI-TS: AutoAI for time series forecasting. In Proceedings of
the 2021 International Conference on Management of Data, pages 2584–2596.

Shi, X., Mueller, J., Erickson, N., Li, M., and Smola, A. (2021). Multimodal AutoML on structured

tables with text fields. In 8th ICML Workshop on Automated Machine Learning (AutoML).

Stankeviciute, K., M Alaa, A., and van der Schaar, M. (2021). Conformal time-series forecasting.

Advances in Neural Information Processing Systems, 34:6216–6228.

Syntetos, A. A., Boylan, J. E., and Disney, S. M. (2009). Forecasting for inventory planning: a 50-year

review. Journal of the Operational Research Society, 60:S149–S160.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-WEKA: Combined

selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 847–855.

Ting, K. M. and Witten, I. H. (1997). Stacking bagged and dagged models.

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos,

D., Tornede, T., Wachsmuth, H., et al. (2023). AutoML in the age of large language models:

Current challenges, future opportunities and risks. arXiv preprint arXiv:2306.08107.

Tripathy, D. S. and Prusty, B. R. (2021). Forecasting of renewable generation for applications in

smart grid power systems. In Advances in Smart Grid Power System, pages 265–298. Elsevier.

Van Kuppevelt, D., Meijer, C., Huber, F., van der Ploeg, A., Georgievska, S., and van Hees, V. T.

(2020). Mcfly: Automated deep learning on time series. SoftwareX, 12:100548.

Wang, X., Hyndman, R. J., Li, F., and Kang, Y. (2022). Forecast combinations: an over 50-year review.

International Journal of Forecasting.

Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka, D. (2017). A multi-horizon quantile

recurrent forecaster. arXiv preprint arXiv:1711.11053.

Xu, C. and Xie, Y. (2021). Conformal prediction interval for dynamic time-series. In International
Conference on Machine Learning, pages 11559–11569. PMLR.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-PyTorch: Multi-fidelity metalearning for

efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9):3079–3090.

15

A Supplementary Materials

A.1 Evaluation Metrics

MASE. Mean absolute scaled error is the standard metric for evaluating the accuracy of point

forecasts.

MASE =
1

𝑁

𝑁∑︁
𝑖=1

1

𝐻

∑𝐻
ℎ=1

|𝑦𝑖,𝑇+ℎ − 𝑦𝑖,𝑇+ℎ |∑𝑇−𝑠
𝑡=1 |𝑦𝑖,𝑡+𝑠 − 𝑦𝑖,𝑡 |

MASE is scale-invariant and does not suffer from the limitations of other metrics, such as being

undefined when the target time series equals zero (Hyndman and Athanasopoulos, 2018). We

compute the metric using the median (0.5 quantile) forecast produced by each model.

wQL. Weighted quantile loss for a single quantile level 𝑞 is defined as

wQL[𝑞] = 2

∑𝑁
𝑖=1

∑𝐻
ℎ=1

[
𝑞 ·max(𝑦𝑖,𝑇+ℎ − 𝑦

𝑞

𝑖,𝑇+ℎ, 0) + (1 − 𝑞) ·max(𝑦𝑞
𝑖,𝑇+ℎ − 𝑦𝑖,𝑇+ℎ, 0)

]
∑𝑁

𝑖=1

∑𝐻
ℎ=1

|𝑦𝑖,𝑇+ℎ |

In our experiments, we report the mean wQL averaged over 9 quantile levels Q = {0.1, 0.2, ..., 0.9}.

wQL =
1

|Q|
∑︁
𝑞∈Q

wQL[𝑞]

A.2 Reproducibility

We ran all experiments using AutoMLBenchmark (Gijsbers et al., 2022). We provide a

fork of AMLB that includes all scripts necessary to reproduce the results from our pa-

per in the following GitHub repository https://github.com/shchur/automlbenchmark/tree/
autogluon-timeseries-automl23/autogluon_timeseries_automl23.

A.3 Model Configuration

We trained the baseline models DeepAR, TFT, AutoARIMA, AutoETS, AutoTheta with the default

hyperparameter configurations provided by the respective libraries. For DeepAR and TFT, the

last prediction_length time steps of each time series were reserved as a validation set. Both

models were trained for the full duration of 4 hours, saving the parameters and evaluating the

validation loss at each epoch. The parameters achieving the lowest validation loss were then used

for prediction. No HPO was performed for these two models, as AutoPyTorch already trains similar

deep learning models with HPO.

For AutoPyTorch, we used the reference implementation by the authors.
3
We set the tar-

get metric to "mean_MASE_forecasting", budget_type="epochs", min_budget=5, max_budget=50,
and resampling_strategy=HoldoutValTypes.time_series_hold_out_validation. We also set

torch_num_threads to 16 (the number of vCPU cores).

In our experiments, we used AG–TS v0.8.2, the latest release at the time of publication. We

used the "best_quality" presets and set eval_metric to either "MASE" or "mean_wQuantileLoss",
depending on the experiment. All other parameters of the TimeSeriesPredictor were set to

their default values. The "best_quality" presets include the following models: AutoETS, Au-

toARIMA, Theta (from StatsForecast), DeepAR, PatchTST, TFT (from GluonTS), DirectTabular,

RecursiveTabular (wrappers around AutoGluon–Tabular and MLForecast), plus the baseline meth-

ods Naive and SeasonalNaive. The non-default hyperparameters of the individual models used by

the best_quality presets are provided in Table 6.

3https://github.com/dengdifan/Auto-PyTorch/blob/ecml22_apt_ts/examples/APT-TS/APT_task.py

16

https://github.com/shchur/automlbenchmark/tree/autogluon-timeseries-automl23/autogluon_timeseries_automl23
https://github.com/shchur/automlbenchmark/tree/autogluon-timeseries-automl23/autogluon_timeseries_automl23
https://github.com/dengdifan/Auto-PyTorch/blob/ecml22_apt_ts/examples/APT-TS/APT_task.py

The guiding principle for developing the presets for AG–TS can be summarized as “keep defaults

whenever possible, except the cases where the defaults are clearly suboptimal”. For example, we

set allowmean=True for AutoARIMA to allow this model to handle time series with non-zero

mean. For deep learning models, we increase the batch size from 32 to 64 since larger batch sizes

typically lead to faster convergence for all deep learning models. The context_length is capped at

a minimum value because the default setting context_length=prediction_length can result in

models that ignore most of the history if prediction_length is very short. For PatchTST, we set

the context_length to the value used in the respective publication (Nie et al., 2023).

The versions of frameworks used in our experiments are listed in Table 7.

Table 6: Non-default hyperparameters that AutoGluon sets for the underlying models. The remaining

parameters are all set to their defaults in the respective libraries. Models not listed here

(Naive, SeasonalNaive, AutoETS, DirectTabular, Theta) have all their hyperparameters set to

the default values.

Model Hyperparameter Value

AutoARIMA allowmean True
approximation True

DeepAR batch_size 64
context_length max(10, 2 * prediction_length)
num_samples 250

PatchTST batch_size 64
context_length 96

TFT batch_size 64
context_length max(64, 2 * prediction_length)

RecursiveTabular tabular_hyperparameters {"GBM", "NN_TORCH"}

Table 7: Versions of the frameworks used during evaluation.

Framework Version

AutoGluon 0.8.2

AutoPyTorch 0.2.1

GluonTS 0.13.2

MLForecast 0.7.3

StatsForecast 1.5.0

Python 3.9

PyTorch 1.13.1+cpu

17

Table 8: Statistics of the benchmark datasets used in our experimental evaluation. Frequency is

represented by pandas offset aliases. Seasonality depends on the frequency, and is used to

configure statistical models and compute the MASE metric.

Dataset # series # time steps Prediction length Frequency Seasonality

Car Parts 2,674 104,286 12 M 12

CIF 2016 72 6,244 12 M 12

COVID 266 48,412 30 D 7

Electricity Hourly 321 8,428,176 48 H 24

Electricity Weekly 321 47,508 8 W 1

FRED-MD 107 76,612 12 M 12

Hospital 767 55,224 12 M 12

KDD Cup 2018 270 2,929,404 48 H 24

M1 Monthly 617 44,892 18 M 12

M1 Quarterly 203 8,320 8 Q 4

M1 Yearly 181 3,429 6 Y 1

M3 Monthly 1,428 141,858 18 M 12

M3 Other 174 11,933 8 Q 1

M3 Quarterly 756 30,956 8 Q 4

M3 Yearly 645 14,449 6 Y 1

M4 Daily 4,227 9,964,658 14 D 7

M4 Hourly 414 353,500 48 H 24

M4 Monthly 48,000 10,382,411 18 M 12

M4 Quarterly 24,000 2,214,108 8 Q 4

M4 Weekly 359 366,912 13 W 1

M4 Yearly 22,974 707,265 6 Y 1

NN5 Daily 111 81,585 56 D 7

NN5 Weekly 111 11,655 8 W 1

Pedestrian Counts 66 3,129,178 48 H 24

Tourism Monthly 366 100,496 24 M 12

Tourism Quarterly 427 39,128 8 Q 4

Tourism Yearly 518 10,685 4 Y 1

Vehicle Trips 262 45,253 7 D 7

Web Traffic Weekly 145,063 15,376,678 8 W 1

18

T
a
b
l
e
9
:
P
o
i
n
t
f
o
r
e
c
a
s
t
a
c
c
u
r
a
c
y
,
a
s
m
e
a
s
u
r
e
d
b
y
M
A
S
E
(
l
o
w
e
r
i
s
b
e
t
t
e
r
)
.
F
o
r
n
o
n
-
d
e
t
e
r
m
i
n
i
s
t
i
c
m
e
t
h
o
d
s

(
D
e
e
p
A
R
,
T
F
T
,
A
u
t
o
P
y
T
o
r
c
h
,
A
u
t
o
G
l
u
o
n
)
w
e
r
e
p
o
r
t
t
h
e
m
e
a
n
a
n
d
s
t
a
n
d
a
r
d
d
e
v
i
a
t
i
o
n
o
f
t
h
e

s
c
o
r
e
s
c
o
m
p
u
t
e
d
o
v
e
r
5
r
a
n
d
o
m

s
e
e
d
s
.
"
d
.n
.f
."
d
e
n
o
t
e
s
c
a
s
e
s
w
h
e
r
e
a
m
e
t
h
o
d
d
i
d
n
o
t
g
e
n
e
r
a
t
e

a
f
o
r
e
c
a
s
t
i
n
6
h
o
u
r
s
.
"
N
/
A
"
d
e
n
o
t
e
s
m
o
d
e
l
f
a
i
l
u
r
e
.

S
e
a
s
o
n
a
l
N
a
i
v
e

A
u
t
o
A
R
I
M
A

A
u
t
o
E
T
S

A
u
t
o
T
h
e
t
a

S
t
a
t
E
n
s
e
m
b
l
e

D
e
e
p
A
R

T
F
T

A
u
t
o
P
y
T
o
r
c
h

A
u
t
o
G
l
u
o
n

C
a
r
P
a
r
t
s

1
.1
2
7

1
.1
1
8

1
.1
3
3

1
.2
0
8

1
.0
5
2

0
.7
4
9

(
0
.0
0
1
)

0
.7
5
1

(
0
.0
0
2
)

0.
74
6

(
0
.0
)

0
.7
4
7

(
0
.0
)

C
I
F
2
0
1
6

1
.2
8
9

1
.0
6
9

0.
89
8

1
.0
0
6

0
.9
4
5

1
.2
7
8

(
0
.0
8
8
)

1
.3
7
2

(
0
.0
8
5
)

1
.0
2
3

(
0
.0
6
9
)

1
.0
7
3

(
0
.0
0
6
)

C
O
V
I
D

8
.9
7
7

6
.0
2
9

5
.9
0
7

7
.7
1
9

5
.8
8
4

7
.1
6
6

(
0
.3
3
4
)

5
.1
9
2

(
0
.2
1
1
)

4.
91
1

(
0
.0
8
6
)

5
.8
0
5

(
0
.0
)

E
l
e
c
t
r
i
c
i
t
y
H
o
u
r
l
y

1
.4
0
5

d
.n
.f
.

1
.4
6
5

d
.n
.f
.

d
.n
.f
.

1
.2
5
1

(
0
.0
0
6
)

1
.3
8
9

(
0
.0
2
5
)

1
.4
2
0

(
0
.1
2
3
)

1
.2
2
7

(
0
.0
0
3
)

E
l
e
c
t
r
i
c
i
t
y
W
e
e
k
l
y

3
.0
3
7

3
.0
0
9

3
.0
7
6

3
.1
1
3

3
.0
7
7

2
.4
4
7

(
0
.2
1
1
)

2
.8
6
1

(
0
.1
2
2
)

2
.3
2
2

(
0
.2
7
7
)

1
.8
9
2

(
0
.0
)

F
R
E
D
-
M
D

1
.1
0
1

0.
47
8

0
.5
0
5

0
.5
6
4

0
.4
9
8

0
.6
3
4

(
0
.0
3
8
)

0
.9
0
1

(
0
.0
8
6
)

0
.6
8
2

(
0
.0
5
8
)

0
.6
5
6

(
0
.0
)

H
o
s
p
i
t
a
l

0
.9
2
1

0
.8
2
0

0
.7
6
6

0
.7
6
4

0
.7
5
3

0
.7
7
1

(
0
.0
0
8
)

0
.8
1
4

(
0
.0
1
2
)

0
.7
7
0

(
0
.0
0
3
)

0.
74
1

(
0
.0
0
1
)

K
D
D
C
u
p
2
0
1
8

0
.9
7
5

d
.n
.f
.

0
.9
8
8

1
.0
1
0

d
.n
.f
.

0
.8
4
1

(
0
.0
3
6
)

0
.8
4
4

(
0
.0
6
5
)

0
.7
6
4

(
0
.0
4
7
)

0.
70
9

(
0
.0
2
6
)

M
1
M
o
n
t
h
l
y

1
.3
1
4

1
.1
5
2

1
.0
8
3

1
.0
9
2

1.
04
5

1
.1
1
7

(
0
.0
2
9
)

1
.5
3
4

(
0
.0
6
3
)

1
.2
7
8

(
0
.1
1
5
)

1
.2
3
5

(
0
.0
0
1
)

M
1
Q
u
a
r
t
e
r
l
y

2
.0
7
8

1
.7
7
0

1
.6
6
5

1
.6
6
7

1
.6
2
2

1
.7
4
2

(
0
.0
2
8
)

2
.0
9
9

(
0
.1
0
8
)

1
.8
1
3

(
0
.0
5
6
)

1
.6
1
5

(
0
.0
)

M
1
Y
e
a
r
l
y

4
.8
9
4

3
.8
7
0

3
.9
5
0

3
.6
5
9

3
.7
6
9

3
.6
7
4

(
0
.1
6
1
)

4
.3
1
8

(
0
.1
2
2
)

3
.4
0
7

(
0
.0
7
8
)

3
.3
7
1

(
0
.0
0
7
)

M
3
M
o
n
t
h
l
y

1
.1
4
6

0
.9
3
4

0
.8
6
7

0
.8
5
5

0
.8
4
5

0
.9
6
0

(
0
.0
1
7
)

1
.0
6
2

(
0
.0
4
)

0
.9
5
6

(
0
.0
8
3
)

0.
82
2

(
0
.0
)

M
3
O
t
h
e
r

3
.0
8
9

2
.2
4
5

1
.8
0
1

2
.0
0
9

1.
76
9

2
.0
6
1

(
0
.1
8
2
)

1
.9
2
6

(
0
.0
2
8
)

1
.8
7
1

(
0
.0
2
4
)

1
.8
3
7

(
0
.0
0
4
)

M
3
Q
u
a
r
t
e
r
l
y

1
.4
2
5

1
.4
1
9

1
.1
2
1

1
.1
1
9

1
.0
9
6

1
.1
9
8

(
0
.0
3
7
)

1
.1
7
6

(
0
.0
3
6
)

1
.1
8
0

(
0
.0
3
2
)

1
.0
5
7

(
0
.0
0
2
)

M
3
Y
e
a
r
l
y

3
.1
7
2

3
.1
5
9

2
.6
9
5

2
.6
0
8

2
.6
2
7

2
.6
9
4

(
0
.0
9
6
)

2
.8
1
8

(
0
.0
1
9
)

2
.6
9
1

(
0
.0
2
6
)

2
.5
2
0

(
0
.0
0
2
)

M
4
D
a
i
l
y

1
.4
5
2

1
.1
5
3

1
.2
2
8

1
.1
4
9

1
.1
4
5

1
.1
4
5

(
0
.0
2
6
)

1
.1
7
6

(
0
.0
1
8
)

1
.1
5
2

(
0
.0
0
9
)

1
.1
5
6

(
0
.0
)

M
4
H
o
u
r
l
y

1
.1
9
3

1
.0
2
9

1
.6
0
9

2
.4
5
6

1
.1
5
7

1
.4
8
4

(
0
.1
5
1
)

3
.3
9
1

(
0
.4
4
2
)

1
.3
4
5

(
0
.4
0
4
)

0.
80
7

(
0
.0
0
1
)

M
4
M
o
n
t
h
l
y

1
.0
7
9

0
.8
1
2

0
.8
0
3

0
.8
3
4

0
.7
8
0

0
.9
3
3

(
0
.0
1
)

0
.9
4
7

(
0
.0
0
5
)

0
.8
5
1

(
0
.0
2
5
)

0
.7
8
2

(
0
.0
)

M
4
Q
u
a
r
t
e
r
l
y

1
.6
0
2

1
.2
7
6

1
.1
6
7

1
.1
8
3

1
.1
4
8

1
.3
6
7

(
0
.1
7
1
)

1
.2
7
7

(
0
.0
1
5
)

1
.1
7
6

(
0
.0
2
2
)

1
.1
3
9

(
0
.0
)

M
4
W
e
e
k
l
y

2
.7
7
7

2
.3
5
5

2
.5
4
8

2
.6
0
8

2
.3
7
5

2
.4
1
8

(
0
.0
2
6
)

2
.6
2
5

(
0
.0
3
8
)

2
.3
6
9

(
0
.1
7
7
)

2.
03
5

(
0
.0
0
1
)

M
4
Y
e
a
r
l
y

3
.9
6
6

3
.7
2
0

3
.0
7
7

3
.0
8
5

3
.0
3
2

3
.8
5
8

(
0
.6
9
4
)

3
.2
2
0

(
0
.0
9
7
)

3
.0
9
3

(
0
.0
4
1
)

3
.0
1
9

(
0
.0
0
1
)

N
N
5
D
a
i
l
y

1
.0
1
1

0
.9
3
5

0
.8
7
0

0
.8
7
8

0
.8
5
9

0
.8
1
2

(
0
.0
1
)

0
.7
8
9

(
0
.0
0
4
)

0
.8
0
7

(
0
.0
2
1
)

0.
76
1

(
0
.0
0
4
)

N
N
5
W
e
e
k
l
y

1
.0
6
3

0
.9
9
8

0
.9
8
0

0
.9
6
3

0
.9
7
7

0
.9
1
5

(
0
.0
8
5
)

0
.8
8
4

(
0
.0
1
2
)

0
.8
6
5

(
0
.0
2
5
)

0
.8
6
0

(
0
.0
)

P
e
d
e
s
t
r
i
a
n
C
o
u
n
t
s

0
.3
6
9

d
.n
.f
.

0
.5
5
3

d
.n
.f
.

d
.n
.f
.

0
.3
0
9

(
0
.0
0
5
)

0
.3
7
3

(
0
.0
1
)

0
.3
5
4

(
0
.0
2
4
)

0
.3
1
2

(
0
.0
0
9
)

T
o
u
r
i
s
m

M
o
n
t
h
l
y

1
.6
3
1

1
.5
8
5

1
.5
2
9

1
.6
6
6

1
.4
6
9

1
.4
6
1

(
0
.0
2
5
)

1
.7
1
9

(
0
.0
8
)

1
.4
9
5

(
0
.0
0
9
)

1
.4
4
2

(
0
.0
)

T
o
u
r
i
s
m

Q
u
a
r
t
e
r
l
y

1
.6
9
9

1
.6
5
5

1
.5
7
8

1
.6
4
8

1
.5
3
9

1
.5
9
9

(
0
.0
6
2
)

1
.8
3
0

(
0
.0
4
7
)

1
.6
4
7

(
0
.0
3
4
)

1
.5
3
7

(
0
.0
0
2
)

T
o
u
r
i
s
m

Y
e
a
r
l
y

3
.5
5
2

4
.0
4
4

3
.1
8
3

2
.9
9
2

3
.2
3
1

3
.4
7
6

(
0
.1
6
5
)

2
.9
1
6

(
0
.1
9
7
)

3
.0
0
4

(
0
.0
5
3
)

2
.9
4
6

(
0
.0
0
7
)

V
e
h
i
c
l
e
T
r
i
p
s

1
.3
0
2

1
.4
2
7

1
.3
0
1

1
.2
8
4

1
.2
0
3

1
.1
6
2

(
0
.0
1
6
)

1
.2
2
7

(
0
.0
2
)

1
.1
6
2

(
0
.0
1
9
)

1
.1
1
3

(
0
.0
)

W
e
b
T
r
a
ffi
c
W
e
e
k
l
y

1
.0
6
6

1
.1
8
9

1
.2
0
7

1
.1
0
8

1
.0
6
8

N
/
A

0
.9
7
3

(
0
.0
2
2
)

0
.9
6
2

(
0
.0
1
)

0
.9
3
8

(
0
.0
)

19

T
a
b
l
e
1
0
:
P
r
o
b
a
b
i
l
i
s
t
i
c
f
o
r
e
c
a
s
t
a
c
c
u
r
a
c
y
,
a
s
m
e
a
s
u
r
e
d
b
y
w
Q
L
(
l
o
w
e
r
i
s
b
e
t
t
e
r
)
.
F
o
r
n
o
n
-
d
e
t
e
r
m
i
n
i
s
t
i
c

m
e
t
h
o
d
s
(
D
e
e
p
A
R
,
T
F
T
,
A
u
t
o
G
l
u
o
n
)
w
e
r
e
p
o
r
t
t
h
e
m
e
a
n
a
n
d
s
t
a
n
d
a
r
d
d
e
v
i
a
t
i
o
n
o
f
t
h
e
s
c
o
r
e
s

c
o
m
p
u
t
e
d
o
v
e
r
5
r
a
n
d
o
m

s
e
e
d
s
.
"
d
.n
.f
."
d
e
n
o
t
e
s
c
a
s
e
s
w
h
e
r
e
a
m
e
t
h
o
d
d
i
d
n
o
t
g
e
n
e
r
a
t
e
a

f
o
r
e
c
a
s
t
i
n
6
h
o
u
r
s
.
"
N
/
A
"
d
e
n
o
t
e
s
m
o
d
e
l
f
a
i
l
u
r
e
.

S
e
a
s
o
n
a
l
N
a
i
v
e

A
u
t
o
A
R
I
M
A

A
u
t
o
E
T
S

A
u
t
o
T
h
e
t
a

S
t
a
t
E
n
s
e
m
b
l
e

D
e
e
p
A
R

T
F
T

A
u
t
o
G
l
u
o
n

C
a
r
P
a
r
t
s

1
.7
1
7

1
.5
8
9

1
.3
3
8

1
.3
6
7

1
.3
2
4

0
.9
6
3

(
0
.0
0
9
)

0.
87
8

(
0
.0
0
4
)

0
.9
2
3

(
0
.0
)

C
I
F
2
0
1
6

0
.0
3
1

0
.0
1
7

0
.0
3
9

0
.0
2
7

0
.0
2
8

0
.1
1
4

(
0
.0
2
4
)

0.
01
0

(
0
.0
0
2
)

0
.0
1
9

(
0
.0
)

C
O
V
I
D

0
.1
4
0

0.
03
0

0
.0
4
6

0
.0
9
4

0
.0
4
6

0
.0
7
2

(
0
.0
2
)

0
.0
3
1

(
0
.0
0
3
)

0.
03
0

(
0
.0
)

E
l
e
c
t
r
i
c
i
t
y
H
o
u
r
l
y

0
.1
0
8

d
.n
.f
.

0
.1
0
0

d
.n
.f
.

d
.n
.f
.

0
.0
8
1

(
0
.0
0
2
)

0
.0
9
7

(
0
.0
0
1
)

0.
07
6

(
0
.0
)

E
l
e
c
t
r
i
c
i
t
y
W
e
e
k
l
y

0
.1
4
1

0
.1
3
8

0
.1
4
4

0
.1
4
6

0
.1
4
1

0
.1
2
3

(
0
.0
4
1
)

0
.1
1
8

(
0
.0
1
1
)

0
.0
8
8

(
0
.0
)

F
R
E
D
-
M
D

0
.1
0
4

0
.0
5
6

0.
05
0

0
.0
5
7

0
.0
5
4

0
.0
5
4

(
0
.0
2
1
)

0
.1
1
4

(
0
.0
1
1
)

0
.0
5
6

(
0
.0
)

H
o
s
p
i
t
a
l

0
.0
6
2

0
.0
5
8

0
.0
5
3

0
.0
5
5

0
.0
5
3

0
.0
5
3

(
0
.0
0
1
)

0
.0
5
4

(
0
.0
0
1
)

0.
05
1

(
0
.0
)

K
D
D
C
u
p
2
0
1
8

0
.4
8
9

d
.n
.f
.

0
.5
5
0

0
.5
5
3

d
.n
.f
.

0
.3
6
3

(
0
.0
1
4
)

0
.4
8
8

(
0
.0
5
4
)

0
.3
2
3

(
0
.0
1
4
)

M
1
M
o
n
t
h
l
y

0
.1
5
3

0
.1
4
6

0
.1
6
3

0
.1
5
9

0
.1
5
2

0
.1
3
6

(
0
.0
0
8
)

0
.2
2
4

(
0
.0
1
6
)

0
.1
3
5

(
0
.0
)

M
1
Q
u
a
r
t
e
r
l
y

0
.1
1
9

0
.0
8
8

0
.0
8
1

0
.0
8
2

0
.0
8
3

0
.0
8
4

(
0
.0
0
3
)

0
.0
9
3

(
0
.0
0
6
)

0
.0
9
0

(
0
.0
)

M
1
Y
e
a
r
l
y

0
.1
8
4

0
.1
6
0

0
.1
3
9

0
.1
3
7

0
.1
4
2

0
.1
4
2

(
0
.0
2
9
)

0
.1
2
7

(
0
.0
0
4
)

0
.1
3
4

(
0
.0
0
1
)

M
3
M
o
n
t
h
l
y

0
.1
2
4

0
.1
0
2

0
.0
9
3

0
.0
9
5

0
.0
9
2

0
.0
9
8

(
0
.0
0
1
)

0
.1
0
9

(
0
.0
0
3
)

0.
08
9

(
0
.0
)

M
3
O
t
h
e
r

0
.0
4
7

0
.0
3
5

0
.0
3
2

0
.0
3
5

0.
03
1

0
.0
3
6

(
0
.0
0
2
)

0
.0
3
3

(
0
.0
0
1
)

0.
03
1

(
0
.0
)

M
3
Q
u
a
r
t
e
r
l
y

0
.0
8
3

0
.0
7
9

0
.0
6
9

0
.0
7
0

0
.0
6
8

0
.0
7
3

(
0
.0
0
1
)

0
.0
7
1

(
0
.0
0
1
)

0.
06
5

(
0
.0
)

M
3
Y
e
a
r
l
y

0
.1
4
1

0
.1
6
2

0
.1
2
9

0
.1
2
8

0
.1
2
8

0
.1
1
7

(
0
.0
0
2
)

0
.1
3
3

(
0
.0
0
1
)

0.
11
4

(
0
.0
)

M
4
D
a
i
l
y

0
.0
3
0

0
.0
2
3

0
.0
2
5

0
.0
2
3

0
.0
2
3

0
.0
2
3

(
0
.0
)

0
.0
2
3

(
0
.0
)

0.
02
2

(
0
.0
)

M
4
H
o
u
r
l
y

0
.0
3
9

0
.0
3
6

0
.0
7
0

0
.0
4
1

0
.0
3
7

0
.0
6
5

(
0
.0
3
)

0
.0
3
8

(
0
.0
0
2
)

0.
03
0

(
0
.0
0
1
)

M
4
M
o
n
t
h
l
y

0
.1
0
9

0
.0
8
5

0
.0
8
5

0
.0
8
8

0
.0
8
2

0
.0
9
2

(
0
.0
0
3
)

0
.0
8
9

(
0
.0
0
1
)

0.
08
1

(
0
.0
)

M
4
Q
u
a
r
t
e
r
l
y

0
.0
9
9

0
.0
8
2

0
.0
7
9

0
.0
7
9

0
.0
7
6

0
.0
8
4

(
0
.0
0
5
)

0
.0
8
3

(
0
.0
0
1
)

0.
07
5

(
0
.0
)

M
4
W
e
e
k
l
y

0
.0
7
3

0
.0
5
0

0
.0
5
2

0
.0
5
3

0
.0
5
0

0
.0
4
6

(
0
.0
0
1
)

0
.0
4
9

(
0
.0
0
1
)

0.
04
1

(
0
.0
)

M
4
Y
e
a
r
l
y

0
.1
3
8

0
.1
3
0

0
.1
1
1

0
.1
1
5

0
.1
0
9

0
.1
2
4

(
0
.0
0
6
)

0
.1
1
6

(
0
.0
0
4
)

0.
10
4

(
0
.0
)

N
N
5
D
a
i
l
y

0
.2
9
2

0
.1
6
9

0
.1
6
2

0
.1
8
8

0
.1
6
4

0
.1
4
8

(
0
.0
0
2
)

0
.1
4
5

(
0
.0
0
1
)

0.
14
0

(
0
.0
)

N
N
5
W
e
e
k
l
y

0
.1
4
2

0
.0
9
0

0
.0
8
8

0
.0
9
0

0
.0
8
9

0
.0
8
4

(
0
.0
0
7
)

0
.0
8
5

(
0
.0
0
1
)

0.
07
8

(
0
.0
)

P
e
d
e
s
t
r
i
a
n
C
o
u
n
t
s

0
.6
7
5

d
.n
.f
.

0
.7
6
4

d
.n
.f
.

d
.n
.f
.

0.
23
0

(
0
.0
0
6
)

0
.2
6
1

(
0
.0
0
8
)

0
.2
3
8

(
0
.0
1
3
)

T
o
u
r
i
s
m

M
o
n
t
h
l
y

0
.0
8
8

0
.0
9
5

0
.1
0
1

0
.0
9
1

0
.0
8
5

0
.0
8
6

(
0
.0
0
5
)

0
.1
0
3

(
0
.0
1
)

0.
08
3

(
0
.0
)

T
o
u
r
i
s
m

Q
u
a
r
t
e
r
l
y

0
.0
9
9

0
.0
9
8

0
.0
7
0

0.
06
1

0
.0
7
0

0
.0
6
8

(
0
.0
0
2
)

0
.0
8
3

(
0
.0
0
5
)

0
.0
7
2

(
0
.0
)

T
o
u
r
i
s
m

Y
e
a
r
l
y

0
.1
7
0

0
.1
5
6

0
.1
5
7

0
.1
7
6

0
.1
5
5

0
.1
4
1

(
0
.0
1
6
)

0.
10
2

(
0
.0
0
6
)

0
.1
5
2

(
0
.0
)

V
e
h
i
c
l
e
T
r
i
p
s

0
.1
1
2

0
.1
0
0

0
.1
1
5

0
.1
2
0

0
.1
0
3

0
.0
9
0

(
0
.0
0
2
)

0
.0
9
9

(
0
.0
0
5
)

0
.0
8
7

(
0
.0
)

W
e
b
T
r
a
ffi
c
W
e
e
k
l
y

0
.9
3
6

0
.4
7
5

8
·1
0
1
3

0
.5
0
3

0
.4
7
4

N
/
A

0.
22
3

(
0
.0
1
1
)

0
.2
2
5

(
0
.0
)

20

T
a
b
l
e
1
1
:
A
v
e
r
a
g
e
r
u
n
t
i
m
e
o
f
e
a
c
h
m
e
t
h
o
d
(
i
n
m
i
n
u
t
e
s
)
.

D
a
t
a
s
e
t

S
e
a
s
o
n
a
l
N
a
i
v
e

A
u
t
o
A
R
I
M
A

A
u
t
o
E
T
S

A
u
t
o
T
h
e
t
a

S
t
a
t
E
n
s
e
m
b
l
e

D
e
e
p
A
R

T
F
T

A
u
t
o
P
y
T
o
r
c
h

A
u
t
o
G
l
u
o
n

C
a
r
P
a
r
t
s

0
.1

2
.4

0
.6

0
.7

3
.3

6
.9

9
.2

2
4
0
.3

1
7
.4

C
I
F
2
0
1
6

0
.1

0
.4

0
.5

0
.6

1
.3

4
.1

6
.2

2
4
0
.2

1
6
.7

C
O
V
I
D

0
.1

1
.4

0
.5

0
.7

2
.3

7
.9

8
.8

2
4
0
.4

2
9
.3

E
l
e
c
t
r
i
c
i
t
y
H
o
u
r
l
y

0
.2

>
3
6
0

2
1
.6

>
3
6
0

>
3
6
0

1
0
.4

1
9
.5

2
4
0
.4

6
1
.2

E
l
e
c
t
r
i
c
i
t
y
W
e
e
k
l
y

0
.2

0
.3

0
.4

0
.5

1
.0

3
.1

6
.6

2
4
0
.2

1
4
.9

F
R
E
D
-
M
D

0
.1

2
.4

0
.7

0
.6

3
.4

6
.8

5
.5

2
4
0
.2

1
6
.8

H
o
s
p
i
t
a
l

0
.1

0
.9

0
.7

0
.7

2
.1

4
.6

7
.6

2
4
0
.2

1
7
.4

K
D
D
C
u
p
2
0
1
8

0
.1

>
3
6
0

1
6
.3

2
2
.8

>
3
6
0

1
2
.4

1
1
.9

2
4
0
.3

5
6
.0

M
1
M
o
n
t
h
l
y

0
.1

1
.5

0
.8

0
.7

2
.7

5
.5

6
.2

2
4
0
.2

2
1
.6

M
1
Q
u
a
r
t
e
r
l
y

0
.1

0
.3

0
.5

0
.7

1
.3

5
.9

5
.4

2
4
0
.2

1
5
.6

M
1
Y
e
a
r
l
y

0
.1

0
.3

0
.4

0
.4

0
.9

4
.2

5
.2

2
4
0
.2

1
2
.9

M
3
M
o
n
t
h
l
y

0
.1

4
.0

1
.0

0
.8

5
.8

5
.1

5
.9

2
4
0
.3

2
4
.2

M
3
O
t
h
e
r

0
.1

0
.3

0
.4

0
.4

0
.9

5
.0

6
.0

2
4
0
.2

1
3
.6

M
3
Q
u
a
r
t
e
r
l
y

0
.1

0
.5

0
.6

0
.7

1
.6

4
.6

6
.0

2
4
0
.3

1
5
.7

M
3
Y
e
a
r
l
y

0
.1

0
.4

0
.5

0
.4

1
.0

5
.9

5
.4

2
4
0
.2

1
2
.7

M
4
D
a
i
l
y

0
.2

2
8
.5

3
3
.0

2
5
.3

8
2
.3

6
.8

8
.4

2
4
0
.3

6
8
.7

M
4
H
o
u
r
l
y

0
.1

8
4
.9

1
.8

0
.8

8
9
.5

9
.2

1
0
.9

2
4
0
.2

5
1
.2

M
4
M
o
n
t
h
l
y

0
.3

2
9
6
.0

3
7
.6

7
.7

3
4
0
.3

4
.9

7
.9

2
4
2
.0

1
1
2
.1

M
4
Q
u
a
r
t
e
r
l
y

0
.2

1
5
.7

6
.2

1
.6

2
3
.2

4
.7

7
.6

2
4
0
.9

6
2
.3

M
4
W
e
e
k
l
y

0
.1

0
.6

0
.5

1
.3

2
.2

5
.6

7
.8

2
4
0
.3

2
0
.8

M
4
Y
e
a
r
l
y

0
.2

4
.3

0
.8

0
.7

5
.6

4
.2

6
.1

2
4
0
.8

3
5
.6

N
N
5
D
a
i
l
y

0
.1

2
.5

0
.5

0
.6

3
.3

7
.3

1
0
.9

2
4
0
.3

3
7
.4

N
N
5
W
e
e
k
l
y

0
.1

0
.3

0
.4

0
.4

1
.0

3
.6

6
.4

2
4
0
.2

1
3
.7

P
e
d
e
s
t
r
i
a
n
C
o
u
n
t
s

0
.1

>
3
6
0

4
.9

>
3
6
0

>
3
6
0

1
3
.5

1
6
.7

2
4
0
.7

5
6
.4

T
o
u
r
i
s
m

M
o
n
t
h
l
y

0
.1

1
0
.2

0
.8

0
.7

1
3
.1

4
.4

7
.6

2
4
0
.2

2
6
.0

T
o
u
r
i
s
m

Q
u
a
r
t
e
r
l
y

0
.1

0
.9

0
.6

0
.7

1
.8

3
.6

6
.3

2
4
0
.2

1
4
.6

T
o
u
r
i
s
m

Y
e
a
r
l
y

0
.1

0
.3

0
.4

0
.4

1
.0

3
.5

5
.8

2
4
0
.3

1
2
.4

V
e
h
i
c
l
e
T
r
i
p
s

0
.1

1
.1

0
.6

0
.7

2
.2

5
.1

7
.3

2
4
0
.2

1
6
.0

W
e
b
T
r
a
ffi
c
W
e
e
k
l
y

0
.2

4
2
.3

3
.7

6
.2

5
2
.8

N
/
A

8
.3

2
6
0
.5

1
0
6
.0

21

	Introduction
	Probabilistic Time Series Forecasting
	AutoGluon–TimeSeries
	Design Considerations
	Forecasting Models

	Related work
	Experiments
	Setup
	Forecasting Accuracy
	Runtime Comparison
	Ablations

	Future Work
	Conclusions
	Broader Impact Statement
	Submission Checklist
	Supplementary Materials
	Evaluation Metrics
	Reproducibility
	Model Configuration

