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ABSTRACT

Negative sampling is highly effective in handling missing annotations for named
entity recognition (NER). One of our contributions is an analysis on how it makes
sense through introducing two insightful concepts: missampling and uncertainty.
Empirical studies show low missampling rate and high uncertainty are both essential
for achieving promising performances with negative sampling. Based on the
sparsity of named entities, we also theoretically derive a lower bound for the
probability of zero missampling rate, which is only relevant to sentence length. The
other contribution is an adaptive and weighted sampling distribution that further
improves negative sampling via our former analysis. Experiments on synthetic
datasets and well-annotated datasets (e.g., CoNLL-2003) show that our proposed
approach benefits negative sampling in terms of F1 score and loss convergence.
Besides, models with improved negative sampling have achieved new state-of-the-
art results on real-world datasets (e.g., EC).

1 INTRODUCTION

With powerful neural networks and abundant well-labeled corpora, named entity recognition (NER)
models have achieved promising performances (Huang et al., 2015; Ma & Hovy, 2016; Akbik
et al., 2018; Li et al., 2020a). However, in many scenarios such as distantly supervised NER (Ren
et al., 2015; Fries et al., 2017; Ling & Weld, 2012), available training data is mostly obtained by
applying distant supervision (Mintz et al., 2009). As a result, a portion of named entities are absent in
annotations. Previous works (Shang et al., 2018b; Li et al., 2021) find missing annotations severely
affect NER models and refer this to unlabeled entity problem.

Recently, Li et al. (2021) find it’s the misguidance of unlabeled entities to NER models in training
that causes their poor performances. To eliminate this adverse impact, they propose a simple yet
effective approach based on negative sampling. Compared with its counterparts (Li & Liu, 2005;
Tsuboi et al., 2008; Shang et al., 2018b; Peng et al., 2019), this method is of high flexibility, without
relying on external resources, heuristics, etc.

While negative sampling has handled missing annotations well, there is no systematic study on how
it works, especially what potential factors are involved. From a number of experiments, we find
missampling and uncertainty both worth receiving attention. Missampling means that some unlabeled
entities are mistakenly drawn into the set of training negatives by negative sampling. To quantitively
describe this, we define missampling rate, the proportion of unlabeled entities in sampled negatives,
for a sentence. Uncertainty indicates how hard a sampled negative is for NER models to recognize,
and we use entropy to estimate it. Empirical studies show low missampling rate and high uncertainty
are both indispensable for effectively applying negative sampling. Besides, based on the observation
that entities are commonly sparse, we provide a lower bound for the probability of zero missampling
rate with theoretical proof, which is only related to sentence length.

Inspired by former findings, we propose a weighted sampling distribution, which takes missampling
and uncertainty into account, to displace the uniform sampling distribution originally used in Li
et al. (2021) for further improving negative sampling. Our distribution is purely computed from the
predictions of an NER model which is updated throughout the training process. Such an adaptive
property of our method is appealing since it doesn’t rely on handcraft annotations or additional
models to indicate valuable negatives.
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Figure 1: An example to depict how negative sampling collects training negatives given an annotated
sentence. The phrase marked by a red circle is an unlabeled entity.

We conduct extensive experiments to verify the effectiveness of our weighed sampling distribution.
Results on synthetic datasets and well-annotated datasets (e.g., OntoNotes 5.0) show that weighted
sampling distribution improves negative sampling in performances and loss convergence. Notably,
with improved negative sampling, our NER models have established new state-of-the-art performances
on real-world datasets, like EC dataset (Yang et al., 2018).

2 PRELIMINARIES

2.1 UNLABELED ENTITY PROBLEM

Given an n-length sentence, x = [x1, x2, · · · , xn], an annotator (e.g., human) will mark a set of
named entities from it as y = {y1, y2, · · · , ym}. n is sequence length and m is set size. Every entity,
yk, of the set, y, is denoted as a tuple, (ik, jk, lk). (ik, jk) is the span of the entity that corresponds to
the phrase, xik,jk = [xik , xik+1, · · · , xjk ], and lk is its label. Unlabeled entity problem occurs when
some ground truth named entities, ŷ, are missed by annotators, which means they are not contained
in the labeled entity collection, y. In distantly supervised NER (Mintz et al., 2009; Ren et al., 2015;
Fries et al., 2017), this is resulted from the limited coverage of external resources, such as predefined
ontology. In other situations (e.g., fine-grained NER where manual annotation is extremely hard), the
cause may be the negligence of human annotators.

Take Fig. 1 as an example. The set of labeled entities is y = [(1, 2,PER)], that of unlabeled entities
is ŷ = {(6, 7,LOC)}, and that of ground-truth entities is y ∪ ŷ.

Let S denote the set that includes all spans of a sentence, x, except the ones of annotated named
entities, y. Every span in this set is labeled with “O”, indicating that it’s a possible negative. A
standard training strategy for NER models is to minimize the loss on annotated positives, y, and all
negative candidates, S. Unfortunately, since S might contain unlabeled entities in ŷ, NER models
are seriously misguided in training. To address this problem, Li et al. (2021) propose to circumvent
unlabeled entities with negative sampling.

2.2 TRAINING WITH NEGATIVE SAMPLING

The core idea is to uniformly sample a few negative candidates, ỹ, from S for reliably training NER
models. Under this scheme, the training instances contain sampled negatives, ỹ, and positives from
annotated entities, y. With them, y ∪ ỹ, a cross-entropy loss is incurred as

J =
∑

(i,j,l)∈y∪ỹ

− logP (l | xi,j ; θ). (1)

P (l | xi,j ; θ) is the probability that the ground truth label of the span, (i, j), is l and θ represents the
parameters of a model. Following Li et al. (2021), our NER models are all span-based, which treat a
span, instead of a single token, as the basic unit for labeling.
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Figure 2: The comparisons between changes of entity number and square root curve.

Negative sampling is probable to avoid models being exposed to unlabeled entities. As Fig. 1 shows,
the false negative, (6, 7,O), is not involved in training. Li et al. (2021) have empirically confirmed
the effectiveness of negative sampling in handling unlabeled entities. However, there is no systematic
study to explain how it works, and what factors are relevant.

3 ANALYZING NEGATIVE SAMPLING

We analyze how negative sampling leads NER models that suffer from missing annotations to
promising results from two angles: missampling and uncertainty.

3.1 MISSAMPLING RATE

3.1.1 DEFINITION

Missampling rate, γ, is defined as, for a sentence, the proportion of unlabeled entities contained in
sampled negatives, ỹ. Formally, it’s computed as

γ = 1− #{(i, j, l) | (i, j, l) ∈ ŷ; (i, j,O) /∈ ỹ}
#ỹ

, (2)

where # is an operation that measures the size of a set.

Missampling rates reflect the quality of training instances, y ∪ ỹ. A lower averaged rate over the
whole dataset means that the NER model meets fewer unlabeled entities in training. Intuitively, this
leads to higher F1 scores since there is less misguidance from missing annotations to the model.
Hence, missampling is an essential factor for analysis.

3.1.2 MISSAMPLING AFFECTS PERFORMANCE

Table 1: The effects of γ on F1.

Avg γ 0.76% 1.52% 4.11%

F1 Score 89.86 87.35 83.11

We design a simulation experiment to empirically verify
the above intuition. Like Li et al. (2021), we build syn-
thetic datasets as follows. We start from a well-labeled
dataset, i.e., CoNLL-2003 (Sang & De Meulder, 2003),
and then mimic unlabeled entity problem by randomly
masking manually annotated entities with a fixed probability p (e.g., 0.7). In this way, we can obtain
unlabeled entities, ŷ, and annotated entities, y, for every sentence, x.

We can obtain different pairs of a missampling rate and an F1 score through running a negative
sampling based model on different synthetic datasets. Table 1 shows several cases, and we can see
the trend that lower missamping rates lead to better performances. Therefore, we conclude that
missampling affects the effectiveness of negative sampling.

3.1.3 THEORETICAL GUARANTEE

Based on the definition of γ, we also theoretically prove that negative sampling is very robust to
unlabeled entities based on a property of named entities.
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Entity Sparsity. Unlike other sequence labeling tasks, such as syntactic chunking (Sang & Buch-
holz, 2000), non-“O” spans are commonly very sparse in NER datasets.

Fig. 2 depicts some statistics of two common NER datasets, CoNLL-2003 and OntoNotes 5.0. The
blue points are the averaged number of entities for sentences of fixed lengths. Every point stands on
the center of a dashed line, whose length is the 1.6 variance of the entity numbers. The red curves are
the square roots of sentence lengths. To avoid being influenced by “rare events” we erase the points
supported by too few cases (i.e., 20).

From the above figure, we can see that the number of ground truth named entities (i.e., unlabeled
entities, ŷ, and annotated ones, y) in a sentence is generally smaller than the square root of sentence
length,

√
n. Empirically, we have #y +#ŷ ≤

√
n.

Theorem 1. For a n-length sentence x , assume ỹ is the set of sampled negatives with size dλne(0 <
λ < 1) via negative sampling. If the premise of entity sparsity holds, then the probability of zero
missampling rate, i.e., γ = 0, is bounded.

Proof. Since ỹ is uniformly sampled from S without replacement, the probability q that γ = 0 for a
single sentence x can be formulated as

q =
∏

0≤i<dλne

(
1− #ŷ

n(n+1)
2 −m− i

)
,

where m = #y. The i-th product term is the probability that, at the i-th sampling turn, the i-th
sampled candidate doesn’t belong to unlabeled entity set, ŷ.

Then we can derive the following inequalities:

q ≥
∏

0≤i<dλne

(
1−

√
n−m

n(n+1)
2 −m− i

)
≥

∏
0≤i<dλne

(
1−

√
n

n(n+1)
2 − i

)
>
(
1− 2

√
n

n(n− 1) + 2

)dλne
.

The first inequality holds because of the assumption; the second one holds because
√
n−m

n(n+1)
2 −m−i

is monotonically decreases with rising m, and m ≥ 0; the last inequality holds because
√
n

n(n+1)
2 −i

increases with decreasing i, i < dλne, and dλne ≤ n.

Because (1 + a)b ≥ 1 + ba for a ≥ −1 ∩ b ≥ 1 and dλne < λn+ 1, we have

q >
(
1− 2

√
n

n(n− 1) + 2

)dλne
≥ 1− 2(λn+ 1)

√
n

n(n− 1) + 2
> 1− 4λ

√
n

n− 1
.

The right-most term monotonically increases with the sentence length n, and thus the probability of
zero missampling rate for every sentence has a lower bound.

This theorem shows that missampling rates for standard negative sampling are controllable, and
implies why negative sampling succeeds in handling missing annotations.

3.2 UNCERTAINTY

3.2.1 DEFINITION

Assume Po(l | xi,j) is an oracle model that accurately estimates a label distribution over every span
(i, j). The uncertainty is defined as the entropy of this distribution:

H(L | X = xi,j) =
∑
l∈L

−Po(l | xi,j) logPo(l | xi,j),

where L and X represent the label space and a span, xi,j , respectively.

Since the oracle model Po(l | xi,j) is unreachable in practice, the common practice is to additionally
train a model P (l | xi,j ; θ) (see Sec. 2.2) to approximate it. Besides, the approximate model is
learned on held-out training data to avoid overfitting.
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Uncertainties essentially measure how difficult a case is for models to make a decision (Jurado
et al., 2015). In active learning, uncertainty is used to mine hard unlabeled instances for human
annotator (Settles, 2009). In our scenario, we suspect that the uncertainty of sampled negatives plays
an important role in our training with negative sampling.

3.2.2 UNCERTAINTY AFFECTS PERFORMANCES

Table 2: The effects of H on F1.

H Top-k Middle-k Bottom-k

F1 Score 88.82 87.72 85.56

We design an empirical experiment to verify our hy-
pothesis. Specifically, we first randomly and equally
split the entire training data with masked entities
into two parts, and the first part is used to train an
oracle model Po. For every sentence x in the sec-
ond part, we then sample three subsets from S as training negatives: the first subset denoted by ỹt

corresponding to the top-k uncertainties, and the second denoted by ỹm corresponding to middle-k
uncertainties, and the third denoted by ỹb corresponding to the bottom-k uncertainties, with k = dλne.
Since missampling affects F1 scores as aforementioned, we eliminate the effect on missampling rate
by setting γ = 0 when constructing both subsets, i.e., neither subset contains any spans included in ŷ.
Finally, we respectively train three models on top of three negative subsets according to Eq. 1, and
report their performances on test data in Table 2. We can see that the model trained on ỹt achieves
the best performance, which validates our hypothesis.

4 IMPROVING NEGATIVE SAMPLING

The previous section shows that the effectiveness of negative sampling is dependent on two factors:
missampling and uncertainty. As a result, if we had considered both quantities when sampling
negatives, we should see larger improvements from final models. In this section, we propose an
adaptive and weighted sampling distribution based on these two factors.

Unfortunately, since missampling rate is defined on top of the unlabeled entities ŷ which is unknown
in practice, it is not straightforward to apply missampling for improving negative sampling. Therefore,
we assume that there exists an oracle model, zi,j,l = Po(l | xi,j), which is likely to predict the
ground-truth label for every span xi,j . Then we define a score vi,j as the difference between the score
zi,j,O and the maximum label score on the span (i, j):

vi,j = zi,j,O −max
l∈L

zi,j,l. (3)

Intuitively, if vi,j is high, then zi,j,O is high and maxl∈L zi,j,l is low. In other words, xi,j is likely to
be with “O” label and thus the missampling rate should be small. Hence sampling such a span as
a negative won’t hurt NER models. Note that maxl∈L zi,j,l in the right hand acts as normalization,
making vi,j comparable among different spans (i, j).

We also define an uncertainty score, ui,j , as the entropy of the label distribution for a span:

ui,j = H(L | X = xi,j) = −
∑
l∈L

zi,j,l log zi,j,l. (4)

As discussed in Sec. 3.2.2, training a NER model with the negatives of higher uncertainty scores,
ui,j , brings better performances.

Based on vi,j and ui,j , we design the following weighted sampling distribution to displace the
uniform one when sampling k negatives from S without replacement:

ri,j = ui,j ∗ (1 + vi,j)
µ

ei,j =
exp(ri,j/T )∑

(i′,j′,O)∈S exp(ri′,j′/T )

, (5)

where T ≥ 1 is a temperature to control the smoothness of sampling distribution. µ ≥ 1 is to make
a trade-off between vi,j and ui,j : a high µ will ensure a low missampling rate while a low µ will
ensure a high uncertainty score.

To make our approach practical for use, we should specify how to approximate the oracle model,
Po(l | xi,j). In the simulation experiment in Sec. 3.2.1, the oracle model is a fixed model via standard
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Figure 3: The changes of F1 scores with training epochs on some synthetic datasets.

negative sampling which is learned on held-out training data. It’s natural to use such a fixed model to
approximate the oracle model here. However, this will cause a side-effect that our approach is not
self-contained due to its dependence on an external model.

Consequently, we consider an adaptive style: directly using the NER model, P (l | xi,j ; θ), itself as
the oracle model whose parameter θ is learned during the training process. Under this scheme, T
is scheduled as

√
C − c, where C is the number of training epochs and 0 ≤ c < C is the current

epoch number. Since the NER model P (l | xi,j ; θ) is not accurate in early epochs of training, a more
uniform sampling distribution (i.e., higher T ) is safer for sampling negatives.

Finally, we get a weighted sampling distribution with the NER model, P (l | xi,j ; θ), adaptively
approximating the oracle model. Our training procedure is the same as that of vanilla negative
sampling (see Fig. 1), except for sampling distribution.

5 EXPERIMENTS

To evaluate our proposed variant (i.e., negative sampling w/ weighted sampling distribution) , we
have conducted extensive experiments on under-annotated cases: synthetic datasets and real-world
datasets. We also validate its superiority in well-annotated scenarios.

5.1 SETTINGS

Well-annotated datasets are CoNLL-2003 and OntoNotes 5.0 (Weischedel et al., 2011). CoNLL-2003
contains 22137 sentences and is split into 14987, 3466, and 3684 sentences for training, validation,
and testing, respectively. OntoNotes 5.0 contains 76714 sentences from a wide variety of sources.
We follow the same format and partition as Luo et al. (2020). The construction of synthetic datasets
is also based on them and has been already described in Sec. 3.

Following prior works (Nooralahzadeh et al., 2019; Li et al., 2021), we adopt EC and NEWS as
real-world datasets. Both of them are collected by Yang et al. (2018). EC contains 2400 sentences
annotated by human annotators and is divided into three portions: 1200 for training set, 400 for
development set, and 800 for test set. Yang et al. (2018) build an entity dictionary of size 927 and
apply distant supervision on a raw corpus to get additional 2500 training cases. NEWS is constructed
from MSRA (Levow, 2006). A training set of size 3000, a validation set of size 3328, and a test set of
size 3186 are all sampled from MSRA. Yang et al. (2018) collect an entity dictionary of size 71664
and perform distant supervision on the remaining data to obtain extra 3722 cases for training. Both
EC and NEWS contain massive missing entity annotations. NER models trained on them severely
suffer from unlabeled entity problem.

We adopt the same configurations for all experiments. The dimensions of scoring layers are 256.
L2 regularization and dropout ratio are 10−5 and 0.4, respectively. We set µ = 8. This setting is
obtained via grid search. We use Adam (Kingma & Ba, 2014) to optimize models. At test time, we
convert the predictions from our models into IOB format and use conlleval1 script to compute the
F1 score. In all the experiments, the improvements of our models over the baselines are statistically
significant with a rejection probability lower than 0.01.

1https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt.
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Masking Prob. CoNLL-2003 OntoNotes 5.0
Vanilla Neg. Sampling Our Variant Vanilla Neg. Sampling Our Variant

0.5 89.22 89.51 88.17 88.31
0.6 87.65 88.03 87.53 88.02
0.7 86.24 86.97 86.42 86.85
0.8 78.84 82.05 85.02 86.12
0.9 51.47 60.57 74.26 80.55

Table 3: The comparisons of F1 scores on synthetic datasets.

Method EC NEWS
Partial CRF (Yang et al., 2018) 60.08 78.38

Positive-unlabeled (PU) Learning (Peng et al., 2019) 61.22 77.98
Weighted Partial CRF (Jie et al., 2019) 61.75 78.64

BERT-MRC (Li et al., 2020a) 55.72 74.55
BERT-Biaffine Model (Yu et al., 2020) 55.99 74.57

Li et al. (2021) Vanilla Negative Sampling 66.17 85.39
w/o BERT, w/ BiLSTM 64.68 82.11

This Work Our Proposed Variant 67.03 86.15
w/o BERT, w/ BiLSTM 65.81 83.79

Table 4: The experiment results on two real-world datasets.

5.2 RESULTS ON UNDER-ANNOTATED SCENARIOS

5.2.1 RESULTS ON SYNTHETIC DATASETS

Fig. 3 shows the changes of F1 scores from vanilla negative sampling and our proposed variant
with training epochs. The synthetic datasets are constructed from OntoNotes 5.0. We can see that,
compared with vanilla negative sampling, our proposed variant obtains far better performances on
the first few epochs and converges much faster. These results clearly verify the superiority of our
weighted sampling distribution.

Table 3 compares vanilla negative sampling with our proposed variant in terms of F1 score. We can
draw two conclusions. Firstly, our approach greatly improves the effectiveness of negative sampling.
For example, when masking probability p is 0.8, we increase the F1 scores by 4.07% on CoNLL-2003
and 1.29% on OntoNotes 5.0. Secondly, our variant is still robust when unlabeled entity problem is
very serious. Setting masking probability p from 0.5 to 0.9, our performance on OntoNotes 5.0 only
drops by 8.79%. By contrast, it’s 32.33% for vanilla negative sampling.

5.2.2 RESULTS ON REAL-WORLD DATASETS

Real-world datasets contain a high percentage of partial annotations caused by distant supervision.
Hence, the models trained on them are faced with serious unlabeled entity problem.

Table 4 diagrams the results. The F1 scores of negative sampling and Partial CRF are from their
papers. We have additionally reported the results of PU Learning2, Weighted Partial CRF3, BERT-
MRC4, and BERT-Biaffine Model5, using their codes. We can draw three conclusions from the table.
Firstly, we can see that BERT-MRC and BERT-Biaffine Model both perform poorly on real-world
datasets. This manifests the huge adverse impacts of unlabeled entities on models. Secondly, our
variant has achieved new state-of-the-art results on the two datasets. Our scores outnumber those of
vanilla negative sampling by 1.30% and 0.89% on them. Thirdly, to make fair comparisons, we also
report the results of using Bi-LSTM, instead of BERT, as the sentence encoder. This version still
notably surpasses prior methods on the two datasets. For example, compared with Weighted Partial
CRF, our improvements are 6.57% on EC and 6.55% on NEWS.

2https://github.com/v-mipeng/LexiconNER.
3https://github.com/allanj/ner incomplete annotation.
4https://github.com/ShannonAI/mrc-for-flat-nested-ner.
5https://github.com/juntaoy/biaffine-ner.
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Method CoNLL-2003 OntoNotes 5.0
Flair Embedding (Akbik et al., 2018) 93.09 89.3

HCR w/ BERT (Luo et al., 2020) 93.37 90.30
BERT-MRC (Li et al., 2020a) 93.04 91.11

BERT-Biaffine Model (Yu et al., 2020) 93.5 91.3
Vanilla Negative Sampling (Li et al., 2021) 93.42 90.59

Our Proposed Variant 93.68 91.17

Table 5: The experiment results on well-annotated datasets.

5.3 RESULTS ON WELL-ANNOTATED SCENARIOS

As a by-product, we also evaluate the effectiveness of the proposed method on the well-annotated
datasets CoNLL-2003 and OntoNotes 5.0. As shown in Table 5, we have achieved excellent per-
formances on well-annotated datasets. The F1 scores of baselines are copied from Li et al. (2021).
With our weighted sampling distribution, the results of negative sampling are improved by 0.28% on
CoNLL-2003 and 0.64% on OntoNotes 5.0. Our model even outperforms BERT-Biaffine Model by
0.19% on CoNLL-2003. Compared with a strong baseline, Flair Embedding, our improvements of
F1 scores are 0.63% and 2.09% on the two datasets. These results further verify the effectiveness of
the proposed sampling distribution.

6 RELATED WORK

A number of NER models (Lample et al., 2016; Akbik et al., 2018; Clark et al., 2018; Li et al.,
2020b; Yu et al., 2020) based on end-to-end neural networks and well-labeled data have achieved
promising performances. However, in many cases (e.g., distantly supervised NER), they severely
suffer from unlabeled entity problem, where massive named entities are not annotated in training
data. There are some techniques developed by earlier works to mitigate this issue. Fuzzy CRF and
AutoNER (Shang et al., 2018b) allow NER models to learn from high-quality phrases that might be
potential named entities. Mining these phrases demands external resources (Shang et al., 2018a),
which is not flexible for practical usage. Moreover, there is no guarantee that unlabeled entities
are fully covered by these phrases. PU Learning (Peng et al., 2019; Mayhew et al., 2019) adopts a
weighted training loss and assigns low weights to false negative instances. This approach is limited
by requiring prior information or heuristics. Partial CRF (Yang et al., 2018; Jie et al., 2019) is an
extension of CRF, which marginalizes the loss over all the candidates that are compatible with the
incomplete annotation. Its defect is that it still needs a portion of well-annotated data to obtain true
negatives, which limits the use of this model in real applications.

Recently, Li et al. (2021) find that unlabeled entities severely misguide the NER models during
training. Based on this observation, they introduce a simple yet effective approach using negative
sampling. It’s much more flexible than other methods, without resorting to external resources,
heuristics, etc. However, Li et al. (2021) haven’t well explained why negative sampling works and
there are weaknesses in their principle analysis.

7 CONCLUSION

In this work, we have made two contributions. On the one hand, we analyze why negative sampling
succeeds in handling unlabeled entity problem from two perspectives: missampling and uncertainty.
Empirical studies show both low missampling rates and high uncertainties are essential for applying
negative sampling. Based on entity sparsity, we also provide a theoretical lower bound for the proba-
bility of zero missampling rate. On the other hand, we propose an adaptive and weighted sampling
distribution that takes missampling and uncertainty into account. We have conducted extensive
experiments to verify whether this further improves the effectiveness of negative sampling. Results
on synthetic datasets and well-annotated datasets show that our approach benefits in performances
and loss convergence. Notably, with improved negative sampling, our NER models have established
new state-of-the-art results on real-world datasets.
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