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Abstract

This paper focuses on forecasting hierarchical time-series data, where each higher-level ob-
servation equals the sum of its corresponding lower-level time series. In such contexts, the
forecast values should be coherent, meaning that the forecast value of each parent series
exactly matches the sum of the forecast values of its child series. Existing hierarchical fore-
casting methods typically generate base forecasts independently for each series and then
apply a reconciliation procedure to adjust them so that the resulting forecast values are co-
herent across the hierarchy. These methods generally yield an optimal reconciliation, using
a covariance matrix of the forecast errors. In practice, however, the true covariance matrix is
unknown and has to be estimated from finite samples in advance. This gap between the true
and estimated covariance matrix may degrade forecast performance. To address this issue,
we propose a robust optimization framework for hierarchical reconciliation that accounts for
uncertainty in the estimated covariance matrix. We first introduce an uncertainty set for
the estimated covariance matrix and formulate a reconciliation problem that minimizes the
worst-case average of weighted squared residuals over this uncertainty set. We show that
our problem can be cast as a semidefinite optimization problem. Numerical experiments
demonstrate that the proposed robust reconciliation method achieved better forecast per-
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formance than existing hierarchical forecasting methods, which indicates the effectiveness
of integrating uncertainty into the reconciliation process.

1 Introduction

Time-series forecasting is indispensable across diverse fields, including sales planning and inventory manage-
ment (Aviv, |2003} [Ramos et al., 2015)), energy supply planning (Suganthi & Samuell [2012; [Hernandez et al.l
2014), and economic analysis and stock investment decision-making (Krollner et al., [2010). For instance,
in the retail sector, accurate sales predictions based on historical data are crucial for optimizing inventory
levels and preventing both overstocking and shortages. Similarly, for electric power companies, forecasting
electricity consumption enables efficient facility operations and effective supply-demand balance manage-
ment. Moreover, at both the individual and national levels, leveraging forecasts of economic indicators and
stock prices can significantly contribute to wealth creation. Conversely, low forecast accuracy can lead to
substantial losses and missed opportunities for individuals, businesses, and society as a whole. Consequently,
extensive research has focused on developing various time-series forecasting methods, and there remains a
strong demand for more precise techniques (Mahalakshmi et al.,|2016; Liu et al., 2021; Wen et al., 2022).

Many real-world datasets inherently possess hierarchical structures. Examples include sales data organized
by region or demographic statistics categorized by gender or age group, which are commonly recorded across
multiple levels of aggregation. In practice, the appropriate hierarchical level for forecasting depends on
the specific application, and this choice can significantly influence prediction outcomes. Generally, as one
descends to lower hierarchical levels, the data becomes more granular but also more susceptible to individual
variations and noise, leading to increased uncertainty. This often means that aggregated data at higher levels
tends to be more stable and achieve greater forecast accuracy (Grunfeld & Griliches, [1960). However, higher-
level aggregated data can obscure fine-grained patterns and individual variation factors. Therefore, it has
also been suggested that utilizing detailed data from lower levels, if appropriately modeled, can potentially
yield superior forecast accuracy (Orcutt et al., [1968; [Edwards & Orcutt, [1969).

Given this context, time-series forecasting methods that explicitly account for hierarchical structures have
garnered increasing attention (Athanasopoulos et all 2009; Hyndman et al., |2011; Wickramasuriya et al.
[2019} |Shiratori et al., [2020} Panagiotelis et al.l 2021; Hyndman & Athanasopoulos| 2021). These approaches
aim to adjust forecasts across both lower and higher levels to ensure coherence when aggregating forecast val-
ues within the hierarchy. Such methods are expected to enhance forecast accuracy compared to conventional
time-series forecasting based on a single level.

Despite these advancements, existing hierarchical time-series forecasting methods face certain challenges.
Traditional approaches typically aim to minimize the expected forecast error at a given target time point,
which necessitates a covariance matrix of the forecast errors. This matrix is commonly estimated from the
residuals between observed and forecast values. However, if underlying data trends shift or the forecasting
model is inaccurate, discrepancies can arise between the estimated and true covariance matrices. Thus,
the estimated covariance matrix itself carries inherent uncertainty, which must be addressed. Prior work
by Mpgller et al.| (2024]) focused on this issue, decomposing covariance matrix estimation into parameter
estimation errors and stochastic irreducible errors to quantify uncertainty and improve forecast accuracy.
Nevertheless, even with their method, the true covariance matrix cannot be perfectly determined, leaving
room for further improvements in forecast accuracy.

To address the uncertainty inherent in estimators, robust optimization has emerged as a powerful technique.
This methodology is designed to yield solutions that remain effective even when the underlying data fluctuates
within a defined uncertain range. Specifically, it involves establishing a range for uncertain parameters or
data and then seeking an optimal solution that performs best under the worst-case scenario within that range.
Since its inception by [Ben-Tal & Nemirovski (1998)), robust optimization has been extensively researched in
both theoretical and applied domains (Bertsimas et al. [2011)). Notably, models that incorporate covariance
matrix uncertainty have been developed and applied to various problems, such as portfolio optimization
(Lobo & Boyd, 2000} [Halldérsson & Tiittinctl [2003} [Tutiincii & Koenig), [2004).
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In this paper, we propose a novel method that frames hierarchical time-series forecasting as a robust op-
timization problem. Our approach aims to minimize the average of forecast residuals over an observation
period under the worst-case scenario within an uncertainty set for the covariance matrix of forecast errors.
We demonstrate through duality that this robust optimization problem can be formulated as a semidefinite
optimization problem, which is theoretically solvable efficiently. Furthermore, we present numerical experi-
ments on five real-world datasets, showing that our proposed method achieves more accurate forecasts than
existing hierarchical time-series forecasting techniques.

2 Hierarchical time-series forecasting

2.1 Notation

This section defines the notation used throughout the paper, which is consistent with prior studies on
hierarchical time-series forecasting (Athanasopoulos et all 2009; [Hyndman et al., 2011} Wickramasuriya,
et al.l |2019; [Panagiotelis et al., [2021; [Hyndman & Athanasopoulos] 2021)).

A hierarchical structure is defined by a series of nested levels. Level 0 is the fully aggregated series. Level
1 consists of the series obtained by disaggregating the Level 0 series, and Level 2 contains the series that
further disaggregate each Level 1 series. This process continues until the bottom level, denoted as Level K,
where its series can no longer be disaggregated.

Let yg? € R denote the observation of a series X at time ¢. The label X is a series of labels representing the
indices of each level. For example, a series X that belongs to series i at Level 1, series j at Level 2, and series
k at Level 3 can be denoted by ijk. The series at Level 0 is simply written as y(*), without a series name X.
A key property of hierarchical data is that, at any given time point, the value of a series at a specific level
equals the sum of the values of the series nested directly below it:

t) o (t RN ‘
y® = E yg ), yl( ) = E yzgj)a yz(j) = Zyz(ﬁe
i J k

To simplify the notation of the hierarchical structure, a matrix and vector expression is often used. Let n
be the total number of series and m be the number of bottom-level series, which satisfy n > m. We denote
the vector of all series observations at time ¢ as y®* € R™ and the vector of bottom-level observations as
b®) e R™. With the summing matrix § € R"*™ that dictates the way in which the bottom-level series
aggregate, the hierarchical structure can be written as:

y = 8, (1)
When Equation holds for the values of all series and the bottom-level series at each time ¢, it is said that

the hierarchy is satisfied.
() () (o) (=)

Figure 1: An example of a hierarchical structure

Figure [I] provides a simple example of a hierarchical structure. In this case, K =2, m =5, n = 8, and the
following aggregation relationship holds:

t (t t) (t (t) t t
Y =y FUss U Uy = yiA + yan,
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The corresponding matrix and vector representation is defined by:
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With these definitions, the hierarchical structure is fully captured by Equation .

2.2 Reconciliation methods

Hierarchical time-series forecasting is a process that adjusts, or “reconciles,” forecast values to ensure they
satisfy the hierarchical aggregation constraints. We assume that observations for each series are available
for an observation period ¢ = 1,...,T, and the objective is to forecast values for the forecast period 7 =
T+1,...,T+T.

Forecasting, ignoring any aggregation constraints, is called a base forecast. Let §(7) € R™ denote the vector
of base forecasts for all series at time 7. A forecast that satisfies the hierarchical aggregation constraints is
called a coherent forecast. Let §(7) € R™ denote the vector of coherent forecasts at time 7. To transform base
forecasts into coherent forecasts, hierarchical forecasting methods estimate a reconciliation matrix P € R™*"
that maps the base forecasts to the bottom level. All hierarchical forecasting approaches can be expressed
in the general form:

,g(f) - SPy(T), (2)

where S is the summing matrix defined in Equation (|1)).

The bottom-up and top-down approaches are two traditional reconciliation methods. We again use the
example from Figure [I] to illustrate these concepts. In the bottom-up approach, coherent forecasts are
derived by summing the base forecasts of the bottom-level series. This corresponds to the reconciliation
matrix:

0001 0O0O0O0
00001000
P=1|0 0 0001 0O
0 000O0O0OT1F®
0000 O0OO0OTO071

Conversely, in the top-down approach, coherent forecasts are obtained by disaggregating the base forecast
of the top-level series. If px is the proportion that allocates the total values to each bottom-level series X,
the reconciliation matrix becomes:

paa 0 0 0 0O 0O O O
pa 0 0 0 O 0O 0 O
P=|paxc 00 00000
pea 0 0O 0O O O O O
pgs 0 0 0 0 0 0 0

A common way to determine these proportions is based on the average historical proportions of the data.
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Because the bottom-up and top-down methods utilize base forecasts from only a single level of aggregation,
they rely on limited information. To overcome this, subsequent research has proposed methods that use base
forecasts from all series to estimate a reconciliation matrix, thus producing more comprehensive, coherent
forecasts.

Hyndman et al.| (2011 proposed the generalized least squares (GLS) reconciliation, a regression-based ap-
proach. In this method, the reconciliation matrix is chosen to minimize errors between the base and coherent
forecasts. Specifically, consider the regression model for base forecasts

4 = 88" 1 &™)

Let (7)) = E [b(T) | y y(T)] € R™ be the expectation of base forecasts at the bottom level, and let
the error term €(™) have zero mean with covariance matrix (") = Var (™ |y, ... y(D)) € R™xn, If 5(7)
were known, the minimum variance unbiased estimator of 3(7) would be the GLS estimator

B — (STEWS)’I ST,
where (7T is the generalized inverse of X(7). Comparing this expression with Equation (2) gives
P= (:ﬁz“”s*f1 STEM1,

In practice, however, the covariance matrix () is unknown and cannot be estimated. It represents the
covariance of the reconciliation errors at time 7, but the errors are not observable until coherent forecasts
have already been produced. [Hyndman et al.| (2011]) showed that, under the assumption that the errors
themselves satisfy the aggregation constraints, 2(7) can be replaced with the n-dimensional identity matrix
I,,. This replacement is equivalent to computing the ordinary least squares (OLS) estimator instead of the
GLS estimator.

Wickramasuriya et al.| (2019) proposed the minimum-trace (MinT) reconciliation, which determines the
reconciliation matrix P by minimizing the total variance of errors between the observed values and the

coherent forecasts. Let
v = Var <y<r> I CON PO R 7y<T>) c RX"

denote the covariance matrix of those errors, and define the covariance matrix of the errors between observed
values and base forecasts as

W@ — Var (ym I ONPROR 7y(T)) c R<.

Under the linear transformation in Equation , the error covariance matrix of the coherent forecasts is
expressed as V(7 = SPW () PTST. Consequently, the optimal reconciliation matrix that minimizes the
total error variance tr (V(T)) is given by

P (s (W) 's) s (wi) ®)

A notable property of this reconciliation is that the resulting coherent forecasts §(™) are guaranteed to be at
-1
least as accurate as the base forecasts §(™) in terms of the weighted squared error using (W(T)) :

(ym _ gm)T (W(ﬂ) - (ym _ g(ﬂ) < <y<7) _ gm)T (Wh)) ! (ym _ 32“)) .

As noted by [Panagiotelis et al. (2021), when the base forecast §(7) is unbiased, the trace minimization in
MinT is equivalent to minimizing the expected squared Euclidean norm of the errors between the observed
values and the coherent forecasts:

min  E[[ly"” — SPg |, (4)
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where ||-|| is the Euclidean norm. Furthermore, they provided a key insight that extends this Euclidean norm
to a more general weighted norm. Specifically, they showed that if we know the true covariance matrix W (™),
the solution in Equation is invariant to the choice of the weight matrix M in the following generalized
optimization problem:

min E[(y™ - SPy) My - SPyT)] (5)

where M is any positive definite matrix. This property implies that the specific weighting of errors does not
alter the optimal reconciliation matrix P.

3 Robust reconciliation

The invariance property of MinT is a key advantage. At the same time, applying this to real-world data often
involves practical considerations. For example, base forecasts may contain some empirical biases. Further-
more, because the true error distribution is unknown, we typically replace the expectation in Equation
with the average of residuals over a specific observation period ¢ = 1,...,T. In such cases, the choice of the
weight matrix M can influence the performance of reconciliation.

In MinT framework, it is natural to use (W (7))~1 as the weight matrix M to account for the different scales
of errors across series. Although the true covariance matrix W (™) is unknown, it is common to estimate it
using the observations and base forecasts from the observation period t = 1,...,T. This estimate is usually
assumed to be constant for all forecast periods, so we consider using an estimated covariance matrix W as
an alternative to W) forall T =T +1,..., T+ T".

However, this single estimate W may not always be accurate due to limited data or changes in the underlying
error structure. To address this uncertainty, we propose a robust optimization framework. We treat W !
as an uncertain parameter and introduce an uncertainty set. By formulating a problem that minimizes
the worst-case error over this uncertainty set, we aim to ensure stable forecast performance even when the
estimate of W is not perfect.

3.1 Formulation

As we focus on the empirical average over T' time steps from the observation period, the minimization
problem of weighted squared residuals is formulated as follows:

T T
min %Z (y(t) - spy@) Wl (y(t) - SPQ(“) : (6)

where §® is the base forecast at time ¢ in the observation period. To incorporate robustness against the
uncertainty in estimating W, we introduce an uncertainty set M C R™*". Then, we consider the following
robust optimization problem:

T

T
i () _ A<t>> ( () _ A<t)>
min AI}lea}(A tz:; (y SPy My SPy ,

where we omit the coefficient 1/T from the objective function, since it does not affect the optimal solution.

In robust optimization problems with uncertainty in the covariance matrix, a box uncertainty set is often
used (Lobo & Boyd, [2000; [Halldérsson & Tiittuncii, [2003). The box uncertainty set places upper and lower
bounds on the inverse of covariance matrix, so that

M={M|M<M<M, M>O0},

where M, M € R™*™ are the upper and lower bounds of M,  respectively, and the inequalities M < M < M
represent element-wise inequalities, meaning M,; < M;; < M;; for all 4,7 =1,...,n. M = O denotes that
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M is positive semidefinite. Therefore, the proposed method determines the reconciliation matrix by solving
the following robust optimization problem:

T

T
min ml\z/}x ; (y(t) - SPy(t)) M (y(t) — SPy(t)) .

st. M<M<M,
M = O.

3.2 Equivalent reformulation

We show that the min-max problem is equivalently reformulated as a semidefinite optimization problem
following the approach of [Lobo & Boyd| (2000) and Halldorsson & Tutunct (2003)). Let I and O be the
identity matrix and zero matrix of appropriate dimensions, respectively. For two symmetric matrices A and
B of the same size, A e B denotes the standard inner product of the two matrices, defined as A e B =
tr (ATB), which is the sum of the element-wise product of A and B.

Proposition 1. Assume that there exists a positive definite matriz M’ satisfying M < M' < M. Then,
the problem can be equivalently reformulated as the following semidefinite optimization problem:

min MeX -—MeX

X,X,E,P
X-X E
.t. — -
. FET I] =0 ®)
E-= {y(l) —SPyW, .y - SPQ(T)} ,
X, X >0,

where X and X are n-dimensional symmetric matrixz variables, and E is an n x T-dimensional matrix
variable whose columns are the error vectors between the observed values and coherent forecasts over the
observation period.

Proof. Fix P and consider the inner maximization of the problem :

=
o
B
—
@/—\
|
wn
Y
<3
N
—
Q/\
|
0
!
<SS
N

Its dual problem is formulated as

mn MeX-—MeX

XX
T
st X-X- (v - sPg?) (y - SPg;,“))T > 0, (10)
t=1
X, X >0,

where X, X are dual variables. Let us define the matrix E = [y — SPgW, ... yT) — SP§T]. Then,
by the Schur complement, the semidefinite constraint in the problem is equivalently transformed as
follows:
_ T I
X-x-> (y(t) - SPfg(t)) (y(t) - Sng(t)) 0« X-X-EE" -0
t=1
X-X FE
— I

- } = 0. (11)
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Therefore, we can replace the semidefinite constraint of the problem with Equation , which yields
the following equivalent dual problem:

X-X E] - 0, (12)

Finally, we show the dual problem has a strictly feasible solution, which implies that the strong duality
between the problems @D and holds. Let J € R™*™ be a matrix whose elements are all one. For the
fixed P, we consider the following solution:

X =EET +4J+1, X' =nJ,
where v > 0 is a sufficiently large constant such that EET +~J > O. Since we take v > 0 sufficiently large,
Y/, X' > 0. Focusing on the semidefinite constraint of the problem , we have

X -X' E|_[BE"+1 E|_,
ET I - ET TI )

thus (Y/, X ’) is strictly feasible. Since we assume that the primal problem (EI) is strictly feasible, the strong

duality theorem holds and the optimal values of the two problems @ and are equal (Vandenberghe
& Boyd, 1996). As we took P arbitrarily, the above argument holds for all P. Therefore, the min-max
problem @ is equivalently reformulated as the semidefinite optimization problem . O

Hence, the approach of the proposed method is to solve the semidefinite optimization problem and use
the optimal solution for P as the reconciliation matrix for hierarchical time-series forecasts.

3.3 Uncertainty set

In order to deal with the robust optimization problem described in the previous sections, it is necessary
to determine the uncertainty set, i.e., M and M in advance. We set the upper and lower bounds of the
uncertainty set from the observation period data using bootstrap with reference to [Bertsimas et al.| (2018).

We summarize the method for determining the uncertainty set in Algorithm[I] In the first step, we calculate a
parameter A for the shrinkage approach, similar to the existing hierarchical time-series forecasting described
in Section [2:2] This shrinkage approach is applied to the inverse of covariance matrix estimated by unbiased
variance from the observation period data. In the next step, we estimate the inverse of covariance matrix
of each sample obtained by sampling the data of the observation period. For sampling, we select the same
number of time points as the observation period T with replacement. Then, using the shrinkage intensity
parameter \ obtained in the first step, the shrinkage approach is applied to the sampled inverse covariance
matrix. This sampling is repeated Np > 1 times to obtain Np inverse covariance matrices. In the last
step, determine upper and lower bounds from each element of the sampled inverse covariance matrices. Let
0 < a <1, then set the width of the uncertainty set to be a times the width of the maximum and minimum
sample values of the inverse of covariance matrix.

4 Numerical experiments

To wverify the effectiveness of the proposed method, we compared its forecast accuracy
with that of existing hierarchical time-series forecasting methods across multiple real-world
datasets.  Code used in these experiments is available at https://github.com/isct-nakatalab/
hierarchical-tsf-robust-reconciliationl
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Algorithm 1 Designing uncertainty set

Input: n, T7 {y(f) }g‘:l? {g(*) }?:p NB) (€7
Output: M, M
M < estimate inverse of covariance matrix from {y®}]_, and {g®}T_,
A « calculate shrinkage intensity parameter of M
for s=1,...,Ng do
{y®NE_ {9¥)T_| + sample T data points from {y®}7 | and {g®}  ; with replacement
M, + estimate inverse of covariance matrix from {y®N7_ and {g¥N7T_,
M,y < update M) by shrinkage estimator with A
end for
fori=1,...,n, j=1,...,ndo
M, «+ calculate 100 - (1 4 «)/2-percentile of {M(S)ij}ivfl
M, + calculate 100 - (1 — «)/2-percentile of {M(S)ij}ivfl
end for
return M, M

4.1 Datasets

The numerical experiments used four datasets from prior studies. An overview of each dataset is provided
below, including the number of hierarchical levels and series, as well as the lengths of the observation and
forecast periods. These four datasets allowed us to assess the proposed method’s performance under various
real-world conditions, including hierarchies with different scales of levels and series.

The first dataset is the Australian births data (Hyndman & Athanasopoulos, 2021)). It records the number
of births in Australia every month from January 1975 to December 2022. As summarized in Table [1} the
hierarchy consisted of a single disaggregation level (K = 1) with nine bottom-level series (m = 9) and ten
series in total (n = 10). Level 1, the bottom level, disaggregated the national series into nine states and
territories: ACT, AUS, NSW, NT, QLD, SA, TAS, VIC, and WA. For this experiment, the first 516 months
(January 1975 to December 2017) served as the observation period, while the following 60 months (January
2018 to November 2022) comprised the forecast period.

Table 1: Hierarchy for Australian births data

Level Number of series Total series per level

total 1 1
state 9 9

The second dataset is the Australian tourism data (Athanasopoulos et al.;2009), which records the number
of domestic travelers every quarter from Q1 1998 to Q4 2017. As Table[2|shows, the hierarchy was structured
with K = 2, m = 27, and n = 35. Level 1 disaggregated the national total into seven states: NSW, NT,
QLD, SA, TAS, VIC, and WA. Note that this state grouping differed from the one used for the births dataset,
as we followed prior work. Level 2, the bottom level, further broke down each state into finer geographic
zones. Here, the observation period consisted of the first 68 quarters (Q1 1998 to Q4 2014), and the forecast
period covered the subsequent 12 quarters (Q1 2015 to Q4 2017).

Table 2: Hierarchy for Australian tourism data

Level Number of series Total series per level

total 1 1
state 7 7
zone 6-2-4-4-3-5-3 27
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The third dataset is the U.S. Walmart sales data (Mancuso et al., [2021). It tracks weekly sales from January
3, 2011, to May 29, 2016. Table |3| shows the hierarchy as K = 2, m = 10, and n = 14. Level 1 split the
national total into three states: CA, TX, and WI. Level 2, the bottom level, further subdivided each state
into its constituent stores: four in CA, three in TX, and three in WI. In this experiment, we used the first
261 weeks (January 3, 2011, to January 3, 2016) as the observation period and the next 21 weeks (January
4, 2016, to May 29, 2016) for the forecast period.

Table 3: Hierarchy for Walmart sales data

Level Number of series Total series per level

total 1 1
state 3 3
store 4-3-3 10

The fourth dataset is the Swiss electricity demand data (Nespoli et al., |2020)), recording electricity supply
every ten minutes from January 13, 2018, to January 19, 2019. As outlined in Table [ the hierarchy was
K =3, m =24, and n = 31. Level 1 disaggregated the grid into two synthetic meter aggregations: S1 and
S2. Level 2 further subdivided each aggregation into two synthetic sub-aggregations: S11 and S12 for S1,
and S21 and S22 for S2. Level 3, the bottom level, then separated each sub-aggregation into six individual
meters. After converting the data to a daily unit, we used the first 353 days (January 13, 2018, to December
31, 2018) for the observation period and the subsequent 19 days (January 1, 2019, to January 19, 2019) for
the forecast period.

Table 4: Hierarchy for Swiss electricity demand data

Level Number of series Total series per level

grid 1 1
agg. 2 2
sub-agg. 2-2 4
meter 6-6-6-6 24

4.2 Experimental setup

This subsection details the benchmark methods, our proposed robust methods, and evaluation metrics.

Hierarchical forecasting first requires a set of base forecasts (Base), which do not account for the hierarchical
structure. We generated these base forecasts using Prophet (Taylor & Letham)| 2018]), an open-source time-
series library from Meta, with its default settings. As a preliminary experiment, we also performed base
forecasts using other time-series forecasting methods such as ARIMA and Light GBM, but Prophet showed the
best results. Our comparative methods included the bottom-up (BU), top-down (TD), GLS reconciliation
(GLS), and MinT reconciliation (MinT) approaches introduced in Section

For our proposed method (Robust), the optimization problem was solved using the MOSEK solver
(MOSEK ApS| 2025)). Moreover, we needed to set two parameters for the bootstrap to design the uncertainty
set, the number of sampling Ng and the width of the uncertainty set . In these experiments, N was fixed
at 5000 and « was determined by validation from among the candidates specified in advance. For validation,
we divided the observation period data into train and validation data in a ratio of 9:1, and used the « with
the smallest RMSE in the validation data. The candidates for « were 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

10
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As evaluation metrics, we used the mean absolute error (MAE) and the root mean squared error (RMSE)
for each series. For a given series X, these are defined as:

1 T+T’ ) () 1 T+T’ ") 2
MAE = Y o0 -] RMsE= | = > (40 - 3)
T=T+1 7=T+1

Note that RMSE gives a harsh evaluation when the prediction deviates significantly from the MAE.

4.3 Results and discussion

The experimental results for all datasets are summarized in Table To make the results easier to
understand, we calculated the ratio of MAE and RMSE for each hierarchical time-series forecasting method
when the MAE and RMSE of the base forecasts are set to 1, and then calculated the mean and standard
deviation for series included in the same hierarchical level. We defined these metrics as relative MAE and
relative RMSE, respectively. The original MAE and RMSE of all series are listed in the appendix. In the
tables, the format is “mean + standard deviation.” Since the top level of hierarchical structure (Level 0)
includes only one series, the standard deviation for the series is not shown. The underlined values indicate
the best forecast accuracy in terms of the mean for the corresponding hierarchical level.

For the Australian births dataset, the validation to decide a parameter for bootstrap resulted in o = 1.0.
The proposed method achieved the highest accuracy in most cases. In the top level, our proposed method
was the only approach that achieved higher accuracy than the base forecast. In the bottom level, considering
the standard deviation, some series showed significant improvement in forecast accuracy with the proposed
method.

Table 5: Forecast accuracy for Australian births data

(a) Relative MAE

Base BU TD GLS MinT Robust

total  1.000 1.034 1.000 1.003 0.999 0.923
state 1.000 1.000£0.000 1.513+£1.302 0.955+£0.136 0.978£0.043 0.944 + 0.167

(b) Relative RMSE

Base BU TD GLS MinT Robust

total  1.000 1.014 1.000 1.001 1.000 0.968
state 1.000 1.000£0.000 1.297+0.831 0.970+£0.090 0.989+0.026 0.973 +0.103

In the Australian tourism dataset, the bootstrap parameter was determined via validation to be & = 0.5. Our
proposed method yielded lower forecast accuracy than the existing GLS and MinT reconciliation methods,
except for the top level. This underperformance seems to be due to a slight discrepancy between the estimated
covariance matrix and the true one in the forecast period, which reduced the benefit of explicitly accounting
for covariance uncertainty.

For the Walmart sales, the validation procedure for selecting the bootstrap parameter yielded @ = 0.9. Our
method achieved the highest forecast accuracy for all levels, with substantial performance gains over existing
methods.

On the Swiss electricity demand datasets, as determined by validation, the bootstrap parameter was set to
a = 0.7. Our proposed method achieved the highest forecast accuracy at the upper levels, but the accuracy
deteriorated at the bottom level compared to the base forecast. In other words, the improvement at the
upper levels came at the expense of accuracy at the bottom level. As with the Australian tourism data, the
discrepancy between the true and estimated covariance matrices may have been small, limiting the overall
impact of robustification.
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Table 6: Forecast accuracy for Australian tourism data

(a) Relative MAE

Base BU TD GLS MinT Robust
total  1.000 2.315 1.000 1.125 0.663 0.518
state  1.000 1.277+£0.247 0.968 +£0.400 0.635+0.181 0.573+0.135 0.793 + 0.460
zone 1.000 1.000 £0.000 0.925+0.380 0.623 +£0.166 0.568 +0.158 0.843 + 0.387
(b) Relative RMSE
Base BU TD GLS MinT Robust
total  1.000 2.132 1.000 1.105 0.698 0.519
state  1.000 1.227 £0.193 0.989 +£0.388 0.680 +£0.185 0.617+0.135 0.810 + 0.428
zone 1.000 1.000 £0.000 0.959 +0.367 0.657 +£0.154 0.606 +0.141 0.844 + 0.339
Table 7: Forecast accuracy for Walmart sales data
(a) Relative MAE
Base BU TD GLS MinT Robust
total  1.000 1.135 1.000 1.011 0.966 0.810
state  1.000 1.123+£0.117 1.263+0.986 0.999+0.029 0.956 +0.049 0.801 + 0.036
store 1.000 1.000 £0.000 1.618+£1.001 0.882+0.069 0.868+0.076 0.741+0.117
(b) Relative RMSE
Base BU TD GLS MinT Robust
total  1.000 1.129 1.000 1.011 0.967 0.817
state 1.000 1.118 £0.116 1.241 +£0.948 0.998 +£0.030 0.955+0.050 0.807 + 0.038
store  1.000 1.000 £0.000 1.580+0.945 0.885+0.067 0.872+0.070 0.751+0.111
Table 8: Forecast accuracy for Swiss electricity demand data
(a) Relative MAE
Base BU TD GLS MinT Robust
grid 1.000 1.041 1.000 1.022 1.110 0.888
agg. 1.000 1.0454+0.034 0.983+0.422 0.983+0.020 0.995+0.017 0.808 £ 0.277
sub-agg. 1.000 1.072+0.071 1.390+0.549 0.999+0.010 1.014+0.099 0.867 +0.232
meter 1.000 1.000 +0.000 1.810+0.921 0.987 £0.102 1.023 £0.177 1.036 £ 0.275
(b) Relative RMSE
Base BU TD GLS MinT Robust
grid 1.000 1.022 1.000 1.012 1.050 0.946
agg. 1.000 1.013+0.045 0.970+0.213 0.986 +0.008 1.005 £ 0.023 0.895 +0.171
sub-agg. 1.000 1.03240.058 1.170+0.359 0.995+ 0.003 1.025+0.071 0.929 £ 0.158
meter 1.000 1.000 +0.000 1.717+0.781 0.981 £0.086 1.021 +£0.141 1.013 £0.227
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The numerical experiments on these four datasets demonstrated the effectiveness of our proposed hierarchical
time-series forecasting method. Across most target series and hierarchical levels, the proposed approach
achieved higher forecast accuracy than existing techniques. However, in a few cases, the proposed method’s
prediction performance was slightly inferior to that of the GLS and MinT reconciliation methods.

As discussed in the Australian tourism data results, when the discrepancy between the estimated and true
covariance matrices is small, incorporating the uncertainty set may lead to overly conservative forecasts,
resulting in lower predictive performance. This is further supported by the parameter selection during
validation: a larger a was chosen for the Australian births and Walmart sales datasets, where our method
was effective. Conversely, a smaller o was selected for the Australian tourism and Swiss electricity demand
datasets, where the method was less effective. This suggests that for these latter datasets, the estimated
covariance matrix closely approximated the true covariance matrix, reducing the need to account for its
uncertainty in the reconciliation process.

5 Conclusion

In this paper, we proposed a robust hierarchical time-series forecasting method. This approach introduces an
uncertainty set for the inverse of covariance matrix of forecast errors and minimizes the forecast error between
the observation values and the coherent forecasts. Through numerical experiments, we demonstrated that
the proposed method often provides more accurate forecasts than existing hierarchical time-series forecasting
methods, although its performance can vary across different datasets.

The limitations of our method are twofold: its accuracy may not always surpass existing methods, and its
scalability is limited due to the computational demands of the optimization problem. The first issue is as
stated in the discussion of the experimental results. It arises when the discrepancy between the true and
estimated covariance matrices is small, in which case the robust approach offers little advantage. The second
limitation concerns the computational time required to obtain a reconciliation matrix, as our method relies
on solving a semidefinite optimization problem. The size of the optimization problem depends on the total
number of series and the length of observation periods. While a solution was achievable in tens of seconds
for the dataset sizes used in our experiments, this approach would not be practical for very large-scale
predictions.
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A Full results of numerical experiments

This section reports the original MAE and RMSE for all series from the numerical experiments that could
not be included in Section Table [9] and Table [I0] present the MAE and RMSE for the Australian births
data, respectively. Similarly, Table [11] and Table [12] report the forecast accuracy for the Australian tourism
data, Table [I3]and Table [T4] for the Walmart sales data, and Table [I5] and Table [I6] for the Swiss electricity
demand data. Within each table, series separated by horizontal lines correspond to the same hierarchical
level.

Table 9: MAE for Australian births data

Base BU TD GLS MinT Robust
total  3697.93 3822.66 3697.93 3710.04 3695.48 3413.01

ACT 79.34 79.34 23.95 65.71 77.18 71.65
AUS 1863.94 1863.94 1848.74 1851.83 1819.48 1706.96
NSW 43336  433.36  934.11  423.74  410.68  372.41

NT 41.86 41.86 43.48 30.60 39.88 36.31
QLD 22239 22239  231.03  217.53  217.92  202.75
SA 107.33  107.33  328.02 97.16  100.02 83.49

TAS 40.31 40.31 163.39 49.53 43.70 95.08
VIC 71171 71171 430.98  699.45 700.14  675.65
WA 479.92  479.92  180.03  466.29  468.86  451.56

Table 10: RMSE for Australian births data

Base BU TD GLS MinT  Robust
total  6419.88 6507.75 6419.88 6428.59 6418.09 6213.25

ACT 93.99 93.99 44.91 81.93 92.04 87.08
AUS  3220.69 3220.69 3209.85 3211.97 3188.33 3106.97
NSW  782.22 78222 1165.31 774.65 764.60  736.15

NT 55.47 55.47 57.62 45.46 53.67 50.50
QLD 452.41 45241  462.21 44736  447.76  433.83
SA 166.40  166.40  354.25 157.74  160.18  146.77

TAS 94.89 04.89  169.39 62.80 o7.T7 67.82
VIC  1216.24 1216.24 1004.19 1207.09 1207.60 1190.46
WA 626.98  626.98  383.23  615.56  617.71  603.22
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Table 11: MAE for Australian tourism data

Base BU TD GLS MinT Robust
total 1507.73 3490.86 1507.73 1696.30 999.98  780.57
NSwW 706.38 1056.55 336.42 594.78 445.01  678.46
NT 122.88 122.99 151.28 57.50  82.99 71.12
QLD 565.88 626.18 503.91 427.08 206.32  219.97
SA 213.29 278.99 90.94 82.64  83.73 78.47
TAS 132.18 132.50 158.77 67.01 84.52 62.70
VIC 509.36 828.63 532.14  416.27 347.01 640.93
WA 331.08  462.09 498.96 222.41 207.11  503.88
NSW_ACT 131.54 131.54 68.63 63.37  68.05 102.13
NSW_ Nth 139.01 139.01 92.79 75.93 82.49 57.30
NSW_ Sth 131.20 131.20 115.03 77.85  94.87  165.99
NSW__ Metro 313.69 313.69 161.47 241.31 142.86  323.77
NSW_ Nth_ Coast 237.56 237.56 119.50 160.60 130.42  190.16
NSW_ Sth_Coast 118.41 118.41 136.72 53.19  44.83 110.12
NT_Central 72.85 72.85 84.78 37.56 51.82 32.97
NT_ Nth_Coast 50.14 50.14 67.35 30.65  31.72 76.22
QLD _ Metro 360.78 360.78 209.51 318.68 197.90 173.06
QLD _ Central Coast 53.20 53.20 69.45 33.78  38.48 60.19
QLD _ Inland 150.29 150.29 172.18 107.54  64.82 84.05
QLD_ Nth_ Coast 80.10 80.10 140.75 5820 63.47 128.42
SA_ Metro 127.55 127.55 34.11 76.69 36.13 38.15
SA_Inland 78.95 78.95 30.53 34.33 32.78 38.62
SA West_ Coast 27.14 27.14 24.60 31.01  16.42 22.17
SA_ Sth Coast 52.22 52.22 70.85 37.05  40.02 57.76
TAS Nth East 50.76 50.76 61.78 29.15  32.34 39.28
TAS_Sth 53.34 53.34 70.71 39.37  41.03 46.34
TAS_ Nth_ West 39.50 39.50 33.94 23.07 25.23 21.32
VIC__Nth_ West 100.44 100.44 64.15 53.47  53.19 59.12
VIC_Nth_East 209.01 209.01 86.61  127.61 98.84 87.13
VIC_Metro 335.23 335.23 339.66 250.59 176.29  335.11
VIC_East_Coast 113.59 113.59 126.28 73.29 79.66  154.80
VIC_ West_ Coast 85.57 85.57 93.60 39.71  43.26 59.43
WA_ West_ Coast 237.14 237.14  326.91 171.87 199.24  392.71
WA_Sth 96.10 96.10 56.24 30.70  30.76 70.90
WA Nth 130.13 130.13 115.82 50.24  35.39 57.09
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Table 12: RMSE for Australian tourism data

Base BU TD GLS MinT Robust
total 1726.07 3680.00 1726.07 1906.48 1204.56  895.21
NSW 814.62 1153.92 390.45 709.89 556.17  767.23
NT 135.97 136.13 177.71 62.33 101.17 90.27
QLD 633.93 691.06 581.55 503.91 264.39  267.44
SA 226.56 291.26 105.01 98.52 99.75 94.40
TAS 148.29 148.68 185.51 86.92 96.55 78.14
VIC 642.69 938.29 697.81 553.19  475.28  725.78
WA 362.15 481.64  513.88 272.77  233.58  567.47
NSW_ACT 146.72 146.72 86.05 79.23 83.41  117.14
NSW_ Nth 158.32 158.32 110.01 93.05 99.64 73.21
NSW_ Sth 145.49 145.49 128.61 90.52 104.94  186.20
NSW_ Metro 370.82 370.82 192.91 300.52 178.58  365.35
NSW_ Nth_ Coast 265.32 265.32 145.86 193.64 162.47  222.41
NSW__Sth_ Coast 131.95 131.95 165.04 64.79 54.05 122.21
NT_ Central 87.08 87.08 102.50 48.88 69.71 41.73
NT_Nth_Coast 58.57 58.57 81.15 36.06 43.98 81.02
QLD _ Metro 432.75 432.75 278.40 389.27  243.99  207.95
QLD_ Central _Coast 62.53 62.53 78.83 42.89 48.47 64.68
QLD _ Inland 174.46 174.46 194.94 131.45 78.24  109.60
QLD_ Nth_ Coast 101.77 101.77 183.26 73.57 70.65 145.45
SA_ Metro 134.08 134.08 41.14 84.94 45.04 43.86
SA Inland 87.19 87.19 36.99 43.59 42.36 46.13
SA  West_ Coast 31.63 31.63 33.36 35.80 21.76 31.26
SA_Sth Coast 66.34 66.34 82.00 42.47 46.66 69.52
TAS Nth East 58.96 58.96 70.44 35.35 39.60 47.58
TAS_Sth 61.49 61.49 84.42 47.51 48.14 55.55
TAS Nth West 44.88 44.88 42.50 30.26 33.01 25.17
VIC_Nth_ West 124.89 124.89 86.11 76.51 74.90 81.43
VIC Nth_ East 232.47 232.47 108.39 153.51 116.29  106.73
VIC__Metro 385.23 385.23 397.61 307.86 238.76  370.23
VIC_East_Coast 142.78 142.78 164.21 87.36 97.22  177.92
VIC_West_ Coast 101.05 101.05 122.62 43.97 50.62 68.44
WA_ West_ Coast 275.32 275.32 364.37  214.80 225.39  446.61
WA_ Sth 101.13 101.13 63.93 41.77 42.26 79.92
WA _Nth 135.48 135.48 134.23 63.10 48.77 66.16
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Table 13: MAE for Walmart sales data

Base BU TD GLS MinT Robust

total 2343.98 2659.41 2343.98 2370.30 2264.97 1898.06

CA 1237.39 1397.73  473.01 124840 1195.54  993.95
X 586.12  587.64 1364.16  566.09  529.02  447.99
WI 551.73 68222  595.33  563.94  551.06  460.93

CA 1 21728 21728 509.66 182.14  196.40  169.73
CA_2 707.61 707.61  626.00 670.27  556.24  426.06
CA_ 3 20531 20531 37179 167.98 193.55  174.84
CA_4 268.06 268.06 153.50 230.73  250.44  224.32
TX 1 139.57  139.57  496.24  132.39  122.58 95.30
TX 2 21050  210.50  505.23  203.52 190.62 161.45
X 3 239.12 239.12  362.70 232.15 216.86  193.64
WI_1 266.21  266.21 60.84  226.78  197.83  129.05
WI_ 2 178.76  178.76  171.12 139.94  135.31 138.43
WI_3 238.70  238.70  456.46  199.22  220.13  195.16

Table 14: RMSE for Walmart sales data

Base BU TD GLS MinT Robust

total 2479.68 2799.50 2479.68 2507.51 2398.58 2026.11

CA 1315.76 1466.86  502.11 1323.84 1267.95 1076.92
X 613.93  615.60 1386.53  592.66  553.26  469.26
WI 586.42  724.49  635.82  599.93  586.67  491.14

CA_1 22858 22858  516.72 191.94  206.43  178.76
CA_ 2 76158 761.58 63090 727.71  623.03  518.46
CA_3 21233 21233 377.04 174.67  200.11 180.73
CA 4 27859 27859 16345 241.39 26040  233.43
TX 1 147.41 14741 503.43  139.73  129.54  101.01
TX 2 21932 21932 511.96  211.67 198.63  168.66
TX 3 25099 25099  371.73  243.43 22741  202.47
WI 1 283.85  283.85 90.82 24177 21129  136.84
WI_2 191.39  191.39  183.70  151.72 147.07  151.58
WI_3 252.62  252.62  464.93  211.08 233.04  207.25
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Table 15: MAE for Swiss electricity demand data

Base BU TD GLS MinT Robust

grid 39.471 41.091 39471 40.343 43.814  35.068

S1 18.902 19.298 24.210 18.845 19.039  18.977
52 32.668 34.938 22.365 31.639 32.098  19.997
S11 7.783  8.606 16.944  7.880  7.647 7.629

S12 11.358 11.356 14.279 11.362 11.437 11.348
S21 24.839 25.529 22372 24.545 22.737  12.900
522 8.388  9.680 10.263  8.347  9.649 8.115

S11_1 1.087 1.087 1.864 0.783  0.478 0.489
S11_2 2265  2.265 4.394  2.627  2.666 2.000
S11 3 1710 1710 2.321 2.078  2.142 1.877
S11_4  3.008 3.008 3.335 2968  2.909 2.994
S11 5  6.053 6.053 15.819 5.771  5.806 5.135
S11_6 2619 2619 3.602 2.724  2.753 2.616
S12_1  4.558  4.558  8.822  4.563  4.760 5.088
S12 2 1.758  1.758  1.667 1.756  2.023 2.144
S12.3 4519 4519  7.814  4.515  5.325 4.572
S12_4 4263 4.263  6.355  4.268  4.233 3.121
S12_5 4499 4499 4.249 4504  4.169 5.501
S12 6 2505 2505  2.161 2502  2.884 2.610
S21 1 1.359 1359 2935 1470 1.174 1.490
S21 2 1.124  1.124 1135 1.180  1.106 1.297
521 3  0.872 0.872  2.793 0.848  0.841 1.385
S21_4 2751 2751 10.583  2.812  2.745 3.352
521 5  6.562  6.562  4.230 6.398  7.161 5.460
521 6 17.541 17.541 18.843 17.377 13.768 9.224
S22 1 2173 2173  5.764  1.866  2.493 2.296
S22 2 1.928 1928 7.793 1.687  2.118 2.091
522 3  3.880 3.880 8993 3.711  3.702 4.317
S22_4 1.100 1.100 1.983  1.198  1.093 1.101
S22_5 1.225 1.225 1.180 1.088  1.266 1.066
S22 6 1168  1.168 1.998 0.994 1.581 2.003
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Table 16: RMSE for Swiss electricity demand data

Base BU TD GLS MinT Robust

grid 64.301 65.685 64.301 65.102 67.498  60.821

S1 30.940 30.341 34.684 30.683 31.597  31.432
52 39.665 41.439 32.503 38.863 39.198  30.729

S11 12.023 11.953 20.456 11.951 12.321 12.442
S12 19.037 18.966 17.871 18.976 19.450 19.160
S21 28.347 28919 27.276 28.105 26.616  19.665
S22 11.817 13.200 12.733 11.781 13.164 11.596

S11_1 1.166  1.166  2.088  0.877  0.649 0.656
S11 2 2800 2800 5.079  3.117  3.152 2.526
S11 .3 1968 1.968 2.775 2304  2.365 2.111
S11 4 3.466  3.466  4.334  3.409  3.596 3.862
S11. 5 6.399  6.399 16.354  6.105  6.142 5.449
S11 6  4.682 4.682 5583 4.823  4.850 4.666
S12. 1 6.568  6.568 12.222  6.571  6.566 6.621
S12 2 2350 2350  2.105  2.348  2.586 2.688
S12.3  5.037 5.037 8329 5.034 5.782 5.077
S12 4 4726  4.726  7.384  4.730  4.707 4.183
S12 5 5247  5.247  5.082  5.252  5.062 6.016
S12_6 2744 2744 2989  2.741  3.099 2.844
S21 1 1.739 1739 3.783 1.800  1.655 1.811
S21 2 1.566  1.566 1.614 1.592  1.560 1.648
S21_3  1.022 1.022 3.715 0.996 0.993 1.625
S21_4 4406  4.406 11.238  4.360  4.415 4.228
521 5 7.181 7.181  5.095 7.034  7.725 6.216
521 6 18.548 18.548 19.619 18.400 15.199  11.585
S22 1 2559 2559 6.203  2.256  2.858 2.672
S22.2 2339 2339 8260 2.046 2.590 2.557
5223 6.345 6.345  10.247  6.159  5.731 5.548
S22_4 1326 1.326  2.465 1.443  1.310 1.320
S22_5 1717 1717 1497 1.622  1.758 1.484
S22_6 1424 1424 2417  1.226  1.838 2.248
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