
Towards Energy-efficient Federated Learning via INT8-based
Training on Mobile DSPs

ABSTRACT
AI is making the Web an even cooler place, but also introduces seri-
ous privacy risks due to the extensive user data collection. Federated
learning (FL), as a privacy-preserving machine learning paradigm,
enables mobile devices to collaboratively learn a shared prediction
model while keeping all training data on devices. However, a key
obstacle towards practical cross-device FL training is huge energy
consumption, especially for lightweight mobile devices.

In this work, we perform the first-of-its-kind analysis of im-
proving FL performance through low-precision training with an
energy-friendly Digital Signal Processor (DSP) on mobile devices.
We first demonstrate that directly integrating the state-of-the-art
INT8 (8-bit integer) training algorithm and classic FL protocols will
significantly degrade the model accuracy. Moreover, we observe
that there are still unavoidable frequent quantization operations on
devices that cause extreme load stress on DSP-enabled INT8 train-
ing. To address the above challenges, we present Q-FedUpdate, an
FL framework that efficiently preserves model accuracy with ultra-
low energy consumption. It maintains a global full-precision model
and allows the tiny model updates to be continuously accumulated,
instead of being erased by the quantization. Furthermore, it intro-
duces pipelining technology to parallel CPU-based quantization and
DSP-enabled training, which reduces the floating-point computa-
tion overhead of frequent data quantization. Extensive experiments
show that Q-FedUpdate can effectively reduce the on-device en-
ergy consumption by 21×, and accelerate the FL convergence by
6.1× with only 2% accuracy loss.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools.

KEYWORDS
Mobile computing, federated learning, energy efficiency

1 INTRODUCTION
A colossal amount of data is being generated on Internet-of-Things
or Web-of-Things devices, e.g., Web browsing traces and input cor-
pora on smartphones. Harnessing such data is vital to the success of
AI-driven Web systems [12, 29, 41], yet it must be done in a privacy-
friendly manner as enforced by recent regulations [1, 2]. Federated
learning (FL) [21] is by far one of the most effective approach
that proposed to achieve privacy-preserving machine learning, and
has already landed many killer mobile applications, such as Web
browser history suggestions [31], input method prediction [14],
and voice assistant [3].

However, a key obstacle towards practical cross-device FL train-
ing to serve mobile applications is the huge energy consumption.

Web browsers

CPU-only

FP32-only on-device

training engines (MNN,

TFLite, etc)

Private data

(a) Traditional FP32-based FL (b) Proposed INT8-based FL

6.1× time

21 × energy

5.5× network

Hardware resources

FP32

0.5 0.1
0.8 0.5

FP32 FP32

FedAvg

Aggregator

CPU + DSP (NPU)

INT8-based on-device

training engine

Private data

Hardware resources

INT8

15 33
55 1

× 𝟐−𝟖

INT8 INT8

Q-FedUpdate

Aggregator

D
ev

ic
es

C
lo

u
d

Web browsers

Network transmission

Figure 1: A comparison of traditional FP32-based FL and our
INT8-based FL (FP32: 32-bit float; INT8: 8-bit integer) across
mobile devices. With the deployment of INT8 training on
DSPs, it enables superior mobile Web services while keeping
all sensitive data on devices.

For example, our preliminary experiment of FL training with VGG-
16 [35] on CIFAR-10 [23] consumes power 42.5 kJ for each partic-
ipant device, which equals watching a YouTube 1080p video on
a smartphone for about 24 hours. The root cause is twofold: (1)
the end-to-end convergence typically takes hundreds or even thou-
sands of global rounds due to the non-IID data distribuition, e.g.,
3,000 rounds for an RNN model reported by Google [7]; (2) per
round, on-device training is also slow due to the constrained hard-
ware resources, e.g., 2.1 seconds to train a VGG-16 model with just
one batch (size 64).

To mitigate such energy impacts on user experience, existing
FL deployments only consider devices that are idle and battery-
charged [7]. This constraint makes FL less flexible and could harm
the accuracy of the output model due to the client selection bias [24,
25]. Prior FL performance optimizations mostly focus on conver-
gence speed and network communication cost [27, 30, 37]. Recently,
the ML community has explored low-precision training [6, 13, 38,
42, 47, 48] to reduce the DNN training overhead, which leverages
fewer-bit data format such as INT8 (8-bit integer) to represent
weights/activations during training instead of FP32 (32-bit float).
While these have proven superior performance on a single device,
they lack key insights into end-to-end FL performance, such as
convergence accuracy and related cost of energy and time.

In this work, we aim to make the cross-device FL more energy-
efficient by incorporating low-precision training based on two ob-
servations. (1) Low-precision training can utilize more heteroge-
neous and energy-efficient processors, as integer operations are
much more efficient than floating-point operations. Indeed, on mo-
bile devices, FP32-based training can only be performed on CPUs,

WWW’24, May 2024, Singapore

even not on GPU [11, 39]. (2) Modern mobile devices often incorpo-
rate domain-specific processors that are powerful on integer-based
operations. For instance, Digital Signal Processor (DSP) is ubiqui-
tously available on smartphones and adequate to execute 128x INT8
operations in one cycle. It shows an 11.3×/4.0× improvement of
energy saving over CPU/GPU in ML tasks [4]. To this end, we make
the very early exploration on orchestrating the low-precision training
on mobile DSPs with FL protocols to improve the energy efficiency in
cross-device FL scenario. Its overall concept and the achievements
made are illustrated in Figure 1.

However, directly applying the state-of-the-art INT8 training
algorithms [38] into cross-device FL framework with mobile DSP
deployment still faces two critical challenges. First, it exhibits signif-
icant performance degradation when combining these algorithms
and FL protocols such as FedAvg [30]. For example, from our pre-
liminary experiment on CIFAR-10 and VGG-16, we observe 16%
accuracy loss and 1.25× slower convergence compared with tra-
ditional FP32-based FL. We find out the reason that, during the
aggregation, most of the values inmodel updates generated by local
INT8 training are even smaller than the numerical error of INT8
quantization. Those updates are therefore erased when the new
global FP32 model is quantized back to INT8 to be dispatched to
devices. Second, pure DSP-driven INT8 training cannot efficiently
run on devices, due to the inevitable FP32 operations introduced
by frequent batch-data quantization.

Atop those key observations, we propose Q-FedUpdate, an INT8
FL framework that significantly reduces energy consumption of
mobile devices and accelerates model convergence. The key idea
of Q-FedUpdate is twofold. First, it designs an error-compensated
aggregation protocol that aggregates the model updates produced
by the local INT8 training, instead of the locally-updated model
weights. And the aggregated result is applied on amaintained global
FP32 model to compensate for the quantization errors before pro-
ceeding to the next round. The rationale is that it can preserve more
effective updates that will not be erased by the by the FP32-to-INT8
quantization, though aggregating model updates is mathematically
equivalent to model weights aggregation with FP32-only format.
In such a way, the tiny model updates are accumulated during
the FL process and finally take effect in the quantized model. Sec-
ond, our key observation is that CPU-based data quantization and
DSP-enabled model training are not strictly dependent, as there is
non-negligible PCIe transmission in between. it designs a pipelined
batch quantization mechanism, which pipelines data quantization
on CPU, transmission across PCIe and INT8 training on DSP. It
enables an efficient parallelization of CPU-based quantization and
DSP-enabled training to alleviat DSP’s computation pressure.

We have implemented Q-FedUpdate on a simulation platform
atop FLASH [43] and an end-to-end INT8 training library for smart-
phones based on MNN [18], a popular lightweight ML engine de-
veloped by Alibaba. We then perform extensive experiments to
evaluate the effectiveness of Q-FedUpdate on mobile CPU/DSP
chips with 3 classical FL datasets. The results show that, compared
to traditional FP32-based FL protocol, Q-FedUpdate tremendously
reduces energy consumption of mobile devices by 14×-28×, and
significantly accelerates the model convergence by 5.1×-7.1×, with
acceptable accuracy loss (1%-3%).

Contributions are summarized as follows.

Table 1: The inference time (T: ms) and energy consumption
(E: J) of different model precision. The experiments are per-
formed on Xiaomi 10 with TensorFlow Lite.

Models CPU, FP32 CPU, INT8 DSP, INT8
T E T E T E

MobileNet-V1 11.4 88.2 4.3 22.7 2.5 5.4
MobileNet-V2 8.6 64.8 4.6 22.9 3.1 5.4
ResNet-50 78.7 597.6 27.8 131.4 9.2 28.8

Inception-V4 266.3 1,980 81.5 399.6 17.2 59.4
EfficientNet-V2 33.0 187.2 13.4 59.4 8.44 12.6

• To our best knowledge, we are the first to explore the idea of
applying DSP-enabled INT8 training on FL, and show that
traditional FL protocol does not fit INT8 training through
both experimental and theoretical analysis.
• We propose Q-FedUpdate, a energy-efficient FL framework
for privacy-preserving multimedia training task. It incorpo-
rates two key techniques: error-compensated aggregation
protocol and pipelined batch quantization mechanism.
• We implement Q-FedUpdate through simulation and an on-
device training library. Extensive experiments show the effec-
tiveness of Q-FedUpdate compared to competitive baselines.

2 BACKGROUND AND MOTIVATIONS
2.1 Definition of Federated Learning
Federated learning (FL) is a popular distributed learning paradigm
where 𝑁 clients owning heterogeneous data distributions collabo-
ratively learn a global model𝑤 . A typical FL process incorporates
a central server to aggregate weights from clients [21]. Existing
FL protocols, e.g., FedAvg [30], mostly adopt stochastic gradient
descend (SGD) to optimize the local loss function 𝑓 with 𝐸 epochs
and a fixed learning rate 𝜂. In particular, only 𝐾 devices are ran-
domly selected form total 𝑁 devices at each global training round
𝑡 . The cloud then aggregates the updates sent by each device 𝑘
across WAN. The updates can be formulated as𝑤𝑘 (𝑡 + 1) ←𝑤𝑘 (𝑡)
- 𝜂∇𝑓𝑘 (𝑤𝑘 (𝑡)) and then𝑤 (𝑡 + 1) ← ∑𝐾

𝑘=1
𝑛𝑘
𝑛 · 𝑤

𝑘 (𝑡 + 1).

2.2 DSP-enabled INT8 Training
DSPwas originally designed for processing digital signals like audio
with high energy efficiency. The Hexagon 680 DSP with Hexagon
vector extensions, announced by Qualcomm in 2016, firstly allow
significant compute workloads for advanced image processing and
computer vision [4]. This DSP contains Hexagon cores and a single-
instruction-multiple-data co-processor, which is good at vector
computation [7]. It can process 1024-bit fixed-point data inside
one instruction, or 128 INT8 mathematical functions like add and
multiply in one cycle. Besides, the Hexagon core’s clock frequency
is 500 MHz, which is much lower than the CPU ones, so it is much
more energy friendly. We have measured the speed and energy
of 5 typical deep learning models on Xiaomi 10, and summarized
the results in Table 1. It shows that the execution speed is accel-
erated by 2.8×-15.5× on DSP. The energy saving on DSP is even
more profound: since DSP runs at low frequency, it reduces energy
consumption by up to 32×.

Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs WWW’24, May 2024, Singapore

Algorithm 1: Quantized Federated Averaging (Q-FedAvg)
Input : selected clients 𝐾 , local epochs 𝐸, learning rate 𝜂,

initialized global FP32 model 𝑤 (0) .
Output : the global FP32 model 𝑤.

1 Server executes: // 𝑤𝑞: INT8 model quantized from global

FP32 model 𝑤, 𝑤𝑑: FP32 model dequantized from 𝑤𝑞.
2 for 𝑡 ← 0 to𝑇 do
3 𝑤𝑞 (𝑡) ← quantize 𝑤 (𝑡) // Quantization

4 𝑆 (𝑡) ← (random set of 𝐾 selected clients)
5 for each client 𝑘 ∈ 𝑆 (𝑡) in parallel do
6 𝑤𝑘𝑞 (𝑡 + 1) ← ClientUpdate(𝑘 , 𝑤𝑞 (𝑡))
7 𝑤𝑘

𝑑
(𝑡 + 1) ← dequantize 𝑤𝑘𝑞 (𝑡 + 1)

8 𝑤 (𝑡 + 1) ← ∑𝐾
𝑘=1

𝑛𝑘
𝑛
𝑤𝑘
𝑑
(𝑡 + 1) // global FP32 model

9 ClientUpdate(𝑘 , 𝑤𝑞): // local training on client 𝑘
10 for each epoch 𝑖 ← 1 to 𝐸 do
11 for each training data batch 𝑏 do
12 𝑏𝑞 ← quantize 𝑏 // Quantization

13 𝑔← ▽𝑓 (𝑤𝑞 ;𝑏𝑞) // 𝑔 is stored as INT32 format

14 𝑔𝜂 ← 𝑟𝑜𝑢𝑛𝑑𝑠 (𝑔 ≫ (log2𝐵(𝑔) - 𝜂)) // Eq.2

15 𝑤𝑞 ← 𝑤𝑞 - 𝑔𝜂 // update local INT8 model

16 return 𝑤𝑞 to server

To maximize the advantage of integer-only arithmetic operation
in DSP, we propose to introduce the popular low-bit DNN training
algorithm [24]. In the following, we describe the INT8 (8-bit integer)
training process enabled by DSP from three aspects: quantization,
forward and backward propagation. We mainly retrofit the INT8
training algorithm from a state-of-the-art work [38] for its nearly
accuracy lossless and integer-only arithmetic.
Quantize and Dequantize. For each FP32 numerical value in the
initialized weights or input batches denoted as 𝑥 , we follow the sym-
metric uniform quantization [22] to quantize it to an INT8 number.
This quantization method is the most efficient quantization scheme
due to its hardware-friendly computation. For each 𝑥 following
in the range (𝑙, 𝑢) and a clipping value 𝑐 ∈ (0,𝑚𝑎𝑥 (|𝑙 |, |𝑢 |)), the
quantization can be formulated as below:

𝑥𝑞 = 𝑟𝑜𝑢𝑛𝑑 (𝑐𝑙𝑖𝑝 (𝑥, 𝑐)
𝑠

), (1)

where 𝑐𝑙𝑖𝑝 (𝑥, 𝑐) = 𝑚𝑖𝑛(𝑚𝑎𝑥 (𝑥,−𝑐), 𝑐), 𝑠 = 𝑐

2(8−1)−1 indicates the
scaling factor, and 𝑥𝑞 represents the quantized INT8 number. The
round operation here is a conventional rounding-off method. Sub-
sequently, the corresponding dequantized data 𝑥𝑑 = 𝑥𝑞 · 𝑠 . Noting
that the dequantized FP32 𝑥𝑑 has an inevitable gap between the
original input FP32 𝑥 .
Forward pass. After the above quantization operations, the layer
input 𝑋 and weight𝑊 are INT8 numbers. The activations are de-
noted as 𝐴 to store the INT32 numbers, which are transformed to
INT8 numbers by the right shift and stochastic rounding opera-
tions [13]. All multiply and shift&round operations are executed
on DSP in lower frequency. When forwarding to the final layer,
the activations are rounded to INT8 output 𝑌 . With the integer
cross-entropy loss arithmetic designed in [38], we can obtain the
INT32 error gradient 𝑔𝑌 .
Backward pass. The obtained INT32 error gradients𝑔𝑌 are rounded
to INT8 gradients of the last layer denoted as 𝑔𝐴𝑙 . Then we recur-
sively calculate each layer 𝑙 ’s gradient 𝑔𝐴𝑙 with respect to this

0 250 500 750 10001250150017502000
Round

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

FP32-based FL
Q-FedAvg

(a) Low and slow convergence

5 10 20 50 100
of Selected Clients

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

FP32-based FL
Q-FedAvg

(b) Low scalability

Figure 2: Q-FedAvg’s performance degradation as compared
to traditional FP32-based FL (CIFAR-100). Notice that the
y-axis in (b) denotes the final convergence accuracy.

layer’s activations 𝐴𝑙 . The INT32 activations and gradients are
rounded into INT8 values, similar to the forward pass, before being
back-propagated to the previous layer. Each layer needs to derive
two sets of gradients to perform the recursive update. (1) The layer
activation gradients, 𝑔𝐴(𝑙−1) = 𝑔𝐴𝑙 ·𝑊 𝑙 , which is passed to the next
layer. (2) The weight gradients, 𝑔𝑊 𝑙 = 𝑔𝐴𝑙 · 𝐴(𝑙−1) , which is used
to update layer 𝑙 ’s weights𝑊 𝑙 .

Next, the SGD algorithm is adopted to update the current layer’s
weight𝑊 𝑙 with the calculated weight gradients 𝑔𝑊 𝑙 . The FP32-
based SGD is formulated as𝑊 𝑙 =𝑊 𝑙 − 𝜂 · 𝑔𝑊 𝑙 , where 𝜂 denotes
the FP32 learning rate. However, the FP32-based multiplication is
not allowed in INT8 training. Therefore, we follow the previous
work [38] to replace the 𝜂 · 𝑔𝑊 𝑙 with the following operations:

𝑔𝑙𝜂 = 𝑟𝑜𝑢𝑛𝑑𝑠 (𝑔𝑊 𝑙 ≫ (log2 𝐵(𝑔𝑊 𝑙) − 𝜂)), (2)
where 𝜂 denotes the INT8 learning rate,≫ denotes the right shift
operation, and log2 𝐵(𝑔𝑊 𝑙) denotes the bit width that can represent
each INT32 number in𝑔𝑊 𝑙 . Therefore, the INT8𝜂 in Eq.2 essentially
represents the final bit width of 𝑔𝑙𝜂 after the shift and rounding.

2.3 Motivations
In this work, we aim to design an INT8 FL protocol, which utilizes
DSP-enabled INT8 training to accelerate the model convergence
and reduce the power consumption during the FL process. How-
ever, our prelimilary experiments highlight the insufficiency of
directly applying DSP-enabled INT8 training in FL. The observed
insufficiency is two-fold: 1, Popular FedAvg algorithm severely de-
creases the convergence performance; 2, DSP is not friendly for all
operators (especially quantization) during on-device INT8 training.

Directly applying INT8 training to FedAvg incurs low pre-
cision and scalability. The most intuitive way to achieve quan-
tized federated learning is to directly combine INT8 training with
FedAvg [30], the most widely adopted algorithm in FL.We name this
approach as Q-FedAvg (details in Algorithm 1). Our experiments
show that Q-FedAvg exhibits significant performance degradation
as compared to the traditional FP32-based training. The settings of
the experiments are consistent with §4.

(1) Q-FedAvg results in nontrivial accuracy degradation and re-
quires more rounds to converge. As shown in Figure 2(a), the con-
vergence accuracy of Q-FedAvg is 30% lower than FP32-based FL.
It also takes 1.5× more global rounds towards model convergence.

WWW’24, May 2024, Singapore

Consequently, Q-FedAvg not only decreases the model accuracy,
but also fails to achieve convergence acceleration as expected. (2)
FedAvg is known to benefit frommore clients involved in per-round
training [24], i.e., higher and more stable convergence accuracy.
In Q-FedAvg, however, we observe that more clients lead to lower
accuracy. As shown in Figure 2(b), when the selected client number
increases from 5 to 100, the accuracy drops by 62% in Q-FedAvg.
Such low scalability indicates that Q-FedAvg can only utilize a small
portion of available devices simultaneously. The intuitive behind
reason of above insufficiency is that the numerical error inevitably
introduced by low precision representation will aggravate the bias
between device models, especially with the Non-IID data distribu-
tions across devices [30].

DSP is poorly suited for performing quantization opera-
tions with FP32 arithmetic. Although the DSP is great for han-
dling INT8 vector arithmetic operations, there are still numerous
FP32 operations involved in batch data quantization (as shown in
Line 12 of Algorithm 1) that cannot be efficiently executed on a DSP.
We conducted preliminary measurements to compare the perfor-
mance of FP32 operations on the CPU and DSP. The computation
time for FP32-based quantization on the DSP is as high as 21.3 ms,
respectively, which is nearly 9× more than that on the CPU. This
observation has led us to develop an efficient coordination strategy
between the CPU and DSP.

3 Q-FEDUPDATE: AN INT8 FL FRAMEWORK
In this section, we propose quantized federated update (namely
Q-FedUpdate), an energy-efficient FL framework incorporated with
two key techniques to address the above challenges. Algorithm 2
elaborates their efficient design on server and client, respectively.
We first analyze the essential reasons to the performance deficien-
cies of Q-FedAvg, which guides us to design an error-compensated
aggregation protocol on server, as shown in §3.1. Then, we propose
a pipelined batch quantization mechanism during the on-device
INT8 training to alleviat the heavy computation overhead of FP32-
based quantization and dequantization in §3.2.

3.1 Error-Compensated Aggregation
To further investigate the essential reasons behind such a phenom-
enon, we first conduct a detailed analysis on how the model weight
values change during the whole Q-FedAvg training. The key reason
is that most of the aggregated model updates (Line 8) are too small
compared to the model weights, so that they are mostly erased
during quantization (Line 3) after being applied to the weights in
the next round. In other words, most weights are not intrinsically
updated when moving on to the next round of INT8 training. Atop
this observation, we then design the error-compensated aggrega-
tion protocol that applies these tiny aggregated model updates on
a maintained global FP32 model.

Why is Q-FedAvg insufficient? We first define the model up-
dates of client 𝑘 at round 𝑡 + 1 as:

Δ𝑤𝑘
𝑑
(𝑡 + 1) = 𝑤𝑑 (𝑡) −𝑤𝑘𝑑 (𝑡 + 1), (3)

where𝑤𝑑 (𝑡) denotes the dequantized FP32 model from global INT8
model𝑤𝑞 (𝑡) at round 𝑡 . It essentially represents the accumulated
model updates after several local epoch INT8 training on client 𝑘 .

Algorithm 2: Quantized Federated Update (Q-FedUpdate).
Input : selected clients 𝐾 , initialized global FP32 model 𝑤0.
Output : the global FP32 model 𝑤.
// Error-compensated aggregation on server

1 Server executes: // 𝑤𝑞: INT8 model quantized from global

FP32 model 𝑤, 𝑤𝑑: FP32 model dequantized from 𝑤𝑞.
2 for 𝑡 ← 0 to𝑇 do
3 𝑤𝑞 (𝑡) ← quantize 𝑤 (𝑡) // Quantization

4 𝑤𝑑 (𝑡) ← dequantize 𝑤𝑞 (𝑡) // Dequantization

5 𝑆 (𝑡) ← (random set of 𝐾 selected clients)
6 for each client 𝑘 ∈ 𝑆 (𝑡) in parallel do
7 𝑤𝑘𝑞 (𝑡 + 1) ← ClientUpdate(𝑘 , 𝑤𝑑 (𝑡))
8 𝑤𝑘

𝑑
(𝑡 + 1) ← dequantize 𝑤𝑘𝑞 (𝑡 + 1)

9 Δ𝑤𝑘
𝑑
(𝑡 + 1) ← 𝑤𝑑 (𝑡) - 𝑤𝑘𝑑 (𝑡 + 1) // model updates

10 Δ𝑤𝑑 (𝑡 + 1) ←
∑𝐾
𝑘=1

𝑛𝑘
𝑛
Δ𝑤𝑘

𝑑
(𝑡 + 1) // global updates

11 𝑤 (𝑡 + 1) ← 𝑤 (𝑡) - Δ𝑤𝑑 (𝑡 + 1) // global FP32 model

// Pipelined batch quantization during local training

12 ClientUpdate(𝑘 , 𝑤𝑞): // local training on client 𝑘
13 for each epoch 𝑖 ← 1 to 𝐸 do
14 for each training data batch in pipeline mode do

// Pipelined batch quantization

15 𝑃1: 𝑏 ← sample each batch
16 𝑃2: 𝑏𝑞 ← quantize 𝑏
17 𝑃3: transmit 𝑏𝑞 across PCIe
18 𝑃4: 𝑔← ▽𝑓 (𝑤𝑞 ;𝑏𝑞) ; 𝑔𝜂 ← 𝑟𝑜𝑢𝑛𝑑𝑠 (𝑔 ≫ (log2𝐵(𝑔) -

𝜂)); 𝑤𝑞 ← 𝑤𝑞 - 𝑔𝜂
19 return 𝑤𝑞 to server

The global model updates at round 𝑡 + 1 can be calculated based on
Eq.3 as follows:

Δ𝑤𝑑 (𝑡 + 1) =
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
(𝑤𝑑 (𝑡) −𝑤𝑘𝑑 (𝑡 + 1)). (4)

Then, we have Δ𝑤𝑑 (𝑡 + 1) = 𝑤𝑑 (𝑡) −
∑𝐾
𝑘=1

𝑛𝑘
𝑛 · 𝑤

𝑘
𝑑
(𝑡 + 1), due

to
∑𝐾
𝑘=1

𝑛𝑘
𝑛 ·𝑤𝑑 (𝑡) = 𝑤𝑑 (𝑡). Compared to the global FP32 model

aggregation (Line 8) of Q-FedAvg, we find it equivalent to 𝑤 (𝑡 +
1) ←𝑤𝑑 (𝑡) − Δ𝑤𝑑 (𝑡 + 1). We then detailly analyze the impact of
quantization on this global FP32 model. At the beginning of each
round, the updated global FP32 model𝑤 (𝑡 + 1) is quantized to INT8
model as Eq. 1:

𝑤𝑞 (𝑡 + 1) = 𝑟𝑜𝑢𝑛𝑑 (
𝑐𝑙𝑖𝑝 ((𝑤 (𝑡 + 1)), 𝑐)

𝑠
)

= 𝑟𝑜𝑢𝑛𝑑 (𝑐𝑙𝑖𝑝 ((𝑤𝑑 (𝑡) − Δ𝑤𝑑 (𝑡 + 1)), 𝑐)
𝑠

).
(5)

Each weight value 𝑥 in 𝑤𝑑 (𝑡) is represented numerically as 𝛼 ·
2𝛽 . Due to FP32 model normalization at the beginning of model
initialization, the value 𝑥 tends to satisfy −𝑐 ≤ 𝑥 ≤ 𝑐 , thus 𝑐𝑙𝑖𝑝 (𝑥, 𝑐)
= 𝑥 . And we have 𝑠 = 𝑐

2(8−1)−1 as in Eq 1. So, the above equation is
equivalent to:

𝑤𝑞 (𝑡 + 1) = 𝑟𝑜𝑢𝑛𝑑 (
𝛼 · 2𝛽 − Δ𝑤𝑑 (𝑡 + 1)

𝑐
· (2(8−1) − 1)), (6)

where 𝑐 = (2(8−1) − 1) · 2𝛽 in our training process. Thus, we have:

𝑤𝑞 (𝑡 + 1) = 𝑟𝑜𝑢𝑛𝑑 (𝛼 −
Δ𝑤𝑑 (𝑡 + 1)

2𝛽
). (7)

Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs WWW’24, May 2024, Singapore

(a) Distribution ofmodel updates (b) Effective updates comparison

Figure 3: Numerical analysis for Q-FedAvg’s performance
degradation (CIFAR-100). Note that y-axis is logarithmic.

Considering the rounding mechnism of the function round, if the
term Δ𝑤𝑑 (𝑡+1)

2𝛽 < 0.5, the INT8 value of𝑤𝑞 (𝑡 +1) is still 𝛼 . Therefore,
only the weight update values in Δ𝑤𝑑 (𝑡 + 1) that exceed 2𝛽

2 can be
added to the global INT8 model in the next round, without being
erased by quantization. We define such weight updates as effective
updates, which is a key insight for our design of Q-FedUpdate.

We then conduct concrete experiments on the numerical distri-
bution of Δ𝑤𝑑 during Q-FedAvg training. We surprisingly obtain
the following unique observations: as shown in Figure 3(a), only
a tiny portion (0.1%) of Δ𝑤𝑑 exceed 2𝛽

2 , while others will be quan-
tized to zero after being applied to the original weights. It indicates
that the efforts of multi-epoch training on local devices are wasted,
and explains why Q-FedAvg’s performance degrades significantly.

To further explain the decreased scalability of Q-FedAvg, we
calculate the number of effective updates with different numbers
of clients selected. As shown in Figure 3(b), the number of effective
updates decreases when the number of selected clients per round
increases. We then explain the reason behind this phenomenon. As
we analyze above in Figure 3(a), each selected client has a number
of weight updates quantized to zero. Due to the weighted average
operation, these zero updates in some clients affect the effective up-
dates in some other clients, thus further reducing the total effective
updates of the final aggregated model.

How to compensate for this quantization error? Motivated
by the above analysis, our proposed error-compensated aggregation
protocol updates the global FP32 model with the model updates,
instead of the global INT8 model. This novel design compensates
for the quantization error in this round with a maintained global
FP32 model, which enables more effective updates for the quantized
global INT8 model in the next round. Algorithm 2 shows its work-
flow on server. Compared to naive Q-FedAvg, there are several key
steps: i) dequantize the quantized INT8 model at the beginning
of each round (Line 4), ii) calculate and aggregate model updates
(Lines 9-10), iii) update the global maintained FP32 model with the
aggregated model updates (Line 11).

The design of this protocol is somehow counterintuitive as it
applies the model updates on the global FP32 model, which is not
the starting point of the model that is trained on each local device.
We then explain why this design is more efficient and scalable
compared to Q-FedAvg. As shown in Algorithm 1 and Algorithm 2,
they both have the same initialized global FP32 model and global
INT8 model. However, they gradually deviated after several global

Batch #1

P1 P2 P3 P4

Batch #2

P1 P2 P3 P4

Batch #n

P1 P2 P3 P4

…

…

(a) Traditional four procedures of local training on device

Batch #1P2 P3 P4

Batch #2P2 P3 P4

Batch #nP2 P3 P4

… …

(b) Pipeline procedures: parallelization of P2 on CPU and P4 on DSP

P1

P1

P1

Figure 4: Q-FedUpdate pipelines four precedures in local train-
ing: sample and quantize batch data (𝑃1&𝑃2 onCPU), transmit
quantized data (𝑃3 across PCIe), and INT8-based forward and
backward pass (𝑃4 on DSP).

rounds. For this protocol in Q-FedUpdate,

𝑤 (𝑡 + 1) = 𝑤 (𝑡) −
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
Δ𝑤𝑘

𝑑
(𝑡 + 1) (8)

= 𝑤 (𝑡) −
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
(𝑤𝑑 (𝑡) −𝑤𝑘𝑑 (𝑡 + 1))

= 𝑤 (𝑡) −𝑤𝑑 (𝑡) +
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝑤𝑘
𝑑
(𝑡 + 1) .

And for Q-FedAvg, 𝑤𝑡+1 =
∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤

𝑘
𝑑
(𝑡 + 1). we observe from

the comparison that Q-FedUpdate essentially compensates for the
quantization error𝑤 (𝑡) −𝑤𝑑 (𝑡) of the global model at each round 𝑡 .
Following the analysis of model updates in §3.2, this value can com-
pensate the gap between the Δ𝑤𝑑 (𝑡+1) and 2𝛽

2 in Eq. 7. Therefore, it
can recover a lot of weight information lost due to the quantization,
thus improving the model performance.

3.2 Pipelined Batch Quantization
This section presents a pipelined batch quantization mechanism
on device, as shown in Algorithm 2. Given the DSP-unfriendly on
the quantization of batch data (illustrated in §2.3), we extend this
operation on the CPU. As a result, the local training in Q-FedAvg
becomes the following four precedures:
• Sample a batch of training data on CPU (P1);
• Quantize batch data on CPU (P2);
• Transmit quantized data across PCIe (P3);
• INT8-based forward and backward pass on DSP (P4).

However, since the CPU-DSP context switching incurs high over-
head mainly due to the data copy between their own memory space
(i.e., around 25ms on XiaoMI 10), this approach could lead to non-
optimal performance.

Our key observation is that the training data quantization and
model training in two successive batches are independent. In this
case, the quantization of next batch does not need to wait for the
DSP-enabled model training on the previous batch. Instead, we can
start the CPU computation to quantize the next batch as soon as
the previous quantized batch begin to be transmitted across PCIe,
regardless of its following local training on DSP. Figure 4 illustrates
the advantage of pipelining over the strawman solution.

WWW’24, May 2024, Singapore

Table 2: The datasets andmodels used in experiments, and ourmeasured per-batch training time (T:ms) and energy consumption
(E: J) of those models on Xiaomi 10 with on-device training engine MNN [18].

Dataset Model (size) Batch size # of clients # of samples
on each client

CPU, FP32 CPU, INT8 DSP, INT8
T (ms) E (J) T (ms) E (J) T (ms) E (J)

FEMNIST LENET-5 (1.6MB) 5 192 226 58 0.3 30 0.15 11 0.02
CIFAR-10 VGG-16 (15MB) 64 100 500 2,076 13.6 1,075 6.9 397 1.1
CIFAR-100 VGG-16 (15MB) 64 500 100 2,096 14 1,080 7.2 401 1.1

Table 3: Our measured per-batch time and energy as Table 2
on three devices with different levels of DSP chips.

Device DSP level FEMNIST CIFAR-10 CIFAR-100
T E T E T E

Redmi Note 9 Low 23 0.03 810 1.7 812 1.7
Xiaomi 10 Medium 11 0.02 397 1.1 401 1.1

Xiaomi 11 Pro High 8 0.02 300 1 309 1

4 EVALUATION
4.1 Experiment Settings
Datasets and models. In Table 2, we evaluate Q-FedUpdate on
three real-world federated datasets and twomodels: LeNet-5 [10] on
FEMNIST [32], with 192 clients as in previous work [8]. VGG-16 [35]
on both CIFAR-10 [23] and CIFAR-100 [23], with each partitioned
into 100 and 500 clients as in previous work [15].
Simulation platform. We have implemented Q-FedUpdate on
a simulation platform atop FLASH [43] and an end-to-end INT8
training library for smartphones based on MNN [18], a lightweight
DL engine developed by Alibaba. The platform also incorporates
the concept of device heterogeneity as introduced by FLASH [43],
which includes large-scale smartphone traces to simulate how FL
operates once deployed in the real world. To obtain the on-device
training performance with FP32/INT8 format on CPU/DSP, we
follow prior work [42] to measure the wall clock time and en-
ergy consumption with MNN library on three different levels of
smartphones. Overall, the per-batch training cost on Xiaomi 10 is
summarized in Table 2 and the results on different DSP chips are
shown in Table 3. We also plug the numbers measured into the
simulation platform to obtain the end-to-end performance till the
model convergence. All our simulated experiments are performed
on a high-performance Linux server with 8 NVIDIA V100 GPUs.
Metrics. Apart from the convergence accuracy on the testing data,
we also report the following two metrics that closely relate to the
mobile devices that participate in FL. (1) Energy measures the av-
erage energy consumption of on-device training for each device,
while considering the random device selection [30]. (2) Clock time
is the end-to-end training time perceived by the FL developers,
including many rounds of on-device training and network commu-
nication time to download/upload models with a default bandwidth
(10Mbps on average) capacity [46].
Baselines. We compare Q-FedUpdate with three baselines: (1)
FloatFL: the traditional FP32-based FL protocol with FedAvg. (2)
Q-FedAvg: directly integrating INT8 training with FedAvg as shown
in Algorithm 1. (3) QuanFL [40]: reducing the network transmission
time through model quantization as INT8 format, but still using
FP32-based training on devices.

0 200 400

20

40

60

80

Ac
cu

ra
cy

 (%
)

FloatFL QuanFL Q-FedAvg Q-FedUpdate

0 500 1000
Round

20

40

60

80

0 1000 2000
0

10

20

30

40

50

60

70

FEMNIST CIFAR-10 CIFAR-100

Figure 5: The convergence accuracy of Q-FedUpdate and base-
lines across training round on three datasets.

4.2 Convergence Analysis
In this section, we demonstrate that Q-FedUpdate is able to signifi-
cantly accelerate the model convergence while guaranteeing the
model accuracy. The results are illustrated in Figure 5. To obtain
the highest model accuracy, we give the settings of the following
hyperparameters. We follow the prior work [8, 38] to set 𝜂=3 for
Q-FedUpdate and Q-FedAvg, and set 𝜂 = 0.01 for FloatFL and
QuanFL, respectively. We set 𝐸=1 for all FL protocols. We set 𝑘=5
for Q-FedAvg (fewer clients attributes to higher accuracy), and 𝑘=50
for others on three datasets.
Q-FedUpdate vs. FloatFL and Q-FedAvg. As shown in Figure 5,
compared with FloatFL, Q-FedUpdate greatly improves the con-
vergence speed while preserving the model accuracy. For instance,
on FEMNIST, Q-FedUpdate’s convergence accuracy is only 1%
lower than FloatFL, but it takes 35.0% fewer global rounds to con-
verge. Similarly, on CIFAR-10 and CIFAR-100, Q-FedUpdate’s con-
vergence accuracy is 3% and 2% lower than FloatFL, but it takes
12.5% and 20.0% fewer global rounds to converge, respectively.
The 2% average accuracy loss is mainly due to the INT8 format,
which has limited numerical representation. This accuracy drop is
generally accepted by the relevant low-precision training com-
munity [6, 13, 38, 47, 48]. At the same time, INT8-based train-
ing is also the key reason why Q-FedUpdate can achieve such
a speedup. Compared to Q-FedAvg, Q-FedUpdate achieves great
accuracy improvement with much fewer global rounds. More specif-
ically, Q-FedUpdate achieves 3%, 13%, and 8% higher convergence
accuracy, and greatly reduces 43.5%, 80.0%, and 30.0% global rounds
required to converge on the three datasets. Such tremendous im-
provement comes from our unique design of Algorithm 2 (in §3.1)
that updating a maintained global FP32 model with the model up-
dates, instead of the updated INT8 model.

Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs WWW’24, May 2024, Singapore

FEMNIST CIFAR-10 CIFAR-100

10 1

100

101

En
er

gy
 (k

J)

0.56

42.5

2.2

0.18

18.9

0.9

0.04

4.6

0.21

0.02

3.0

0.14

0.02

2.7

0.13

FloatFL (#1) Q-FedUpdate (#2)
Q-FedUpdate (L) Q-FedUpdate (M) Q-FedUpdate (H)
o o o

Figure 6: Impact analysis of Q-FedUpdate using different DSP
chips compared with FloatFL (#1). Breakdown analysis of
Q-FedUpdate design and DSP hardware compared with CPU-
enabled FloatFL (#1) and Q-FedUpdate (#2).

Q-FedUpdate vs. QuanFL. The accuracy of Q-FedUpdate on the
three datasets is nearly the same as that of QuanFL. QuanFL trans-
mits the quantized INT8 models to the server, but still uses FP32-
based training on devices. Therefore, the communication cost of
Q-FedUpdate is the same as that of QuanFL in each round. But, it
takes 40.9%, 30.0%, and 33.3% fewer global rounds for Q-FedUpdate
to converge, due to the higher efficiency of INT8 training [47].

4.3 Energy and Time Reduction
In this section, we analyze the energy and time consumed for
Q-FedUpdate to converge in an end-to-end manner. These two
metrics are highly concerned by mobile devices. Q-FedUpdate is
tested on both CPU and 3 different DSP chips in Table 2, 3.
Energy-to-converge. As observed from Table 4, Q-FedUpdate
takes only 0.02, 3.0 and 2.6 (unit: kJ) energy consumption per client
using medium DSP to reach convergence on FEMNIST, CIFAR-10
and CIFAR-100, respectively. It exhibits 14×–28× energy reduction
as compared to traditional FloatFL, with only around 2% accuracy
loss. Compared with a stronger baseline QuanFL, Q-FedUpdate
still reduces 3.2× energy consumption on average. This is because,
QuanFL only optimizes for network traffic but not on-device com-
putation. Such an improvement on energy efficiency makes it more
flexible to select clients that may not have abound batteries.

To investigate the impact of different DSP chips on energy con-
sumption, we compare Q-FedUpdate using low/medium/high DSPs
to the traditional FloatFL using CPU as shown in Figure 6. The en-
ergy consumption of Q-FedUpdate increases as the performance
of DSP decreases. For example, Q-FedUpdate using a low DSP
consumes up to 70.4% more energy than that using a high DSP.
Compared with FloatFL on CPU, even deploying Q-FedUpdate on
wimpy DSP can bring 9×-14× energy reduction (details in Table 4).

We also deploy the INT8 training on CPU to analyze the break-
down improvement of energy consumption due to the Q-FedUpdate
design andDSP hardware.We compare Q-FedUpdate usingmedium
DSP, Q-FedUpdate using CPU and FloatFL as shown in Figure 6.
Compared with traditional FloatFL, Q-FedUpdate using CPU still
reduces energy by up to 2.2×-3.1× on the three datasets. This is

FEMNIST CIFAR-10 CIFAR-1000

1

2

3

4

5

Ti
m

e
(h

ou
rs

)

0.29

3.6

0.91

0.32

4.5

1.09

0.03

0.6
0.14

FloatFL (#1) QuanFL (#1) Q-FedUpdate (M)

(a) Computation time (hours)

FEMNIST CIFAR-10 CIFAR-1000

1

2

3

4

5

0.28

5.34 6.67

0.08

1.67
2.0

0.05

1.17 1.33

(b) Communication time (hours)

Figure 7: The acceleration performance breakdown of com-
putation and communication time.

because CPU is better at integer operations (though not as good
as DSP) compared to floating points. Further enabling DSP with
Q-FedUpdate reduces energy by 6.3×-9.0× for a medium DSP.
Time-to-converge. As shown in Table 4, it takes only 0.08, 1.75
and 1.47 hours for Q-FedUpdate using medium DSP to converge
on FEMNIST, CIFAR-10 and CIFAR-100, respectively. It is 5.1×-
7.1× faster compared to FloatFL. Such tremendous improvement
comes from both on-device training acceleration and network traffic
reduction. On the other hand, QuanFL also reduces the network
transmission time through model quantization, yet it is still 2.1×-
5.0× slower than Q-FedUpdate. We then break down the clock time
to delve into the improvement on computation (on-device training)
and communication time separately, in Figure 7. We obtain two key
observations from this figure: (1) Q-FedUpdate reduces both the
computation and communication time using DSP, while QuanFL
only reduces communication time, and even increases computation
time (1.1×-1.3×) due to the slower convergence. (2) Q-FedUpdate
achieves 7.9× average computation acceleration, which is far more
significant than its 5.1× average communication acceleration.

Similarly, Table 4 also shows the acceleration performance of
Q-FedUpdate using different DSP chips. First, the convergence time
of Q-FedUpdate increases as DSP’s performance decreases (up to
71.4% on FEMNIST). Second, even Q-FedUpdate using wimpy DSP
converges faster than all other baselines, including Q-FedUpdate
using CPU. And it still accelerates the convergence by up to 3.7×-
4.8× compared with traditional FloatFL.

Finally, we compare traditional FloatFL, Q-FedUpdate using CPU
and Q-FedUpdate using medium DSP to analyze the breakdown
improvement of convergence acceleration as shown in Table 4.
With INT8 training deployed on medium DSP instead of CPU,
Q-FedUpdate accelerates the convergence by up to and 1.2×-1.8×
on the three datasets . These benefits come from the advantages of
DSP hardware for integer operations. In addition, Q-FedUpdate
using CPU further accelerates the convergence by up to 3.2×-
4.1× in terms of hours, compared with FloatFL using CPUs. This
huge acceleration comes from the weight compensation design of
Q-FedUpdate, which enables fewer global rounds to converge.

4.4 Scalability Analysis on Selected Clients
In this section, we study the scalability of Q-FedUpdate with dif-
ferent number of selected clients (𝐾=5,10,20,50,100) per round.

WWW’24, May 2024, Singapore

Table 4: The convergence accuracy (Acc: %) and the time (T: hours) / energy consumed (averaged per client, E: kJ) to reach that
convergence. We denote the settings as (#1):(CPU,FP32), (#2):(CPU,INT8), which means FP32/INT8 training on CPU processor as
shown in Table 2. And (L/M/H) represents (L-DSP/M-DSP/H-DSP,INT8), which means INT8 training on low/medium/high DSPs
as shown in Table 3, respectively.

Algorithms FEMNIST CIFAR-10 CIFAR-100
Acc (%) T (hours) E (kJ) Acc (%) T (hours) E (kJ) Acc (%) T (hours) E (kJ)

FloatFL (#1) 82 (1↓) 0.57 0.56 84 (3↓) 8.94 42.5 71 (2↓) 7.58 2.2
QuanFL (#1) 80 0.40 0.62 82 6.17 53.1 67 3.09 2.6

Q-FedUpdate (#2) 81 0.14 0.18 81 2.80 18.9 69 1.71 0.9
Q-FedUpdate (L) 81 0.12 (4.8×) 0.04 (14×) 81 2.40 (3.7×) 4.6 (9×) 69 1.61 (4.7×) 0.21 (10×)
Q-FedUpdate (M) 81 0.08 (7.1×) 0.02 (28×) 81 1.77 (5.1×) 3.0 (14×) 69 1.47 (5.2×) 0.14 (16×)
Q-FedUpdate (H) 81 0.07 (8.1×) 0.02 (28×) 81 1.62 (5.5×) 2.7 (16×) 69 1.44 (5.3×) 0.13 (17×)

5 10 20 50 100
70

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

FloatFL Q-FedAvg Q-FedUpdate

5 10 20 50 100
of selected clients

50
55
60
65
70
75
80
85

5 10 20 50 100
10

20

30

40

50

60

70

FEMNIST CIFAR-10 CIFAR-100

Figure 8: The scalability (i.e., impacts of more participant
devices per round) of Q-FedUpdate and Q-FedAvg. The dark
area indicates the gap of convergence accuracy.

From Figure 8, we observe that Q-FedUpdate greatly improves
the scalability to benefit from more participant devices each round
compared to Q-FedAvg. In traditional FP32-based FloatFL, more
clients participating in each round contributes more diverse train-
ing samples, which can accelerate the convergence with higher
accuracy. However, this is reversed in Q-FedAvg. More specifically,
Q-FedAvg’s accuracy drops from 78% to 70%, from 68% to 48%, and
from 61% to 9% with the number of selected clients increasing from
5 to 100 on three datasets, respectively. In contrast, Q-FedUpdate
achieves a great improvement on convergence accuracy as the in-
crease of selected clients. For example, when 𝐾=100, Q-FedUpdate
can greatly improve the accuracy by 11%, 33% and 60%, respectively.
The reason for such performance improvement is that our weight
compensation design avoids many effective updates being erased,
thus better utilizing the updates from more selected clients.

5 RELATEDWORK
FL is an emerging machine learning paradigm to enable many
clients to collaboratively train an ML model while preserving data
privacy [21, 30]. This work targets cross-device FL scenario, where
each client is a mobile device, and the obtained model can be used
to improve user experience on AI-driven mobile Web systems [12,
28, 29]. However, in this scenario, the huge energy consumption of
on-device training seriously restricts the large-scale deployment
and application of cross-device FL [19]. Many efforts have been

invested to accelerate the FL convergence, e.g., model compression
to reduce each round’s network transmission [17, 33, 34, 36, 40],
yet still adopt FP32 format for on-device training.
Low-precision training has been studied for many years to re-
duce the computation overhead on both clouds and edges, e.g., FP16
and INT8 [6, 13, 38, 47, 48]. For example, INT8-based training ap-
proaches [38, 47, 48] optimized INT8 training algorithm in both
forward and backward passes, which can achieve adequate training
speedup with nearly negligible accuracy loss. However, these work
mainly focus on a single device’s overhead of centralized machine
learning tasks, which is not enough for FL training with large-scale
mobile devices. We are aware of two similar researches [5, 45]
that makes preliminary efforts in introducing low-precision data
representation to mitigate device heterogeneity in FL. Our study
differs from them in two aspects: (1) We adopt a fully INT8 training
algorithm, and accuracy is nearly 5% higher, evaluated on multiple
models. (2) We actually deploy the state-of-the-art INT8 training
algorithm on CPU/DSP processors of mobile devices, and measure
the substantial improvement on clock time, energy consumption.
Energy optimization for FL.Many researches focused on how to
jointly optimize the computation and wireless transmission energy
consumption through resource scheduling [9, 16, 26, 44]. These
methods achieved the energy saving by coordinating the computa-
tion and communication, as well as the communication resources
itself, but ignoring the huge energy consumption of DNN training
on mobile devices. AutoFL [20] tailor-designed a reinforcement
learning algorithm to judiciously determine the participant devices,
which can reduce the number of devices involved in each round.
While this method can reduce the average energy consumption
of all participant devices, it is more likely to introduce unfairness.
This is because some more important devices will often be selected,
resulting in excessive energy consumption [24, 25].

6 CONCLUSIONS
In this paper, we present a novel energy-efficient FL framework,
namely Q-FedUpdate, which enables INT8-based training on energy-
friendly mobile DSP chip. It employs an idea of maintaining a global
FP32 model where the tiny aggregated model updates can be accu-
mulated, integrated with a CPU-cooperative efficient batch quanti-
zation. Compared to existing FL protocols, Q-FedUpdate can both
greatly reduce the energy consumption of on-device training and
accelerate the model convergence with acceptable accuracy loss.

Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs WWW’24, May 2024, Singapore

REFERENCES
[1] General data protection regulation (gdpr). https://gdpr-info.eu/, 2016.
[2] California consumer privacy act (ccpa). https://en.wikipedia.org/wiki/California_

Consumer_Privacy_Act, 2018.
[3] How apple personalizes siri without hoovering up your data. https:

//www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-
federated-learning/, 2019.

[4] Qualcomm hexagon. https://en.wikipedia.org/wiki/Qualcomm_Hexagon, 2021.
[5] Ahmed M Abdelmoniem and Marco Canini. Towards mitigating device hetero-

geneity in federated learning via adaptive model quantization. In Proceedings of
Workshop on Machine Learning and Systems, pages 96–103, 2021.

[6] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods
for 8-bit training of neural networks. Advances in neural information processing
systems, 31, 2018.

[7] Keith Bonawitz, Hubert Eichner, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon,
Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. Towards fed-
erated learning at scale: System design. Proceedings of Machine Learning and
Systems, 1:374–388, 2019.

[8] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark
for federated settings. arXiv:1812.01097, 2018.

[9] Xiaowen Cao, Guangxu Zhu, Jie Xu, Zhiqin Wang, and Shuguang Cui. Optimized
power control design for over-the-air federated edge learning. Journal on Selected
Areas in Communications, 40(1):342–358, 2022.

[10] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:
Extending mnist to handwritten letters. In International Joint Conference on
Neural Networks, pages 2921–2926, 2017.

[11] Anish Das, Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. Enabling
on-device smartphone GPU based training: Lessons learned. In International
Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events, pages 533–538, 2022.

[12] Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M Glass, and Jimeng Sun.
Stagenet: Stage-aware neural networks for health risk prediction. In Proceedings
of The Web Conference, pages 530–540, 2020.

[13] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In International conference on
machine learning, pages 1737–1746, 2015.

[14] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
Federated learning for mobile keyboard prediction. arXiv:1811.03604, 2018.

[15] Chaoyang He, Songze Li, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library
and benchmark for federated machine learning. arXiv:2007.13518, 2020.

[16] Yuntao Hu, Ming Chen, Mingzhe Chen, Zhaohui Yang, Mohammad Shikh-Bahaei,
H. Vincent Poor, and Shuguang Cui. Energy minimization for federated learn-
ing with irs-assisted over-the-air computation. In International Conference on
Acoustics, Speech and Signal Processing, pages 3105–3109, 2021.

[17] Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. Adap-
tive quantization of model updates for communication-efficient federated learn-
ing. In International Conference on Acoustics, Speech and Signal Processing, pages
3110–3114, 2021.

[18] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua Wu. Mnn:
A universal and efficient inference engine. In Proceedings of Machine Learning
and Systems, pages 1–13, 2020.

[19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, KA Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[20] Young Geun Kim and Carole-Jean Wu. Autofl: Enabling heterogeneity-aware
energy efficient federated learning. In Annual International Symposium on Mi-
croarchitecture, pages 183–198, 2021.

[21] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv:1610.05492, 2016.

[22] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for
efficient inference: A whitepaper. ArXiv, abs/1806.08342, 2018.

[23] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.
[24] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort:

Efficient federated learning via guided participant selection. In Symposium on
Operating Systems Design and Implementation, pages 19–35, 2021.

[25] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A fine-grained
client selection framework for efficient federated learning. InAnnual International
Conference on Mobile Computing and Networking, 2022.

[26] Liang Li, Dian Shi, Ronghui Hou, Hui Li, Miao Pan, and Zhu Han. To talk or
to work: Flexible communication compression for energy efficient federated
learning over heterogeneous mobile edge devices. In Conference on Computer
Communications, pages 1–10, 2021.

[27] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. Proceedings
of Machine Learning and Systems, 2:429–450, 2020.

[28] Junxin Liu, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing Xie. Neu-
ral chinese word segmentation with lexicon and unlabeled data via posterior
regularization. In Proceedings of The Web Conference, pages 3013–3019, 2019.

[29] Yilin Liu, , and Mahanth Gowda. Neuropose: 3d hand pose tracking using emg
wearables. In Proceedings of the Web Conference, pages 1471–1482, 2021.

[30] Brendan McMahan, Eider Moore, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In
Artificial Intelligence and Statistics, pages 1273–1282, 2017.

[31] Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui
Shi, and Hongzhi Yin. Semi-decentralized federated ego graph learning for
recommendation. In Proceedings of the Web Conference, pages 339–348, 2023.

[32] Sashank J. Reddi, Zachary B. Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konecný, Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated
optimization. ArXiv, abs/2003.00295, 2021.

[33] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning method
with periodic averaging and quantization. In International Conference on Artificial
Intelligence and Statistics, pages 2021–2031, 2020.

[34] Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang
Cui. Federated learning with quantization constraints. In International Conference
on Acoustics, Speech and Signal Processing, pages 8851–8855, 2020.

[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556, 2014.

[36] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communica-
tion compression for decentralized training. In Advances in Neural Information
Processing Systems, pages 7652–7662, 2018.

[37] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and
Yasaman Khazaeni. Federated learning with matched averaging. In International
Conference on Learning Representations, 2020.

[38] Maolin Wang, Seyedramin Rasoulinezhad, Philip HW Leong, and Hayden K-H So.
Niti: Training integer neural networks using integer-only arithmetic. Transactions
on Parallel and Distributed Systems, 33(11):3249–3261, 2022.

[39] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang
Huang, Yunxin Liu, and Xuanzhe Liu. Melon: breaking the memory wall for
resource-efficient on-device machine learning. InAnnual International Conference
on Mobile Systems, Applications and Services, pages 450–463, 2022.

[40] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compen-
sated quantized sgd and its applications to large-scale distributed optimization.
In International Conference on Machine Learning, pages 5325–5333, 2018.

[41] Han Xie, Li Xiong, and Carl Yang. Federated node classification over graphs
with latent link-type heterogeneity. In Proceedings of the Web Conference, pages
556–566, 2023.

[42] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun Ma, Kang
Huang, Guang Huang, Xin Jin, and Xuanzhe Liu. Mandheling: Mixed-precision
on-device dnn training with dsp offloading. arXiv:2206.07509, 2022.

[43] Chengxu Yang, QipengWang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. Characterizing impacts of heterogeneity in federated
learning upon large-scale smartphone data. In Proceedings of the Web Conference,
pages 935–946, 2021.

[44] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad
Shikh-Bahaei. Energy efficient federated learning over wireless communication
networks. Transactions on Wireless Communications, 20(3):1935–1949, 2021.

[45] Jaehong Yoon, Geon Park, Wonyong Jeong, and Sung Ju Hwang. Bitwidth
heterogeneous federated learning with progressive weight dequantization.
arXiv:2202.11453, 2022.

[46] Jinliang Yuan, Mengwei Xu, Ao Zhou, and Shangguang Wang. Hierarchical
federated learning through lan-wan orchestration. ArXiv:2010.11612, 2020.

[47] Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang,
Tao Guo, Boyuan Luo, and Jingren Zhou. Octo: Int8 training with loss-aware
compensation and backward quantization for tiny on-device learning. In Annual
Technical Conference, pages 177–191, 2021.

[48] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li,
Xiuqi Yang, and Junjie Yan. Towards unified int8 training for convolutional
neural network. In Proceedings of Conference on Computer Vision and Pattern
Recognition, pages 1969–1979, 2020.

https://gdpr-info.eu/
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://en.wikipedia.org/wiki/Qualcomm_Hexagon

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Definition of Federated Learning
	2.2 DSP-enabled INT8 Training
	2.3 Motivations

	3 Q-FedUpdate: an INT8 FL framework
	3.1 Error-Compensated Aggregation
	3.2 Pipelined Batch Quantization

	4 Evaluation
	4.1 Experiment Settings
	4.2 Convergence Analysis
	4.3 Energy and Time Reduction
	4.4 Scalability Analysis on Selected Clients

	5 Related Work
	6 Conclusions
	References

