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ABSTRACT

Semi-supervised learning (SSL) effectively addresses limited labeled data chal-
lenges in volumetric medical image segmentation by leveraging both ground-truth
labels and pseudo-labels from unlabeled data. However, conventional optimizers
treat gradients from labeled and unlabeled sources equally, often leading to either
over-trust or over-rejection of pseudo-label signals. We introduce Hierarchical
Cautious Optimization (HCO), which establishes a trust hierarchy between gra-
dient sources. HCO computes momentum estimates using only gradients from
labeled data and incorporates unlabeled gradients only when they align with this
trusted direction. Our approach integrates into existing momentum-based opti-
mizers with minimal implementation effort and computational cost. Evaluations
across three datasets demonstrate consistent performance improvements, particu-
larly on a challenging fetal MRI dataset where Dice scores for fetal lungs and liver
increased from 0.68 to 0.84 and 0.71 to 0.82, respectively. The consistent gains
across optimizers and datasets, combined with minimal implementation overhead,
position HCO as a practical enhancement for existing SSL medical segmentation
pipelines.

1 INTRODUCTION

Deep convolutional neural networks (DCNNs) have proven their effectiveness for volumetric med-
ical image segmentation. However, they require large, expert-annotated datasets that are often un-
available and difficult to create Cheplygina et al. (2019); Litjens et al. (2017). Semi-supervised
learning (SSL) methods aim to reduce the annotation burden by using a few annotated and many
unannotated samples Ouali et al. (2020). Predominant SSL strategies involve generating supervi-
sory signals from unlabeled data, often via pseudo-labeling or enforcing consistency across aug-
mentations Sohn et al. (2020); Tarvainen & Valpola (2017). Although recent research has focused
on improving pseudo-labels Bai et al. (2023); Huang et al. (2023); Luo et al. (2021b); Shen et al.
(2023); Song & Wang (2024); Wu et al. (2021); Yu et al. (2019); Zhou et al. (2023), the optimization
process has received much less attention.

SSL methods typically minimize a combined loss function, L = LL + LU, where LL and LU are
the losses over labeled and unlabeled data respectively. Standard optimizers Robbins & Monro
(1951); Kingma & Ba (2015); Loshchilov & Hutter (2019) such as Stochastic Gradient Descent
(SGD), Adam, and AdamW treat the gradients from both terms equally, despite increasing evidence
that gradients from unlabeled data are considerably noisier and less trustworthy Arazo et al. (2020).
This approach exposes the model to well-known SSL failure modes: confirmation bias (where the
model reinforces its own incorrect pseudo-labels Arazo et al. (2020)) and co-training collapse (where
teacher-student or multi-view frameworks synchronize to shared mistakes) Chen et al. (2021). With
pseudo-labeling and consistency techniques reaching maturity, revisiting optimization methods of-
fers a promising avenue to further unlock SSL potential.

We propose Hierarchical Cautious Optimization (HCO), a framework for momentum-based optimiz-
ers that establishes a trust hierarchy between labeled and unlabeled gradients. HCO prioritizes reli-
able supervision signals by computing momentum estimates solely from labeled gradients ∇LL, es-
tablishing a trusted optimization direction. HCO incorporates unlabeled gradients ∇LU cautiously:
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they update momentum only when aligned with the trusted labeled momentum. This ensures unla-
beled gradients amplify but never contradict the labeled direction. Our hierarchical design directly
addresses confirmation bias and co-training collapse by preventing conflicting gradients from cor-
rupting the optimization trajectory. Under standard smoothness assumptions, we prove (Appendix
A) that this approach preserves convergence guarantees while preventing degradation of the labeled
objective. Importantly, HCO requires no architectural or loss function changes, functioning as a
drop-in replacement for any existing SSL pipeline.

Experimental results demonstrate HCO’s effectiveness across three diverse volumetric medical seg-
mentation benchmarks: the public Left Atrium Xiong et al. (2021) and Pancreas-CT Roth et al.
(2015) datasets, and a challenging private fetal MRI dataset with considerable anatomical variability.
In all cases, HCO variants yielded substantial improvements in segmentation accuracy, particularly
in low-label regimes.

Our contributions are fourfold: (1) HCO, a novel optimization framework that establishes a trust
hierarchy between labeled and unlabeled gradients; (2) Convergence Analysis, providing a formal
proof that HCO preserves the convergence guarantees of its base optimizers under standard smooth-
ness and bounded-variance assumptions (Appendix A); (3) Mechanistic Understanding, showing
through supervised-unsupervised loss dynamics that HCO promotes sustained utilization of unla-
beled signals (Section 4.5); and (4) Empirical and Practical Validation, demonstrating consistent
performance gains across three datasets with minimal code changes and negligible computational
overhead.

2 RELATED WORK

Semi-Supervised Learning for Segmentation. Semi-Supervised Learning (SSL) for segmenta-
tion leverages limited labeled data (DL) alongside abundant unlabeled data (DU ). Core techniques
include pseudo-labeling Lee (2013) and consistency regularization for stable pseudo-labels under
perturbations Sajjadi et al. (2016); Laine & Aila (2017). The Mean Teacher (MT) framework Tar-
vainen & Valpola (2017) uses a temporal average of model weights for guidance. Methods like
Collaborative MT (CMT) extend this by integrating MT with Cross Pseudo Supervision (CPS) Shen
et al. (2023) for enhanced learning through multiple model views or mutual supervision. Additional
strategies include uncertainty estimation to refine pseudo-labels Yu et al. (2019); Zheng & Yang
(2021), data augmentations like CutMix Yun et al. (2019) and Bidirectional Copy-Paste (BCP) Bai
et al. (2023), and collaborative error correction Luo et al. (2021b).

Robust Optimization Strategies. Previous work addresses noisy or conflicting gradients using
sign-based rules Bernstein et al. (2018); Chen et al. (2023), clipping/thresholding, and per-parameter
gating as in Cautious Optimizers (CO) Liang et al. (2024), which blocks steps misaligned with
running momentum. These methods are objective-symmetric: they suppress misaligned components
regardless of the source. In SSL, reliability is asymmetric. Labeled gradients are trusted; unlabeled
gradients require verification. HCO builds this asymmetry into the optimizer: it forms momentum
solely from ∇LL, then filters ∇LU element-wise by sign agreement with that trusted direction.
Aligned components may refine the state, but cannot redefine it. This prevents unlabeled components
from contaminating future updates through moment buffers, addressing a failure mode that CO does
not handle.

3 METHOD

Hierarchical Cautious Optimization (HCO) augments any momentum-based optimizer with an ex-
plicit trust hierarchy that distinguishes gradients computed from labeled data from those obtained
on unlabeled data (Fig. 1). We enforce the hierarchy in two steps: (i) we first update the optimizer
state with the reliable labeled gradient, establishing a trusted update direction; (ii) we allow only the
components of the unlabeled gradient that align with that trusted direction to refine the momentum
buffer and influence the parameter update. This section describes the resulting algorithm, introduces
notation, and details the role of variables appearing in Algorithms 1–2.
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Figure 1: Schematic illustration of the Hierarchical Cautious Optimization (HCO) update rule. (A)
Conventional momentum optimizers: Both labeled (gL) and unlabeled (gU ) gradients are accu-
mulated jointly, contributing equally to the momentum buffer and parameter update (∆w). (B) HCO
(ours): A trust hierarchy is enforced by first computing the momentum uL

t using only labeled gra-
dients (gL) as a reference direction. An alignment gate then evaluates gU relative to uL

t , masking
out opposing components. Only aligned components of gU (green arrow) are incorporated for mo-
mentum refinement, while misaligned components (red path) are excluded.

3.1 NOTATION AND VARIABLE GLOSSARY

At iteration t the network parameters are wt ∈ Rd. Gradients and moving averages are of the same
dimensionality. Unless stated otherwise all operations are element-wise.

wt Network parameters after t updates.

gLt , g
U
t Gradients computed from labeled and unlabeled data, respectively.

mt, vt Exponential moving average buffers of the first and second moments.

uL
t Trusted momentum direction derived solely from labeled gradients gLt .

ut Final cautious momentum after selectively incorporating aligned components of gUt .

I(·) Element-wise indicator function returning 1 for true conditions and 0 for false ones.

ϕt Binary alignment masks that identify components of gUt aligned with uL
t and ut.

ϕt Scaled binary masks that preserve update magnitude despite selective component filtering.

Hyperparameters: εt (learning rate), β1,2 (decay factors), ϵ (numerical stability constant).

3.2 HIERARCHICAL CAUTIOUS ADAMW

Algorithm 1 presents our Hierarchical Cautious AdamW optimizer. The algorithm proceeds through
three distinct phases:

Step 1. Labeled step (lines 4-10). The labeled gradient gLt is accumulated into the moment
buffers, yielding the bias-corrected direction uL

t = m̂t/(
√
v̂t + ϵ). Since it is informed solely

by ground-truth labels, uL
t defines a direction that is trusted by construction.

Step 2. Unlabeled Momentum Refinement (UMR) step (lines 11-17). The unlabeled gradient
gUt is masked by ϕt = I(uL

t ⊙gUt > 0) to retain only components aligned with the labeled direction.
The filtered gradient gUt ⊙ ϕt updates the moment buffers, which are then bias-corrected following
standard Adam to yield the refined direction ut.

3
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Algorithm 1 Hierarchical Cautious AdamW
Require: Initial parameters w0, step sizes {εt},

β1, β2 ∈ [0, 1), weight decay γ ≥ 0, stability
constant ϵ > 0.

1: Initialize t← 0, m0 ← 0, v0 ← 0
2: while not converged do
3: t← t+ 1
4: // Labeled step (Compute trusted direction)
5: Compute gLt ← ∇w Llabeled(wt−1)
6: mt ← β1mt−1 + (1− β1)g

L
t

7: vt ← β2vt−1 + (1− β2)(g
L
t )

2

8: m̂t ← mt/(1− βt
1)

9: v̂t ← vt/(1− βt
2)

10: uL
t ← m̂t/(

√
v̂t + ϵ)

11: Compute gUt ← ∇w Lunlabeled(wt−1)
12: ϕt ← I(uL

t ⊙ gUt > 0)
13: mt ← mt + (1− β1)(g

U
t ⊙ ϕt)

14: vt ← vt + (1− β2)(g
U
t ⊙ ϕt)

2

15: m̂t ← mt/(1− βt
1)

16: v̂t ← vt/(1− βt
2)

17: ut ← m̂t/(
√
v̂t + ϵ)

18: ϕt ← ϕt/max(mean(ϕt), ϵ)

19: wt ← wt−1 − εtu
L
t −εt(ϕt ⊙ ut)

20: wt ← wt − εtγwt

21: end while
22: return wt

Algorithm 2 Hierarchical Cautious SGD
Require: Initial parameters w0, step sizes {εt}, mo-

mentum decay β1 ∈ [0, 1), weight decay γ ≥ 0,
stability constant ϵ > 0.

1: Initialize t← 0, m0 ← 0
2: while not converged do
3: t← t+ 1
4: // Labeled step (Compute labeled momentum)
5: Compute gLt ← ∇w Llabeled(wt−1)
6: mt ← β1mt−1 + gLt
7: mL

t ← mt // Store momentum after Labeled
step

8: // Unlabeled step (Update momentum)
9: Compute gUt ← ∇w Lunlabeled(wt−1)

10: // Align gUt with labeled momentum mL
t

11: ϕt ← I(mL
t ⊙ gUt > 0)

12: ϕt ← ϕt/max(mean(ϕt), ϵ)
13: // Update momentum with aligned gUt
14: mt ← β1mt + (gUt ⊙ ϕt)

15: wt ← wt−1 − εtm
L
t −εt(mt ⊙ ϕt)

16: // Apply weight decay
17: wt ← wt − εtγwt

18: end while
19: return wt

Step 3. Cautious gating and parameter update (lines 18-20). To maintain a consistent update
magnitude when masking, we normalize the binary gate by its clipped mean, yielding ϕt. This
produces a rescaled gating mask that preserves magnitude while filtering out conflicting components.
The final weight change is ∆wt = −εtu

L
t −εt(ϕt⊙ut), combining the trusted labeled direction with

the UMR-refined direction modulated by the normalized gate. This ensures the unlabeled adjustment
only reinforces components already endorsed by the labeled gradient. Standard decoupled weight
decay completes the update process.

3.3 HIERARCHICAL CAUTIOUS SGD

Algorithm 2 applies the same hierarchical gating and masking logic to SGD, using a single velocity
buffer instead of Adam moments. This introduces essentially no overhead beyond one additional
element-wise mask and a dot-product per iteration.

3.4 CONVERGENCE GUARANTEE

Under standard assumptions of L-smoothness and bounded stochastic gradient variance Reddi et al.
(2019), we prove in Appendix A that AdamWHCOmaintains the same O(1/

√
T ) convergence rate

to first-order stationary points as AdamW, where T is the total number of optimization steps. Our
hierarchical masking framework therefore preserves the theoretical guarantees of the base optimizer.

3.5 COMPUTATIONAL COST

Since alignment checks are element-wise and reuse already available quantities (uL
t , ut, gUt ), the

extra wall-clock overhead is below 1% in our PyTorch implementation (Supplementary, 4).

4 EXPERIMENTS

Datasets: We use the following three datasets:

4
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1. Left-Atrium MRI. The Left Atrial Segmentation Challenge public dataset Xiong et al. (2021)
consiting of 100 3D GE-MRI scans with segmentation labels. Pre-processing and data splits as in
Wu et al. (2022); Luo et al. (2021a); Yu et al. (2019).

2. Pancreas-CT. The Pancreas NIH public dataset Roth et al. (2015) consisting of 82 abdominal
contrast-enhanced CT scans with manual pancreas contours delineations. Pre-processing as inShi
et al. (2022).

3. Fetal-MRI. In-house fetal body MRI dataset of 92 manually-labeled and 600 unlabeled scans
(gestational age 28–39 weeks; 3T Siemens True Fast Imaging with Steady-State Precession (TRUFI)
sequence acquisitions; 0.78×0.78×2 mm voxels). All scans were retrospectively collected and de-
identified under IRB approval. We held out 50 labeled cases for test and 2 for validation. (Full
acquisition, annotation, and inter-observer details in Appendix B.)

Evaluation Metrics: We report four standard segmentation metrics: Dice (%) and Jaccard (%)
scores for the segmentation region, and Average Surface Distance (ASD) and 95% Hausdorff Dis-
tance (HD95) for the segmentation contour.

Implementation All experiments were implemented in PyTorch and run on NVIDIA GeForce RTX
4090 GPUs with fixed random seeds for reproducibility. Unless otherwise specified, all hyper-
parameters for each framework follow those of the original implementations. The total compute for
the reported experiments was approximately 300 GPU hours, and no significant additional compute
was used for preliminary explorations or hyperparameter tuning beyond this.

Studies We evaluate our method with five studies as follows:

• Study 1: BCP on the Left-Atrium-MRI dataset. Using BCP Bai et al. (2023), a strong SSL
baseline, we assess SGDHCO on the Left Atrial datasetXiong et al. (2021). We quantify its gains
in Dice and surface metrics over conventional SGD.

• Study 2: BCP on the Pancreas-CT dataset Using BCP Bai et al. (2023), we apply AdamHCO to
the NIH Pancreas-CT dataset Roth et al. (2015), thereby changing optimizer, imaging modality,
and anatomical target. We quantify its gains in Dice, Jaccard, and surface metrics over standard
Adam.

• Study 3: CMT on the Fetal-MRI dataset. Within the CMT consistency frameworkShen et al.
(2023), we apply AdamWHCOto the fetal MRI dataset, thereby changing SSL framework, opti-
mizer, and anatomical target. We report Dice and surface gains over AdamW.

• Study 4: Optimizer Ablations. On the fetal MRI task, we ablate hierarchy. We measure each
variant’s effect via changes in Dice and surface distance metrics versus AdamW.

• Study 5: Impact of HCO on Supervised–Unsupervised Loss Dynamics. For both BCP and
CMT setups, we monitor Lunlabeled/Llabeled over training to quantify how much the HCO variants
preserve the unlabeled signal.

In all studies, the pre-processing and training protocols followed the exact same host framework.
The only change was the optimizer, SGD, Adam, AdamW, to their HCO variants. For each study
we indicate the number of independent runs and the statistical test employed.

4.1 STUDY 1: BCP ON THE LEFT-ATRIUM-MRI DATASET

Objective. Evaluate the performance improvement of HCO when replacing standard SGD in the
BCP framework.

Dataset and protocol. We follow the BCP setup Bai et al. (2023) with the 3D V-Net back-
boneMilletari et al. (2016). Datasets were resampled to 1.25 mm isotropic and randomly cropped to
112×112×80 patches, with on-the-fly rotations and flips. Training consisted of a pre-training phase
(2K iterations) and a self-training phase (15K iterations) using SGD with an initial learning rate of
0.01, decayed by 10% every 2.5K iterations. Each batch consisted of 4 labeled and 4 unlabeled
patches.

We kept the baseline pre-training weights and use the HCO optimizer (SGDHCO) in the self-training
phase. This isolates the effect of cautious gradient integration during pseudo-label-driven learning.

5
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Table 1: Left-Atrium MRI segmentation results (20 test cases; mean (std) over 2 seeds). VNet
and BCP results for SGD, SGDCO, and SGDHCO. Metrics: Dice/Jaccard (%), ASD (voxels), HD95
(voxels). Gray rows: BCP results from Bai et al. (2023); (Repr): our reproduction. Bold indicates
the best result per group and metric.

Method Optimizer Scans Used
L / U

Metrics

Dice ↑ Jaccard ↑ ASD ↓ HD95 ↓
V-Net Baselines (Supervised)

V-Net SGD 4/0 52.55 39.60 4.91 47.05
V-Net SGD 8/0 82.74 71.72 3.26 13.35
V-Net SGD 80/0 91.47 84.36 1.51 5.18

Semi-Supervised with BCP (4 Labeled)

BCP (Paper) SGD 4/76 88.02 78.72 2.15 7.90
BCP (Repr) SGD 4/76 88.27 (3.26) 79.15 (5.01) 2.26 (1.03) 8.21 (4.18)
BCP SGDCO 4/76 88.37 (3.11) 79.29 (4.81) 2.19 (0.88) 8.07 (3.97)
BCP (Ours) SGDHCO 4/76 88.83 (2.64) 79.99 (4.17) 2.19 (0.75) 6.55 (2.73)

Semi-Supervised with BCP (8 Labeled)

BCP (Paper) SGD 8/72 89.62 81.31 1.76 6.81
BCP (Repr) SGD 8/72 89.64 (3.55) 81.41 (5.52) 1.78 (0.86) 6.93 (3.93)
BCP SGDCO 8/72 89.76 (2.93) 81.54 (4.72) 1.72 (0.70) 6.84 (3.65)
BCP (Ours) SGDHCO 8/72 90.75 (2.17) 83.13 (3.63) 1.64 (0.58) 5.52 (2.26)

Results were averaged for 2 random seeds. and statistical significance was assessed with a one-tailed
paired Wilcoxon signed-rank test. Each run took approximately 8 hours, for a total compute budget
of about 48 GPU-hours.

Results. With 8 labeled scans, replacing SGD with SGDHCO improved Dice from 89.64 to 90.75
(p = 0.0016) and Jaccard from 81.41 to 83.13 (p = 0.0016), while reducing HD95 by 20.3%
(6.93→5.52; p = 0.0.0063) and ASD by 7.9% (1.78→1.64; p = 0.2729). At 4 labels, Dice rose
from 88.27 to 88.83 (p = 0.0379) and Jaccard from 79.15 to 79.99 (p = 0.0413), with HD95
dropping from 8.21 to 6.55 (p = 0.0086). This simple optimizer change closes much of the gap to
full supervision, recovering ∼45% of the Dice gap, ∼52% of the ASD gap, and ∼81% of the HD95
gap.

Interpretation. These gains suggest that the hierarchical trust mechanism in SGDHCO enables
more reliable integration of unlabeled gradients, translating into sharper boundaries and fewer large
segmentation errors. HCO recovers much of the performance lost to label scarcity with minimal
architectural or computational overhead.

4.2 STUDY 2: BCP ON THE PANCREAS-CT DATASET

Objective. We evaluate AdamHCO’s performance against both standard Adam and AdamCO within
the BCP framework Bai et al. (2023) on the Pancreas-CT dataset Roth et al. (2015). This study tests
whether HCO generalizes to a different optimizer (Adam) and a new anatomical target and imaging
modality (abdominal CT).

Dataset and protocol. We follow the same pre-processing and two-phase training schedule as in
Study 1. We used 12 labeled and 50 unlabeled volumes from the Pancreas-CT dataset Roth et al.
(2015). Each run took approximately six GPU hours. Statistical significance was assessed with a
one-tailed paired Wilcoxon signed-rank test.

Results. AdamHCO consistently outperformed AdamCO across all metrics (Table 2). Dice im-
proved from 82.58 to 83.71 (p = 0.0152), Jaccard from 70.65 to 72.26 (p = 0.0134), HD95 from
8.84 to 5.46 (p = 0.0149), and ASD from 3.11 to 2.05 (p = 0.0152). Statistical testing was con-
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Table 2: Single-run pancreas segmentation performance using 12 labeled and 50 unlabeled scans.
VNet and BCP results for Adam, AdamCO, and AdamHCO. Metrics: Dice/Jaccard (%), ASD (vox-
els), and HD95 (voxels), evaluated on 18 held-out cases. Baseline results from Bai et al. (2023);
Song & Wang (2024). The L/U column indicates the number of labeled / unlabeled scans used.
Bold indicates the best result for each metric.

Method Optimizer L/U Dice ↑ Jaccard ↑ ASD ↓ HD95 ↓
VNet Adam 12/0 69.96 55.55 14.27 1.64
VNet Adam 62/0 82.60 70.81 5.61 1.33

BCP Adam 12/50 82.91 70.97 6.43 2.25
BCP AdamCO 12/50 82.58 (5.37) 70.65 (7.57) 8.84 (9.24) 3.11 (2.38)
BCP (Ours) AdamHCO 12/50 83.71 (4.94) 72.26 (7.00) 5.46 (3.99) 2.05 (1.38)

ducted only between AdamCO and AdamHCO; standard Adam is reported for reference from Bai
et al. (2023) without variance estimates.

Interpretation. By boosting performance on abdominal CT segmentation with Adam, HCO
demonstrates that its gains are not confined to cardiac MRI or SGD. Such robustness across op-
timizer, modality, and organ highlights its broad applicability to semi-supervised learning.

4.3 STUDY 3: CMT ON THE FETAL-MRI DATASET

Objective. Evaluate whether HCO generalizes across semi-supervised learning frameworks, op-
timizer types, and anatomical targets by applying AdamWHCOwithin the consistency-based CMT
frameworkShen et al. (2023) for fetal lung and liver segmentation.

Training protocol. Following CMT Shen et al. (2023), we employ a 3D V-Net backbone Milletari
et al. (2016). Data augmentation consists of random flips and 3D crops. Each training iteration
randomly samples eight patches of size 144 × 144 × 64 (4 labeled, 4 unlabeled). AdamW and its
HCO variant are used with a fixed learning rate of 1× 10−4. Training runs for 200 epochs. To avoid
bias from a single labeled/unlabeled split we generate 4×4 = 16 combinations: four labeled subsets
(L0−L3, 5 scans each) and four unlabeled subsets (U0−U3, 150 scans each). CMT is trained from
scratch for every pair (Li,Uj). Each run took approximately 4 hours, for a total compute budget of
about 256 GPU-hours.

Results. For each test volume we first averaged segmentation metrics over the 16 folds, and
then computed the overall mean and standard deviation across all cases. Statistical significance
was determined with a one-sided paired t-test. Table 3 lists the resulting segmentation metrics.
For lungs, AdamWHCO demonstrated substantial improvements over AdamW: Dice increased by
24.6% (67.54→84.17), Jaccard increased by 39.3% (52.80→73.54), ASD decreased by 56.2%
(8.12→3.56), and HD95 decreased by 47.0% (25.09→13.30). For liver, AdamWHCO also showed
significant gains over AdamW: Dice increased by 15.7% (70.99→82.15), Jaccard increased by
25.3% (56.10→70.32), ASD decreased by 54.9% (10.95→4.94), and HD95 decreased by 52.2%
(31.80→15.21). All these listed improvements for lung and liver segmentation metrics over AdamW
were statistically significant (paired t-test, p < 1× 10−18).

Figure 2: A. Input MRI, B. Ground truth, C. AdamW, D. AdamWCO, E. AdamWHCO(Ours). Lungs
are shown in blue and liver in red.
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Table 3: Fetal MRI segmentation results (mean (std)) for liver and lungs. AdamWsup: supervised
baseline with 5 labeled scans. AdamW: standard semi-supervised baseline. AdamWCO: Cautious
Optimizer variant Liang et al. (2024). AdamWHCO: full Hierarchical Cautious Optimizer (ours).
Metrics: Dice/Jaccard (%), Average Surface Distance (ASD, voxels), and 95th percentile Hausdorff
Distance (HD95, voxels). Bold highlights the best result for each organ and metric.

Organ Optimizer Metrics

Dice ↑ Jaccard ↑ ASD ↓ HD95 ↓

Liver

AdamWsup 61.09 (3.66) 47.82 (3.88) 7.15 (3.39) 21.79 (6.73)
AdamW 70.99 (8.57) 56.10 (9.88) 10.95 (4.15) 31.80 (10.54)
AdamWCO 63.36 (9.60) 47.48 (9.98) 13.53 (4.15) 37.02 (9.45)
AdamWHCO 82.15 (5.40) 70.32 (7.49) 4.94 (2.27) 15.21 (6.91)

Lungs

AdamWsup 51.06 (8.94) 40.75 (8.73) 9.11 (0.67) 26.22 (2.95)
AdamW 67.54 (10.24) 52.80 (11.93) 8.12 (3.83) 25.09 (10.25)
AdamWCO 56.96 (10.71) 41.38 (10.80) 12.29 (4.49) 34.52 (10.00)
AdamWHCO 84.17 (6.70) 73.54 (9.73) 3.56 (2.68) 13.30 (10.01)

Figure 2 illustrates that AdamWHCO produced sharper boundaries and reduced false negatives in
low-contrast regions.

Interpretation. These results demonstrate that AdamWHCO consistently improved segmentation
performance across multiple organs, highlighting its ability to generalize beyond task-specific tun-
ing. The gains in both lung and liver structures, despite their differing anatomical and contrast
characteristics, suggest that HCO’s hierarchical refinement and cautious gating robustly enhanced
learning from limited labels. Combined with consistent improvements over standard AdamW, this
supports the broader applicability of HCO as a general-purpose optimizer for semi-supervised seg-
mentation.

4.4 STUDY 4: HIERARCHICAL PROCESSING ABLATION

Objective. Evaluate the contribution of HCO’s hierarchical processing by comparing against the
original Cautious Optimizer (CO) Liang et al. (2024) across all three experimental settings.

Results. Tables 1, 2, and 3 consistently demonstrate that CO’s gradient rejection approach under-
performs both standard optimizers and HCO across diverse settings:

Left-Atrium (SGD): CO achieves 89.76% Dice vs. SGD’s 89.64% and HCO’s 90.75%—showing
minimal gains over the standard optimizer, while HCO yields a clear improvement.

Pancreas (Adam): CO substantially underperforms with 82.57% Dice vs. Adam’s 82.91% and
HCO’s 83.71%, along with worse surface metrics (ASD: 9.21 vs. 6.43 vs. 5.46).

Fetal MRI (AdamW): CO performs worst across both organs—lung Dice of 56.96% vs. AdamW’s
67.54% vs. HCO’s 84.17%; liver Dice of 63.36% vs. 70.99% vs. 82.15%.

Interpretation. Across all settings, our hierarchical method (HCO) consistently and significantly
outperforms standard optimizers, demonstrating its effectiveness. In contrast, applying the same
cautious principle without a hierarchy (CO) fails to provide meaningful benefits and may degrades
performance. This highlights the critical role of hierarchy in HCO’s effectiveness.

4.5 STUDY 5 — IMPACT OF HCO ON SUPERVISED–UNSUPERVISED LOSS DYNAMICS

Objective. Assess how HCO influences the balance between supervised and unsupervised loss
contributions during training. We hypothesize that HCO variants sustain stronger reliance on unla-
beled signals compared to their baseline counterparts.

Protocol. For each optimizer, we first compute the ratio (Lunlabeled/Llabeled) at every training step
t. To summarize variability, we aggregate these ratios within each epoch to obtain the standard
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(a) Left Atrium / BCP (SGD family) (b) Fetal MRI / CMT (AdamW family)

Figure 3: Evolution of the unlabeled-to-labeled loss ratio. Each curve is a LOWESS trend line
of Lunlabeled/Llabeled across epochs; shaded bands show ±SEM computed across steps within each
epoch. (a) On the LA dataset, SGDHCO (orange) maintains a higher Lunlabeled/Llabeled throughout
training than standard SGD (blue). (b) On fetal MRI, AdamWHCO (orange) exhibits a higher ratio
than vanilla AdamW (blue) and the caution-only variant (orange).

error of the mean (SEM) across the epoch. For BCP, independent runs correspond to different
random seeds with a fixed labeled/unlabeled split, whereas for CMT they correspond to different
labeled/unlabeled splits with a fixed seed. For visualization, we then fit a LOWESS trendline to the
raw step-wise ratios. We evaluate three variants: AdamW (baseline), AdamWCO Liang et al. (2024),
and AdamWHCO on the fetal MRI task using the CMT framework; and two variants: SGD (baseline)
and SGDHCO on the Left Atrium task using the BCP framework.

Results. Figure 3 shows that HCO consistently increases the relative contribution of the unlabeled
loss over the course of training. On both tasks, the ratio Lunlabeled/Llabeled remains higher under
HCO than under the corresponding baseline. In the LA/BCP setting, SGDHCO yields an unlabeled-
to-labeled ratio that is approximately 10% larger on average. A similar increase is observed for
AdamWHCO in the Fetal-MRI/CMT setting. Curves for unlabeled loss and validation Dice are pro-
vided in Appendix D.

Interpretation. The observed dynamics indicate that HCO’s gating and hierarchical momentum
shift training toward greater utilization of unlabeled supervision, reflected by persistently higher
Lunlabeled/Llabeled ratios.

5 CONCLUSION

We presented HCO, a novel optimization framework that assigns trust only to labeled gradients while
cautiously integrating aligned unlabeled signals. This approach is agnostic to network architecture
and data modality, and we provide a formal proof that it preserves the convergence guarantees of
its base optimizers. Together with consistent empirical gains and minimal code changes, these
properties make HCO a strong default optimizer for low-label SSL regimes.

Limitations. Although HCO demonstrates significant potential, our empirical evaluation is
presently restricted to specific segmentation datasets and semi-supervised learning frameworks.
Additionally, the effectiveness of HCO inherently depends on the quality of the limited labeled
data used to establish the trusted momentum direction. The gradient alignment mechanism and its
theoretical justification rely on specific assumptions, which should be tested further through both
empirical studies and theoretical analysis.

9
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Reproducibility statement We provide complete pseudocode for our proposed optimizers (Algo-
rithms 1–2) and a formal convergence proof in Appendix A. Dataset acquisition, annotation, and
inter-observer details are given in Appendix B, while training protocols, hyperparameters, and opti-
mization settings are described in Section 4 or follow the original BCP Bai et al. (2023) and CMT
Shen et al. (2023) implementations for fair comparison. We ran multiple independent seeds and
labeled/unlabeled splits to assess variability and report statistical tests. An anonymized code release
will be included in the supplementary material to facilitate exact reproduction.
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A CONVERGENCE PROOF DETAILS FOR HCO

Hierarchical Cautious Optimization (HCO) is designed for semi-supervised learning (SSL). Un-
like standard optimizers like Adam Kingma & Ba (2015) which might treat labeled and unlabeled
gradients equally when applied to a combined loss, HCO establishes a trust hierarchy. It computes
momentum and variance estimates primarily from labeled data (gLt ) and selectively incorporates gra-
dients from unlabeled data (gUt ) only when they align with the momentum direction derived from
labeled data. This section provides a theoretical analysis of HCO’s convergence properties. We
demonstrate that under standard assumptions Reddi et al. (2019) and a key assumption regarding
HCO’s cautious mechanism, HCO converges to a stationary point of a combined objective function.

A.1 PRELIMINARIES AND ASSUMPTIONS

We consider the minimization of the composite SSL loss function:

L(w) = αLL(w) + (1− α)LU(w)

where w ∈ Rd are the model parameters, LL and LU are the losses on labeled and unlabeled data
respectively, and α ∈ [0, 1] is a balancing coefficient. ∇Llabeled(w), ∇Lunlabeled(w), and ∇L(w)
denote the true gradients, while gLt and gUt are stochastic gradient estimates obtained at iteration t
from mini-batches for parameters wt−1. Let Ft−1 be the sigma-algebra generated by the random
variables up to iteration t − 1 (i.e., w0, . . . , wt−1 and any randomness used to compute them). Our
analysis relies on the following assumptions:
Assumption 1 (L-Smoothness). The individual loss functions LL(w) and LU(w) are differentiable
and Li-smooth for i ∈ {L,U}, respectively. That is, for some constants LL, LU > 0, their gradients
are Lipschitz continuous:

||∇Li(w1)−∇Li(w2)|| ≤ Li||w1 − w2||, ∀w1, w2 ∈ Rd

This implies the combined loss L(w) is also L-smooth with L = αLL + (1− α)LU .
Assumption 2 (Unbiased Stochastic Gradients). The stochastic gradients gLt and gUt are unbiased
estimators of the true gradients at wt−1, conditioned on the history Ft−1:

E[ gLt | Ft−1] = ∇Llabeled(wt−1), E[ gUt | Ft−1] = ∇Lunlabeled(wt−1)

This implies the combined stochastic gradient (if it were formed as gt = αgLt + (1 − α)gUt ) would
be an unbiased estimator of ∇L(wt−1). HCO uses gLt and gUt in a structured, conditional way.
Assumption 3 (Bounded Variance). The variance of the stochastic gradients is uniformly bounded
by some constants σ2

L ≥ 0 and σ2
U ≥ 0:

E[ ||gLt −∇Llabeled(wt−1)||2 | Ft−1] ≤ σ2
L

E[ ||gUt −∇Lunlabeled(wt−1)||2 | Ft−1] ≤ σ2
U

This implies that E[ ||gLt ||2 | Ft−1] ≤ ||∇Llabeled(wt−1)||2 + σ2
L and similarly for gUt . If the true

gradients are bounded (e.g., if L is further assumed to be non-convex but a global Lipschitz con-
stant exists for the gradient, or we analyze convergence in a bounded domain), then the stochastic
gradients are also bounded in the second moment.
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Assumption 4 (Step Size Conditions). The learning rates εt > 0 satisfy:
∞∑
t=1

εt = ∞ and
∞∑
t=1

ε2t < ∞

This is typically satisfied by the schedules εt = η/
√
t for a base rate η > 0.

Assumption 5 (Bounded Moments and Update Directions). Under Assumptions 2 and 3, the ex-
pected norms of the first moment estimates mt and element-wise second moment estimates vt (as
computed in Algorithm 1) are bounded. Consequently, the update directions uL

t (derived from la-
beled data) and ut (derived from conditionally combined data, see algorithm line 18) are bounded
in expectation. The elements of vt are non-negative due to squaring, ensuring denominators in
uL
t and ut (e.g.,

√
(v̂t)i + ϵ) are bounded below by ϵ > 0. The scaled mask ϕt is also bounded

element-wise, 0 ≤ (ϕt)i ≤ 1/ϵ′ (where ϵ′ is the ϵ in max(mean(ϕt), ϵ) from algorithm line 21).
This implies that the total update direction ∆t = uL

t +ϕt⊙ut has bounded expected squared norm,
i.e., E[ ||∆t||2 | Ft−1] ≤ B2 for some constant B > 0. This relies on mt, vt being convex combi-
nations of initial moments and (squared) gradients, which are themselves assumed to have bounded
variance. The bias correction terms (1− βt

1) and (1− βt
2) are well-behaved.

Remark 1 (On Conditional Update Term and HCO Mechanism). The convergence analysis criti-
cally relies on the behavior of the update term ∆t. The component uL

t is derived from labeled data
and provides a trusted update direction. The term ϕt⊙ut incorporates unlabeled data gUt condition-
ally. The masks ϕt = I(uL

t ⊙ gUt > 0) and ϕt = I(ut ⊙ gUt > 0) aim to ensure that gUt components
are included only when they align with established momentum directions (uL

t for moment updates,
ut for the final update step).

The core assumption for HCO’s convergence, as stated in Theorem 1, is that this cautious mechanism
is effective. Specifically, we assume that in expectation, the conditional inclusion of unlabeled gra-
dient information via ϕt ⊙ ut provides a non-negative or sufficiently small negative contribution to
the overall descent with respect to the combined loss L(w). That is, E[ ⟨∇L(wt−1), ϕt⊙ut⟩ | Ft−1]
does not significantly counteract the descent from the labeled term. This assumption is plausible in
SSL contexts where pseudo-labels (often driving LU) are intended to approximate true labels, and
HCO’s alignment filtering is designed to select for such agreement.

The structure of vt in HCO is also notable: it is first derived from (gLt )
2 and then augmented by

(gUt ⊙ ϕt)
2. This mixed vt is used to normalize mt (which is similarly mixed) to form ut. This

adaptive normalization, using variance information from both sources (conditionally), is a feature
of HCO. Assumption 5 implies that this structure still leads to well-behaved update directions.

PROOF STRATEGY FOR HCO CONVERGENCE

The convergence proof for HCO is developed within the established framework for stochas-
tic gradient methods, particularly drawing analogies from analyses of adaptive optimizers like
Adam/AdamW Kingma & Ba (2015); Loshchilov & Hutter (2019); Reddi et al. (2019). The general
approach involves utilizing a Lyapunov argument based on the objective function L(w) to demon-
strate expected descent or bounded progress.

Our analysis leverages several standard elements common to such proofs:

• We employ typical assumptions in stochastic optimization: L-smoothness of the objective function
(Assumption 1), unbiased stochastic gradient estimates (Assumption 2), bounded variance of these
gradients (Assumption 3), and conventional decaying step-size conditions (Assumption 4).

• Similar to other adaptive methods, we assume the boundedness of the optimizer’s internal moment
estimates and the resultant update directions (Assumption 5), crucial for ensuring the stability of
the updates.

• The macroscopic structure of the proof follows a familiar path: bounding the expected one-step
change in the loss function, summing these bounds telescopically over iterations, and then utilizing
the step-size properties to establish the convergence of gradient norms.

The main distinction and analytical challenge in proving HCO’s convergence stem from its unique,
hierarchically structured update rule for ∆t = uL

t + ϕt ⊙ ut. Unlike optimizers that aggregate
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gradients more directly, HCO’s mechanism for incorporating gradients from unlabeled data (gUt ) is
conditional, depending on alignment with trusted momentum derived primarily from labeled data
(gLt ).

Consequently, the central theoretical addition specific to HCO in this analysis is the core assump-
tion within Theorem 1 (further elaborated in Remark 1). This assumption posits that despite HCO’s
conditional and composite update structure, the overall update direction ∆t maintains a sufficiently
strong positive correlation in expectation with the negative true gradient −∇L(wt−1) of the com-
bined SSL objective. This is the pivotal hypothesis that allows HCO’s specialized mechanism to
integrate within the broader convergence theory: it asserts that HCO’s cautious filtering is effec-
tive in guiding the optimization process without fundamentally undermining the descent properties
required for convergence.

Once this HCO-specific descent condition (i.e., the lower bound on E[ ⟨∇L(wt−1),∆t⟩ | Ft−1]) is
established by this key assumption, the rest of the proof proceeds similarly to standard convergence
analyses for stochastic adaptive optimizers (e.g., Bottou et al. (2018); Reddi et al. (2019)), using
telescoping sums and step-size conditions to derive rates. Our analysis thus highlights the critical
condition under which HCO’s distinct design is proven to converge.

A.2 CONVERGENCE ANALYSIS

We analyze the convergence of HCO (Algorithm 1) to a stationary point of the objective function
L(w). For this analysis, we consider the parameter update rule wt = wt−1 − εt∆t, where ∆t =
uL
t + ϕt ⊙ ut. The weight decay step is typically analyzed separately or considered part of L(w);

its impact on the gradient norm convergence proof for Adam-like optimizers is often treated as a
secondary effect for simplicity.
Theorem 1 (Convergence of HCO). Let Assumptions 1-5 hold. Assume further, as discussed in
Remark 1, that the expected contribution from the conditional unlabeled term is sufficiently well-
behaved such that the overall update direction ∆t has a significant positive correlation in expec-
tation with the negative gradient −∇L(wt−1). Specifically, assume there exist constants C1 > 0
and an effective upper bound Vbound > ϵ for the components of E[

√
v̂t | Ft−1] (where v̂t refers to

the relevant second moment estimates used in ∆t, implied by Assumption 5) such that the expected
inner product satisfies:

E[ ⟨∇L(wt−1),∆t⟩ | Ft−1] ≥
C1

Vbound
||∇L(wt−1)||2

Then, the sequence of iterates {wt} generated by the HCO algorithm with learning rates εt satisfy-
ing Assumption 4 converges to a stationary point of L(w) in the sense that:

lim
T→∞

1

T

T∑
t=1

E[||∇L(wt−1)||2] = 0

The convergence rate for min0≤t≤T−1 E[||∇L(wt)||2] is expected to be O(1/
∑T

k=1 εk), which is
O(1/

√
T ) if εt ∝ 1/

√
t, similar to Adam.

Proof. The proof follows the standard Lyapunov function approach for stochastic gradient methods.
We consider the one-step progress in the objective function L(w). By Assumption 1 (L-smoothness
of L), we have:

L(wt) ≤ L(wt−1) + ⟨∇L(wt−1), wt − wt−1⟩+
L

2
||wt − wt−1||2

Substituting the HCO update wt − wt−1 = −εt∆t:

L(wt) ≤ L(wt−1)− εt⟨∇L(wt−1),∆t⟩+
Lε2t
2

||∆t||2

Taking conditional expectation E[ · | Ft−1] (expectation with respect to Ft−1):

E[L(wt) | Ft−1] ≤ L(wt−1)− εtE[ ⟨∇L(wt−1),∆t⟩ | Ft−1] +
Lε2t
2

E[ ||∆t||2 | Ft−1]
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Under Assumption 5, the last term is bounded: E[ ||∆t||2 | Ft−1] ≤ B2 for some constant B > 0.
The core of the theorem lies in the assumption regarding the expected inner product term:

E[ ⟨∇L(wt−1),∆t⟩ | Ft−1] ≥
C1

Vbound
||∇L(wt−1)||2

Let C̃1 = C1/Vbound. Then C̃1 > 0. Substituting these into the inequality for E[L(wt) | Ft−1]:

E[L(wt) | Ft−1] ≤ L(wt−1)− εtC̃1||∇L(wt−1)||2 +
LB2ε2t

2

Rearranging the terms to isolate the squared gradient norm:

εtC̃1||∇L(wt−1)||2 ≤ L(wt−1)− E[L(wt) | Ft−1] +
LB2ε2t

2

Taking the total expectation E[·] over all randomness:

εtC̃1E[||∇L(wt−1)||2] ≤ E[L(wt−1)]− E[L(wt)] +
LB2ε2t

2

Summing this inequality from t = 1 to T :

C̃1

T∑
t=1

εtE[||∇L(wt−1)||2] ≤
T∑

t=1

(E[L(wt−1)]− E[L(wt)]) +
LB2

2

T∑
t=1

ε2t

The first sum on the right-hand side is a telescoping sum:

T∑
t=1

(E[L(wt−1)]− E[L(wt)]) = E[L(w0)]− E[L(wT )]

Assuming the loss function is bounded below by L∗, i.e., L(w) ≥ L∗ for all w:

E[L(w0)]− E[L(wT )] ≤ L(w0)− L∗

So, we have:

C̃1

T∑
t=1

εtE[||∇L(wt−1)||2] ≤ L(w0)− L∗ +
LB2

2

T∑
t=1

ε2t

By Assumption 4,
∑∞

t=1 ε
2
t < ∞. Let S2 =

∑∞
t=1 ε

2
t . The right-hand side is bounded by a constant:

T∑
t=1

εtE[||∇L(wt−1)||2] ≤
1

C̃1

(
L(w0)− L∗ +

LB2S2

2

)
:= Kconst

Let Gt = E[||∇L(wt)||2]. We have
∑T

t=1 εtGt−1 ≤ Kconst. Since Gt−1 ≥ 0 and εt > 0:

min
0≤τ≤T−1

Gτ

T∑
t=1

εt ≤
T∑

t=1

εtGt−1 ≤ Kconst

Therefore,

min
0≤τ≤T−1

E[||∇L(wτ )||2] ≤
Kconst∑T
t=1 εt

By Assumption 4,
∑∞

t=1 εt = ∞. Thus, as T → ∞, the right-hand side goes to 0. This implies that
lim infT→∞ E[||∇L(wT )||2] = 0.

We now turn to the convergence of the average squared gradient norm, a standard criterion in opti-
mization analysis:

1

T

T∑
t=1

E[||∇L(wt−1)||2]
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Let Gt = E[||∇L(wt)||2]. We have established the inequality:

T∑
t=1

εtGt−1 ≤ Kconst

Assuming the learning rates εt are positive and non-increasing (a common property, e.g., for εt =
η/

√
t), it holds that εT ≤ εt for 1 ≤ t ≤ T . Thus, εT is the minimum learning rate in this range up

to T . We can then bound the sum of gradients:

εT

T∑
t=1

Gt−1 ≤
T∑

t=1

εtGt−1 ≤ Kconst

Dividing by TεT (since εT > 0 by Assumption 4):

1

T

T∑
t=1

Gt−1 ≤ Kconst

TεT

Now, consider the specific learning rate schedule εt = η/
√
t for some constant η > 0. For this

schedule, εT = η/
√
T . The term TεT in the denominator becomes:

TεT = T

(
η√
T

)
= η

√
T

Substituting this into our inequality for the average squared gradient norm:

1

T

T∑
t=1

E[||∇L(wt−1)||2] ≤
Kconst

η
√
T

As T → ∞, the right-hand side Kconst

η
√
T

clearly tends to 0. This completes the proof that

lim
T→∞

1

T

T∑
t=1

E[||∇L(wt−1)||2] = 0

Finally, we summarize the convergence rate for the minimum expected squared gradient norm,
which was derived as:

min
0≤τ≤T−1

E[||∇L(wτ )||2] ≤
Kconst∑T
t=1 εt

This provides a general convergence rate of O
(
1/

∑T
k=1 εk

)
. For the specific case where εt =

η/
√
t, the sum of learning rates can be approximated for large T as

∑T
k=1 εk ≈ 2η

√
T . Substituting

this approximation, the convergence rate for the minimum expected squared gradient norm becomes
O(1/

√
T ).

A.3 DISCUSSION

The convergence analysis establishes that HCO, under standard assumptions for stochastic gradi-
ent methods plus a key assumption on the effectiveness of its cautious mechanism (Theorem 1 and
Remark 1), converges to a stationary point of the combined SSL objective L(w). The convergence
rate is comparable to standard Adam when similar step size schedules are used. The theoretical
justification relies on the labeled gradient gLt driving the primary update direction, while the unla-
beled gradient gUt is incorporated conditionally based on alignment. This design aims to achieve
robustness against noisy pseudo-labels in SSL without sacrificing fundamental convergence guar-
antees. The crucial assumption is that this conditional alignment mechanism effectively ensures
that the total update direction correlates positively with the negative true gradient of the overall loss
function.
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B FETAL MRI DATASET CONSTRUCTION

We curated a fetal MRI segmentation dataset to evaluate the robustness of semi-supervised opti-
mization in challenging clinical conditions. The dataset comprises retrospective fetal body MRI
scans collected at [XX Medical Center ] ([City, Country/State] annonized), covering gestational
ages between 28 and 39 weeks. All scans were acquired using True Fast Imaging with Steady-State
Free Precession (TRUFI) sequences on 3T Siemens scanners (Prisma, Vida, or Skyra), utilizing an
18-channel body coil.

Annotation protocol. Ground-truth segmentations for the liver and lungs were obtained via a multi-
stage annotation pipeline designed to balance annotation quality with radiologist time. Initially, 10
cases for lungs and 15 for liver were manually annotated from scratch by two expert radiologists to
assess inter-observer variability and establish a reference set. These annotations were used to train
a coarse-resolution CMT Shen et al. (2023) model (resampled to 3× 3× 3 mm), which generated
preliminary segmentations to guide the extraction of 692 cropped sub-volumes (180× 180× 80
voxels) from full-resolution scans. A second-stage CMT model was then trained on the sub-
volumes at the original resolution (0.78× 0.78× 2 mm), using a sliding window approach (patch
size 144× 144× 64) to manage GPU memory constraints. To produce the final training labels,
92 outputs from this model were randomly sampled and manually corrected by a clinical expert.
This two-tiered approach yielded a high-quality curated dataset, balancing annotation fidelity with
efficient use of radiologist time.

Inter-observer variability. Agreement between expert annotators was assessed using the Dice
score, the Average Symmetric Surface Distance (ASD), and the 95th percentile Hausdorff distance
(HD95). For the liver (n = 15), agreement yielded a Dice of 0.86 ± 0.03, ASD of 1.52 ± 0.38
mm, and HD95 of 4.82 ± 1.36 mm. For the lungs (n = 10), the Dice was 0.86 ± 0.02, with ASD
0.97± 0.34 mm and HD95 of 3.69± 2.40 mm. These metrics establish a realistic baseline for inter-
observer agreement in fetal MRI segmentation and serve as a benchmark for future improvements.

B.1 LICENSES

This section details the licenses associated with the datasets and key software components referenced
in this work. Users should always refer to the original source of any dataset or software for the most
accurate and complete licensing information.

• BCP The BCP framework utilized in this research is available under the MIT License.

• Left Atrium Dataset (2018 Atria Segmentation Challenge): The 2018 Atria Segmentation
Challenge dataset Xiong et al. (2021) was used in this research. The dataset comprises 154 3D
late gadolinium-enhanced MRI (LGE-MRI) scans, with 100 cases provided with segmentation
labels for training purposes. While the dataset is publicly available for academic research via the
challenge organizers, explicit licensing terms were not specified with the data distribution. Our
use of the dataset adheres to its intended purpose for academic research and comparison.

• Pancreas-CT NIH Dataset (TCIA): The NIH Pancreas-CT dataset was obtained from The Can-
cer Imaging Archive (TCIA) Roth et al. (2015). This dataset is released under the Creative Com-
mons Attribution 3.0 Unported (CC BY 3.0) license. This license permits use, distribution, and
adaptation of the dataset for both academic and commercial purposes, provided that appropriate
credit is given to the original authors and TCIA. Appropriate attribution has been provided as per
the license terms.

• CMT (Collaborative Mean Teacher) Model Architecture: The CMT, as described in Shen
et al. (2023), was used as a basis for model development in our annotation pipeline and optimizer
comparison. The original authors of CMT did not explicitly disclose a software license for their
reference implementation at the time of our inquiry, and attempts to clarify via direct contact
within a reasonable timeframe were unsuccessful. Our use of the architectural principles is for
research purposes.
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C HCO TIME OVERHEAD

All wall-clock times in Table 4 were measured on the fetal MRI segmentation task using the collabo-
rative mean teacher (CMT) framework (200 epochs, identical data splits and hyperparameters, single
GPU). Our full Hierarchical Cautious Optimizer (AdamWHCO) incurs less than a 1 % training-time
overhead compared to standard AdamW.

Table 4: Training time comparison (wall-clock hours). Mean (std) over 16 runs.

Optimizer Training time (h)

AdamW 4.16 (0.18)
AdamWCO 4.17 (0.21)
AdamWHCO 4.18 (0.22)

D
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(a) Left Atrium / BCP — Labeled loss (b) Left Atrium / BCP — Unlabeled loss

(c) Fetal MRI / CMT — Labeled loss (d) Fetal MRI / CMT — Unlabeled loss

Figure 4: Training dynamics of labeled and unlabeled losses. Each curve is a LOWESS trend line
of the labeled or unlabeled loss across epochs; shaded bands denote ±SEM computed across steps
within each epoch. Top: BCP framework on the Left Atrium dataset. Bottom: CMT framework on
the Fetal MRI dataset.
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