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Abstract

We present the first large-scale open-set benchmark for multilingual audio-video1

deepfake detection. Our dataset comprises over 250 hours of real and fake videos2

across eight languages, with 60% of data being generated. For each language,3

the fake videos are generated with seven distinct deepfake generation models,4

selected based on the quality of the generated content. We organize the training,5

validation and test splits such that only a subset of the chosen generative models6

and languages are available during training, thus creating several challenging7

open-set evaluation setups. We perform experiments with various pre-trained and8

fine-tuned deepfake detectors proposed in recent literature. Our results show that9

state-of-the-art detectors are not currently able to maintain their performance levels10

when tested in our open-set scenarios. We publicly release our data and code at:11

https://huggingface.co/datasets/unibuc-cs/MAVOS-DD.12

1 Introduction13

The rapid progress in image, audio and video synthesis technologies has enabled the creation of14

realistic visual content from textual descriptions [15, 49, 53, 55, 57] and the convincing manipulation15

of people’s identities [8, 35, 44, 51] and expressions [9, 30, 62, 64, 69, 70, 77]. This has led to a surge16

of innovative applications across various industries, including marketing and film making. However,17

these breakthroughs have also fueled the rise of malicious uses, particularly in generating deceptive18

synthetic audio-visual content, commonly known as deepfakes [16]. Alarmingly, a recent report19

shows that the incidence of deepfake-related fraud increased by a factor of 10 between 2022 and20

20232. In this landscape, the ability to reliably identify forged video material is more crucial than21

ever.22

A significant body of research has emerged in response to the rising number of deepfake-related23

manipulation and fraud cases, aiming to detect manipulated content using advanced deep learning24

techniques, such as convolutional neural networks [3, 12, 14, 38, 42, 54], transformers [31, 50, 52,25

58, 74, 78], and hybrid approaches [6, 11, 13, 24, 65, 76]. These methods have achieved remarkable26

results, often surpassing 99% accuracy on existing benchmarks [16], such as Celeb-DF [45] and27

FaceForensics++ [56]. Nevertheless, most evaluations are carried out in controlled environments28
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Figure 1: In MAVOS-DD, the training set and in-domain test set contain real and fake videos sampled
from the same distribution, comprising six languages and four generative models. The open-set
model test set extends the in-domain test set with fake samples generated by unseen models (Sonic,
HifiFace, Roop). The open-set language test set extends the in-domain test set with samples in unseen
languages (German and Hindi). The open-set full test set adds samples generated by unseen models
in unseen languages. One fake sample from each data distribution is shown on the right-hand side.
Best viewed in color.

where the synthetic and authentic samples in training and testing originate from the same video29

manipulation tools. This in-domain evaluation setup significantly inflates detection performance and30

fails to represent real-world conditions, where neither the manipulated technique nor the subject is31

known in advance.32

To address this gap, we propose a new benchmark for evaluating audio-video deepfake detection33

models in a multilingual open-world setup. Our benchmark, MAVOS-DD, comprises over 35K34

fake and 25K real videos, totaling over 250 hours of video across eight languages: Arabic, English,35

German, Hindi, Mandarin, Romanian, Russian and Spanish. The fake samples are generated by seven36

state-of-the-art deepfake generation methods based on different approaches: talking head (EchoMimic37

[9], Memo [75], Sonic [32]), portrait animation (LivePortrait [25]), face swap (Inswapper3, HifiFace38

[68], Roop4). As shown in Figure 1, we create a multi-perspective open-set benchmark. The training39

set comprises samples in six languages (excluding German and Hindi), where the fake samples are40

generated by four methods (excluding Sonic, HifiFace and Roop). We prepare an in-domain (closed)41

test set that is sampled from the same distribution as the training data. In addition, we create three42

open-set test sets: (i) open-set model extends the in-domain test set with fake samples generated by43

unseen models; (ii) open-set language adds German and Hindi samples to the in-domain test data;44

(iii) open-set full adds samples generated by unseen models in German and Hindi.45

We perform extensive experiments using both pre-trained and fine-tuned deep fake detectors [52, 71,46

80], analyzing their performance on both in-domain and open-set scenarios. While these models47

work well under in-domain conditions, two of them surpassing an accuracy threshold of 90%, their48

effectiveness drops significantly in the open-set setups. The reported performance gaps highlight49

a critical limitation of current deepfake detection models, namely the poor generalization across50

deepfake generation models and languages.51

In summary, our contribution is twofold:52

• We present MAVOS-DD, a comprehensive multilingual open-set benchmark for audio-video53

deepfake detection, encompassing over 250 hours of authentic and synthetic videos across54

eight languages.55

• We conduct a thorough evaluation of state-of-the-art deepfake detectors, uncovering sub-56

stantial performance degradation when models are tested in open-world setups, thereby57

emphasizing the need for more robust and generalizable detection techniques.58

3https://github.com/deepinsight/insightface
4https://github.com/s0md3v/roop
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Table 1: Comparison between MAVOS-DD and other video and audio-video (multimodal) datasets.
MAVOS-DD is the largest dataset from multilingual audio-video open-set deepfake detection.

Dataset
File count Length (h)

#L
an

gu
ag

es

O
pe

n-
se

t

M
ul

tim
od

al

#Generative
methods#Real #Fake Real Fake Total

FaceForensics++ [56] 1,000 4,000 4.7 17.0 21.7 4 0 ✗ ✗
DFDC [18] 23,654 104,500 64.4 288.9 353.3 5 0 ✗ ✗
DeeperForensics [33] 50,000 10,000 46.3 116.7 163.0 1 0 ✗ ✗
ForgeryNet [28] 99,630 121,617 13.3 13.5 26.8 15 0 ✗ ✗
Celeb-DF [45] 590 5,639 2.1 20.4 22.5 1 0 ✗ ✗
WildDeepfake [79] 3,805 3,509 - - 10.9 - 0 ✗ ✗
FakeAVCeleb [37] 500 19,500 1.1 41.2 42.3 3 1 ✗ ✓
DeepSpeak [4] 6,226 6,799 17.0 26.0 44.0 10 1 ✗ ✓
Deepfake-Eval-2024 [7] 1,072 964 28.9 16.2 45.1 - 49 ✗ ✓

MAVOS-DD (ours) 25,195 35,169 91.1 161.4 252.5 7 8 ✓ ✓

2 Related Work59

The field of deepfake generation has seen significant advancements in recent years [16], particularly60

with the rise of diffusion models [15, 29, 55, 57, 59]. In parallel, considerable research has been61

devoted to developing effective detection techniques [16, 52, 71, 80] to counter the negative effects62

of deepfake media. In addition, substantial efforts have been made to construct datasets for deepfake63

detection [18, 33, 37, 45, 56], thereby facilitating research in this domain.64

Audio-visual deepfake detection. Traditional deepfake detection methods are unimodal, focusing65

solely on either visual artifacts, e.g. abnormal facial textures [21, 40, 42] and inconsistent lighting66

[23], or audio inconsistencies, e.g. speech prosody [2, 5, 63], frequency patterns [20, 60, 72, 73],67

and voice cloning artifacts [22, 48]. With generation methods becoming more capable, it is essential68

to leverage both visual and auditory modalities to improve the robustness and reliability of the69

forgery detection models [52, 71, 80]. Aside from unimodal cues, utilizing multimodal (audio-visual)70

information can naturally capitalize on the misalignment between the two modalities by examining71

if the audio and video signals are coherent and temporally aligned, e.g. in terms of lip movements72

[1, 78] or facial expressions [26].73

Early works on audio-visual deepfake detection used convolutional architectures [14, 38, 54]. For74

example, Multimodaltrace [54] extracts separate features from audio and video with residual blocks,75

fuses the resulting representations and further processes them to make the final prediction. Kihal et76

al. [38] also employ individual CNN-based feature extractors, but use a Random Forest model to77

predict the final label.78

Recent works opted for architectures that leverage transformers, not only because of their higher79

performance, but also because of the inherent mechanism that enables fusing the information from80

two modalities using cross-attention modules [31, 50, 52, 58, 74, 78]. Zhou et al. [78] detect81

inconsistencies between the two modalities (focusing on lip movements and speech) by aligning their82

low-level latent representations and fusing them through a cross-modal attention mechanism. Nie et83

al. [50] employ two pre-trained frozen ViTs [19] to extract features, with only the [CLS] tokens being84

used for classification. To bridge the gap between modalities, the audio information is integrated into85

the visual tokens using an audio-distilled cross-modal interaction module. Furthermore, the authors86

try to detect high-frequency forgery artifacts by biasing the queries, keys, and values with learnable87

parameters.88

Audio-visual deepfake datasets. While the advancement of deepfake generation methods has89

led to the development of detection methods to defend against deepfakes, it has also driven the90

need for extensive datasets. In the beginning, datasets comprising data from a single modality91

were created for both visual (image and video) data [10, 17, 18, 28, 44, 45, 56, 79] and audio data92

[46, 66]. Nevertheless, with the rise of multimodal models, the availability of audio-visual datasets93

[4, 7, 37, 41] has become essential.94
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Figure 2: Distribution of videos per language and per generative method. MAVOS-DD comprises
videos in eight languages, generated with seven methods. The languages are coded as follows: Arabic
(AR), English (EN), German (DE), Hindi (HI), Mandarin (MD), Romanian (RO), Russian (RU) and
Spanish (ES).

We present a comprehensive comparison of MAVOS-DD with other video and multimodal datasets in95

Table 1. DFDC [18] is among the largest video dataset for deepfake detection. However, multimodal96

datasets, such as FakeAVCeleb [37] and Deepfake-Eval-2024 [7] are not as large. FakeAVCeleb97

[37] is based on two face swapping methods and a facial reenactment method for their synthetic98

English-speaking videos. While DeepSpeak [4] tries to excel by employing 10 generative methods,99

Deepfake-Eval-2024 [7] stands out by having videos in 49 languages, although 80% is English.100

One of the main limitations of the deepfake detection methods is their ability to generalize to synthetic101

samples generated with different methods. To this end, MAVOD-DD contains samples obtained with102

a variety of generative methods to facilitate training robust detection models, but also to thoroughly103

evaluate their ability to generalize to unseen methods. Moreover, with only one exception [7]104

from concurrent literature, existing datasets do not focus on the multilingual aspect of audio-visual105

content. Chandra et al. [7] collect the dataset from the web, so there is no control over the generative106

methods and languages. In contrast, our dataset enables an open-set evaluation in terms of both107

generative models and languages. Furthermore, our dataset comprises 10× more deepfake content108

(161 hours vs. 16 hours), which enables the training of very deep models with higher generalization109

capacity. Although their videos span 49 languages, 80% of all videos are in English (each other110

language representing less than 0.5% of the dataset). In this regard, MAVOS-DD provides a more111

even distribution across languages (see Fig. 2a). Overall, the comparison in Table 1 shows that112

MAVOS-DD is the largest dataset from multilingual audio-video open-set deepfake detection.113

3 Dataset114

Overview. Our main contribution is MAVOS-DD, a large-scale deepfake dataset consisting of115

60,364 real and synthetic videos, totaling 252 hours of content across eight different languages. The116

synthetic content is generated using seven state-of-the-art methods: EchoMimic [9], Memo [75],117

Sonic [32], LivePortrait [25], Inswapper, HifiFace [68], and Roop. The deepfake methods cover three118

key generative tasks: talking-head generation [9, 32, 75], facial expression transfer [25], and face119

swapping [68]. This coverage ensures a diverse and realistic set of generated videos. The main reason120

for using recent generative methods is to create a challenging dataset. Yet, another level of complexity121

is added through the fact that the audio-video samples cover eight languages: Arabic (AR), English122

(EN), German (DE), Hindi (HI), Mandarin (MD), Romanian (RO), Russian (RU) and Spanish (ES).123

We present the video distribution per language and per generative method in Figure 2a and Figure 2b,124

respectively. Note that real videos are naturally included in the distribution of videos per language,125

but not in the distribution of videos per generative method. The distribution per language is influenced126

by the number of real videos that we were able to collect for each language, while the distribution per127

method is influenced by the speed of each generative method. The total time required to generate all128

videos included in MAVOS-DD amounts to roughly 88 days (time measured on a computer with an129

Intel i9-14900K CPU with 192 GB of RAM and an Nvidia RTX 4090 GPU with 24 GB of VRAM).130

We define official training, validation, and test splits for various evaluation scenarios, as illustrated in131

Figure 1. The first scenario, referred to as in-domain evaluation, uses a test set comprising the same132
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Table 2: Number of real and fake videos included in the training, validation and test splits of MAVOS-
DD. The test data is divided into four subsets, which generate an in-domain evaluation scenario and
three open-set evaluation scenarios. The core set includes six languages (Arabic, English, Mandarin,
Romanian, Russian, Spanish) and four methods (EchoMimic, Memo, LivePortrait, Inswapper). The
extra languages are German and Hindi. The extra models are Sonic, HifiFace and Roop. The length
(in hours) of the real and fake content in each split is reported in the last column.

Split Video File count Total Total

type Core Extra Extra Extra models count length
set languages models & languages (h)

Train Real 10,297 0 0 0 10,297 38.5
Fake 9,473 0 0 0 9,473 45.4

Validation Real 1,715 0 0 0 1,715 6.5
Fake 1,580 0 0 0 1,580 8.1

Test

In-domain Real 5,185 0 0 0 5,185 19.3
Fake 4,701 0 0 0 4,701 23.4

Open-set language Real 5,185 7,998 0 0 13,183 46.3
Fake 4,701 4,287 0 0 8,988 46.7

Open-set model Real 5,185 0 0 0 5,185 19.3
Fake 4,701 0 13,081 0 17,782 70.7

Open-set full Real 5,185 7,998 0 0 13,183 46.4
Fake 4,701 4,287 13,081 2,047 24,116 107.5

languages and generative methods as the training set. The second and third scenarios, namely open-set133

model and open-set language, expand the in-domain test set to include samples generated by unseen134

models or unseen languages, respectively. The final scenario, called open-set full, includes samples135

generated by unseen models in unseen languages, presenting the most challenging evaluation setting.136

We present detailed statistics about MAVOS-DD and its splits in Table 2. The training and validation137

splits do not include videos in German or Hindi, as these languages are reserved exclusively for the138

test set to support open-set evaluation. Overall, the number of real and fake samples is relatively139

balanced. However, the open-set model and open-set full splits contain a larger number of fake140

samples, as they comprise synthesized videos from three additional generative methods that are not141

present in the training set, as illustrated in Figure 1.142

Real videos. We collect real videos from YouTube, primarily sourcing content from popular news143

channels or street interviews in each target language (such as EasyLanguages5) Additionally, we144

include videos from well-known channels specific to each country and language, although these are145

not our primary focus, as they tend to lack the diversity of speaker identities found in news broadcasts.146

After downloading, we apply the TalkNet active speaker detection model [61] to segment the videos147

into shorter clips, each featuring a single speaking individual. As the process to acquire the videos148

and split them into smaller videos is automatic, there are some instances where the videos do not149

contain any humans, i.e. faces. In order to filter these out, for each video, we apply a face detector150

[34] on individual frames (using a step of 15 frames) and eliminate those videos that do not have151

a face for more than half of the evaluated frames. The final dataset comprises 25,195 high-quality152

videos, with resolutions ranging from 256× 256 to 1920× 1080, amounting to a total of 91 hours of153

real content.154

Deepfake videos. Deepfake generation typically involves a source identity image, representing the155

face that is manipulated by the generative model. We take these identities from multiple sources in156

our experiments. The first source is a set of 500 portraits generated by us using FLUX6. We use the157

simple text prompt “A portrait of a man/woman”, as it consistently produces high-quality images158

without compromising output diversity. For the diffusion process, we set the number of denoising159

steps to 50 and use a guidance scale of 3.5. Additionally, we supplement the generated portraits with160

real identities from well-established face datasets, specifically FFHQ [36] and CelebAMask-HQ [43],161

5https://www.easy-languages.org/
6https://github.com/black-forest-labs/flux
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Figure 3: Fake video frames generated by each of the seven deepfake methods. Best viewed in color.

along with identities found in our real videos. These datasets have disproportional dimensions, but162

we sample subsets from each to ensure an almost uniform distribution across datasets.163

The talking-head generation is performed with EchoMimic, Memo and Sonic. We provide these164

models with a portrait image, sampled from the previously described set, and an audio signal165

containing a person speaking. The audio also originates from the real video set described earlier. The166

result is a video in which the person from the portrait image utters the speech from the audio file.167

We emphasize that the models not only manage lip synchronization, but also effectively generate168

head movements and facial expressions required for this task. Furthermore, we observe that Memo169

and Sonic perform consistently well across multiple languages, while EchoMimic struggles with170

languages other than English and Mandarin. For this reason, we individually fine-tune EchoMimic on171

additional languages, such as Romanian and Arabic, before using it for generation. We use 1,000 real172

videos for each language and trained the model for 10 epochs. Finally, we synthesize over 10,000173

videos using talking-head generation methods, resulting in more than 65 hours of fake content. All174

videos are generated at a consistent resolution of 512× 512 pixels.175

For facial expression manipulation, we employ LivePortrait [25]. This model can transfer facial176

movements (eyes, lips, and expressions) from a driving video to a source image or video. However,177

we observe a noticeable drop in quality when the person in the driving video is not directly facing the178

camera. Additionally, while lip synchronization is handled effectively, the transfer of eye movements179

and facial expressions is less effective. To address these limitations, we restrict our use to front-facing180

driving videos and focus only on lip synchronization. As a result, only the movements of the lips181

are synthesized in the generated samples, while all other facial attributes in the source video remain182

unchanged. The audio of the resulting video is taken from the driving video, to ensure alignment183

between the lips and the information spoken in the audio. We select front-facing driving videos from184

the set generated using talking-head synthesis, as these are primarily created from portrait images, and185

verified for the front-facing property. The source videos are represented by the real videos collected186

from YouTube. We generate over 2,900 videos using this method, resulting in more than 14 hours187

of fake content. The generated videos inherit the resolution of the source (real) videos, as the only188

changed aspect is the movement of the lips.189

The face swapping is performed with Inswapper, HifiFace and Roop. Face swapping works by pasting190

the identity from a source image to a target video, while keeping the attributes that are not specific to191

the identity (facial expression, lip movement) unchanged. For the source images, we use portraits192

from the previously described dataset, which includes both synthetic and real identities. The target193

videos are selected from the collected set of real YouTube videos. Following face swapping, we194

apply GFPGAN [67] for face restoration to enhance visual quality. We generate over 22,000 videos195

6



Table 3: Results obtained by pre-trained and fine-tuned versions of AVFF, MRDF and TALL on the
MAVOS-DD official test sets: in-domain, open-set model, open-set language and open-set full. The
best and second-best results on each column are highlighted in bold blue and orange, respectively.
According to McNemar’s statistical testing, all fine-tuned models are significantly better than their
pre-trained counterparts (p-value < 0.001).

Method
Fi

ne
-t

un
ed In-domain Open-set model Open-set language Open-set full

mAP AUC acc mAP AUC acc mAP AUC acc mAP AUC acc

AVFF [52] ✗ 0.51 0.51 52.45 0.50 0.50 22.58 0.51 0.51 59.46 0.50 0.50 35.34
MRDF [80] ✗ 0.50 0.46 44.04 0.52 0.52 58.04 0.46 0.41 39.35 0.51 0.49 50.78
TALL [71] ✗ 0.49 0.48 50.74 0.50 0.51 39.22 0.48 0.47 50.78 0.50 0.49 44.63

AVFF [52] ✓ 0.95 0.95 86.93 0.85 0.89 75.34 0.90 0.90 84.26 0.87 0.89 77.68
MRDF [80] ✓ 0.90 0.90 84.27 0.78 0.88 78.32 0.88 0.88 82.15 0.82 0.86 78.87
TALL [71] ✓ 0.87 0.86 78.07 0.79 0.84 66.20 0.80 0.80 73.25 0.77 0.79 67.42

using this deepfake method, totaling 81 hours of fake content. The resolution of the resulting videos196

matches that of the target (real) videos.197

In Figure 3, we present synthetic video frames produced by each of the seven deepfake methods. The198

samples are diverse and have a high degree of realism, confirming that MAVOS-DD represents a199

challenging dataset for existing deepfake detectors. For both real and generated videos, we highlight200

that the number of frames per second (FPS) ranges from 23 to 60. The audio bitrate varies between201

88 and 140 kbps, with the audio sample rate spanning from 16 to 44.1 kHz. The video bitrate ranges202

from 40 to over 10, 000 kbps.203

4 Experiments204

Baselines and hyperparameters. We conduct experiments using thee state-of-the-art deepfake205

detectors. Two of them, namely AVFF [52] and MRDF [80], are multimodal, while the third206

one, TALL [71], analyzes only the video input. AVFF employs two unimodal encoders based on207

transformer blocks, each of them being trained to predict features of the opposite modality. The208

outputs from both encoders are concatenated and passed to a binary classifier for deepfake detection.209

Similarly, MRDF uses two encoders to extract features from each modality. The two encoders are210

based on ResNet-18 [27]. Their output is concatenated and further processed by an audio-visual211

transformer module for deepfake detection. TALL is a spatio-temporal modeling method that captures212

both spatial and temporal inconsistencies. The method is applicable to multiple architectures. In our213

work, we use TALL-Swin, which is based on Swin Transformer [47]. We conduct the experiments214

using both pre-trained and fine-tuned versions of each model. We fine-tune MRDF for 5 epochs,215

TALL for 15 epochs and AVFF for 10 epochs on MAVOS-DD. The number of epochs are established216

based on early stopping. To optimize the models, we employ Adam [39] with a learning rate of 10−3217

for MRDF, 2 · 10−5 for TALL and 10−5 for AVFF, respectively. We keep the default values for the218

other hyperparameters of Adam. We set the batch size to 4 for AVFF and MRDF, and 32 for TALL.219

All the experiments are carried out on a computer with an Intel i9-14900K CPU with 192 GB of220

RAM and an Nvidia RTX 4090 GPU with 24 GB of VRAM.221

Results. In Table 3, we report the results for the three baseline models across three evaluation metrics:222

mean average precision (mAP), area under the ROC curve (AUC), and accuracy (acc). We report223

these values on all four test sets: in-domain, open-set model, open-set language and open-set full.224

The results demonstrate that MAVOS-DD is a difficult data set for existing deepfake detection225

methods, since all the employed and publicly available pre-trained models perform close to random226

chance, regardless of the test set. We can attribute the performance gap of pre-trained models to the227

fact that MAVOS-DD typically contains examples that are more challenging to detect, since they are228

generated with models that exhibit a high degree of realism. The fine-tuned versions perform much229

better, especially in the in-domain scenario. With respect to the in-domain scenario, their performance230

levels decline in open-set setups, indicating that further developments are needed to improve the231

generalization of state-of-the-art detectors. As expected, the most significant performance drop is232
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Figure 4: Confusion matrices obtained by AVFF, MRDF and TALL after fine-tuning them on
MAVOS-DD.

observed in the open-set model setup. This drop indicates that detectors still fail to generalize from a233

set of deepfake methods to another. The performance drop is lower in the open-set language case.234

However, when we examine the number of real samples incorrectly predicted by the fine-tuned235

MRDF model as fake across in-domain and open-set language scenarios, we observe a difference of236

1,378 samples, increasing from 596 to 1,974. This suggests that a significant portion of misclassified237

samples are likely labeled as fake simply because the audio is in a language not included in the training238

set. Another important observation is the noticeable performance gap between the unimodal TALL239

method and the two multimodal approaches (AVFF and MRDF), suggesting that jointly analyzing240

visual and audio modalities provides a significant advantage on MAVOS-DD.241

We report the confusion matrices obtained by AVFF, MRDF and TALL, for each of the four test242

scenarios in Figure 4. In the open-set scenarios, AVFF shows a significant drop in its ability to detect243

fake videos. The same observation applies to MRDF, although the number of false positives with244

respect to the in-domain test case drops by less than 4.1%. TALL exhibits a poor ability to detect245

deepfakes, regardless of the target test set. These observations strengthen the claim that MAVOS-DD246

represents a challenging deepfake benchmark for modern deepfake detectors. Finally, to attest the247

usefulness of the provided training data, we compute McNemar’s statistical test between pre-trained248

and fine-tuned versions of each model, obtaining a p-value lower than 0.001 in all cases.249

Error analysis. We investigate which of the deepfake generative methods poses the greatest challenge250

for MRDF in terms of detection accuracy. We find that samples generated by LivePortrait and Roop251

are the most difficult, with 80% of the samples being labeled as real. Roop is one of the methods252

included in the test set only, and we believe that this explains the poor performance of MRDF in253

identifying samples generated by Roop. In contrast, LivePortrait is part of the in-domain set, but the254

poor performance of the detector on this method can be attributed to the fact that we only synchronize255

the lips, leaving everything else as in the original video. In Figure 5, we illustrate such a scenario256

where we show, side-by-side, frames from a real video and its corresponding fake video modified257

with LivePortrait. In the illustrated video, MRDF fails to detect the fake, misclassifying it as real.258

8
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Figure 5: A real video and its corresponding fake sample generated using LivePortrait. The MRDF
detector incorrectly classifies the fake sample as real. Best viewed in color.

5 Broader Impact and Limitations259

The advancements of deepfake generation models have significant implications for society, as it260

facilitates the widespread of misinformation. As synthetic media becomes increasingly realistic and261

accessible, the risk of misuse continues to grow. To fight against this, not only more competent262

models are required, but also varied datasets, as robust detection systems heavily depend on the263

utilized training data. Our research fosters the development of such models, as it addresses some264

of the limitations of previous datasets: a wide range of generation methods, multiple languages,265

and a meticulously designed split that translates into challenging open-set evaluation scenarios.266

Robust deepfake detection models may be beneficial for journalists, social media platforms and267

even governmental agencies. It could also help to protect individuals from having their reputation268

damaged.269

Nevertheless, we also acknowledge that the development of detection methods can also lead to more270

sophisticated generative models, the research in the generative AI domain being restless. Still, we are271

convinced that MAVOS-DD will continue to be very useful, as we aim to continuously update it with272

state-of-the-art generative models.273

A potential limitation of our benchmark consists of the hardware requirements to carry out experiments274

on it. Some minimum resources, e.g. CPU for loading the videos and GPU for deep learning models,275

must be utilized for training and evaluating on such a dataset. Another possible limitation is276

represented by the fact that the dataset inadvertently has a demographic bias, corresponding to the set277

of eight languages, which could result in reduced performance between different populations. This278

requires a continued evaluation of fairness and increased responsibility when deploying deepfake279

models trained on our dataset.280

6 Conclusion and Future Work281

In this work, we introduced MAVOS-DD, a large-scale open-set benchmark for multilingual audio-282

video deepfake detection, comprising over 250 hours of real and generated videos. We further283

proposed a test split that creates four different evaluation scenarios: in-domain, open-set model,284

open-set language and open-set full. The resulting scenarios are aimed to assess the performance285

and robustness of deepfake detectors in challenging situations. We evaluated three different state-of-286

the-art deepfake detectors on the newly proposed benchmark, and observed significant performance287

drops across all four evaluation setups. The empirical results highlight the need to develop more288

robust deepfake detectors for practical scenarios.289

In future work, we aim to continuously update the dataset by adding deepfake samples generated290

with models that are going to be released after our first release date. Thus, MAVOS-DD will keep291

up with the development pace of generative models, so that it will stay relevant for a long period of292

time. Additionally, we target the development of novel deepfake detectors that specifically address293

the challenges of the proposed open-set setups, which closely resemble real-world scenarios.294
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We share MAVOS-DD under the International Attribution Non-Commercial Share-Alike 4.0 (CC523

BY-NC-SA 4.0) license, aiming for open and responsible research on deepfake detection. All real524

data samples are collected from public YouTube videos. Since the videos are gathered from a public525

website, we adhere to the European regulations7 allowing researchers to use and store data from526
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by removing the respective video(s), in compliance with data protection principles.530
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NeurIPS Paper Checklist531

1. Claims532

Question: Do the main claims made in the abstract and introduction accurately reflect the533

paper’s contributions and scope?534

Answer: [Yes]535

Justification: The paper introduces a new benchmark for deepfake detection, which was536

made available through the Huggingface platform. To attest the scale and benefits of our537

benchmark, we have included a comparison with other datasets in Table 1. Furthermore, we538

demonstrated the experiments carried out through the presented results.539

Guidelines:540

• The answer NA means that the abstract and introduction do not include the claims541

made in the paper.542

• The abstract and/or introduction should clearly state the claims made, including the543

contributions made in the paper and important assumptions and limitations. A No or544

NA answer to this question will not be perceived well by the reviewers.545

• The claims made should match theoretical and experimental results, and reflect how546

much the results can be expected to generalize to other settings.547

• It is fine to include aspirational goals as motivation as long as it is clear that these goals548

are not attained by the paper.549

2. Limitations550

Question: Does the paper discuss the limitations of the work performed by the authors?551

Answer: [Yes]552

Justification: Although we have tried to address the limitations of the previous datasets, our553

benchmark presents a few limitations as well. These are all discussed in Section 5.554

Guidelines:555

• The answer NA means that the paper has no limitation while the answer No means that556

the paper has limitations, but those are not discussed in the paper.557

• The authors are encouraged to create a separate "Limitations" section in their paper.558

• The paper should point out any strong assumptions and how robust the results are to559

violations of these assumptions (e.g., independence assumptions, noiseless settings,560

model well-specification, asymptotic approximations only holding locally). The authors561

should reflect on how these assumptions might be violated in practice and what the562

implications would be.563

• The authors should reflect on the scope of the claims made, e.g., if the approach was564

only tested on a few datasets or with a few runs. In general, empirical results often565

depend on implicit assumptions, which should be articulated.566

• The authors should reflect on the factors that influence the performance of the approach.567

For example, a facial recognition algorithm may perform poorly when image resolution568

is low or images are taken in low lighting. Or a speech-to-text system might not be569

used reliably to provide closed captions for online lectures because it fails to handle570

technical jargon.571

• The authors should discuss the computational efficiency of the proposed algorithms572

and how they scale with dataset size.573

• If applicable, the authors should discuss possible limitations of their approach to574

address problems of privacy and fairness.575

• While the authors might fear that complete honesty about limitations might be used by576

reviewers as grounds for rejection, a worse outcome might be that reviewers discover577

limitations that aren’t acknowledged in the paper. The authors should use their best578

judgment and recognize that individual actions in favor of transparency play an impor-579

tant role in developing norms that preserve the integrity of the community. Reviewers580

will be specifically instructed to not penalize honesty concerning limitations.581

3. Theory assumptions and proofs582

15



Question: For each theoretical result, does the paper provide the full set of assumptions and583

a complete (and correct) proof?584

Answer: [NA] .585

Justification: Given the scope of our paper, we do not have any theoretical results to present,586

only experimental results.587

Guidelines:588

• The answer NA means that the paper does not include theoretical results.589

• All the theorems, formulas, and proofs in the paper should be numbered and cross-590

referenced.591

• All assumptions should be clearly stated or referenced in the statement of any theorems.592

• The proofs can either appear in the main paper or the supplemental material, but if593

they appear in the supplemental material, the authors are encouraged to provide a short594

proof sketch to provide intuition.595

• Inversely, any informal proof provided in the core of the paper should be complemented596

by formal proofs provided in appendix or supplemental material.597

• Theorems and Lemmas that the proof relies upon should be properly referenced.598

4. Experimental result reproducibility599

Question: Does the paper fully disclose all the information needed to reproduce the main ex-600

perimental results of the paper to the extent that it affects the main claims and/or conclusions601

of the paper (regardless of whether the code and data are provided or not)?602

Answer: [Yes]603

Justification: Firstly, we only used open-source code repositories available on GitHub.604

Secondly, the models, the training hyperparameters and the environments in which the605

experiments were carried out are clearly detailed in the first paragraph of Section 4, so that606

every technical person could easily reproduce our results.607

Guidelines:608

• The answer NA means that the paper does not include experiments.609

• If the paper includes experiments, a No answer to this question will not be perceived610

well by the reviewers: Making the paper reproducible is important, regardless of611

whether the code and data are provided or not.612

• If the contribution is a dataset and/or model, the authors should describe the steps taken613

to make their results reproducible or verifiable.614

• Depending on the contribution, reproducibility can be accomplished in various ways.615

For example, if the contribution is a novel architecture, describing the architecture fully616

might suffice, or if the contribution is a specific model and empirical evaluation, it may617

be necessary to either make it possible for others to replicate the model with the same618

dataset, or provide access to the model. In general. releasing code and data is often619

one good way to accomplish this, but reproducibility can also be provided via detailed620

instructions for how to replicate the results, access to a hosted model (e.g., in the case621

of a large language model), releasing of a model checkpoint, or other means that are622

appropriate to the research performed.623

• While NeurIPS does not require releasing code, the conference does require all submis-624

sions to provide some reasonable avenue for reproducibility, which may depend on the625

nature of the contribution. For example626

(a) If the contribution is primarily a new algorithm, the paper should make it clear how627

to reproduce that algorithm.628

(b) If the contribution is primarily a new model architecture, the paper should describe629

the architecture clearly and fully.630

(c) If the contribution is a new model (e.g., a large language model), then there should631

either be a way to access this model for reproducing the results or a way to reproduce632

the model (e.g., with an open-source dataset or instructions for how to construct633

the dataset).634
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(d) We recognize that reproducibility may be tricky in some cases, in which case635

authors are welcome to describe the particular way they provide for reproducibility.636

In the case of closed-source models, it may be that access to the model is limited in637

some way (e.g., to registered users), but it should be possible for other researchers638

to have some path to reproducing or verifying the results.639

5. Open access to data and code640

Question: Does the paper provide open access to the data and code, with sufficient instruc-641

tions to faithfully reproduce the main experimental results, as described in supplemental642

material?643

Answer: [Yes]644

Justification: The introduced dataset has been made publicly available on one of the most645

well-known and used platforms, namely Huggingface, and it can be easily accessed with the646

datasets python package.647

Guidelines:648

• The answer NA means that paper does not include experiments requiring code.649

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/650

public/guides/CodeSubmissionPolicy) for more details.651

• While we encourage the release of code and data, we understand that this might not be652

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not653

including code, unless this is central to the contribution (e.g., for a new open-source654

benchmark).655

• The instructions should contain the exact command and environment needed to run to656

reproduce the results. See the NeurIPS code and data submission guidelines (https:657

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.658

• The authors should provide instructions on data access and preparation, including how659

to access the raw data, preprocessed data, intermediate data, and generated data, etc.660

• The authors should provide scripts to reproduce all experimental results for the new661

proposed method and baselines. If only a subset of experiments are reproducible, they662

should state which ones are omitted from the script and why.663

• At submission time, to preserve anonymity, the authors should release anonymized664

versions (if applicable).665

• Providing as much information as possible in supplemental material (appended to the666

paper) is recommended, but including URLs to data and code is permitted.667

6. Experimental setting/details668

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-669

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the670

results?671

Answer: [Yes]672

Justification: On the one hand, one of the main strengths of our dataset is data organization:673

MAVOS-DD not only has the classic train/val/test splits, but also includes testing subsets674

for unseen generation models and languages. On other hand, the training and test details675

(including all the aforementioned elements) are clearly specified in the Baselines and676

hyperparameters paragraph of Section 4.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The experimental setting should be presented in the core of the paper to a level of detail680

that is necessary to appreciate the results and make sense of them.681

• The full details can be provided either with the code, in appendix, or as supplemental682

material.683

7. Experiment statistical significance684

Question: Does the paper report error bars suitably and correctly defined or other appropriate685

information about the statistical significance of the experiments?686
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Answer: [Yes]687

Justification: We have computed McNemar’s statistical test, resulting in a p-value lower688

than 0.001. This is also mentioned at the end of the Results paragraph in Section 4.689

Guidelines:690

• The answer NA means that the paper does not include experiments.691

• The authors should answer "Yes" if the results are accompanied by error bars, confi-692

dence intervals, or statistical significance tests, at least for the experiments that support693

the main claims of the paper.694

• The factors of variability that the error bars are capturing should be clearly stated (for695

example, train/test split, initialization, random drawing of some parameter, or overall696

run with given experimental conditions).697

• The method for calculating the error bars should be explained (closed form formula,698

call to a library function, bootstrap, etc.)699

• The assumptions made should be given (e.g., Normally distributed errors).700

• It should be clear whether the error bar is the standard deviation or the standard error701

of the mean.702

• It is OK to report 1-sigma error bars, but one should state it. The authors should703

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis704

of Normality of errors is not verified.705

• For asymmetric distributions, the authors should be careful not to show in tables or706

figures symmetric error bars that would yield results that are out of range (e.g. negative707

error rates).708

• If error bars are reported in tables or plots, The authors should explain in the text how709

they were calculated and reference the corresponding figures or tables in the text.710

8. Experiments compute resources711

Question: For each experiment, does the paper provide sufficient information on the com-712

puter resources (type of compute workers, memory, time of execution) needed to reproduce713

the experiments?714

Answer: [Yes]715

Justification: We described the compute resources of our working environment in the first716

paragraph of Section 3. Furthermore, we mentioned that we used the same environment for717

fine-tuning the detectors, as mentioned in Section 4.718

Guidelines:719

• The answer NA means that the paper does not include experiments.720

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,721

or cloud provider, including relevant memory and storage.722

• The paper should provide the amount of compute required for each of the individual723

experimental runs as well as estimate the total compute.724

• The paper should disclose whether the full research project required more compute725

than the experiments reported in the paper (e.g., preliminary or failed experiments that726

didn’t make it into the paper).727

9. Code of ethics728

Question: Does the research conducted in the paper conform, in every respect, with the729

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?730

Answer: [Yes]731

Justification: We confirm that we carefully read the NeurIPS Code of Ethics and we respect732

all the points. The most important concerns are related to Privacy, Copyright and Fair Use,733

nevertheless, our data originates from publicly available data which we ensured that it can734

be used for academic purposes. Additionally, the accompanying README file of the data735

set includes a note with instructions for individuals who wish to request the removal of736

content involving them, directing them to contact us via email.737

Guidelines:738
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.739

• If the authors answer No, they should explain the special circumstances that require a740

deviation from the Code of Ethics.741

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-742

eration due to laws or regulations in their jurisdiction).743

10. Broader impacts744

Question: Does the paper discuss both potential positive societal impacts and negative745

societal impacts of the work performed?746

Answer: [Yes]747

Justification: Our work aims to facilitate the deepfake detection research, and as a result,748

contribute to the development robust models and thus fight against the misuse. These749

positive societal impacts were discussed in Section 5.750

Guidelines:751

• The answer NA means that there is no societal impact of the work performed.752

• If the authors answer NA or No, they should explain why their work has no societal753

impact or why the paper does not address societal impact.754

• Examples of negative societal impacts include potential malicious or unintended uses755

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations756

(e.g., deployment of technologies that could make decisions that unfairly impact specific757

groups), privacy considerations, and security considerations.758

• The conference expects that many papers will be foundational research and not tied759

to particular applications, let alone deployments. However, if there is a direct path to760

any negative applications, the authors should point it out. For example, it is legitimate761

to point out that an improvement in the quality of generative models could be used to762

generate deepfakes for disinformation. On the other hand, it is not needed to point out763

that a generic algorithm for optimizing neural networks could enable people to train764

models that generate Deepfakes faster.765

• The authors should consider possible harms that could arise when the technology is766

being used as intended and functioning correctly, harms that could arise when the767

technology is being used as intended but gives incorrect results, and harms following768

from (intentional or unintentional) misuse of the technology.769

• If there are negative societal impacts, the authors could also discuss possible mitigation770

strategies (e.g., gated release of models, providing defenses in addition to attacks,771

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from772

feedback over time, improving the efficiency and accessibility of ML).773

11. Safeguards774

Question: Does the paper describe safeguards that have been put in place for responsible775

release of data or models that have a high risk for misuse (e.g., pretrained language models,776

image generators, or scraped datasets)?777

Answer: [NA]778

Justification: Given that the objective of our proposed dataset is to detect deepfake media,779

and thus prevent the misuse, we consider that there is no need to implement such safeguards.780

Guidelines:781

• The answer NA means that the paper poses no such risks.782

• Released models that have a high risk for misuse or dual-use should be released with783

necessary safeguards to allow for controlled use of the model, for example by requiring784

that users adhere to usage guidelines or restrictions to access the model or implementing785

safety filters.786

• Datasets that have been scraped from the Internet could pose safety risks. The authors787

should describe how they avoided releasing unsafe images.788

• We recognize that providing effective safeguards is challenging, and many papers do789

not require this, but we encourage authors to take this into account and make a best790

faith effort.791
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12. Licenses for existing assets792

Question: Are the creators or original owners of assets (e.g., code, data, models), used in793

the paper, properly credited and are the license and terms of use explicitly mentioned and794

properly respected?795

Answer: [Yes]796

Justification: On the one hand, we have made all the efforts to ensure we do not break any797

license for distributing the acquired data only for research purposes. On the other hand, we798

have the necessary rights for the generated samples and release them within the scope of our799

license.800

Guidelines:801

• The answer NA means that the paper does not use existing assets.802

• The authors should cite the original paper that produced the code package or dataset.803

• The authors should state which version of the asset is used and, if possible, include a804

URL.805

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.806

• For scraped data from a particular source (e.g., website), the copyright and terms of807

service of that source should be provided.808

• If assets are released, the license, copyright information, and terms of use in the809

package should be provided. For popular datasets, paperswithcode.com/datasets810

has curated licenses for some datasets. Their licensing guide can help determine the811

license of a dataset.812

• For existing datasets that are re-packaged, both the original license and the license of813

the derived asset (if it has changed) should be provided.814

• If this information is not available online, the authors are encouraged to reach out to815

the asset’s creators.816

13. New assets817

Question: Are new assets introduced in the paper well documented and is the documentation818

provided alongside the assets?819

Answer: [Yes]820

Justification: The new asset i.e. the benchmark introduced is thoroughly documented in821

Section 3. Moreover, we provide a detailed documentation on how to access the dataset on822

its Huggingface page, such as how to filter the data for each split.823

Guidelines:824

• The answer NA means that the paper does not release new assets.825

• Researchers should communicate the details of the dataset/code/model as part of their826

submissions via structured templates. This includes details about training, license,827

limitations, etc.828

• The paper should discuss whether and how consent was obtained from people whose829

asset is used.830

• At submission time, remember to anonymize your assets (if applicable). You can either831

create an anonymized URL or include an anonymized zip file.832

14. Crowdsourcing and research with human subjects833

Question: For crowdsourcing experiments and research with human subjects, does the paper834

include the full text of instructions given to participants and screenshots, if applicable, as835

well as details about compensation (if any)?836

Answer: [NA]837

Justification: For our dataset, we did not carry out any activities involving human subjects,838

but rather collected the data from online public sources.839

Guidelines:840

• The answer NA means that the paper does not involve crowdsourcing nor research with841

human subjects.842
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• Including this information in the supplemental material is fine, but if the main contribu-843

tion of the paper involves human subjects, then as much detail as possible should be844

included in the main paper.845

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,846

or other labor should be paid at least the minimum wage in the country of the data847

collector.848

15. Institutional review board (IRB) approvals or equivalent for research with human849

subjects850

Question: Does the paper describe potential risks incurred by study participants, whether851

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)852

approvals (or an equivalent approval/review based on the requirements of your country or853

institution) were obtained?854

Answer: [NA]855

Justification: We did not work with any human subjects, and thus we do not require any856

Institutional Review Board (IRB) approvals.857

Guidelines:858

• The answer NA means that the paper does not involve crowdsourcing nor research with859

human subjects.860

• Depending on the country in which research is conducted, IRB approval (or equivalent)861

may be required for any human subjects research. If you obtained IRB approval, you862

should clearly state this in the paper.863

• We recognize that the procedures for this may vary significantly between institutions864

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the865

guidelines for their institution.866

• For initial submissions, do not include any information that would break anonymity (if867

applicable), such as the institution conducting the review.868

16. Declaration of LLM usage869

Question: Does the paper describe the usage of LLMs if it is an important, original, or870

non-standard component of the core methods in this research? Note that if the LLM is used871

only for writing, editing, or formatting purposes and does not impact the core methodology,872

scientific rigorousness, or originality of the research, declaration is not required.873

Answer: [NA]874

Justification: Neither our work nor any components rely on LLMs.875

Guidelines:876

• The answer NA means that the core method development in this research does not877

involve LLMs as any important, original, or non-standard components.878

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)879

for what should or should not be described.880
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