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Abstract

Recent advances in immunology and synthetic biology have accelerated the
development of deep generative methods for DNA sequence design. Two dominant
approaches in this field are AutoRegressive (AR) models and Diffusion Models
(DMs). However, genomic sequences are functionally heterogeneous, consisting
of multiple connected regions (e.g., Promoter Regions, Exons, and Introns) where
elements within each region come from the same probability distribution, but the
overall sequence is non-homogeneous. This heterogeneous nature presents chal-
lenges for a single model to accurately generate genomic sequences. In this paper,
we analyze the properties of AR models and DMs in heterogeneous genomic se-
quence generation, pointing out crucial limitations in both methods: (i) AR models
capture the underlying distribution of data by factorizing and learning the transition
probability but fail to capture the global property of DNA sequences. (ii) DMs learn
to recover the global distribution but tend to produce errors at the base pair level. To
overcome the limitations of both approaches, we propose a post-training sampling
method, termed Absorb & Escape (A&E) to perform compositional generation
from AR models and DMs. This approach starts with samples generated by DMs
and refines the sample quality using an AR model through the alternation of the
Absorb and Escape steps. To assess the quality of generated sequences, we conduct
extensive experiments on 15 species for conditional and unconditional DNA
generation. The experiment results from motif distribution, diversity checks, and
genome integration tests unequivocally show that A&E outperforms state-of-the-art
AR models and DMs in genomic sequence generation. A&E does not suffer from
the slowness of traditional MCMC to sample from composed distributions with
Energy-Based Models whilst it obtains higher quality samples than single models.
Our research sheds light on the limitations of current single-model approaches
in DNA generation and provides a simple but effective solution for heterogeneous
sequence generation. Code is available at the Github Repo1.

1 Introduction

DNA sequences, as the blueprint of life, encode proteins and RNAs and directly interact with these
molecules to regulate biological activities within cells. The success of deep generative models in
image [28], text [27], and protein design [35] has drawn the attention of deep learning researchers to
the problem of DNA design, i.e. applying these models to genomic sequence generation [4, 34, 38].
However, one rarely explored issue is how well existing methods can handle the unique property
of DNA sequences: heterogeneity. DNA sequences are highly heterogeneous, consisting of multiple

1https://github.com/Zehui127/Absorb-Escape
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(a) A DNA generated by A&E, interact-
ing with TATA-binding protein. The
DNA sequences highlighted in magenta
are the TATA-box motif. The confirma-
tion is predicted by AlphaFold 3 [1]: the
DNA bends at the TATA-box position.

(b) The proposed framework Fast Absorb & Escape (Fast A&E):
The DM and AR models jointly optimize a given sequence by
alternating between the A-step and the E-step. See Section 4 for a
detailed explanation.

Figure 1: (a) Generated DNA interacting with TATA-binding protein. (b) Proposed A&E framework.

connected functional regions (e.g. Promoter Regions, Exons, and Introns) in sequential order. While
elements within each functional region might be homogeneous (coming from the same distribution),
the overall sequence is non-homogeneous. This heterogeneity, along with the discrete nature of
genomic sequences, poses challenges to popular deep generative methods.

Limitations of Existing Single-Model Approaches in Generating Genomic Sequences AutoRe-
gressive Models (AR) [8, 17, 24] are one of the most dominant approaches for discrete sequence gener-
ation. To model the data distribution of a sequence x of length T , the probability of x is factorized as:

pAR(x) =

T∏
i=1

pθ(xi|x1, x2, . . . , xi−1). (1)

An issue arises when modeling heterogeneous data, where the value of θ may vary significantly from
one segment to another. Additionally, AR models assume a dependency between the current element
and previous elements; this assumption may not hold true for heterogeneous sequences, potentially
hindering the learning process (see Section 3 for details).

On the other hand, Diffusion Models (DMs), initially proposed by [30], have been dominant in
image generation. In the probabilistic denoising view [16], DMs gradually add noise to the input
data x0, and a reverse diffusion (generative) process is trained to gradually remove the noise from
the perturbed data xt. DMs directly model the data distribution without AutoRegressive factorization,
thereby avoiding the issues associated with AR models. However, it has been shown that DMs are
less competent than AR models for discrete data generation [21, 36]. When it comes to modeling
heterogeneous genomic sequences, it remains unclear how the performance of DMs compares to
AR models within each homogeneous segment.

Model Composition As a Solution Balancing the ability of generative algorithms to capture both
local and global properties of the data distribution is central to the problem. An obvious solution
could be to combine these two types of models and perform generation using the composed models.
However, this typically requires converting these two models into an Energy-Based Model and then
sampling using Markov Chain Monte Carlo (MCMC), which can be inherently slow due to the sam-
pling nature of the algorithm [10], and the potential long inference time of individual models. With the
goal of accurate and efficient DNA generation, we aim to investigate two key questions in this work: (i)
How well does a single AR model or DM perform in DNA generation, given the heterogeneous nature
of genomic sequences? (ii) Is there an efficient algorithm to combine the benefits of AR models and
DMs, outperforming a single model? In answering these two questions, our contribution is three-fold:

(a) We study the properties of AR models and DMs in heterogeneous sequence generation
through theoretical and empirical analysis (Section 3).
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(b) We design the theoretical framework Absorb & Escape (A&E) to sample from the
compositional distribution of an AR model and a DM (Section 4.1). Furthermore, as
shown in Figure 1b, we propose an efficient post-training sampling algorithm termed Fast
A&E to sample from the composed model, requiring at most one forward pass through the
pretrained DM and AR model (Section 4.2).

(c) We design a comprehensive evaluation workflow for DNA generation, assessing the sequence
composition, diversity, and functional properties of generated genomic sequences. Extensive
experiments (15 species, 6 recent DMs, 1 AR model, and 3 types of evaluations) reveal: 1) the
limitations of existing models in DNA generation (Section 5.3), and 2) that the proposed algo-
rithm Fast A&E consistently outperforms state-of-the-art models as measured by motif dis-
tribution and functional property similarity to natural DNA sequences (Sections 4.2 and 5.3).

2 Preliminaries and Related Work

2.1 Problem Formulation: DNA Generation

DNA generation aims to produce synthetic sequences that functionally approximate real DNA
sequences. Formally, let N4 = {1, 2, 3, 4}, where each element represents one of the four nucleotides:
adenine (A), thymine (T), guanine (G), and cytosine (C). A DNA sequence of length L can be
represented as x ∈ NL

4 , with each element/nucleotide denoted by x1,x2, · · · ,xL.

Unconditional Generation: Given a dataset of real-world DNA sequences X = {x(n)}Nn=1

collected from some distribution p(x), where each sequence x(n) ∈ NL
4 represents a chain of

nucleotides, the objective is to develop a generative model pθ(x) of the data distribution p(x)
from which we can sample novel sequences x̃ ∼ pθ(x). These sequences should be structured
arrangements of A, T, G, and C, reflecting the complex patterns found in actual DNA. Earlier works
applying Generative Adversarial Networks (GANs) [13] to generate protein-encoding sequences [14]
and functional elements [33, 34, 38] fall into this category.

Conditional Generation: In this task, the dataset of DNA sequences X = {x(n), c(n)}Nn=1 is sampled
from the joint distribution p(x, c), where c represents the condition associated with each sequence.
The objective is to develop a model pθ(x|c) that generates new DNA sequences x̃ given condition
c. Recently, a discrete diffusion model DDSM [4] and an AutoRegressive model RegML [20] have
used expression level as the condition, while DNADiffusion [26] has used cell type as the condition.

2.2 Homogeneous vs. Heterogeneous Sequences

Homogeneous Generation Process In the context of sequence generation, a homogeneous Markov
Chain is characterized by constant probabilistic rules for generating the sequence at each time step t.
More generally, a process is defined as homogeneous if the transition probabilities are independent
of time t. This means there exists a constant Pc,j such that:

Pc,j = Pr[xt = j | x1:t−1 = c] (2)
holds for all times t, where Pc,j is a constant, and c represents a specific sequence of past values,
i.e., c = (c1, c2, . . . , ct−1).

Heterogeneous Generation Process Assuming homogeneous properties simplifies modeling but
can be overly restrictive for certain modalities, leading to inaccuracies. For example, DNA sequences
consist of various functionally distinct regions, such as promoters, enhancers, regulatory regions, and
protein-coding regions scattered across the genome [11]. Each region may be assumed to be homoge-
neous, but the overall sequence is non-homogeneous due to the differing properties of these elements.

For sequences like DNA, which consist of locally homogeneous segments, we define them as
heterogeneous sequences. Formally, a heterogeneous sequence is defined as follows: Suppose a
sequence x is divided into segments S1,S2, . . . ,Sm, where each segment Si is homogeneous. For
each segment Si = (xt,xt−1,xt−2, . . . ,xt−k), there exists a constant Pci,j such that:

Pci,j = Pr[xt = j | xt−k:t−1 = ci] (3)
holds for all times t within segment Si, where Pci,j is a constant, and ci = (ci,t−1, ci,t−2, . . . , ci,t−k)
represents values characterizing the history within that segment. While segment Si is homogeneous,
the entire sequence is non-homogeneous due to the varying properties across different segments.
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Figure 2: A toy example with heterogeneous sequences: (a) The overall training set consists of
N = 50, 000 heterogeneous sequences, where each sequence further consists of 16 homogeneous
segments. We apply an autoregressive and a diffusion model to learn the underlying distribution. (b)
Within each segment, the sequences are generated with a simple Hidden Markov Model (HMM),
with deterministic transition probability and emission probability.

3 Single Model Limitations in Heterogeneous Sequence Generation

How powerful are AR models and DMs in modelling heterogeneous sequences? We first provide a
theoretical analysis, and then perform experiments on synthetic sequences to validate our assumption.

AutoRegressive (AR) Models Suppose a heterogeneous sequence x consist of two homogeneous
segments of length k, then x = {{x1, x2, · · · , xk}, {xk+1, xk+2, · · · , x2k}}. AR models factorize
p(x) into conditional probability in eq. (4); consider the case where the true factorisation of p(x)
follows eq. (5).

pAR(x) = pθ(x1)pθ(x2|x1) · · · pθ(xk|x1:k−1) · pθ(xk+1|x1:k)pθ(xk+2|x1:k+1) · · · pθ(x2k|x1:2k−1)
(4)

pdata(x) = p1(x1)p1(x2|x1) · · · p1(xk|x1:k−1)︸ ︷︷ ︸
Segment 1

· p2(xk+1)p2(xk+2|xk+1) · · · p2(x2k|xk+1:2k−1)︸ ︷︷ ︸
Segment 2

(5)

AR factorisation allows the accurate modelling of the first homogeneous segment; however, it may
struggle to disassociate the elements of the second segment from the first segment. More precisely,
sufficient data is needed for AR model to learn that pθ(xk+1), pθ(xk+2), · · · , pθ(x2k) should be
independent to the elements {x1, x2, · · · , xk} in the first segments. Secondly, when the context
length of the AR model is shorter than the sequence length 2k, it could struggle to capture the
difference between p1 and p2 with a single set of parameters θ.

Diffusion Models (DMs) On the other hand, DMs estimate the overall probability distribution
p(x) without factorization. The elements of x are usually generated in parallel. Thus, they do
not suffer from the conditional dependence assumption. However, the removal of the conditional
dependence assumption may also decrease the accuracy of generation within each homogeneous
segment compared to AR models, as DMs do not explicitly consider previous elements.

3.1 A Toy Example

To evaluate the performance of Autoregressive (AR) models and Diffusion Models (DMs) in
generating heterogeneous sequences, we consider a toy example with 50,000 heterogeneous
sequences X = {x(n)}50000n=1 . Each sequence contains 16 segments, as illustrated in Figure 2(a),
and each segment comprises 16 elements, resulting in a total sequence length of 256 (x ∈ N256

4 ).
A simple Hidden Markov Model (HMM) is used to generate each segment, as shown in Figure 2(b),
with deterministic transition and emission probabilities that ensure homogeneity within each segment.
The emitted tokens differ from one segment to another, mimicking the properties of real DNA
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sequences. Whilst it is possible to use more complex distributions for each segment, doing so could
complicate the evaluation of the generated sequences.

Evaluation Under our toy HMM setup, a generative model could make two types of mistakes
within each segment: 1) Illegal Start Token: The generated sequence starts with a token which
has zero emission probability. E.g. in Figure 2(b), the starting token could only be {A, T}. {G,C}
at the beginning of the sequence are classified as illegal start tokens. 2) Incorrect Transition: The
generated sequence contains tokens with zero transition probability. E.g. in Figure 2(b) given the start
of the sequence is (A, T,A, T ), the next token must be A, any other tokens such as {T,G,C} are
classified as incorrect transitions. We use the number of incorrect tokens as the metric for evaluation.

Table 1: Number of Incorret Tokens on Synthetic Dataset. The
performance metrics used are the number of Illegal Start (IS)
Tokens and Incorrect Transition (IT) Tokens. Note that there are a
total of 4, 000× 256 = 1024, 000 tokens.

HYENADNA DISCDIFF

# IS TOKENS ↓ 812 0

# IT TOKENS ↓ 3,586 110,192

Experiment We use Hye-
naDNA [20, 24] as the repre-
sentative autoregressive (AR)
model. For the diffusion model,
we develop a simple latent
Discrete Diffusion model termed
DiscDiff. It resembles the
design of StableDiffusion [28], a
latent diffusion model for image
generation. DiscDiff consists of
a CNN-based Variational Encoder-decoder, trained with cross entropy, to map the discrete DNA
data into a latent space, and a standard 2-D UNet as the denoising network (detailed in appendix A).
The training dataset consists of X = {x(n)}50,000n=1 . For detailed training procedures see Appendix B.
We generate 4,000 sequences from each model and present the evaluation results in Table 1. As
expected, the diffusion model DiscDiff makes fewer errors regarding Illegal Start (IS) tokens but
tends to generate more Incorrect Transition (IT) tokens. Conversely, while the AR model HyenaDNA
generates some IS token errors, it produces significantly fewer IT token errors. This motivates the
question: can we combine the strengths of both algorithms to achieve better sequence generation?

4 Method

Algorithm 1 Absorb & Escape Algorithm

Require: Pretrained AutoRegressive model
pAR
θ (x) and pretrained Diffusion Model

pDM
β (x)

1: Initialize x̃0 ∼ pDM
β (x)

2: Set t = 0
3: Assume x = {s1, s2, . . . , sn}, where each

sk = {xi,xi+1, · · · ,xj} is a segment
4: while not converged do
5: Sample a segment S ∈ {s1, s2, . . . , sn}
6: Set i = start index of sk, j =

end index of sk
7: Absorb step:
8: x̃′

i:j ∼ p(xi:j |x0:i−1,xj+1:L) ≈
pAR
θ (xi:j |x0:i−1) //Refine segment sk us-

ing the AR model
9: Escape step:

10: x̃t
i:j = x̃′

i:j //Update x̃t

11: Increment t = t+ 1
12: end while
13: Output: Final sample x̃t with improved

quality

Algorithm 2 Fast Absorb & Escape Algorithm

Require: Absorb Threshold TAbsorb, Pretrained
AutoRegressive model pAR

θ (x) and pre-
trained Diffusion Model pDM

β (x)

1: Initialize x̃0 ∼ pDM
β (x)

2: for i in len(x̃) do
3: if pDM < TAbsorb then
4: Absorb step:
5: j = i+1
6: x̃′

j ∼ pAR
θ (xj |x0:i)

7: while pAR(x̃′
j) > pDM (x̃j) do

8: Increment j = j + 1
9: x̃′

j ∼ pAR
θ (xj |x0:i,xi:j−1) //Refine

Inaccurate region of the sequence to-
ken by token

10: end while
11: Escape step:
12: x̃i:j = x̃′

i:j //Update x̃
13: Increment i = i + j
14: end if
15: end for
16: Output: x̃ with improved quality
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4.1 The Absorb & Escape Framework

Given a pretrained AutoRegressive model pAR
θ (x) and a Diffusion Model pDM

β (x), we aim to
generate a higher quality example x̃ from the composed distribution pCθ,β(x) = pAR

θ (x) ◦ pDM
β (x).

However, directly computing pCθ,β(x) is generally intractable, as both the autoregressive factorizations
from pAR and score functions from pDM are not directly composable [9, 10]. We propose the Absorb
& Escape (A&E) framework, as shown in Algorithm 1, to efficiently sample from pCθ,β(x).

Absorb-Step Inspired by Gibbs sampling [12], which iteratively refines each dimension of a single
sample and moves to higher density areas, our algorithm starts with a sequence x0 ∼ pDM (x),
generated by the diffusion model and then refines the samples through the Absorb step and Escape
step. By exploiting the heterogeneous nature of the sequence, we assume that x0 can be factorized
into multiple segments {s1, s2, . . . , sn}. For each segment sk, we set i and j as the start and end
indices, respectively. During the Absorb step, we sample a subset of segments S ⊆ {s1, s2, . . . , sn}
and refine each segment sk by sampling x̃′

i:j ∼ p(xi:j |x0:i−1,xj+1:L) ≈ pAR
θ (xi:j |x0:i−1), using

the autoregressive model to approximate the conditional probability.

Escape-Step After refining the segment in the Absorb step, we proceed with the Escape step where
we update the refined segment x̃t

i:j to x̃′
i:j . This iterative process continues for each selected segment

sk, with t incrementing after each update. By leveraging the ability of the diffusion model to capture
the overall data distribution and the autoregressive model to refine homogeneous sequences within
each segment, our algorithm efficiently improves the quality of the generated samples. The final
output x̃t is hereby closer to the true data distribution p(x) compared to the initial sample x̃0. A
proof for the convergence in Proposition 1 is provided in Appendix C.

Proposition 1. The Absorb & Escape (A&E) algorithm converges to the target distribution pCθ,β(x) =

pAR
θ (x) ◦ pDM

β (x), under the assumptions that both models are properly trained, the segments of
x are homogeneous, the subset of segments is chosen randomly, and the conditional distribution
p(xi:j |x0:i−1,xj+1:L) is accurately approximated by pAR

θ (xi:j |x0:i−1).

4.2 Practical Implementation: Fast A&E

While A&E offers a method to sample from a compositional distribution, two practical issues
remain unresolved. Firstly, the algorithm may take a considerable amount of time to converge.
Secondly, a crucial step in Line 3 of Algorithm 1 involves splitting x into homogeneous segments
{s1, s2, · · · , sn} and then sampling a subset of these segments. Segmentation is straightforward
when the boundaries of functional regions of the DNA sequence are known, such as protein-coding
regions, exons, or introns, where each region naturally forms a homogeneous segment. However, this
information is often unavailable in practice.

To address these challenges, we propose a practical implementation termed Fast A&E. For generating
a sequence x ∈ NL

4 , it requires at most L forward passes through the AR model. As shown in
Algorithm 2 and Figure 1b, Fast A&E adopts a heuristic-based approach to select segments for
refinement. It scans the sequence from left to right, identifying low-quality segments through a
thresholding mechanism. Tokens with predicted probabilities smaller than the Tabsorb threshold
trigger the absorb action, while the autoregressive process terminates once the probability of a token
generated by the AR model pDM (x̃′

j) is smaller than that of the diffusion model pAR(x̃j). In this
manner, Fast A&E corrects errors made by the diffusion model with a maximum running time of
O(TDM + TAR), where TDM and TAR are the times required for generating a single sequence from
the diffusion model and autoregressive model, respectively.

5 Experiment

5.1 Transcription Profile (TP) conditioned Promoter Design

We first evaluate Fast A&E in the task of TP-conditioned promoter design, following the same
evaluation procedures and metrics as used by DDSM [4] and Dirichlet Flow Matching (DFM) [32].
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Table 2: Evaluation of transcription profile conditioned
promoter sequence design. A&E achieves the smallest
MSE with Language Model and DFM distilled being the
AR and DM components.

Method MSE↓
Bit Diffusion (bit-encoding)* .0414
Bit Diffusion (one-hot encoding)* .0395
D3PM-uniform* .0375
DDSM* .0334
Language Model* .0333
Linear FM* .0281
Dirichlet FM (DFM)* .0269
Dirichlet FM distilled (DFM distilled)* .0278

A&E (Language Model+Dirichlet FM distilled) .0262

Data Format & Evaluation Metric:
Each data point in this task is represented
as a (DNA, signal) pair, where signal
corresponds to the CAGE values for a
given DNA sequence, providing a quanti-
tative measure of gene expression around
the transcription start site (TSS). Both
the DNA sequence and the signal have a
length of 1024. The goal of this task is to
generate DNA sequences conditioned on
specified signals. During evaluation, for
a given test set data point (x, c), the gen-
erated sequence x̃ and the ground truth
sequence are processed through the ge-
nomic neural network Sei [37]. The per-
formance metric is the mean squared er-
ror (MSE) between Sei(x) and Sei(x̃).

Results: As shown in Table 2, we ran Fast A&E on this task with a default threshold of Tabsorb = 0.85,
using the pretrained model as both the autoregressive (AR) model and the denoising model (DM)
component. The evaluation followed the same procedure as described in the DFM repository. The
Fast A&E model, comprising AR and DM components (i.e., the language model and the distilled
DFM checkpoints provided in the DFM repository), achieved state-of-the-art results with an MSE of
0.0262 on the test split.

5.2 Multi-species Promoter Generation

5.2.1 Experimental Setup

Dataset Construction Prior efforts in DNA generation have been constrained by small, single-species
datasets [19, 34]. To better evaluate the capability of various generative algorithms in DNA generation,
we construct a dataset with 15 species from the Eukaryotic Promoter Database (EPDnew)[23]. Table 3
compares our EPD dataset with those used in previous studies, including DDSM[4], ExpGAN [38],
and EnhancerDesign [33]. The key advantage of EPD is its diversity in both species types and DNA
sequence types. Additionally, although the number of sequences in EPD is on a similar scale to that
of DDSM, EPD offers greater uniqueness: each sequence corresponds to a unique promoter-gene
combination, a guarantee not provided by the other datasets.

Table 3: A comparison of DNA generation datasets. EPD
used in this work is significantly larger in size and contains
fifteen species. Reg. represents the regulatory regions, and
Prot. represents the protein encoding region.

Dataset # DNA Multi Species DNA Regions

EPD (Ours) 160,000 ✓ Reg. & Prot.
DDSM [4] 100,000 × Reg. & Prot.
ExpGAN [38] 4238 × Reg.
EnhancerDesign [33] 7770 × Reg.

Baseline Model We evaluate the state-
of-the-art diffusion models for DNA
sequence generation: DDSM [4],
DNADiffusion [26], DDPM [2, 3], and
a AR model Hyena [20, 24]. In ad-
dition, we implement a VAE with a
CNN-based encoder-decoder architec-
ture. Adding UNet as the denoising
network to VAE results in another
baseline latent diffusion model termed
DiscDiff. For a fair evaluation, we
maximally scale up the denoising net-
works of each diffusion model to fit
into an 40GB NVIDIA A100. Additionally, we adapt four pretrained Hyena models from Hugging-
Face for comprehensive fine-tuning. The additional details of the network architectures are shown in
Appendix D.

Model Training All the models are implemented in Pytorch and trained on a NVIDIA A100-PCIE-
40GB with a maximum wall time of 48 GPU hours per model; most of the models converged within
the given time. Adam optimizer [7] is used together with the CosineAnnealingLR [22] scheduler. The
learning rate of each model are detailed in Appendix D. For the evaluation of various diffusion models
in unconditional generation (see Section 5.2.2), we sample 50,000 sequences from each model. For
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the conditional generation across 15 species (see Section 5.3), we generate 4,000 sequences. In both
cases, we use the DDPM sampler [31] with 1,000 sequential denoising steps.

5.2.2 Evaluating Diffusion Models on Mammalian Model Organisms

Table 4: Comparison of diffusion models on unconditional generation evaluated on EPD (256 bp) and
EPD (2048 bp). Metrics include S-FID, CorTATA, and MSETATA. The best and second-best scores are
highlighted in bold and underlined, respectively.

EPD (256 bp) EPD (2048 bp)

Model S-FID ↓ CorTATA ↑ MSETATA ↓ S-FID ↓ CorTATA ↑ MSETATA ↓
Random (Reference) 119.0 -0.241 8.21 106.0 0.030 1.86
Sample from Training Set 0.509 1.0 0 0.100 0.999 0

VAE 295.0 -0.167 26.5 250.0 0.007 9.40
BitDiffusion 405 0.058 5.29 100.0 0.066 5.91
D3PM (small) 97.4 0.0964 4.97 94.5 0.363 1.50
D3PM (large) 161.0 -0.208 4.75 224.0 0.307 8.49
DDSM (Time Dilation) 504.0 0.897 13.4 1113.0 0.839 2673.7
DiscDiff (Ours) 57.4 0.973 0.669 45.2 0.858 1.74

One prerequisite of Fast A&E (Algorithm 2) is that the diffusion model PDM
β should be properly

trained and provide accurate approximations of underlying data distribution. We first evaluate existing
Diffusion Models on a subset of EPD datasets. This subset includes sequences from four mammalians
H. Sapiens (human), Rattus Norvegicus (rat), Macaca mulatta, and Mus musculus (mouse), which
collectively represent 50% of the total dataset. Training on this subset allows for a more precise
assessment of the generative algorithm’s accuracy in a unconditional generation setting.

Metrics

1. Motif Distribution Correlation (CorM) and Mean Square Error (MSEM): CorM is the
Pearson correlation between the motif distributions of generated and natural DNA sequences
for motifs like TATA-box, GC-box, Initiator, and CCAAT-box. MSEM is the average squared
differences between these motif distributions.

2. S-FID (Sei Fréchet Inception Distance): Measures the distance between distributions of
generated and natural DNA sequences in latent space similar to the FID metric [15] for
images, replacing the encoder with the pre-trained genomic neural network, Sei [37].

The results are presented in Table 4, indicating that most existing models perform worse than the
simple baseline DiscDiff proposed here, as measured by S-FID, CorTATA, and MSETATA. TATA is one
of the most fundamental motifs for gene transcription – a special type of protein called transcription
factors binds to TATA tokens on the DNA as shown in Figure 1a. It changes the shape of DNA and
then enables the gene transcription. The failure of existing diffusion models to capture the TATA-box
distribution indicates a potential gap in existing research. In the following, we hereby use DiscDiff as
the pDM

β to initialize the A&E algorithm.

5.3 Multi-species DNA Sequences Generation

We compare our model Fast A&E with Hyena [24] and the best-performing diffusion model from
Section 5.2.2, DiscDiff, on the task of generating species-specific DNA sequences.

Motif-centric Evaluation We consider four types of motifs closely related to promoter activities
{TATA-box,GC-box, Initiator,CCAAT-box}. We calculate 4 types of motif distributions for 15
species across 3 models, resulting in 180 frequency distributions.

Figure 3 shows the average MSE and Correlation between generated and natural DNA distributions
for each model and motif type across 15 species. Fast A&E improves upon Hyena and DiscDiff,
generating the most realistic sequences across almost all species and motif types. It achieves the
lowest MSE and highest Correlation across all four motifs. This pattern is consistent across all 15
species. The motif plots for all 15 species are provided in Appendix F. As an example, Figure 4
shows the motif distributions of sequences generated by the three models versus real DNA sequences
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motif types. This pattern is consistent across all 15 species.

for macaque. Fast A&E closely resembles the natural motif distribution, especially for the TATA and
GC box motifs, while Hyena and DiscDiff fail to capture the values or trends accurately.
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Figure 4: Motif distributions in macaque DNA com-
pared across natural DNA, FAST A&E, DiscDiff,
and Hyena. FAST A&E closely aligns with natural
DNA, especially for the TATA and GC motifs.

Sequence Diversity To assess the diver-
sity of the generated sequences, we applied
BLASTN [18] to check (1) the similarity be-
tween the training set (Natural DNA) and gen-
erated sequences from three models, and (2)
the similarity within the generated sequences.
BLASTN takes a query DNA sequence and
compares it with a database of sequences,
returning all the aligned sequences in the
database that are similar to the query. For
each alignment, an alignment score, the align-
ment length (AlignLen), and statistical signif-
icance (eValue) are provided to indicate the
quality of the alignment, where a larger align-
ment score, a smaller statistical significance
(eValue), and a longer alignment sequence
(AlignLen) indicate a higher similarity be-
tween the query sequence and the database
sequences. Ideally, when using generated sequences to query the training dataset, a good generative
sequence should align better than a random sequence, but not replicate the sequences in the training
set.

Table 5: BLASTN Results

Query vs. Database Score↑ eValue↓ AlignLen↑
Random vs. Natural DNA 17.78 1.1769 24.2

A&E vs. Natural 21.39 0.1695 35.9
Hyena vs. Natural 22.89 0.2895 40.1
DiscDiff vs. Natural 20.25 0.2098 31.4

A&E vs. A&E 20.14 0.0968 33.69
Hyena vs. Hyena 19.57 0.0843 28.7
DiscDiff vs. DiscDiff 20.95 0.1029 37.6
Natural vs. Natural DNA 57.06 0.0633 77.6

Table 5 shows the results of the BLASTN
algorithm. From the table, DiscDiff, Hyena,
and A&E all satisfied the mentioned crite-
ria. In terms of the diversity within the
groups, none of the algorithms generated
repetitive sequences. Furthermore, A&E
tends to lie between Hyena and DiscDiff in
terms of the diversity of the generated se-
quences, implying that A&E may combine
the properties of AR and DM models. One
notable fact is that the alignment scores are
very high within the natural sequences, po-
tentially indicating that natural sequences
naturally have repetitive properties (conservative motifs), while the generative sequences do not have
this characteristic.

Genome Integration with Promoter Sequences As shown in Figure 5, to evaluate the functional
properties of sequences generated by Hyena, DiscDiff, and A&E, we inserted the generated promoter
sequences of length 128 bp upstream (5’) of three commonly studied genes in oncology: TP53,
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Figure 5: Evaluation of Generated Promoters for gene regulation through Genome Integration
EGFR, and AKT1 [6, 25, 29], which are closely related to tumor activities. Our goal was to determine
which model generates promoter sequences that produce gene expression levels closest to those of
natural promoters when reinserted into the human genome.

Table 6: Sum of Squared Errors (SSE) of
Transcription Profiles between Real and
Generated Sequences

TP53↓ EGFR↓ AKT1↓
Random 278.18 8.09 65.70

A&E 17.21 0.28 1.65
Hyena 36.25 0.89 2.88
DiscDiff 124.03 2.17 25.50

We use Enformer [5] to predict transcription profiles.
Enformer takes a DNA sequence of 200k bps as input
and outputs a matrix P ∈ R896×638, representing a
multi-cell type transcription profile. We sampled 300
promoter sequences from each source: Natural DNA
promoters, Hyena, DiscDiff, and A&E. For each set,
we calculated the average transcription profile across
the sequences. The Sum of Squared Errors (SSE)
between these average transcription profiles of the
generated sequences and those of natural promoters
are shown in Table 6. The results indicate that A&E produces the smallest SSE, suggesting it best
captures the properties of natural DNA. This finding highlights the potential of generative algorithms
to create promoter sequences that effectively regulate gene expression, with applications in bioproduct
manufacturing and gene therapy.

5.3.1 Sensitivity Analysis of TAbsorb

We perform a sensitivity analysis of A&E algorithm over hyperparameter Tabsorb. As shown in
Figure 6, with a small Tabsorb, the sequences generated by A&E are dominated by the diffusion model.
As Tabsorb increases, the AR helps to correct the errors made by the DM. Finally, when Tabsorb is larger
than 0.7, the correlation flattens and fluctuates. In conclusion, A&E is robust under different values
of Tabsorb, and it is best to use the validation dataset to choose the optimal value. However, a wide
range of Tabsorb can still be used with improved performance.
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Figure 6: Sensitivity of A&E under various Tabsorb. For each value of Tabsorb, 3000 sequences are
generated and compared with natural DNA. The correlation between the generated sequences and
natural DNA increases initially as Tabsorb increases, and then it flattens. An optimal Tabsorb can be
selected based on the validation set, or a default value of 0.85 can be used.

6 Conclusion

This paper demonstrates that (i) both the AutoRegressive (AR) model and Diffusion Models (DMs) fail
to accurately model DNA sequences due to the heterogeneous nature of DNA sequences when used
separately, and (ii) this limitation can be overcome by introducing A&E, a novel sampling algorithm
that combines AR models and DMs. Additionally, we developed a fast implementation of the proposed
algorithm, Fast A&E, which enables efficient generation of realistic DNA sequences without the
repetitive function evaluations required by conventional sampling algorithms. Experimental results
across 15 species show that Fast A&E consistently outperforms single models in generating DNA
sequences with functional and structural similarities to natural DNA, as evidenced by metrics such
as Motif Distribution, Sequence Diversity, and Genome Integration. Regarding the future work, the
generated DNA sequences still require validation through wet-lab experiments before they can be
directly used in clinical settings.
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Figure 7: DiscDiff Model: A two-step process for DNA sequence generation. Step 1: VAE Training:
A sequence s ∈ {A, T,G,C}2048/256 is encoded via a 1D-Encoder to a 2D-Encoder. The latent
space representation Z with parameters µ, ϵ, σ is then decoded back to s̃ through a 2D-Decoder and
1D-Decoder. Step 2: Denoising Network Training: The latent representation Z is processed through
a denoising network comprising a ResNet Block, optional Self-Attention, and Cross Attention, with
species and time information. The network outputs a Gaussian distribution N(z;µ,Σ). A U-Net
architecture takes this distribution to produce various z0 representations, which a Locked Decoder
(fronzen parameters) used to generate the final DNA sequences.

A A simple baseline latent diffusion model for discrete data: DiscDiff

A.1 The DiscDiff Model

We design DiscDiff, a Latent Discrete Diffusion model for DNA generation tasks. As shown in
Figure 7, this model is structured into two main components: a Variational-Auto-Encoder (VAE) and
a denoising model. The VAE consists of an encoder E : s

¯
7→ z

¯
, which maps discrete input sequence s

¯to a continuous latent variable z
¯
, and a decoder D : z

¯
7→ s̃

¯
, which reverts z

¯
back to s̃ in the discrete

space. The denoising model εθ(zt, t) is trained to predict the added noise ε in the latent space.

A.1.1 VAE Architecture

The choice of VAE architecture in LDMs is critical and often domain-specific. We find that mapping
the input data to a higher dimension space can help to learn a better denoising network, generating
more realistic DNA sequences. We hereby propose to use a two-stage VAE architecture as shown in
Figure 7.

The first stage encoder Eϕ1 : NL
4 → RK×M maps s

¯
∈ NL

4 to a 2D latent space z
¯1

∈ RK×M ,
where K is the number of channels and M is the length of the latent representation. The second
stage encoder Eϕ2 : R1×K×M → RC×K′×M ′

first adds a dummy dimension to z
¯1

such that
z1 ∈ R1×K×M and then maps it to 3d latent space z ∈ RC×K′×M ′

, where C is the number of
channels, K ′ and M ′ are the reduced dimensions of K and M respectively. The decoder in the first
and second stage are Dθ1 and Dθ2 respectively. Which are symmetric to the encoders. Overall, we
have z = Eϕ(s) = Eϕ2(Eϕ1(s)), and the reconstruction is s̃ = Dθ(z) = Dθ1(Dθ2(z)).

A.1.2 VAE Loss

When training the VAE, we propose to use Cross Entropy (CE) as reconstruction loss. The loss
function is given by:
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Lθ,ϕ = Ep(s)

[
Eqϕ(z|s)

[
−

L∑
l=1

4∑
i=1

δisl log pθ(sl|z)

]]
︸ ︷︷ ︸

Reconstruction Loss

+

β · Ep(s) [KL(qϕ(z|s) || N (z;µ,Σ))]︸ ︷︷ ︸
KL Divergence

where δij is the Kronecker delta, pθ(s|z) is the probabilistic decoder output from Dθ; qϕ(z|s) is the
probabilistic output from encoder Eϕ that represents the approximate posterior of the latent variable
z given the input s; N (z;µ,Σ) is the prior on z. Here we use a simple isotropic. β is a mixing
hyperparameter. β is set to 10−5 in the experiments used in this paper.

A.1.3 Denoising Network Training

Once Dθ and Eϕ are trained in the first step, we train a noise prediction εθ in the latent space
z = Eϕ(s) with Equation (6).

Ez,t∼U [1,T ],ε∼N (0,I)

[
∥ε− εθ(zt, t)∥22

]
(6)

B Toy Experiment Training Details

We train both HyenaDNA and DiscDiff on an NVIDIA A100-PCIE-40GB using the Adam
optimizer. For HyenaDNA, the learning rate is set to 0.0001, and we use the model
heyenadna-large-1m-seqlen for this task. The maximum number of epochs is set to 100, with
early stopping enabled to facilitate early convergence.

For DiscDiff, the VAE is trained with a learning rate of 0.0001, while the UNet is trained with a
learning rate of 0.00005. DiscDiff is trained for 600 epoches; during the inference time, we use
DDPM [16] sampler with 1000 denoising steps.

C Convergence Proof of the Absorb & Escape Algorithm

In this section, we provide a proof for the convergence of the Absorb & Escape (A&E) algorithm
under certain assumptions. The convergence proof will demonstrate that the sequence generated by
the A&E algorithm converges to a sample from the target distribution pCθ,β(x).

C.1 Assumptions

We make the following assumptions for the convergence proof:

1. The autoregressive model pAR
θ (x) and the diffusion model pDM

β (x) are both properly trained
and provide accurate approximations of the underlying data distribution.

2. The initial sample x0 ∼ pDM
β (x) is a valid sample from the diffusion model.

3. The segments {s1, s2, . . . , sn} of the sequence x are chosen such that each segment is
homogeneous.

4. The subset of segments S is chosen randomly and includes all segments over multiple
iterations.

5. The conditional distribution p(xi:j |x0:i−1,xj+1:L) approximated by pAR
θ (xi:j |x0:i−1) is

accurate.

C.2 Proof

We aim to show that the A&E algorithm produces samples from the target distribution pCθ,β(x). We
do this by showing that the Markov chain defined by the A&E algorithm has pCθ,β(x) as its stationary
distribution.
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Step 1: Initialization The initial sample x0 ∼ pDM
β (x) is drawn from the diffusion model. This

ensures that x0 is a valid sample from pDM
β (x).

Step 2: Absorb Step For each segment sk in the subset S, the Absorb step samples x̃′
i:j from

the conditional distribution p(xi:j |x0:i−1,xj+1:L). Under the assumption that pAR
θ (xi:j |x0:i−1)

accurately approximates this conditional distribution, the refined segment x̃′
i:j is a valid sample from

the target conditional distribution.

Step 3: Escape Step The Escape step updates the segment x̃t
i:j to x̃′

i:j . This ensures that the
updated sequence x̃t incorporates the refinement from the autoregressive model.

Step 4: Stationary Distribution To show that the Markov chain defined by the A&E algorithm
converges to pCθ,β(x), we need to show that pCθ,β(x) is the stationary distribution of this Markov chain.

The transition probability for the A&E algorithm is given by the product of the probabilities of the
Absorb and Escape steps:

P (x → x′) = PAbsorb(x → x′)PEscape(x
′ → x).

Given that pDM
β (x) captures the overall structure and pAR

θ (x) refines the segments, the composed
distribution pCθ,β(x) is achieved by iteratively applying the Absorb and Escape steps. We need to
show that the stationary distribution satisfies:∫

pCθ,β(x)P (x → x′)dx = pCθ,β(x
′).

Using the detailed balance condition for the Markov chain:

pCθ,β(x)P (x → x′) = pCθ,β(x
′)P (x′ → x).

Given that the Markov chain is ergodic, the detailed balance condition implies that pCθ,β(x) is the
stationary distribution.

Step 5: Ergodicity Ergodicity ensures that the Markov chain will visit all possible states given
sufficient iterations. The random selection of segments S and the iterative updates in the A&E
algorithm guarantee that all parts of the sequence are refined over time.

Conclusion By satisfying the detailed balance condition and ergodicity, we have shown that the
Markov chain defined by the A&E algorithm converges to the target distribution pCθ,β(x). Therefore,
the A&E algorithm produces samples from the composed distribution pCθ,β(x) as the number of
iterations t approaches infinity.

D Experiment Details

Baselines The details about the architecture and implementation of the baseline models are as
below:

• DNADiffusion [26]: We enhance the current DNADiffusion implementation for DNA syn-
thesis, originally from the DNA-Diffusion project2, by expanding the models to encompass
380 million parameters. This network is composed of Convolutional Neural Networks
(CNNs), interspersed with layers of cross-attention and self-attention. The learning rate is
set to 0.0001.

• DDSM [4]: We scale up the original implementation of the denoising network used for
promoter design in DDSM3 to what is the corresponding size of the network given 470
million parameters. It is a convolution-based architecture with dilated convolution layers.
The learning rate is set to 0.00001.

2https://github.com/pinellolab/DNA-Diffusion
3https://github.com/jzhoulab/ddsm
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• D3PM [3]: We take the implementation of D3PM for biological sequence generation from
EvoDiff [2]4, adopting the algorithm for DNA generation. We use the original implementa-
tion of the denoising network, which has two versions: with sizes of 38M and 640M. We
hereby have D3PM (small) and D3PM (big), respectively. The learning rate for both D3PM
(small) and D3PM (large) are set to 0.0001.

• Hyena [24]: We modify the RegLM [20]5, a existing work uses hyena for DNA generation.
Four pretrained Hyena models of different sizes (hyenadna-large-1m-seqlen, hyenadna-
medium-160k0seqlen, heynadna-small-32k-seqlen, and hyenaana-tiny-16k-seqlen-d128) are
downloaded from HuggingFace6 and used for full-size fine-tuning, we apply the fine-tuned
models for generations on EPD-GenDNA. The learning rate for fine-tuning is set to 0.0001.

• DiscDiff: A 2D-UNet of 500 Million parameters are used as the denoising network. See
Appendix A for the implementation details. The learning rate is set to 0.00005 for UNet
training, 0.0001 for VAE training.

For the Fast A&B algorithm, we set the Tabsorb to 0.80.

E Content List of Supplementary Code and Data

Our code folder includes the following sub-folders, within each folder there is a readme file, detailing
the steps to run the code. The below is the list of sub-folders.

E.1 Toy Experiment

Include the source code to reproduce Section 3. No external package is required to run the code
except for python

E.2 DiscDiff

A implementation of the discdiff baseline in Appendix A. Please follow the readme for running the
code.

E.3 AbsorbEscape

This includes an implementation of the proposed algorithm in Section 4.2; however, it depends on the
external AR models, please adopt it accordingly to AR models which you want to try.

E.4 EPD Data

We include the training dataset used for producing the main results, which includes 160K DNA
sequences from EPD, each sequence has a length of 256 bp.

F Motif Distributions for 15 species

We plot TATA-box, GC content, Initiator, and CCAAT-box for 15 speces as below.

4https://github.com/microsoft/evodiff
5https://github.com/Genentech/regLM
6https://huggingface.co/LongSafari
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Figure 9: Chicken
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Figure 10: Chicken
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Figure 12: dog
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Figure 13: elegans
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Figure 14: fission yeast
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Figure 15: fruit fly
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Figure 16: honey bee
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Figure 17: human
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Figure 18: plasmodium
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Figure 19: rat
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Figure 20: thale cress
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Figure 21: macaque
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Figure 22: zebrafish
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The sections related to the contributions are listed at the end of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We talked about the assumption required by the algorithm in the Appendix C,
we also talked about other limitations through the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Can be found in Appendix C
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For the Toy Example experiment details see Appendix B, for the baseline and
main result set up see Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Appendix E for the instructions to access the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.3 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the main result which compares the motif distributions across 15 species,
we compute the error bar. For some of the other tasks requiring heavy compute, we didn’t
repeat the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D and Section 5.3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Mainly in the introduction part

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the code repos - The MIT License (MIT) eukaryotic promoter database -
CC-BY 4.0
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Appendix E
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No Crowdsourcing Involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No Crowdsourcing Involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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