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Abstract

While deep-learning-based imaging denoising techniques can improve the quality of low-
dose computed tomography (CT) scans, repetitive 3D convolution operations cost signifi-
cant computation resources and time. We present an efficient and accurate spatial-temporal
convolution method to accelerate an existing denoising network based on the SRResNet.
We trained and evaluated our model on our dataset containing 184 low-dose chest CT scans.
We compared the performance of the proposed spatial-temporal convolution network to the
SRResNet with full 3D convolutional layers. Using 8-bit quantization, we demonstrated
a 7T-fold speed-up during inference. Using lung nodule characterization as a driving task,
we analyzed the impact on image quality and radiomic features. Our results show that
our method achieves better perceptual quality, and the outputs are consistent with the
SRResNet baseline outputs for some radiomics features (31 out of 57 total features). These
observations together demonstrate that the proposed spatial-temporal method can be po-
tentially useful for clinical applications where the computational resource is limited.
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1. Introduction

Computed tomography (CT) scans provide a detailed characterization of chest anatomy
for radiologists to identify lesions in the lung. However, in practice, CT acquisitions are
not standardized. Given that higher radiation exposure comes with the risk of harmful
radiation, the trend has been to acquire lower dose images at the cost of noisier images.
Recent developments in deep learning-based image denoising have yielded a number of
approaches to recover high-resolution details from lower resolution inputs. Prior studies have
also demonstrated that 3D convolutions compared to 2D convolutions achieve better image
quality (Shan et al., 2018). However, one barrier is that such a method is computationally
expensive. In this paper, we utilize the spatial and temporal correlation in CT scans to
introduce an efficient neural network architecture, Spatial-Temporal ResNet (STResNet)
that restores the high-resolution details from low-dose CT images. Our goal is to achieve
the same level of accuracy as the standard 3D SRResNet while improving its efficiency.
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Figure 1: Convolutional blocks and results. A nodule ROI is highlighted in the circle.

2. Method and Data

Inspired by Enhanced Deep Residual Networks (EDSR) (Lim et al., 2017), we implemented
a baseline denoising network based on SRResNet using fully 3D convolutional layers with a
series of residual in residual blocks with convolutional and activation layers. Since CT scans
are 3D volumes consisting of multiple slices, each slice can be treated as a frame at a time
step. For each pixel in a slice, spatial and temporal correlation exists in adjacent frames
along the temporal dimension. Hence, in STResNet, we decompose a full 3D convolution
with 3 x 3 x 3 kernel into two smaller convolutions, each with a spatial and temporal kernel.
As illustrated in Figure 1, 3D convolutional blocks are replaced with spatial (1 x 3 x 3) and
temporal (3 x 1 x 1) convolutional blocks (Li et al., 2019).

We demonstrate the differences in efficiency and accuracy using a dataset of low-dose
CTs acquired for lung cancer screening, acquired at an equivalent dose about 2mGy. The
standard condition was acquired at 100% dose and reconstructed using a medium kernel
and 1.0 mm slice thickness, which reflects the parameters that are currently recommended
for lung cancer screening. In the test set of 84 patients, 42 scans (50%) were found to
have a total of 68 lung nodules. Lower-dose CT images were reconstructed from raw data
of standard acquisitions using a physics-based model that simulates noise characteristics as
well as reconstruction artifacts that are equivalent to 10% of the standard dose and at 2.0mm
slice thickness. Data were split into 80/20/84 for training/validation/test. We adapted the
NVIDIA APEX mixed-precision training package to further improve the training speed with
mixed precision on GPU. We also introduced 8-bit low-precision quantization (Jacob et al.,
2018) to SRResNet and STResNet to achieve faster inference on CPU.

3. Evaluation and Results

Our method was validated using image quality metrics such as peak signal-to-noise ra-
tio (PSNR), structural similarity (SSIM) and Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018). In Table 1, our STResNet achieved better PSNR and SSIM
compared to SRResNet in full precision (FP32) inference. Quantization (INTS8) was shown
to negatively impact image quality using PSNR and SSIM as metrics (a decrease of 0.16dB
and 0.0152 respectively). However, compared to the baseline model, STResNet with 8-bit
quantization achieved better perceptual quality (0.3555 vs. 0.3653). As shown in Figure 1,
the difference between the result of baseline and 8-bit quantized STResNet at nodule ROI is
visually imperceptible. During inference tasks on CPU, our quantized STResNet achieves
up to 7.11 times speed-up compared to the standard SRResNet. Using STResNet alone
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achieves a speed up by a factor of 1.67. A similar trend is observed during training on GPU
with up to 2 times speed up when using STResNet FP16 versus SRResNet FP32.

To assess differences in radiomic features, we selected 57 first-order intensity, gray-level
concurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size
zone matrix (GLSZM) features to study the impact of feature values on nodules by using
different combinations of networks and precision. In Figure 2, we found 54% of feature values
from the outputs of quantized STResNet were still consistent to the baseline distribution.

Table 1: Image quality metrics and speed-up factors to baseline. * CPU results

Training time Inference Training

1 PSNR(dB) 1 SSIM |LPIPS Inference time (sec) per iter (sec) Speed-up Speed-up

Fpz SRReSNet 1011050 07206400113 0.363520.0074 27.4(446.7) 6.5 N/A N/A

(baseline)

STResNet 31.0120.44 _ 0.726520.0110 0.37156£0.0075 14.4(267.0°) 39 167 .65
FP16_ SRResNet  32.39£0.52  0.7277+0.0111 0.3640+£0.0075 13.8 19 N/A 1.31

STResNet 32.6040.64  0.7259%0.0111 0.37324£0.0076 17.0 32 N/A 2.04
TNTS SRResNet  31.1540.28 _ 0.7064+0.0109 0.3501%0.0075 108.7" N/A [BY! N/A

STResNet 31114030  0.7135-0.0109 0.3555-0.0076 62.8" N/A 711 N/A

sTresNet INT8 [l
STResNet FP16
STResNet FP32
SRResNet INTS
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Figure 2: Radiomic features test. Red/Green indicates significant /non-significant difference
to baseline via paired t-test with p < 0.05.

4. Discussion

We trained and evaluated our efficient and accurate network architecture called STResNet
for low-dose CT denoising. Through our study, we demonstrated that STResNet reduces the
training and inference time compared to SRResNet. We also showed that 8-bit quantization
produced outputs that had minimal perceptual differences despite the information loss of
computing a 12-bit CT scan using 8-bit quantized network weights. We note in our results
that some radiomic features have statistically significant differences in distribution compared
to feature values calculated from SRResNet outputs. Further study is required to assess
the impact of 8-bit quantization and STResNet assumptions on downstream tasks such
as machine learning algorithm performance. As part of future work, we will investigate
the impact of using the efficient network architecture on clinical-driven tasks such as lung
nodule detection or diffuse lung disease quantification.
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