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Abstract

Optimal transport (OT) tools have shown early promise for imitation learning (IL) and
enable a metric-aware alignment of the expert and agent’s stationary distributions. Despite
encouraging results, the use of OT for IL is still ad hoc and lacks a systematic treatment,
which could guide future research. To gain an understanding of these inner workings, we
first propose a unified view of previous OT-based algorithms for IL, along with a novel,
simple and effective method coined OTIL. We perform theoretical studies and extensive
ablations of these. Our algorithm demonstrates state-of-the-art performance on a wide range
of environments that feature both continuous and discrete action spaces, as well as state and
image observations. We make our experimentation code public'.

1 Introduction

Learning control policies from observations is a fundamental problem in many fields, such as robotics,
autonomous driving and video games. If a reward signal which describes success on the task, is available,
reinforcement learning (RL) offers an effective approach, which has proven successful in a number of areas
(Tesauro et al., 1995; Mnih et al., 2013; 2016; Schulman et al., 2017). However, in other settings it may
be difficult to design a reward function that captures complex behaviors. For example, designing a reward
function to make an agent to behave in a natural or human-like way is challenging. Instead, it may be easier
to demonstrate the desired behavior and train the agent to mimic it.

Imitation learning (IL) and inverse reinforcement learning (IRL) (Ng & Russell, 2000) approach the problem
of training an agent from expert demonstrations. TRL methods attempt to infer the expert’s underlying
reward function and then use RL to train the agent using this recovered reward function. IL methods use a
variety of approaches, including supervised learning (Pomerleau, 1988), uncertainty estimation (Brantley
et al., 2020; Wang et al., 2019) and adversarial approaches (Ho & Ermon, 2016; Kostrikov et al., 2019).

Optimal transport tools have the potential to be well-suited to IL, as they allow one to align and compare
multiple agent and expert trajectories, interpreted as discrete probability measures over the agent’s observation
space. Various recent works build on this intuition and propose imitation learning approaches using OT,
notably Dadashi et al. (2021); Papagiannis & Li (2020); Fickinger et al. (2022).

We begin by providing a unifying view of OT methods for IL by distinguishing different components of
these approaches, namely the observation encoding, the OT cost function, the choice of OT solver, reward
squashing and treatment of signals arising from distinct demonstrations. These design choices are essential
as they characterize the target behavior of the trained policy and the optimization landscape. We study
these different design choices both from a theoretical perspective and via a thorough ablation study. We
characterize unexpected behaviors that can positively or negatively impact recovering the expert policy. Based
on these insights, we propose OTIL, an intuitive OT method for IL that significantly improves upon previous
methods w.r.t. sample efficiency (number of interactions with the environment), simplicity, generalizability
(to pixel-based learning) and performance.

1Code at https://anonymous.4open.science/r/0TIL_TMLR-52CC/
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A notable feature of OTIL is that it does not require access to the expert’s actions, and achieves expert
performance on challenging tasks from state observations alone. Also, it extends directly to pixel-based
settings by leveraging representations from the RL encoder, which can be used to encode observations in
a compact latent space. As a result, OTIL is also applicable to pixel-based learning without requiring any
encoder pre-training via self-supervision/reconstruction or through adversarial learning.

We evaluate OTIL across a range of tasks from the DeepMind Control Suite (DMC), in both the state- and
pixel-based settings. We observe significant gains with respect to sample efficiency and performance compared
to state-of-the-art baselines. In particular, OTIL is, to the best of our knowledge, the first approach to
achieve strong performance on the quadruped benchmark from pixel observations.

2 Background

2.1 Reinforcement Learning (RL)

We instantiate RL as a discounted infinite-horizon Markov decision process (MDP) (Bellman, 1957; Sutton &
Barto, 2018). In the case of pixel observations, the agent’s state is approximated by a stack of consecutive RGB
frames (Mnih et al., 2015). The MDP is of the form (O, A, P, R, vy, dp) where O and A are the observation
and action spaces, respectively, P : O x A — A(O) is the transition function (A(O) is a distribution over O),
R: 0O x A — R is the reward function, v € [0, 1) is the discount factor and dy is the initial state distribution.
The RL problem consists of finding an optimal policy 7 : O — A(A) that maximizes the expected long-term
reward E[>",2 v R(0¢, a;)], where 0g ~ dy, a; ~ 7(-|o;) and 0411 ~ P(-|oy, ay).

2.2 Optimal Transport

Optimal transport (Villani, 2009; Peyré & Cuturi, 2019) tools enable comparing probability measures
while incorporating the geometry of the space. The Wasserstein distance between two discrete measures
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He = % 2110z, and py = % > i—1 Oy, is given by
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where M = {p € RT*T" . ;1 = 1,171 = L1} is the set of coupling matrices, and ¢: O x O — R is a cost
function. Also, d, refers to the Dirac measure for x € O.

Intuitively, the optimal coupling p* provides an alignment of samples of 115, and p,,. The Wasserstein distance
can hence be interpreted as the expected cost of transporting mass between aligned samples.

2.3 Imitation Learning via Inverse RL

In imitation learning, agents do not have access to the environment reward R. Instead, they are provided
with a dataset of multiple expert trajectories, which the agent aims to imitate, where each trajectory is
of the form 0® = (0§, ...,0%) € OT. To do so, IL aims to find a policy 7 so that the corresponding agent
trajectories o® = (0§, ..., 0%) are close to expert trajectories 0® under some metric between trajectories. In
recent works, OT distances introduced in Sect. 2.2 have been used to define such metrics.? Inverse RL is an
approach to IL that designs pseudo-reward signals ry(0f) for agent observations of, t =1,...,T. A policy
can then be learned via RL, replacing unavailable environment rewards R by pseudo-rewards ry. For learning,
the main design choices are the RL backbone used to train from rewards and a method to design rewards
from observations.

?Note that agent and expert trajectories are empirical proxies for the occupancy distributions under the learner and expert
policies (Ho & Ermon, 2016; Dadashi et al., 2021).
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Figure 1: Visual summary of the unifying view. Methods i) encodes the agent 0* and expert o° trajectories
via fg i1) compute cost matrices and i7) an alignment matrix p* between these to iv) produce imitation
rewards 7.7, which are squashed through s(z). These rewards are then used to train agents via reinforcement
learning. For clarity, we did not include the aggregation module in this illustration.

3 A Unifying Perspective on Optimal Transport for Imitation Learning

In this section, we present a unifying view of recent approaches for imitation learning based on optimal
transport. In this view, these approaches are composed of a common set of modules, but they differ in their
design choices for each module. The modules include observation preprocessing, cost function, OT solver,
pseudo-reward function, reward squashing and aggregation functions. We study common design choices for
each component from theoretical and/or empirical standpoints. Based on the gathered insights, we propose a
new approach that improves upon previous methods and is agnostic to the observation and action modalities.

3.1 Unifying Perspective

We interpret each agent trajectory o® as a discrete uniform probability measure with a fixed number of
samples (0, ..., 0%) living in the agent’s observation space (and similarly for each expert demonstration o).
The aim of the class of methods studied in this section is to design pseudo-reward signals for each observation
in 0%, which can then be optimized using RL.

We now describe the main components of the methods, which are illustrated in Figure 1. In Table 1, we show
how recent methods including PWIL (Dadashi et al., 2021), SIL (Papagiannis & Li, 2020), GWIL (Fickinger
et al., 2022), GDTW-IL (Cohen et al., 2021), along with our proposed method, can be instantiated through
different choices for each module.

Preprocessor The preprocessor aims to extract informative state representations from observations. In
the case of state-based observations, two common choices for the preprocessor function fg are the identity
and scaling by the mean and standard deviation, so that

fo(o}) = (of —m)@ o, [4(0f) = (0f —m) Do, (2)

where @ is the elementwise division. Here m, o are the component-wise means and standard deviations
computed over a selected set of trajectories. For instance, in the case of PWIL, the statistics are computed
over expert demonstrations. The preprocessor f, can also be a parametric function, such as a neural network.
Two choices that we consider are a discriminator trained by optimizing an adversarial auxiliary loss (as in
SIL), and a novel approach where we use the policy encoder itself.

Optimal Transport Solver and Cost The solver computes an alignment

p* € argmin g(p; fo(0%), fo(0°),c) (3)
HEM
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Agent H Preprocessor ‘ OT Solver Cost Squashing | Aggregator | Extra Opt.
PWIL Fixed normalization (states) | Greedy Wasserstein | Euclidean ae P Traj. concat. No
SIL Discriminator (states) Adversarial Sinkhorn Cosine None Mean Yes
GWIL None (states) Gromov-Wasserstein | Euclidean None 1 demo No
GDTW-IL None (states) Gromov-DTW Euclidean None 1 demo No
OTIL Rolling norm. (states) Sinkhorn Cosine None Top-K No
(ours) Target RL encoder (pixels)

Table 1: Unifying view of methods for imitation learning based on optimal transport. We consider PWIL
(Dadashi et al., 2021), SIL (Papagiannis & Li, 2020), GWIL (Fickinger et al., 2022), GDTW-IL (Cohen et al.,
2021), and OTIL (ours).

between the trajectories for an OT objective g that takes the embedded agent and expert’s observations as
inputs and is also parameterized by a cost function c defined in the preprocessor’s output space. For example,
the Wasserstein distance in (1) uses

T, 7'

gwlz,y,c) = > el yo ), (4)
tt'=1

where the cost ¢ can be the Euclidean or cosine distance, and M is the set of coupling matrices. In particular,
W2(f5(0%), f5(0°)) = gw (1" fo(0), fo(0°), ).

Other instantiantions of (3) include Sinkhorn (Cuturi, 2013) (used in SIL), Gromov-Wasserstein (Peyré et al.,
2016) (used in GWIL), GDTW (Cohen et al., 2021) (used in GDTW-IL) or CO-OT (Redko et al., 2020),
which are instantiated via different choices of g and M. Each u € M provides an alignment between agent
and expert trajectories, i.e., intuitively, if p; > 0, then oy % and of,’¢ are aligned.

Pseudo-reward Function The pseudo-reward function computes an intrinsic reward signal for each agent
observation by comparing it to the expert observations it is aligned with. For losses relying on a linear
program (e.g., Wasserstein variants or DTW variants), we can define rewards as

aad

rot(0f?) = = > Cruiy,s ()

t'=1

where Cy v = c(f4(0}), fo(0f)) is the cost, and p* is an alignment obtained through (3) for a choice of
g and M. In this case, rewards amount to the negative sum of costs between the agent observation and
expert observations it is aligned with. For losses relying on a quadratic program (GW, GDTW,...), the
pseudo-reward is of the form

T>,T3,Ty
rot(og’¢) == Z ‘Cg,tg - Cteg,t4|2:u;t3u:2,t4’ (6)

ta,t3,ta=1

where C, = c(fs(0f), fo(0f))), Cfy = c(fy(0f), fs(0f)) are pairwise cost matrices. The alignment is
constructed by comparing the pairwise distances between samples of each compared trajectory. Observations
with similar observation neighborhood will hence be aligned, and leveraged to define rewards.

Squashing The squashing function s can optionally apply an exponential to the pseudo-rewards, e.g.,
s(z) = aeP® as in PWIL. Other methods simply use the linear s(z) = ax.

Aggregation When multiple expert trajectories 0°!, ..., 0°"N are available, existing methods either combine
these demonstrations by concatenating the observations and subsampling (as done in PWIL), or they combine
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the pseudo-rewards computed based on these demonstrations. For instance, SIL defines rewards as the mean
of rewards computed from each demonstration, i.e.,

1 N
rot N g (7)

7¢)

where 77 (0;"?) is computed using (5) or (6) and leveraging the n*® demonstration.

3.2 Theoretical Analysis

Equipped with a unified view encapsulating recent OT methods for IL, we next study common design choices
for the different components from theoretical and empirical stand-points. Such an analysis will shed light on
important design choices in the OT setting. Throughout the rest of this paper, we focus on the same-domain
IL setting (agent and expert MDPs are the same) for clarity, but believe our findings will be useful for the
cross-domain IL setting (agent and expert MDPs differ) in the grounding of Fickinger et al. (2022) and Cohen
et al. (2021).

State normalization Standard normalization of states, as described in the previous section, is commonly
used in RL and IL, and has been used in an ad-hoc way in recent OT works. We study its implications on
learning dynamics and the loss landscape.

Proposition 1. Let g = gy (see (4)), and the preprocessing strategy be standard scaling using statistics m
and o (fy in (2)). If ¢ is the Euclidean cost, the sum of agent rewards computed using a single demonstration
is bounded above and below by

1 T,7' T,7' T, 7
T Z (0} — op)|| nie < Zrot o) —op)| nie (8)
Dy =1 t=1 X tt=1
Proof. 1If ¢ is the Euclidean cost,
T 7'
a a e *
Zrot(ot):_ Z [(0f —m +m —of) 0ol piy 9)
t=1 tt'=1
7
== Z [(of — o) © ol pi (10)
/=1
7'
o¢ (0%);12
SR DL =20 S (11)
/=1 i
7' o7 CARE
Z _ |: t t’ :| * , 12
tt/z1 zz: o i (12)
7
= > ll(of = 0§l 17 (13)
Umln =1
where o, = min(oy,...,04). The opax bound can be obtained equivalently. O

Prop. 1 highlights a potential issue arising when optimizing the Wasserstein loss with squared Eu-
clidean cost (this problem also extends to the Gromov-—Wasserstein case). The standard devia-
tion of the trajectory used to normalize states acts as a modulator for the reward scale and as
a result for the learning rate. In Figure 2, we observe that empirically, o, and opax vary
significantly during training, hence leveraging a rolling normalization (updating m and o leverag-
ing current agent rollouts) can render the optimization landscape unstable in the Euclidean case.
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Fixed normalization computed using expert statistics can also be

problematic in settings where the variance statistic of the expert 101? A

trajectory is large, which can in practice decrease the learning rate

significantly and lead to slow convergence. In contrast, for the cosine L 01
cost case, T
10‘2§-

T, 7’

Trajectory Std

0.0 0.2 0.4 0.6 0.8

} :Toc(Of) _ Z {1 (o} —m,of —m) . (14) Frames (x10°)
a e _
t=1 t,t'=1 llof —mi[{lof, —mi[ 1" B onin B o

Equation (14) shows that the loss is independent of the variance Figure 2: min and max standard devi-
statistic of the trajectory if c is cosine, and state normalization ation statistics of rollouts of an agent
hence amounts to mean centering. This avoids the large fluctuations being trained on the cartpole swingup
in the effective learning rate (which occur when using the squared task. These grow significantly during
Euclidean cost), which can lead to more stable training. We note the exploration, and then stabilize.

fact of using adaptive optimizers does not mitigate for these unstable

reward scales. Reward scaling is indeed essential for performance, as

previously studied in Engstrom et al. (2020)

Cost function The choice of OT cost can also impact the landscape of solutions of the IL problem. Typical
choices include the Euclidean distance (Dadashi et al., 2021) and the cosine distance (Papagiannis & Li, 2020).
For simplicity, we focus our discussion on the squared Wasserstein with access to a single demonstration. We
introduce the following equivalence relation:

o ~ o° iff Ik € RT s.t. 0* = (k10, ..., kros). (15)

Proposition 2. Assume o° and o® have length T. Then the Wasserstein distance with cosine cost is a
semi-metric up to scale invariance as defined in (15).

Proof. A proof is provided in Appendix E O

Corollary 1. If g = gw (see (4)), c is the cosine cost, T =T, squashing is identity, and pseudo-rewards
are computed using a single expert trajectory o, then the set of trajectories mazimizing the sum of rewards
ZZ;I rot(0¢) consists of all elements of the scale-equivalence class introduced in (15).

Proof. Given the result of Prop. 2, W with cosine cost between o, and o, is 0 iff o, ~ o, i.e. if they are
equivalent up to scaling. Also, it holds that

T T T (08, 05)
S ralon) = 3030 [1- oty = —WR(o", 0°), (16)
= =it llotllog i
which is maximized when W?(0%, 0) = 0, which holds if and only if 0% ~ o°. O

Corollary 1 shows that optimizing cosine rewards amounts to aiming to recover an element of the scale-
equivalence class of the expert trajectory. Invariance to scale has been shown to be a good inductive bias in
other contexts (Salimans et al., 2018); since the target of the learning process is now an equivalence class,
some representatives may be easier to target.

Expert aggregation We next study the behaviours induced by existing approaches to aggregating the
signal from multiple expert demonstrations. Consider the case where we average the rewards from each
expert; see (7).

Proposition 3. Assume reward squashing and the preprocessor are identity. If g is the W (or GW )-induced
loss, and pseudo-rewards are aggregated by averaging with (7), then the maximizer of the sum of pseudo-rewards
Zthl Tot(0¢) @8 a barycenter in the measure space induced by g.
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Figure 3: Episodic return (rescaled to expert return)
of the OTIL agent trained with Euclidean and cosine
cost. As expected by Prop. 2 and Prop. 1, the
Euclidean cost leads to suboptimal performance
compared to the cosine cost.
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Figure 4: Episodic return (rescaled by exp.) of
OTIL trained from states with different preprocess-
ing strategies: identity, adversarially-trained dis-
criminator, fixed normalization via expert statistics,
and rolling normalization via agent statistics.

Proof. 1t holds that

T T N N
Dorer(0r) =D D k(o) == g(ur"0% 0, c) (17)
t=1 t=1n=1 n=1

Also, by definition, g(u*™; 0%, 0%, c) = W?(0%, 0°") if g induces W ( and g(u*"; 0%, 0%, c) = GW?(0%, 0°")

if g induces GW). Therefore,

(18)

E 7'ot Ot

if g induces W and similarly for GW. The maximizer of the above objective minimizes the sum of squared
Wasserstein distances (and similarly for Gromov—Wasserstein), and is therefore a barycenter.

uMz

Note this result extends to more general choices of alignments (e.g., DTW, GDTW, entropic distances..). [

Prop. 3 provides intuition for the structure of rollouts of agents trained with rewards averaged over expert
demonstrations. In particular, said trajectories are barycenters under the chosen OT metric, i.e., they
minimize the sum of OT distances to each individual expert trajectory. The properties of barycenters are
widely studied: 2-Wasserstein barycenters are notably known to have interpolation properties, which can be
problematic in imitation learning as the learned policy may be far in Wasserstein distance from each of the
individual trajectories.

Another typical aggregation strategy is to concatenate all trajectories and subsample them into the same
shape as a single agent trajectory; see (Dadashi et al., 2021). This can also lead to undesirable policy
behaviors for similar reasons as the shape of the aggregated trajectory can significantly differ from the shape
of the individual trajectories.

4 Optimal Transport Imitation Learning

Based on the theoretical insights gathered in the previous section, and on upcoming empirical evidence, we
now propose our own approach OTIL. Our method consists of the following choices for each module: a cosine
cost function, agent-based standard scaling preprocessing when using state-based representations, the encoder
of the agent’s policy with pixel observations, a Sinkhorn OT solver and a top-k aggregation strategy. We
justify these choices below. Note that ablations in Figure 3-Figure 8 were ran by leveraging the final OTIL
algorithm and varying single components at a time.
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Figure 5: Episodic return (rescaled to expert return)
of OTIL trained from pixels with different obser-
vation encoding strategies: adversarial training of
a discriminator (disc.), encoding via RL encoder’s
representations (no target net.), encoding via a tar-
get network updated using the RL encoder (target
net.), and finally a random encoder.

Figure 6: Episodic return (rescaled to expert re-
turn) of the OTIL agent trained from state obser-
vations with different OT losses. We consider the
following strategies: Soft-DTW rewards, Identity
rewards, EMD rewards (non-entropic Wasserstein)
and Sinkhorn rewards (entropic Wasserstein).

Cost function Prop. 1 and Prop. 2 reveal the intricate links between the cost function ¢, the state
normalization strategy fs, and the learning dynamics. In the Euclidean case, the variance statistics of the
trajectory used to standardize states act as learning rate modulators, which may differ across environments
and domains, and make the Euclidean cost a sub-optimal approach towards a method effective from states
and pixels due to the scale difference.

On the other hand, the cosine cost is invariant to trajectory scale, and hence to the variance of standardization.
Standard scaling only acts as mean shifting, which typically helps the optimization landscape. Figure 3 shows
that in practice, the cosine cost leads to significantly better performance.

Preprocessing - State-based In order to pick a preprocessing strategy, we consider agent-based standard-
scaling (statistics are updated every P episodes based on the current rollout), expert-based standard-scaling
(statistics are computed on the expert demonstrations), no scaling, and adversarial training of a discriminator
similarly to SIL (Papagiannis & Li, 2020). We proprocess with agent-based standard-scaling, as Figure 4
shows it is the best.

Preprocessing - Pixel-based To infer informative OT rewards, we propose to use a target network
updated based on the RL encoder’s weights as preprocessor fy4 for trajectories. This avoids the need to learn
a network for representations in the IL part of the framework. The empirical analysis provided in Figure 5
shows that this approach outperforms a discriminator encoder and a random one.

Solver We consider four alignment instantiations (parametrizations of g and M): W? solved via the
Hungarian algorithm, W? via Sinkhorn’s algorithm, the identity, and DTW (which we approximate using a
soft version named Soft-DTW (Cuturi & Blondel, 2017). As shown in Figure 6, we achieve best performance
with Sinkhorn, and EMD. Given that Sinkhorn is faster for longer trajectories, we recommend it. Soft-DTW
alignments can differ significantly from OT solvers (Sinkhorn and EMD). Indeed, at optimality, DTW-like
approaches provide alignments that have time-consistency constraints. Also, Sinkhorn and EMD alignments
can also differ due to the softing coefficient of Sinkhorn, which provides smoother alignments than EMD.

Aggregator Finally, we discuss the choice of expert aggregation. As summarized by Proposition 3, averaging
rewards can lead to an ill-defined objective that will not have any of the expert demonstrations as minimizer,
and the target may be far from the shape of each trajectory. Another choice that leads to consistency is to
use an argmax loss, which for each agent rollout computes rewards based on the closest expert trajectory.
However, it can be problematic in the setting where all expert demonstrations are suboptimal and where
it is required to aggregate signals from multiple demonstrations to mitigate suboptimality as illustrated
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Figure 7: Episodic return (rescaled to expert return)
of the OTIL agent trained from state observations Figure 8: Episodic return of the OTIL agent trained
with various values of k in the Top — k operator. from state observations with linear and exponential

For most tasks, k = 1 is sufficient, but on Acrobot reward squashing. Exponential shaping leads to a
higher ones are required to avoid converging to low- better sample efficiency, but overall performance is
return expert trajectories, and to benefit from a equivalent.

more accurate estimate of the stationary expert

trajectory.

in Figure 7 in the Acrobot environment. We hence recommend leveraging a mean over the top-K closest
demonstrations, which interpolates between the mean and argmax approaches. We note there is an inherent
trade-off if some trajectories are low-return because the top-K rewards may lead to sub-optimality if K is
too small as the policy targeted may hence be sub-optimal.

We also report an empirical analysis of squashing functions in Figure 8. Linear and exponential squashing
lead to equivalent performance in the state-based case. However, we found learning to be extremely unstable
with the latter squashing in the pixel-based case. In particular, we were never able to successfully train pixel-
based policies with exponential squashing. Early on in training, the encoder’s representations scales varies
significantly, and this is exacerbated by exponential shaping, which we expect to explain its uneffectiveness
for training pixel-based policies. We therefore pick linear squashing.

5 Main Experiments

In this work, we aim to answer the following questions.

1. What are important design choices for imitation learning approaches leveraging optimal transport?

OT cost — see Figure 3, state-based normalization — see Figure 4, and encoding for OT in the pixel
case — see Figure 5, OT solver — see Figure 6, OT aggregation — see Figure 7, and squashing — see
Figure 8.

2. Can we design an OT approach that directly extends to pizel-based learning without extra learning?
Yes, by performing OT in the latent space of the backbone’s encoder — see Figure 5 for an ablation, —
see Figure 10 for main results

3. Can non-adversarial OT methods match/improve the performance of (OT and non-OT) adversarial-
based methods? Yes, OTIL achieves equivalent or better sample efficiency and performance on most
tasks from states and pixels.

4. Does OTIL perform better than predecessor OT methods? Yes, OTIL outperforms SIL and PWIL on
all tasks from states and pixels; see Figure 9, Figure 10.
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Figure 9: Episodic return of the OTIL agent along with SIL, DAC and PWIL baselines trained from state-
based observations. On medium-complexity tasks (top row), all baselines achieve expert performance. On
hard tasks (bottom), OTIL outperforms all baselines in terms of performance and sample efficiency by a
significant margin on all tasks.

5.1 Experimental Setup

Environments We consider Mujoco (Todorov et al., 2012) tasks in the DeepMind control suite (Tassa
et al., 2018), and tasks in the Arcade learning environment (Bellemare et al., 2013). The selected tasks
are distinct enough to demonstrate the versatility and robustness of our approach. We experiment with
state-based and pixel-based settings. We evaluate the agents with the environment rewards, but these rewards
are not provided to the agents during training. Full experimental details can be found in Appendix B.

Expert Demonstrations For continuous control, we use DDPG with the true environment rewards. For
discrete control, we use a DQN agent. We run 10 seeds and pick the seed that achieves highest episodic

reward.
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Figure 10: Episodic return of the OTIL agent along with SIL and DAC baselines trained from pixel-based
observation on Deepmind control suite tasks. On medium-complexity tasks (top row), all baselines achieve
expert performance. On hard tasks (bottom), OTIL outperforms baselines in terms of performance and

sample efficiency by a significant margin.
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Setup In all Deepmind control experiments, we run 10 seeds under each configuration and average results
with a 90% confidence interval. In Atari experiments, we use 5 seeds. We compare agents with the episodic
return to verify whether the agent solves the task.

5.2 State-Based Continuous Control (DMC)

We consider two OT baselines, PWIL (Dadashi et al., 2021) and SIL (Papagiannis & Li, 2020), and a strong
GAN-based baseline, DAC (Kostrikov et al., 2019). For fair comparison, we equip all baselines with the same
RL backbone for learning, namely soft-actor critic (SAC) (Haarnoja et al., 2018). We train all baselines for
the same number of frames and with the same noise schedule for exploration. Given that this paper focuses
on the observation-only setup, behavioral cloning (Pomerleau, 1988) does not apply here as it requires expert
actions. A description of SAC is provided in App. A.

In Figure 9, we observe results of all baselines on 8 representative tasks from the Deepmind control suite. On
all medium-complexity tasks (first row), all methods (including ours, OTIL) but SIL perform on par. The
latter has a lower sample efficiency (particularly on Cheetah Run). On harder tasks, OTIL is significantly
more efficient than baselines, and is the only method to solve the hard humanoid tasks.

5.3 Pixel-Based Continuous Control (DMC)

For pixel-based learning we compare OTIL to SIL (Dadashi et al., 2021) and DAC (Kostrikov et al., 2019).
We equip all baselines with the same SOTA pixel-based RL backbone for learning, DrQ-v2 (Yarats et al.,
2021). Also, all baselines benefit from data augmentation in the form of padding, random crops and bilinear
interpolation as proposed in Yarats et al. (2021). We train all baselines for the same number of frames and
with the same noise schedules for exploration. A description of DrQ-v2 is provided in App. A.

We report results on 8 tasks from the control suite in Figure 10. OTIL matches or outperforms SIL and DAC
on all environments besides Acrobot in terms of sample efficiency and performance.

Moreover, in contrast to the baselines, OTIL does not require training a discriminator in order to obtain
representations to define rewards on, and still achieves expert performance on most tasks.

5.4 Pixel-Based Discrete Control (Atari)

To test the generality of our approach, we evaluate
on two discrete control Atari environments, with no
modification to the method besides switching to a
DQN backbone (Figure 11). On these tasks, DAC
and OTIL have comparable sample efficiency and
performance, both matching the expert.

Freeway

Episode Return

0 10 20 0 10 20
B DAC B OTIL

6 Conclusion

We provided a unifying perspective on optimal trans- Figure 11: Episodic return of the OTIL agent and DAC
port approaches for imitation learning. We provided trained from pixel-based observation on Atari tasks.
an extensive study of design choices through theory

and empirical ablations. In particular, we found the

choice of cost, alignment solver and observation rep-

resentations essential to effective and stable learning.

Based on this study, we proposed OTIL, which outperforms all baselines from states and pixels, and pushes
the boundary of tasks solvable from pixel-based observations only. OTIL is simple, modality-agnostic, and
more sample-efficient than previous methods. While our unified view encompasses cross-domain IL methods,
we focused our study on the single-domain setting for clarity. As future work, it would be interesting to
provide an equivalent theoretical and ablation study of cross-domain IL via the lens of the unified view.
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A RL Backbones

Soft Actor-Critic (SAC) For state-based continuous control, we use Soft Actor-Critic (Haarnoja et al.,
2018). In SAC, we train a state-action value network @, a stochastic policy network 7 and a temperature «
to solve the MDP of study. The policy is trained to maximize expected rewards while maximizing entropy.

DrQ-v2 For pixel-based continuous control use DrQ-v2 (Yarats et al., 2021), which is an actor-critic method
based on the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2015). Given a replay
buffer D, it learns simultaneously a @-function Q¢ and a policy m,. Qg is trained by clipped double-Q)-learning
(Fujimoto et al., 2018) with n-step returns. m, is trained via deterministic policy gradient. DrQv2 employs
data augmentation in the form of random shifts with padding and a random crop to restore the original
image dimension, followed by bilinear interpolation. Data augmentation acts as regularization and reduces
the variance of the () estimates. Images are embedded into the latent space via an encoder f; after being
augmented. This encoder is trained to minimize the critic loss only.

Deep-Q-Network (DQN) For pixel-based discrete control, we use the Deep Q-Network method (Mnih
et al., 2013). It consists in learning a convolutional network approximating the state-action value function by
minimizing the squared residual error. We also leverage n-step returns.

B Hyperparameters and further experimental details.

Agent Parameter Value 1
Common Replay buffer size All (dm, states), 150000 (dm, pixels), 1M (Atari)
Learning rate le=* (dm), 0.0000625 (Atari)
Discount 0.99
n-step returns 1 (dm states), 3 (dm pixels, Atari)
Action repeat 2 (dm), 4 (Atari)
Seed frames 12000 (dm), 800000 (Atari)
Exploration frames 10000 (dm)
Mini-batch size 256 (dm), 64 (Atari)
Agent update frequency 2 (dm), 4 (Atari)
Critic soft-update rate 0.01
Features dim 50 (dm), 512 (Atari)
Hidden dim 1024 (dm), 512 (Atari)
Optimizer Adam

Num demos

10

DDPG exploration schedule linear(1,0.1,1000000) (states)

linear(1, 0.1,500000) (pixels)

OTIL Target encoder update frequency (episodes) 20
Reward scale factor 10 (dm states), 200 (dm pixels), 1000 (Atari)
Top-k 3 (dm states), 1 (dm pixels, Atari)
DAC Gradient penalty coefficient A 10

Table 2: List of hyperparameters.
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While the above set of hyperparameters is common to all environments, we found that a buffer size of 1000000
and an exploration schedule of 1000000-length was required for the pixel-based quadruped task. Also for the
state-based quadruped, we used for DAC a learning rate of 5e~° and a batch size of 512 which improved
stability. Trajectories are of length 500 for Deepmind Control environments, and of variable lenght for Atari
environments due to early stopping. Finally, we note that when computing rewards based on multiple expert
trajectories in Figure 4, we compute statistics using the (single) concatenated trajectory (as in PWIL).

C Algorithmic Framework

Algorithm 1 OT-IL core. Different methods can be instantiated by changing the imitation rewarder function.

Require: Expert demonstrations {jiee. }2_,, replay buffer D, backbone-specific networks (e.g., for policy,
critic function and encoder for DrQQ-v2). For adversarial baselines, also requires a discriminator D.
for t € Tiptq1 do

if done then
r1.7 = rewarderimitation (episode)
Update episode with r1.p and add all quadruples [o¢, at, 0141, 7] to D.
o; = env.reset(), done = False, episode = [ ]
end if
a; ~ 7(-|ot) = 0411, done = env.step(ay), episode.append([os, at, 0¢11])
Update backbone-specific networks, and rewarder-specific networks using D.
end for

D Extra Experimental Results
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Figure 12: Episodic return of the OTIL agent trained with Euclidean and cosine cost. As expected by Prop. 2
and Prop. 1, the Euclidean cost leads to suboptimal performance compared to the cosine cost.
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Figure 13: Episodic return of the OTIL agent trained from state observations with different observation
preprocessing strategies. We consider the following strategies: no normalization, adversarial training of a
discriminator, fixed normalization based on expert statistics, and nomalization based on rolling agent states.
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Figure 14: Episodic return of the OTIL agent trained from pixel observations with different observation
encoding strategies. We consider the following strategies: adversarial training of a discriminator, encoding
via RL encoder’s representations, encoding via a target network updated using the RL encoder, and finally a

random encoder.
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Figure 15: Episodic return of the OTIL agent trained from state observations with different OT losses.
We consider the following strategies: Soft-DTW rewards, Identity rewards, EMD rewards (non-entropic

Wasserstein) and Sinkhorn rewards (entropic Wasserstein).
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Figure 16: Episodic return of the OTIL agent trained from state observations with various values of k in
the Top-k operator. For most tasks, k£ = 1 is sufficient, but on Acrobot higher ones are required to avoid
converging to low-return expert trajectories, and to benefit from a more accurate estimate of the stationary

expert trajectory.

E Proofs

Proposition 4. Assume o° and o* have length T. Then the Wasserstein with cosine cost between o¢ and o

s a semi-metric up to scale invariance.

Proof. We first show it is well-defined and positive.

o of,
<) <1 (19)
log [l llog

Hence
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<Ot’0t/>
0< [\ oieen) <2 (20)

And as a result W is well defined and positive. Since p; > 0 it holds that

(0%, 0%
W(oa,oe) — Z |:1 to Yt > :|M* > 0. (21)
2= ' TorlToz ]
We continue by showing it is symmetric.
T T
(of, 0f) (of, o)
Wa7e: {1_ (it ] }*/: |:1 N *_W e7u- 29
(@0 = 22 1 orTop) i =\ 2= 11~ oo (0505, @)
t,t'=1 t ¢ t,¢/=1 t

We now discuss minimizers of V. Define the relation o' ~ o? if and only if 3k € R , such that o' =
(k103%, ..., kro%). We show W(0?, 0°) = 0 if and only if 0% ~ 0°. Assume W(0?, 0°) = 0. By the Birkhoff-von
Neumann theorem, there exists a permutation coupling induced by the permutation map o that is optimal
for the Wasserstein with cosine cost. Hence for each of, 3 a single ¢’ = o(t) such that of and of are aligned.
The squared Wasserstein hence equals

T
Z 1— Otvot’> (23)
2 Torog T

which is 0 if and only if of = k0§ for all ¢, which shows the if direction.

We finally show that for any o® ~ 0¢, W(0%, 0°) = 0. Let the coupling be the identity coupling (the coupling
that follows the ordering of the trajectories).

[1 (of, 0f) } ZT:[ (of, 0f) } i[ (krof, o) } -0 (24)
o] llof ] ; - [keo | [|of | '

lof [ llof |

M=

~

it

Therefore the identity coupling is optimal (/¢ = p*) and W(0?, 0¢) = 0. O

17



	1 Introduction
	2 Background
	2.1 Reinforcement Learning (RL)
	2.2 Optimal Transport
	2.3 Imitation Learning via Inverse RL

	3 A Unifying Perspective on Optimal Transport for Imitation Learning
	3.1 Unifying Perspective
	3.2 Theoretical Analysis

	4 Optimal Transport Imitation Learning
	5 Main Experiments
	5.1 Experimental Setup
	5.2 State-Based Continuous Control (DMC)
	5.3 Pixel-Based Continuous Control (DMC)
	5.4 Pixel-Based Discrete Control (Atari)

	6 Conclusion
	A RL Backbones
	B Hyperparameters and further experimental details.
	C Algorithmic Framework
	D Extra Experimental Results
	E Proofs

