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ABSTRACT

Question answering over knowledge bases (KBs) aims to answer natural language
questions with factual information such as entities and relations in KBs. Previous
methods either generate logical forms that can be executed over KBs to obtain
final answers or predict answers directly. Empirical results show that the former
often produces more accurate answers, but it suffers from non-execution issues
due to potential syntactic and semantic errors in the generated logical forms. In
this work, we propose a novel framework DECAF that jointly generates both logi-
cal forms and direct answers, and then combines the merits of them to get the final
answers. Moreover, different from most of the previous methods, DECAF is based
on simple free-text retrieval without relying on any entity linking tools — this sim-
plification eases its adaptation to different datasets. DECAF achieves new state-
of-the-art accuracy on WebQSP, FreebaseQA, and GrailQA benchmarks, while
getting competitive results on the ComplexWebQuestions benchmark.1

1 INTRODUCTION

Knowledge Bases Question Answering (KBQA) aims to answer natural language questions based
on knowledge from KBs such as DBpedia (Auer et al., 2007), Freebase (Bollacker et al., 2008) or
Wikidata (Vrandečić & Krötzsch, 2014). Existing methods can be divided into two categories. One
category is based on semantic parsing, where models first parse the input question into a logical
form (e.g., SPARQL (hommeaux, 2011) or S-expression (Gu et al., 2021)) then execute the logical
form against knowledge bases to obtain the final answers (Das et al., 2021; Gu et al., 2021; Ye et al.,
2022). The other category of methods directly outputs answers without relying on the the logical-
form executor (Lan et al., 2019; Sun et al., 2019; Saxena et al., 2022; Oğuz et al., 2022). They either
classify the entities in KB to decide which are the answers (Sun et al., 2019) or generate the answers
using a sequence-to-sequence framework (Saxena et al., 2022; Oğuz et al., 2022).

Previous empirical results (Ye et al., 2022; Das et al., 2021; Gu et al., 2022) show that the semantic
parsing based methods can produce more accurate answers over benchmark datasets. However, due
to the syntax and semantic restrictions, the output logical forms can often be non-executable and thus
would not produce any answers. On the other hand, direct-answer-prediction methods can guarantee
to generate output answers, albeit their answer accuracy is usually not as good as semantic parsing
based methods, especially over complex questions which require multi-hop reasoning (Talmor &
Berant, 2018). To our knowledge, none of the previous studies have leveraged the advantages of both
types of methods. Moreover, since knowledge bases are usually large-scale with millions of entities,
most previous methods rely on entity linking to select relevant information from KB for answering
questions. However, these entity linking methods are usually designed for specific datasets, which
inevitably limits the generalization ability of these methods.

In this paper, we propose a novel framework DECAF to overcome these limitations: (1) Instead of
relying on only either logical forms or direct answers, DECAF jointly decodes them together, and
further combines the answers executed using logical forms and directly generated ones to obtain
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the final answers. Thus the advantages of both methods can be leveraged in our model. Moreover,
unlike previous methods using constrained decoding (Chen et al., 2021a) or post revision (Das et al.,
2021) to produce more faithful logical forms, we simply treat logical forms as regular text strings
just like answers during generation, reducing efforts of hand-crafted engineering. (2) Different from
previous methods which rely on entity linking (Yih et al., 2015; Li et al., 2020) to locate entities
appeared in questions and then retrieve relevant information from KB, DECAF linearizes KBs into
text documents and leverages free-text retrieval methods to locate relevant sub-graphs. Based on
this simplification, DECAF brings better adaptation to different datasets and potentially different
KBs due to the universal characteristic of text-based retrieval. Experiments show that simple BM25
retrieval brings surprisingly good performance across multiple datasets.

We conduct experiments on four benchmark datasets including WebQSP (Yih et al., 2016), Com-
plexWebQuestions (Talmor & Berant, 2018), FreebaseQA (Jiang et al., 2019), and GrailQA (Gu
et al., 2021). Experiment results show that our model achieves new state-of-the-art results on We-
bQSP, FreebaseQA, and GrailQA benchmarks, and gets very competitive results on the ComplexWe-
bQuestions benchmark. This demonstrates the effectiveness of DECAF across different datasets and
question categories.

2 RELATED WORK

Semantic parsing based methods for KBQA first parse the input question into a logical form (LF)
then execute it against KB to obtain the answers. ReTrack (Chen et al., 2021a) uses a grammar-
based decoder to generate LFs based on pre-defined grammar rules, and a semantic checker to
discourage generating programs that are semantically inconsistent with KB. RnG-KBQA (Ye et al.,
2022) first enumerates possible LFs based on the entity in the input question. Then a ranking-and-
generation framework is applied to output the final LF. ArcaneQA (Gu & Su, 2022) generates the
LFs dynamically based on the execution results of LFs generated at intermediate steps. TIARA (Shu
et al., 2022) proposes a multi-grained retrieval method to select relevant KB context for logical form
generation. All these methods rely on an external executor such as a SPARQL server to execute LFs
for final answers. If the LFs are not executable, then no answers will be produced.

Direct-Answer-Prediction methods for KBQA directly output answers without relying on the LF
executor. PullNet (Sun et al., 2019) retrieves a subgraph of KB related to the input question and
applies graph neural networks to predict the answer entities in the subgraphs. KGT5 (Saxena et al.,
2022) uses a sequence-to-sequence framework to directly generate answers only based on the input
question. UniK-QA (Oğuz et al., 2022) is also based on a sequence-to-sequence framework, but it
first retrieves relevant triplets from KB and then generates answers based on the combination of the
input question and retrieved triplets. Although answers can always be produced without the need of
LF executor, this type of method usually underperforms semantic parsing based methods on public
benchmarks (Talmor & Berant, 2018; Gu et al., 2021; 2022).

Entity Linking & Knowledge Linearization. Real-world KBs are usually very large and with
millions of entities and triplets. The algorithm to ground the input question onto a relevant sub-
graph of KB is important. Entity linking is the most common way for this. CBR-KBQA (Das
et al., 2021) combines an off-the-shelf model ELQ (Li et al., 2020) with an NER system provided by
Google Cloud API for entity linking. RnG-KBQA (Ye et al., 2022) also uses ELQ for the WebQSP
dataset, while it uses a BERT-based (Devlin et al., 2019) NER system and trains another BERT-
based entity disambiguation model for the GrailQA dataset. Previous works usually design different
methods to optimize the performance of different datasets. A recent study Soliman et al. (2022) also
shows that entity linking models are usually domain-specific and hard to transfer across domains.
Different from these methods, DECAF reduces this burden by linearizing KBs to text documents
and leveraging simple text-retrieval methods. Experimental results show that this is not only more
general but also empirically effective. Similar to our method, UniK-QA (Oğuz et al., 2022) also
linearizes the KB and conducts retrieval. However, UniK-QA still requires entity linking (Yih et al.,
2015) to reduce the retrieval range, and it only generates direct answers without studying logical
forms for questions requiring complex reasoning. Besides the studies above, UnifiedSKG (Xie
et al., 2022) is relevant since it studies the generation of logical forms and direct answers for KBQA.
However, it does not study combining the advantages of both logical forms and direct answers, and
further assumes that the ground-truth question entities are provided, which dramatically eases this
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Figure 1: Model framework of DECAF. We use text-based retrieval instead of entity linking to
select question-related information from the KB. Then, we add different prefixes into the reader
to generate logical forms and direct answers respectively. The logical-form-executed answers and
directly-generated answers are combined to obtain the final output.

problem. Li et al. (2021) generates either an answer or an LF for an input question based on model
choice, but it studies the problem of Text-Table QA, which is inherently different from KBQA.

3 METHOD

In order to (1) leverage the advantages of both logical forms and direct answers and (2) reduce
the dependency on entity linking models, we propose a novel framework DECAF. As shown in
Figure 1, the whole KB is first transformed into text documents. Then, for an input question, the
retriever retrieves relevant passages from linearized KB documents, which will be combined with
the input question into the reader. DECAF reader is a sequence-to-sequence generative model and
uses different prefixes to generate logical forms (LFs) and direct answers respectively. Finally, the
executed answers by LFs and generated direct answers are combined to obtain the final answers.

3.1 KNOWLEDGE BASES LINEARIZATION

Given a question, retrieving relevant information from KBs is non-trivial since KBs are large-scale
and complicated with both semantic (names of entities and relations) and structural (edge between
entities by relations) information. On the other hand, recent studies have shown the effectiveness
of text-based retrieval for question answering (Chen et al., 2017; Karpukhin et al., 2020; Izacard
& Grave, 2021). By linearizing KBs to text corpus, we can easily leverage these successful text-
retrieval methods to select semantically relevant information from KBs.

We describe how to linearize the knowledge base. Considering the original KB format to be the most
common Resource Description Format (RDF), which contains triplets composed of one head en-
tity, relation, and tail entity. For example, (Freescape, game engine.developer, Incentive Software)
means that Incentive Software is the developer of a game engine called Freescape. To linearize this
triplet, we simply concatenate them with spaces to be a sentence as Freescape game engine devel-
oper Incentive Software. Note that we also replace punctuation marks in relation to spaces. In this
case, this sentence contains both semantic information (entity and relation names) and structural
information (relation between two entities). Then we further group sentences with the same head
entity to become a document like Freescape game engine developer Incentive Software. Freescape
release date 1987.... This grouping is mainly to preserve the structural information of the 1-hop
subgraph corresponding to the head entity. In some KBs like Freebase (Bollacker et al., 2008),
there exist hyper-triplets that express complicated relationship, which is discussed in Appendix A.1.
Following (Karpukhin et al., 2020), we truncate each document into multiple non-overlap passages
with a maximum of 100 words. In the next section, we show how to retrieve from these passages.

3.2 RETRIEVAL

The retriever retrieves relevant passages from the linearized KB based on the input question. We
consider two kinds of retrieval methods: sparse retrieval and dense retrieval. For sparse retrieval, we
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use BM25 (Robertson et al., 2009), which is based on TF-IDF scores of sparse word match between
input questions and KB-linearized passages. For dense retrieval, we apply the DPR (Karpukhin
et al., 2020) framework, which is based on similarity in the embedding space between input ques-
tions and passages from two fine-tuned BERTs (Devlin et al., 2019). We refer readers to the original
paper for details of the fine-tuning process. During inference, suppose there are totally N passages
in the knowledge source {p1, p2, . . . , pN}. DPR applies the passage encoder EP (·) to encode all
the passages and store embeddings in memory. For an input question q, DPR applies the ques-
tion encoder EQ(·) to obtain its representation, and then the passages are retrieved based on the
dot-product similarity: Iretrieve = argtop-ki(EP (pi) · EQ(q)). Then it applies FAISS(Johnson et al.,
2019) to conduct an efficient similarity search due to the large number of passages N . Through this
step, we can retrieve |Iretrieve| ≪ N passages which are potentially relevant to the input question.

3.3 READING

The reader takes the retrieved passages and the original question as input and generates the targeted
output. Recent advanced sequence-to-sequence models like BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) can be utilized here. In order to answer complicated multi-hop questions,
cross-passage reasoning is important for the reader. One way is to concatenate all the passages
and let the self-attention in the Transformer module capture these patterns. However, this can be
inefficient when the number of retrieved passages is very large because of the quadratic computation
complexity in self-attention. To achieve both cross-passage modeling and computation efficiency,
we apply Fushion-in-Decoder (FiD) (Izacard & Grave, 2021) based on T5 as the reader model. FiD
encodes the concatenation of the input question and each passage separately but decodes the output
tokens jointly. Specifically, we denote the question as q and the retrieved passages as {pri |ri ∈
Iretrieve}. The encoding process for each passage pri is:

Pi = Encoder(concat(q, pri)) ∈ RLp×H , (1)

where H is the hidden dimension, and Lp is the total sequence length of a question concatenated with
a passage. T5-Encoder(·) is the encoder module of T5. Then the token embeddings of all passages
output from the last layer of the encoder are concatenated and sent to the decoder to generate the
output tokens Toutput:

Toutput = Decoder([P1;P2; · · · ;P|Iretrieve|] ∈ R|Iretrieve|Lp×H) (2)

By concatenating the encoder output embeddings, the decoder can generate outputs based on joint
modeling of multiple passages.

3.4 JOINT DECODING ANSWERS AND LOGICAL FORMS

Motivated by the success of adding prefixes to control the generation of large-scale language models
(Raffel et al., 2020; Xie et al., 2022), we use a shared sequence-to-sequence model to generate both
logical forms and direct answers, and differentiate the two processes by prompting the model with
different prefixes. The encoding-decoding process in Equation (1) and (2) becomes:

Panswer
i = Encoder(concat(prefixanswer, q, pri)), Tanswer = Decoder([Panswer

1 ; · · · ;Panswer
|Iretrieve|]); (3)

PLF
i = Encoder(concat(prefixLF, q, pri)), TLF = Decoder([PLF

1 ; · · · ;PLF
|Iretrieve|]) (4)

where Tanswer and TLF are the output answer tokens and logical form tokens respectively. prefixanswer

and prefixLF are the prefixes for answer generation and logical form generation respectively, which
we set as Question Answering: and Semantic Parsing:. For example, given the question What
video game engine did incentive software develop?, we’ll first retrieve relevant passages using
the retriever. Then we add these two prefixes to produce two different inputs: Question An-
swering: what video game engine did incentive software develop? and Semantic Parsing: what
video game engine did incentive software develop?” For the first input, we train the model to
generate the target output answer Freescape directly2. While for the second input, we aim to

2For direct answer generation, we only consider returning one single answer. We’ll discuss the possibility
of returning multiple answers together in Appendix A.3
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Model WebQSP CWQ FreebaseQA

Hits@1 F1 Hits@1 Hits@1
PullNet (Sun et al., 2019) 67.8 62.8 47.2 -
EmQL (Sun et al., 2020) 75.5 - - -
NSM+h (He et al., 2021) 74.3 - 53.9 -
FILM (Verga et al., 2021) 54.7 - - 63.3
KGT5 (Saxena et al., 2022) 56.1 - 36.5 -
CBR-SUBG (Das et al., 2022) 72.1 - - 52.1
SR+NSM (Zhang et al., 2022) 69.5 64.1 50.2 -
UniK-QA (Oğuz et al., 2022) 79.1 - - -
QGG (Lan & Jiang, 2020) - 74.0 44.1 -
HGNet (Chen et al., 2021b) 70.6 70.3 65.3 -
ReTrack (Chen et al., 2021a) 74.7 74.6 - -
CBR-KBQA (Das et al., 2021) - 72.8 70.4 -
ArcaneQA (Gu & Su, 2022) - 75.3 - -
Program Transfer (Cao et al., 2022) 74.6 76.5 58.1 -
RnG-KBQA (Ye et al., 2022) - 75.6 - -
RnG-KBQA (T5-large)⋆ - 76.2 ± 0.2 - -
DECAF (BM25 + FiD-large) 79.0 ± 0.4 74.9 ± 0.3 68.1 ± 0.5 78.8 ± 0.5
DECAF (DPR + FiD-large) 80.7 ± 0.2 77.1 ± 0.2 67.0 ± 0.4 79.0 ± 0.6
DECAF (BM25 + FiD-3B) - - 70.4 -
DECAF (DPR + FiD-3B) 82.1 78.8 - -

Table 1: Results on the test splits of 3 benchmark datasets: WebQSP, CWQ, and FreebaseQA.
The two blocks of baselines are direct-answer-prediction and semantic parsing based methods re-
spectively. We run 5 independent experiments for FiD-large based DECAF and report mean and
standard deviation. ⋆ means that we replace the original reader T5-base with T5-large and rerun
experiments to have a fair comparison with our method.

generate the logical form (AND cvg.computer game engine (JOIN cvg.computer game -
engine.developer m.0d qhv)), which is simply treated as text strings during generation with-
out constrained decoding. However, instead of directly generating the entity ID like m.0d qhv
in the logical form, we replace it with the corresponding entity name like Incentive Software
and add special tokens “[” and “]” to identify it. The revised logical form to be generated be-
comes (AND cvg.computer game engine (JOIN cvg.computer game engine.developer
[ Incentive Software ])). After generation, we replace the entity names with their IDs for
execution. To ensure the 1-1 mapping between entity name and ID, we preprocess the KB by name
disambiguation, which is introduced in Appendix A.2. During training, we fine-tune the whole
reader in a multi-task learning manner, where one input question contributes to two training data
pairs with one for answer generation and the other one for logical form generation. During infer-
ence, we use beam search to generate multiple candidates for both logical forms and answers, with
the same beam size B.

Next, we show how we combine them to obtain the final answer. We first execute these logical
forms against the KB using an executor3. Suppose the list of executed answer set is [ALF

1 , · · · , ALF
B′ ]

(B′ ≤ B since some logical forms can be non-executable) and the list of directly generated answer
set is [Aanswer

1 , · · · , Aanswer
B ]. We consider two situations: (1) If B′ = 0 means none of these logical

forms are executable, the final answer is simply Aanswer
1 ; (2) Otherwise when B′ ≥ 1, we use

weighted linear combination: we first assign the score λS(k) for ALF
k and the score (1 − λ)S(k)

for Aanswer
k , where 0 ≤ λ ≤ 1 is a hyper-parameter controlling the weight of each type of answers,

and S(k) is a score function based on the answer rank k. If an answer set appears both in executed
answer list and generated answer list with ranks i and j respectively, then its score is the sum of two
scores: λS(i) + (1 − λ)S(j). Finally, we select the answer set with the highest score as the final
output. We leave the exploration of other combination methods as future work.
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Model Overall I.I.D. Compositional Zero-Shot
QGG (Lan & Jiang, 2020) 36.7 40.5 33.0 36.6
Bert+Ranking (Gu et al., 2021) 58.0 67.0 53.9 55.7
ReTrack (Chen et al., 2021a) 65.3 87.5 70.9 52.5
S2QL (Zan et al., 2022) 66.2 72.9 64.7 63.6
ArcaneQA (Gu & Su, 2022) 73.7 - 75.3 66.0
RnG-KBQA (Ye et al., 2022) 74.4 (76.9) 89.0 (88.3) 71.2 (69.2) 69.2 (75.1)
RnG-KBQA (T5-large)⋆ - (77.1) - (88.5) - (69.8) - (75.2)
UniParser (Liu et al., 2022) 74.6 - 71.1 69.8
DeCC (Anonymous) 77.6 - 75.8 72.5
TIARA (Shu et al., 2022) 78.5 - 76.5 73.9
DECAF (BM25 + FiD-large) 76.0 (78.7) 90.5 (90.2) 79.0 (78.7) 68.0 (73.7)
DECAF (DPR + FiD-large) - (75.4) - (89.7) - (75.8) - (69.0)
DECAF (BM25 + FiD-3B) 78.7 (81.4) 89.9 (89.7) 81.8 (80.1) 72.3 (78.4)

Table 2: F1 scores on the test split of GrailQA. The numbers in the parentheses are F1 scores on the
dev split. ⋆ means that we replace the original reader T5-base with T5-large and rerun experiments.

4 EXPERIMENT

Experiment Settings. We use the full Freebase (Bollacker et al., 2008) data pre-processed by Wang
et al. (2021) as the KB for all benchmarks. The total number of entities, relations, and triplets are
about 88 million, 20k, and 472 million respectively. The total number of passages after linearization
is about 126 million. For the retrieval module of DECAF, we use BM25 implemented by Pyserini
(Lin et al., 2021) and Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) with BERT-base
Devlin et al. (2019) as question and passage encoders. We train separate DPRs on each dataset
following the same training process and use the same model architecture in the original paper. The
number of retrieved passages is 100 if not specified. For the reading module, we leverage Fusion-in-
Decoder (Izacard & Grave, 2021) based on the T5 (Raffel et al., 2020) model: FiD-large and FiD-3B
with 770 million and 3 billion model parameters respectively. For the decoding beam size, we use
10 for FiD-large model and 15 for FiD-3B model.

We evaluate DECAF on four benchmark datasets: WebQSP (Yih et al., 2016), ComplexWebQues-
tions (CWQ) (Talmor & Berant, 2018), FreebaseQA (Jiang et al., 2019), and GrailQA (Gu et al.,
2021). Specifically, GrailQA provides the categories of questions: i.i.d., compositional, and zero-
shot, which can be used to evaluate model performance over different levels of generalization. All
datasets provide both ground-truth answers and logical forms except FreebaseQA, where our model
only generates answers as the final output without using the logical form. More details about these
datasets are shown in the appendix. Following previous work (Ye et al., 2022; Das et al., 2021; Oğuz
et al., 2022), we evaluate our model based on metrics Hits@1 and F1, where Hits@1 focus on the
single top-ranked answer while F1 also considers coverage of all the answers.

4.1 MAIN RESULT

We compare with both direct answer prediction and semantic parsing based methods and run 5
independent experiments for FiD-large based DECAF to report mean and standard deviation. We
don’t do this for DECAF with FiD-3B due to the limitation of computation resource. We denote our
model in the form of DECAF ({Retriever} + {Reader}) such as DECAF (BM25 + FiD-large). If the
retriever is not specified, it means we choose the better one for each dataset respectively.

As shown in Table 1, DECAF achieves new SOTA on WebQSP and FreebaseQA dataset, outper-
forming both direct-answer-prediction (first block) and semantic parsing based (second block) base-
lines. On WebQSP, DECAF improves the previous highest Hits@1 by 3.0% and F1 by 2.3%. Note
that one of the best-performing baseline UniK-QA uses STAGG (Yih et al., 2015) for entity linking
on WebQSP, which is not publicly available and thus can not be applied to other datasets. Compared
to UniK-QA, we see that DECAF (DPR + FiD-large) improves the Hits@1 by 1.6% with the same
model size, demonstrating the effectiveness of our method even without entity linking. On Free-
baseQA, DECAF improves the SOTA Hits@1 significantly by 15.7%. On CWQ dataset, DECAF

3We locally set up a Virtuoso triplestore service following the GrailQA paper.
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λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 54.7 54.7 56.1 56.3 56.5 78.7 78.7 78.7 78.7 78.7
S(k) = B − k + 1 54.7 55.6 56.4 56.5 56.5 78.3 78.3 78.4 78.6 78.7

Table 3: F1 scores on GrailQA (dev) using DECAF (BM25 + FiD-large) based on different values
of λ which is the weight of LF-executed answers in the answer combination function. S(k) is the
score function of answer rank k, and B is the generation beam size.

Model WebQSP CWQ GrailQA (dev)

Hits@1 F1 Hits@1 F1 (O) F1 (I) F1 (C) F1 (Z)
DECAF (Answer only) 74.7 49.8 50.5 54.7 59.4 38.3 59.5
DECAF (LF only) 74.3 74.0 55.2 72.4 88.2 76.3 63.9
DECAF 80.7 77.1 68.1 78.7 90.2 78.7 73.7
Non-Executable LF% 11.3 30.2 15.8 6.2 9.6 22.5
DECAFsep (Answer only) 74.2 49.5 47.9 54.6 57.7 38.8 59.8
DECAFsep (LF only) 72.7 73.1 54.3 74.0 91.4 75.2 66.0
DECAFsep 80.6 77.1 66.5 80.3 92.9 78.9 75.3
Non-Executable LF% 12.3 32.8 15.9 5.2 11.9 22.4

Table 4: We study the performance of our model when only using generated answers (Answer Only)
or executed answers by logical forms (LF Only). O, I, C, Z means overall, i.i.d., compositional
and zero-shot. DECAFsep means using a separate reader for answer generation and logical form
generation respectively instead of a joint reader. We also show the percentage of questions where
none of the generated LFs are executable.

achieves very competitive results, the same as the current SOTA method CBR-KBQA. CBR-KBQA
is based on the K-Nearest Neighbors approach, which is complementary to our method. We also
see that increasing reader size from large (770M) to 3B significantly improves model performance.
Moreover, BM25 and DPR lead to different results: DPR performs significantly better than BM25
on WebQSP, slightly better on FreebaseQA, and worse on CWQ. The possible reason is that DPR is
trained to retrieve passages containing the answers based on distant supervision (Karpukhin et al.,
2020), which do not necessarily contain the relations and entities that appeared in the logical form,
especially for complex questions. Thus it may hurt the performance of logical form generation
which results in a final performance degeneration.

Table 2 shows results on the GrailQA dataset, where we listed F1 scores of Overall, I.I.D., Compo-
sitional, and Zero-shot questions respectively. We see that with FiD-large reader, DECAF achieves
better overall performance than the published SOTA method RnG-KBQA. Since original RnG-
KBQA uses T5-base, we also equip it with T5-large for a fair comparison and list the results on
the dev set, where DECAF (BM25 + FiD-large) still significantly outperforms it by 1.6% in overall
F1 score. With FiD-3B reader, the overall F1 of DECAF is improved by 2.7% compared to using
FiD-large reader, and surpasses the current SOTA method TIARA4, which is an anonymous submis-
sion on the GrailQA leaderboard. Notably, DECAF performs the best in compositional questions
with an F1 score 5.3% higher than the best-performing method.

Overall we see that DECAF achieves new SOTA results on WebQSP, FreebaseQA, and GrailQA
with very competitive results on the CWQ benchmark. Even with simple BM25 retrieval, DECAF
outperforms most of the baselines across all the benchmark datasets, which previous studies usually
use different entity linking methods specially designed for different datasets.

4.2 ABLATION STUDY

In this section, we conduct some ablation studies to answer the following questions:

What is the best way to combine LF-executed answers and generated answers? In Section 3.4,
we introduced a way of combining LF-executed answers and generating answers to obtain the final
answer. (1) When none of the LFs are executable, we use the top-1 generated answer as output.
In Table 4, we show the percentage of questions where none of the generated LFs are executable.

4We achieve the 1st rank on the GrailQA leaderboard as of 09/06/2022.
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Model Combination Type WebQSP GrailQA (dev)
ArcaneQA None 75.6 76.9
ArcaneQA + DECAF (FiD-large, Answer Only) LF + Answer 75.8 77.4
ArcaneQA + DECAF (FiD-3B, Answer Only) LF + Answer 75.8 77.5
ArcaneQA + RnG-KBQA LF + LF 76.0 77.0
RnG-KBQA None 76.2 77.1
RnG-KBQA + DECAF (FiD-large, Answer Only) LF + Answer 76.9 77.1
RnG-KBQA + DECAF (FiD-3B, Answer Only) LF + Answer 77.0 77.1
RnG-KBQA + ArcaneQA LF + LF 77.2 77.1
DECAF (FiD-large) LF + Answer 77.1 78.7
DECAF (FiD-3B) LF + Answer 78.8 81.4

Table 5: Results of the combination of baseline methods and comparison with our proposed model
DECAF. X + Y means that we first use the answer produced by X as the output; if no answer is
produced, we use the answer produced by Y. F1 scores are reported for both WebQSP and GrailQA
(dev) datasets.

It can be observed that directly generating LFs for hard questions, such as CWQ and Zero-shot
GrailQA, shows a significantly higher non-executable rate than that for easy questions. (2) If any
LF is executable, we use the answer with the highest combination scores λS(i) + (1 − λ)S(j),
where λ is the hyper-parameter weight for LF-executed answers, and i and j are the rank in the LF-
executed answer list and generated answer list respectively. We test two different score functions
S(k) = 1/k and S(k) = B − k + 1 where B is the beam size, and k is the rank in the candidate
list. From the results in Table 3, we see that the model performance is improved when λ increases.
Specifically (1) the F1 score increases dramatically when λ changes from 0.49 to 0.51, where the
former usually chooses generated answer as a final answer while the latter selects the LF-executed
one. This demonstrates that LF-executed answers are much more accurate compared to generated
ones, which can also be validated in the next section. (2) λ = 1.0 gives the best results, which
means that we can simply select the first executed answer if exists, otherwise choose the first
generated answer. Results on WebQSP and CWQ show the same patterns, as listed in Appendix
A.5. Thus we set λ = 1.0 as the default setting of DECAF in all the experiments.

How do answer generation and LF generation perform respectively? DECAF combines gener-
ated answers and executed answers to obtain the final answers. In this section, we study the impact
of them separately. We introduce two new models to (1) only use generated answers (Answer Only)
and (2) only use executable answers by logical form (LF Only). As shown in the first group of
models in Table 4, the performance of LF Only is consistently better than Answer Only. Except
on WebQSP, the latter has similar Hits@1, but the former has a significantly better F1 score, which
shows that LF can produce much better answer coverage. We also see that the combination of these
two strategies is significantly better than any of them separately. For example, on the dev set of
GrailQA, the overall F1 of DECAF is 6.3% higher than DECAF (LF only) and 24.0% higher than
DECAF (Answer Only). In Appendix A.4, we provide a detailed comparison between the results ob-
tained from logical-form and answer generation methods. This comparison covers various question
types, number of relations present in the logical form, and the total number of correct answers.

Should we use a joint reader or separate readers for answer and LF generation? We add
another variation of our model called DECAFsep, which uses two separate readers to generate direct
answers and logical forms respectively instead of a shared reader, while other parts remain the
same as DECAF. As shown in the second group of models in Table 4, we see that the overall
performance is similar to DECAF, showing that a shared reader with prefix is as capable as two
separate readers. However, it is interesting to see that on CWQ, a shared reader with multi-task
training performs better on answer generation and LF generation while on GrailQA, it performs
worse on LF generation compared to two separate readers.

How does the ensemble of baseline methods perform? We select two published best semantic
parsing baselines, ArcaneQA (Gu & Su, 2022) and RnG-KBQA (Ye et al., 2022), and ensemble
them with our DECAF model. That is, if their generated logical forms are not executable, we use
the directly generated answers by DECAF as the final answer. We also ensemble these two baselines:
if the logical forms generated by one of them are not executable, the logical forms generated by the
other method will be used. As shown in Table 5 where F1 scores are reported, we see that they still
underperform DECAF. Upon a thorough analysis, we find that, for ArcaneQA and RnG-KBQA,
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Model WebQSP CWQ GrailQA FreebaseQA

H@100 R@100 H@100 R@100 H@100 R@100 H@100 R@100
BM25 81.2 67.7 63.5 57.7 89.9 84.7 93.5 93.5
DPR 91.6 80.6 71.4 65.6 87.6 81.0 95.0 95.0

Table 6: Retrieval results (answer name match). H@100 and R@100 stand for the answer hits rate
and recall rate of 100 passages, respectively.
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Figure 2: DECAF (FiD-large) performance based on different number of retrieval passages.

very few questions have non-executable logical forms. For ArcaneQA, the corresponding question
percentages are 0.7% and 1.4% on WebQSP and GrailQA. For RnG-KBQA, they are 1.8% and 0%.
For DECAF (FiD-large), they are 11.3% and 15.8%. The reason is that ArcaneQA uses constrained
decoding and RnG-KBQA uses logical form enumeration to increase the execution rate of their
generated logical forms. However, a high execution rate does not mean high accuracy. We argue
that for some questions, instead of forcing the model to generate executable logical forms, switching
to direct-answer generation is a better choice.

Does retrieval capture useful information for answering questions? We first evaluate the re-
trieval results of BM25 and DPR on 4 datasets in Table 6. We observe that: (1) DPR performs better
than BM25 on all the datasets except GrailQA, which contains zero-shot questions where DPR may
have poor performance due to generalization issues. (2) On WebQSP, GrailQA and FreebaseQA,
the retrieval method can achieve over 80% hits rate and recall rate, demonstrating the effectiveness
of retrieval. (3) The performance is not as good on CWQ dataset, where most questions require
multi-hop reasoning. This problem can be potentially mitigated by iterative retrieval (Xiong et al.,
2021; Qi et al., 2021), which we leave as future work. We then analyze the effect of retrieval on the
final QA performance in Figure 2, where we show the results over 4 datasets with different numbers
of retrieved passages. We see that on all the datasets, with the increase of passage number (from 5
to 100), the model performance is improved. Specifically, on GrailQA dataset, over different cat-
egories of questions, we see that the performance over I.I.D. questions increases the least while it
improves the most over zero-shot questions. This is because I.I.D. questions can be handled well by
memorizing training data while zero-shot questions require KB knowledge to be well answered.

5 CONCLUSION

In this paper we propose a novel method DECAF to jointly generate direct answers and logical forms
(LF) for knowledge base question answering. We found that combining the generated answers and
LF-executed answers can produce more accurate final answers. Instead of relying on entity linking,
DECAF is based on a sequence-to-sequence framework enhanced by retrieval, where we transform
the knowledge base into text and use sparse or dense retrieval to select relevant information from KB
to guide output generation. Experimental results show that we achieve the new state-of-the-art on
WebQSP, FreebaseQA, and GrailQA. Our work sheds light on the relationship between more general
semantic parsing based methods and direct-answer-prediction methods. It would be interesting to
further explore this direction on other tasks involving both semantic parsing and end-to-end methods
like table-based question answering or programming code generation.
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6 ETHICS STATEMENT

We acknowledge the importance of the ICLR Code of Ethics and agree with it. This work retrieves
information from linearized KB and decodes logical forms and answers jointly, and uses a combiner
to obtain the final answer. One common concern for the KBQA model is that if bias or fairness
issues exist in KB, our framework may propagate bias or unfairness when answering the questions
based on such KB. In addition, adversarial attacks may alter the behavior and performance of the
proposed model in an unexpected way. Therefore, the model should always be used with caution
in practice. We believe this work can benefit the field of KBQA, with the potential to benefit other
fields involving retrieval-then-reading modeling.
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A APPENDIX

A.1 KB LINEARIZATION: HYPER-TRIPLET

In Section 3.1, we introduced how we linearize vanilla triplets in KBs. Note that triplets have se-
mantic constrains to express complicated relations. For example, it is hard to express that Richard
Nixon and Pat Nixon got married in The Mission Inn Hotel & Spa, which involves three entities.
In Freebase, this is solved by introducing a new node called CVT node, which serves as a con-
necting entity for such hyper-triplets but has no meaning (name) itself. In this example, an entity
with id m.02h98gq is introduced which involves triplets (m.02h98gq, marriage.spouse, Pat Nixon),
(m.02h98gq, marriage.spouse, Richard Nixon), and (m.02h98gq, marriage.location of ceremony,
The Mission Inn Hotel & Spa). In this case, instead of concatenating CVT node id into sentence,
we ignore this node while grouping other entities and relations into one passage: marriage spouse
Richard Nixon. marriage spouse Pat Nixon. marriage location of ceremony The Mission Inn Hotel
& Spa. We illustrate our KB linearization in Figure 3.

Freescape Incentive Software

developer

Proprietary software

license

...

Original KB Triplets

Converted Text

Freescape license Proprietary software. Freescape 
developer Incentive Software...

CVT node Pat Nixon

marriage.spouse

Richard Nixon

marriage.spouse

marriage.location

The Mission Inn Hotel & Spa

marriage spouse Richard Nixon. marriage spouse Pat 
Nixon. marriage location The Mission Inn Hotel & Spa.

Converted Text

Original KB Hyper-Triplets

Figure 3: Knowledge base linearization. We show examples of how we linearize triplets (two entities
and one relation) and hyper-triplets (multiple entities and relations with a central CVT node).

A.2 ENTITY NAME DISAMBIGUATION

In KB Linearization (Section 3.1) and logical form generation (Section 3.4), we need to maintain a
mapping between an entity ID and an entity name. We can usually assume that one entity ID can be
mapped to exactly one entity name, while other names are treated as aliases. However, one entity
name can not necessarily be mapped to exactly one entity ID, due to the ambiguity of entity names.
For example, in Freebase (Bollacker et al., 2008), the name Over You refers to different songs, Sun
can refer to the star, or an American R&B band. We employ a simple strategy to deal with this
ambiguity issue: adding unique suffix vk where k is the number of current entities that has the same
name. For example if there are three entities named as Sun, we’ll rename them as Sun, Sun v1, Sun
v2. The order of renaming does not matter as long as the names are already differentiated. In this
case, during knowledge base linearization, instead of concatenating the original name of entities into
sentences, we concatenate their disambiguated names. During model generation, the output entity
name can be easily mapped to the corresponding entity ID.

A.3 MULTI-ANSWER GENERATION

One real-world question can involve multiple correct answers. Like What are the countries with
over 1 billion population?, the correct answer includes both China and India. This is also true in the
benchmark datasets, as shown in Table 7. We see that only about 50% questions in WebQSP have
a single answer, and about 12% contains even over 10 correct answers. It’s challenging for direct-
answer-generation methods to generate multiple answers accurately. Although DECAF generate
a single answer for the direct answer generation, we also explore the possibility of multi-answer
generation here. First we tried returning top-K (K > 1) generated answers for each question with
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beam search. However since the numbers of correct answers to different questions are different,
we find that increasing K even degrades the model performance. Then we tried to generate the
concatenation of multiple answers splitted by a special token “|”. For example, for the question
What are the countries with over 1 billion population?, the generated output will be “China | India”.
After generation we split the output by the special token to obtain all the answers. We denote the
original (default) method as DECAF (Single Answer) while this one as DECAF (Multiple Answers).
The results are shown in Table 8, where we see that generating multiple answers can improve the
Answer Only performance, but not the overall performance since it hurts the performance of logical
form generation. Thus in our final model, we still use single-answer generation. We leave the
exploration of multi-answer generation as future work.

Dataset a = 1 2 ≤ a ≤ 4 5 ≤ a ≤ 9 a ≥ 10
WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6.0% 4.0%
GrailQA 68.4% 16.2% 5.3% 9.9%
FreebaseQA 90.7% 9.0% 0.3% 0%

Table 7: Percentages of questions containing a answers in each dataset.

Model GrailQA (dev)

F1 (O) F1 (I) F1 (C) F1 (Z)
DECAF (Single Answer) 78.7 90.2 78.7 73.7
- Answer Only 54.7 59.4 38.3 59.5
- LF only 72.4 88.2 76.3 63.9
DECAF (Multiple Answers) 78.1 93.5 76.7 71.9
- Answer Only 60.9 70.7 44.4 63.6
- LF Only 69.4 91.9 73.7 57.8

Table 8: Results comparison between single-answer generation and multi-answer generation in the
direct-answer-generation part of DECAF (BM25 + FiD-large).

A.4 DIRECT COMPARISON BETWEEN LF-EXECUTED AND GENERATED ANSWERS

Based on DECAF (FiD-large) over the GrailQA (dev) dataset, we directly compare the LF-executed
answers and direct-generated answers on different question categories. Table 9 shows 4 different
comparison results, where we calculate the percentages of questions that they perform equally well,
LF better, Answer better and they both have the F1 score of 0. We see that direct-answer generation is
more advantageous on the zero-shot questions (15.3%) compared to I.I.D (4.4%). and compositional
(6.7%) ones. This also corresponds to the second example in Table 14 where we see that, for zero-
shot questions with schemas unseen during training, generating the correct logical forms containing
the schemas can be very difficult.

We also conduct a similar analysis based on the number of relations in the ground-truth logical
form of each question. Table 10 shows that direct-answer generation has more advantages when the
number of relations increases (7.3% → 18.8% → 29.1%), where the logical forms become more
complicated and harder to generate.

Finally, we conduct an analysis based on the number of ground-truth answers of each question. In
Table 11, we see that logical-form generation has more advantages when the number of answers
increases (from 14.8% to 82.7%). This is reasonable since the difficulty of logical form generation
is not necessarily correlated with the number of answers, while this is not the case for direct-answer
generation.

A.5 ADDITIONAL ABLATION STUDIES

What is the best way to combine LF-executed answers and generated answers? Following
Section 4.2, we report the results of answer combination over WebQSP and CWQ datasets. As
shown in Table 12, increasing λ can improve model performance. The optimal value is λ = 1 which
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Question Category Overall I.I.D. Compositional Zero-Shot
LF better 33.0% 40.6% 48.4% 23.4%
Answer better 10.8% 4.4% 6.7% 15.3%
Equal F1 39.4% 47.2% 28.1% 40.8%
Zero F1 16.7% 7.8% 16.8% 20.5%

Table 9: We compare the F1 score per question of LF-executed answers and generated answer based
on the category of each question.

#Relation 1 2 ≥ 3
LF better 33.1% 35.7% 17.9%
Answer better 7.3% 18.8% 29.1%
Equal F1 46.4% 22.6% 9.1%
Zero F1 13.3% 22.8% 43.9%

Table 10: We compare the F1 score per question of LF-executed answers and generated answer
based on the number of relations in the ground-truth logical form of each question.

#Answer 1 2-4 5-9 ≥ 10
LF better 14.8% 71.4% 74.4% 82.7%
Answer better 10.6% 13.0% 12.2% 8.1%
Equal F1 56.2% 1.0% 0.3% 0%
Zero F1 18.4% 14.6% 13.1% 9.2%

Table 11: We compare the F1 score per question of LF-executed answers and generated answer
based on the number of ground-truth answers of each question.

means that we can simply choose the top-1 LF-executed answer as the final answer if any of the
logical forms is executable. If none of them is executable, we still use the directly-generated answer.

WebQSP / λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 49.8 49.8 50.6 51.0 51.3 76.7 76.7 76.9 77.1 77.1
S(k) = B − k + 1 49.8 51.0 51.5 51.8 51.9 75.2 75.2 75.2 76.0 77.1
CWQ / λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 50.5 50.5 52.7 53.5 54.4 68.5 68.5 68.6 68.6 68.6
S(k) = B − k + 1 50.5 53.1 54.3 54.6 54.6 68.3 68.3 68.4 68.6 68.6

Table 12: F1 scores on WebQSP and Hits@1 scores on CWQ using DECAF (FiD-large) based
on different values of λ, which is the weight of LF-executed answers in the answer combination
function. S(k) is the score function of answer rank k and B is the generation beam size.

Oracle combination between LF-executed answers and generated answers. We conduct the
oracle combination by selecting the better answer from the direct generation and LF-execution based
on its F1 score with the ground-truth answer. In Table 13, we report the oracle results compared
to the original results. We see that the oracle combination has better performance compared to our
original model, but not that much (≤ 3 points improvement), indicating that our current combination
method, first LF execution then direct generation, is a simple but very effective choice.

How does the size of training data affect the model performance? We study the influence of the
size of the training data. Specifically, we want to study how it influences answer generation and LF
generation respectively. We focus on the GrailQA dataset, and vary the number of training data from
500, 2000, 10000 to 44337 (all). As shown in Figure 4(a), the performance of DECAF improves
as the increase of training data. More importantly, we see that the performance of LF generation
improves much more significantly than DECAF (Answer Only). This shows that training the logical
form generation requires more data than answer generation, because logical forms are usually more
complicated than answers.

During inference, what is the effect of beam size? In this section, we study the effects of genera-
tion beam size during inference. As shown in Figure 4(b), when we vary the beam size from 1,2,5,10
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Model WebQSP CWQ GrailQA (dev)

F1 Hits@1 F1 (O) F1 (I) F1 (C) F1 (Z)
DECAF (FiD-large) 77.1 68.1 78.7 90.2 78.7 73.7
DECAF (FiD-large, Oracle) 79.6 70.1 80.7 91.4 80.5 76.1
DECAF (FiD-3B) 78.8 70.4 81.4 89.7 80.1 78.4
DECAF (FiD-3B, Oracle) 81.8 72.1 83.6 91.3 81.6 81.0

Table 13: Comparison between our model with original combination method (first LF-executed
answers then direct-generated answers) and our model with oracle combination method where we
select the answer with better F1 according to the ground-truth answers.
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(a) Results based on different sizes of training data
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(b) Results based on different beam sizes

Figure 4: Ablation study on training data size and generation beam size over GrailQA (dev) dataset.

to 20, the performance of DECAF improves. However, we see that the performance DECAF (LF
Only) is significantly improved while DECAF (Answer Only) barely changes. This shows that the
overall performance improvement mainly comes from logical form generation instead of answer
generation. This is because the logical form is difficult to generate, and beam size is important to
long sequence generation especially when we enumerate the generated logical forms until we find
the one that is executable. However, for answer generation, which is usually in short length, beam
size won’t have a large effect. We also show the results of different beam sizes on WebQSP and
CWQ datasets in Figure 5, where we have similar observations to GrailQA.
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(a) Results on WebQSP
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(b) Results on CWQ

Figure 5: Ablation study on generation beam size using DECAF (FiD-large).

A.6 ERROR ANALYSIS

We conduct case-based error analysis on our model. As shown in Table 14, we list 3 cases where
Answer Only generation is wrong, LF Only generation is wrong, and both of them are wrong.
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In the first example, we need to find the “earlies” composition. We see that the logical form is
not complicated while the direct answer generation needs to reason over the completion time of
compositions and find the minimum of them, which is difficult. In the second example, we see
that the reasoning is not difficult since it only contains one relation about locomotive class, but
the logical form is relatively long which makes the generation more challenging. We see that the
generated logical form misses the steam part and results in an non-executable prediction. For these
two cases, DECAF can still output the correct answer due to answer combination. However, this is
not the case for the last example, which is a compositional question involving multiple relations. We
see that both the generated answer and logic form are wrong. The generated logical form neglects
one join operation and makes mistake on the relation about release date. This means that our model
can be further improved to deal with such complicated questions.

Question: Which composition was completed the earliest?
Gold Answer: Ce fut en mai
Gold Logical Form: (ARGMIN music.composition music.composition.date

completed)
Gen Answer: Composition for Piano and Orchestra by David Bowie
Gen Logical Form: (ARGMIN music.composition music.composition.date

completed)
LF Executed Answer: Ce fut en mai
DECAF’s Answer: Ce fut en mai
Question: British rail class 04 belongs to which locomotive class?
Gold Answer: 0-6-0
Gold Logical Form: (AND rail.steam locomotive wheel configuration

(JOIN rail.steam locomotive wheel configuration.
locomotive classes m.02rh )))

Gen Answer: 0-6-0
Gen Logical Form: (AND rail.locomotive wheel configuration

(JOIN rail.locomotive wheel configuration.
locomotive classes m.02rh )))

LF Executed Answer: Not Executable
DECAF’s Answer: 0-6-0
Question: Which browser was most recently released by the creators of mpd?
Gold Answer: Internet Explorer for Mac
Gold Logical Form: (ARGMAX (AND computer.web browser (JOIN (R computer.

software developer.software) (JOIN (R computer.
file format.format creator) m.02l0900)))
computer.software.first released)

Gen Answer: WebKit
Gen Logical Form: (ARGMAX (AND computer.web browser (JOIN (R computer.

software developer.software) m.02l0900))
computer.software.release date)

LF Executed Answer: Not Executable
DECAF’s Answer: WebKit

Table 14: Case-based error analysis over GrailQA (dev) dataset, where Gen is the abbreviation for
Generated. We show 3 cases where only generated answer is wrong, only generated LF is wrong,
and both of them are wrong.
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