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ABSTRACT

Semantic segmentation models classifying hyperspectral images (HSI) are vul-
nerable to adversarial examples. Traditional approaches to adversarial robustness
focus on training or retraining a single network on attacked data, however, in the
presence of multiple attacks these approaches decrease in performance compared
to networks trained individually on each attack. To combat this issue we propose
an Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on at-
tack type detection and adversarial robustness under a unified model to preserve
per data-type weight optimally while robustifiying the overall network. In the pro-
posed method, a discriminator network is used to separate data by attack type into
their specific attack-expert ensemble network.

1 INTRODUCTION

Current semantic segmentation models are vulnerable to the addition of imperceptible perturba-
tions to the input data Biggio et al. (2013). These perturbations are well-crafted attacks that when
added in small amounts to a sample, drastically fool the model and decrease accuracy Szegedy et al.
(2013b). To combat this challenge and make the model robust toward attacks, adversarial training is
performed on the model. To perform adversarial training on a model, one generates the adversarial
examples and then either continually trains the trained model, or mixes the attack examples with
non-attacked examples and trains a new model from scratch Goodfellow et al. (2014b); Szegedy
et al. (2013c). In this approach, the model performs worse on each individual data attack type due
to the updated weights, but better overall. Another approach is to detect the attacked data to avoid
it during classification via adversarial detection. In this case, the attacks are often ignored, despite
having information that might be valuable to classify Metzen et al. (2017). In this work, we fuse the
strengths of these two approaches. To detect and defend against adversarial attacks in one model,
a novel Adversarial Discriminator Ensemble Network (ADE-Net) model is proposed. While most
models focus on network architecture and robustness, ADE-Net can use any semantic segmentation
network while classifying attack type and class type in one unified model.

Figure 1: Overview of ADE-Net model structure: Phase I contains the Discriminator Network and
Phase II contains the Ensemble Networks.
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2 PROPOSED METHOD: ADE-NET

Notation: Consider vanilla data as {xv
i , y

v
i }

nv
i=1 with size nv . Define attack label k = 1, . . . ,K and

consider k-th attack data {xk
i , y

k
i }

nk
i=1 with size nk. Each attacked point has two labels: class label

and attack label, {xk
i , y

k
i , ci = k}nk

i=1. For a classifier F , consider a discriminator FD that focuses on
separating input based on attack type, and ensemble classifiers Fk, which denotes the k-the classifier
expert in attack type k. For each ensemble network, ω∗

k is the optimal weight of Fk, and ω∗
D is the

optimal weight of FD on all K attack data. Let Ov ∈ Rm×nv be the logits of passing vanilla on an
offline trained F offline

D on attacks, and Ok ∈ Rm×nk be the logits of FD on single attack k.

Methodology: For ADE-Net, our overall model structure consists of two phases: 1) Discriminator
Phase I: Adds adversarial detection to ADE-Net via attack type classification and CKA Kornblith
et al. (2019) to separate mixed attack data. 2) Ensemble Phase II: Constituted by a number of
networks, equal to nk, that focus on regular class label classification. Each network is an expert
at a particular attack determined by the output label from the discriminator. Figure 1 presents a
visual overview of ADE-Net. We propose in ADE-Net that the ensemble classifiers are trained
collaboratively with the discriminator focusing on class and attack classification respectively:

ω∗
D, ω∗

k = arg min
ωD,ωk

K∑
k=1

αkLωk
(Fk(x), y) +

K∑
k=1

λk CKA(Ov, Ok) + β LωD
(FD(x), c) (1)

where the first αk is for Phase II and the remaining λk and β terms are for Phase I. Extended
mathematical formalization of the loss function can be found in the Appendix in Section C. The
overview of our ADE-Net algorithm is shown in Algorithm 1.

# Attack All = 1.0 λk=β=0.1
αk=10.0

λk=β=10.0
αk=0.1

λk=β=1.0
αk Attack Dependent

λk=0 (No CKA)
β=αk=1.0 Baseline

2 I: 95.29 ± 0.01
II: 80.37 ± 0.01

I: 95.19 ± 0.04
II: 80.00 ± 0.01

I: 95.34 ± 0.03
II: 80.11 ± 0.02

I: 95.21 ± 0.04
II: 80.30 ± 0.01

I: 95.00 ± 0.05
II: 79.67 ± 0.02 78.78 ± 0.08

3 I: 63.97 ± 0.03
II: 81.57 ± 0.02

I: 64.12 ± 0.04
II: 81.71 ± 0.02

I: 63.97 ± 0.04
II: 81.62 ± 0.03

I: 63.99 ± 0.03
II: 81.72 ± 0.02

I: 63.50 ± 0.04
II: 81.49 ± 0.04 80.11 ± 0.13

4 I: 48.03 ± 0.04
II: 82.23 ± 0.12

I: 47.98 ± 0.10
II: 82.06 ± 0.11

I: 47.98 ± 0.09
II: 82.1 ± 0.12

I: 48.05 ± 0.05
II: 82.51 ± 0.09

I: 47.51 ± 0.10
II: 81.66 ± 0.14 81.37 ± 0.02

5 I: 50.30 ± 0.03
II: 83.27 ± 0.15

I: 50.40 ± 0.02
II: 83.27 ± 0.14

I: 50.45 ± 0.03
II: 83.17 ± 0.16

I: 50.30 ± 0.03
II: 83.55 ± 0.13

I: 50.40 ± 0.04
II: 83.10 ± 0.16 82.65 ± 0.22

Table 1: Experimental results of ADE-Net with Indian Pines dataset. Best performing results for
each row are in bold, worst-performing is in red. The αk hyperparameter is for the ensemble class
cross-entropy, λk is for the discriminator CKA and β is for the discriminator attack cross-entropy.

3 EXPERIMENTS

For our experiments, we use the HSI dataset Indian Pines (IP). Two additional datasets, Kennedy
Space Center (KSC) Amigo (2020), and Houston Labate et al. (2019) are available in Appendix
Section D. Two averaged overall accuracies (OA) terms will be reported: Phase I and Phase II
accuracy as shown in Figure 1. Phase I Discriminator accuracy captures attack-label classification
while Phase II Ensemble accuracy captures class-label accuracy.

Evaluation: We showcase different hyperparameter values to find the experimentally optimal val-
ues for better ADE-Net accuracy. We also explore the role of CKA by removing it in certain ex-
periments. Results are found in Table 1 for IP. For all numbers of attacks, ADE-Net outperforms
the baseline. The discriminator performs worse when more attacks are added, however, with the
addition of vanilla data in our five attack experiments, we can see the discriminator performing bet-
ter due to the difference between attacked and non-attacked data. The highest Phase II accuracy
is achieved in our attack dependent αk tests, showing that giving more attention to more difficult
attacks increases the overall accuracy of ADE-Net. The No CKA (λk = 0) tests perform worse than
all the others, showing the positive effect CKA has on ADE-Net.

Conclusion: We analyzed the effect that multiple adversarial attacks have on HSI semantic segmen-
tation. An approach was developed leveraging attack-type detection and robustness in one unified
network: ADE-Net. Though a Phase I discriminator attack-type classifier leveraging the similarity
measure CKA, and a Phase II attack-expert ensemble network, ADE-Net outperformed the single
model baseline for all datasets with all attack combinations.
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A RELATED WORKS

In Szegedy et al. (2013a) the authors showed that adding a small well-crafted perturbation to a
sample can be catastrophic to a network’s performance. These adversarially attacked images often
look the same to a human observer but make the network vulnerable. The study of adversarial
examples and robustness in HSI semantic segmentation is a new entry into the field with Xu et al.
(2021a) being the first to introduce the idea of adversarial attack-defense in the HSI domain.
They created a self-attention context network (SACNet) to better defend against these attacks.
The authors in Xu et al. (2021b) use their Masked Spatial-Spectral Autoencoder (MSSA) which
consists of masked sequence attention learning, dynamic graph embedding, and self-supervised
reconstruction. Rather than focusing on semantic segmentation via network architecture, some
works like Park et al. (2021); Qi et al. (2022) try using rich spectral information to robustify the
entire process. In Park et al. (2021), they propose a spectral sampling and shape encoding to
increase adversarial robustness as a preprocessing step to traditional per-pixel classification via
random sampling. However, all these approaches focus on a single attack at a time and do not
explore network robustness in the presence of multiple attacks. Recently, AutoAttack Croce &
Hein (2020) extends PGD to create an aggregate attack and achieves lower robust networks. A
union of attacks similar to AutoAttack is created in Maini et al. (2020) by using a generalized
PGD-based procedure to incorporate multiple perturbation models into a single attack which also
leads to drastically worse performance than individual perturbations. Many existing works use
these aggregate attacks now to test performance, but still, test one aggregate attack at a time.

B CENTERED KERNEL ALIGNMENT (CKA)

In ADE-Net, we use a network-layer similarity measure called Centered Kernel Alignment
(CKA) Kornblith et al. (2019) as follows:

CKA(Ov, Ok) =

∥∥(Ov)
TOk

∥∥2
F∥∥(Ov)TOv

∥∥2
F

∥∥(Ok)TOk

∥∥2
F

, (2)

For this particular use of CKA, we are using vanilla logits Ov from a discriminator trained offline
on attacks to determine the dissimilarity between different attacks. Ok is calculated during train-
ing where k is the assigned attack type for each sample during training by the discriminator. CKA
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was chosen for its intuition over other similarity measures to aid our attack separation. Adversarial
attacks have a prevalent effect on a network in deeper layers, therefore, once CKA calculates the rel-
ative dissimilarity between the logits of vanilla data and attacked data, we have an intuitive measure
to use attack information in the logit space rather than just the feature space.

C ADE-NET EXTENDED FORMALIZATION

Discriminator Phase I: The aim of the discriminator is to add adversarial detection to ADE-Net
via attack type classification and CKA to separate mixed attack data. For the discriminator, we
use a categorical cross-entropy loss function as ω∗

D = argmin
ωD

LωD
(FD(x)). To increase at-

tack classification accuracy further, we use the similarity measure CKA from 2 to incorporate
more information about attacks into the loss function. This term is the sum of CKAs between
logit-layer vanilla data output on a trained discriminator, and the logit-layer output of each at-
tack present during training. The optimal ω∗

D is learned by solving the optimization problem:
argmin

ωD

β LωD
(FD(x)) +

∑K
k=1 λk CKA(Ov, Ok), where λk and β are hyperparameters and

LωD
is the cross-entropy function on attack labels while also incorporating the similarity of the

attack compared to non-attack data in deeper layers of a trained network.

Ensemble Phase II: The ensemble phase is constituted by a number of networks, equal to nk,
that focus on regular class label classification. Each network is an expert at a particular attack
determined by the output label from the discriminator. We use an ensemble categorical cross-entropy

loss function ω∗
k = argmin

ωk

K∑
k=1

αkLωk
(Fk(x), y), where αk, k = 1, . . . ,K are hyperparameters

and allow for individual networks to get more attention than others.

Algorithm 1: ADE-Net model

Input: Data {xi, yi}Ni=1. Set K, E: # of attacks and epochs. Learning rates ηD and ηj ,
j = 1, . . . ,K.
Output: Overall Test Accuracy
Attack data {xi, yi}Ni=1 with k attack types to get {xk

i , y
k
i , ci = k}nk

i=1 and vanilla data
{xv

i , y
v
i }Ni=1.

Train Discriminator FD on attacked training data offline and pass vanilla and logits Ov . Shuffle
attack data {xk

i , y
k
i , ci = k}nk

i=1 (including vanilla data).
for e = 1, . . . , E do

for b = batch1, . . . , batchB do
Input data into FD on the attack type and compute CKA(Ov, Ok). Update FD’s

weights as ωD ← ωD − ηD∇ωD
(β LωD

(FD(x)) +
∑K

k=1 λk CKA(Ov, Ok))
Discriminate attacks based on the ωD.

for j = 1, . . . , k do
Input {xj

i , y
j
i , ci = j}nj

i=1 discriminated by FD into Fj . Update classifier Fj weights

as ωj ← ωj − ηj∇ωj

K∑
k=1

αkLωk
(Fk(x), y)

end
end

end
Report Acc

D EXPERIMENTAL PARAMETERS & EXTENDED EXPERIMENTS

In our main paper, we used the Indian Pines dataset. For extended experiments, we include the
Kennedy Space Center (KSC) and Houston datasets. Experimental results for these extra datasets
can be found in Table 2 for KSC and Table 3 for Houston. To better visualize the impact of CKA on
ADE-Net, Figure 2 is shown to denote how CKA can effectively separate attacks in the logit layer
during training.
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For all of our experiments, each dataset is reduced to 30 bands using Principal Component Analysis
(PCA). We use U-Net Ronneberger et al. (2015) for the discriminator and all ensemble networks.
We use Adam optimizer with a learning rate of 0.001 for all networks under three trials. We use a
batch size of 256 and train ADE-Net for 100 epochs. For attacks, we use the Fast Gradient Signed
Method (FGSM) Goodfellow et al. (2014a), Carlini and Wagner (CW) Carlini & Wagner (2017),
Projected Gradient Decent (PGD) Madry et al. (2017), and Iterative Fast Gradient Signed Method
(I-FGSM) Xie et al. (2019). In our experiments each attack is added on at a time starting at, FGSM,
then CW, PGD, I-FGSM, and finally non-attacked vanilla data. All attacks were generated using an
ϵ = 0.1. In the experiment where αk = Xk, as shown in Tables 1, 2 and 3, values are weighted by
the relative difficulty for classification on that attack as: αFGSM = 1.4, αCW = 2.3, αPGD = 1.7,
αI−FGSM = 1.3, and for vanilla αV anilla = 1.0.
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Figure 2: Comparison of attacks’ CKA values calculated from the average of each batch for each
FGSM, CW, and PGD attack during ADE-Net training for the KSC dataset. Note that for each epoch
the three attacks are consistently separated.

# Attack All = 1.0 λk=β=0.1
αk=10.0

λk=β=10.0
αk=0.1

λk=β=1.0
αk Attack Dependent

λk=0 (No CKA)
β=αk=1.0 Baseline

2 I: 100.0 ± 0.0
II 87.45 ± 0.39

I: 100.0 ± 0.0
II: 86.87 ± 0.38

I: 100.0 ± 0.0
II: 86.94 ± 0.29

I: 99.98 ± 0.01
II: 87.63 ± 0.24

I: 99.54 ± 0.02
II: 86.01 ± 0.36 83.59 ± 0.40

3 I: 98.3 ± 0.04
II: 88.07 ± 0.04

I: 97.90 ± 0.06
II: 87.39 ± 0.09

I: 97.73 ± 0.03
II: 88.00 ± 0.05

I: 97.70 ± 0.04
II: 87.20 ± 0.08

I: 97.45 ± 0.05
II: 87.11 ± 0.10 84.69 ± 0.32

4 I: 73.30 ± 0.10
II 88.18 ± 0.12

I: 74.04 ± 0.08
II: 88.65 ± 0.08

I: 74.21 ± 0.10
II: 88.22 ± 0.09

I: 73.39 ± 0.12
II: 88.50 ± 0.10

I: 73.44 ± 0.10
II: 88.00 ± 0.12 86.12 ± 0.14

5 I: 78.57 ± 0.01
II 88.73 ± 0.11

I: 78.66 ± 0.03
II: 88.25 ± 0.12

I: 79.07 ± 0.02
II: 88.66 ± 0.13

I: 78.68 ± 0.04
II: 88.75 ± 0.09

I: 78.01 ± 0.04
II: 87.89 ± 0.13 86.46 ± 0.17

Table 2: Experimental results of ADE-Net with Kennedy Space Center dataset. Best performing
results for each attack combination are in bold and the worst-performing is in red. The αk hyper-
parameter is for the ensemble class cross-entropy, λk is for the discriminator CKA and β is for the
discriminator attack cross-entropy.

# Attack All = 1.0 λk=β=0.1
αk=10.0

λk=β=10.0
αk=0.1

λk=β=1.0
αk Attack Dependent

λk=0 (No CKA)
β=αk=1.0 Baseline

2 I: 98.61 ± 0.29
II: 95.84 ± 0.59

I: 98.87 ± 0.22
II: 96.24 ± 0.54

I: 98.18 ± 0.19
II: 95.28 ± 0.61

I: 98.16 ± 0.21
II: 95.38 ± 0.49

I: 98.11 ± 0.22
II: 95.22 ± 0.53 93.94 ± 0.12

3 I: 67.05 ± 0.05
II: 96.32 ± 0.49

I: 66.81 ± 0.06
II: 95.77 ± 0.35

I: 67.24 ± 0.05
II: 95.70 ± 0.44

I: 67.20 ± 0.05
II: 95.94 ± 0.48

I: 67.03 ± 0.07
II: 95.89 ± 0.42 95.15 ± 0.05

4 I: 50.51 ± 0.06
II: 96.02 ± 0.16

I: 50.47 ± 0.06
II: 97.21 ± 0.09

I: 50.40 ± 0.05
II: 96.10 ± 0.11

I: 50.52 ± 0.04
II: 97.24 ± 0.08

I: 50.39 ± 0.06
II: 95.89 ± 0.14 95.48 ± 0.04

5 I: 55.66 ± 0.03
II: 96.45 ± 0.05

I: 55.70 ± 0.04
II: 96.57 ± 0.04

I: 55.45 ± 0.03
II 96.35 ± 0.05

I: 55.76 ± 0.03
II: 96.42 ± 0.04

I: 54.97 ± 0.03
II: 96.63 ± 0.04 96.08 ± 0.16

Table 3: Experimental results of ADE-Net with the Houston dataset. Best performing results for
each attack combination are in bold and the worst-performing is in red. The αk hyperparameter is
for the ensemble class cross-entropy, λk is for the discriminator CKA and β is for the discriminator
attack cross-entropy.
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