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ABSTRACT

Domain generalization (DG) aims to increase a model’s generalization ability
against the performance degradation when transferring to the target domains, which
has been successfully applied in various visual and natural language tasks. However,
DG on multi-modal tasks is still an untouched field. Compared with traditional
single-modal DG, the biggest challenge of multi-modal DG is that each modality
has to cope with its own domain shift. Directly applying the previous methods
will make the generalization direction of the model in each modality inconsistent,
resulting in negative effects when the model is migrated to the target domains.
Thus in this paper, we explore the scenario of query-based video segmentation
to study how to better advance the generalization ability of the model in the
multi-modal situation. Considering the information from different modalities often
shows consistency, we propose query-guided feature augmentation (QFA) and
attention map adaptive instance normalization (AM-AdaIN) modules. Compared
with traditional DG models, our method can combine visual and textual modalities
together to guide each other for data augmentation and learn a domain-agnostic
cross-modal relationship, which is more suitable for multi-modal transfer tasks.
Extensive experiments on three query-based video segmentation generalization
tasks demonstrate the effectiveness of our method.

1 INTRODUCTION

Query-based video segmentation is first introduced by Gavrilyuk et al. (2018), which aims to segment
the queried actors or objects in video based on the given natural language query. Although these
years have witnessed promising achievements in this field, the segmentation model trained on the
source domain will degrade dramatically on the unseen target data due to the domain shift in real
applications. As we can see in Figure 1, even if both of the two sentences refer to a standing guy, the
visual context complexity, the background environment and the expression styles of the texts in these
two cases are quite different, which makes the performance of direct transfer far more unsatisfactory.

Domain adaptation (DA) Kim et al. (2021); Hoffman et al. (2018); Kim et al. (2019) and domain
generalization (DG) Dou et al. (2019); Volpi et al. (2018); Choi et al. (2021) have been proposed to
solve these problems. Different from DA that requires the acquisition of target domain data during
training, which is usually difficult to achieve, DG can learn domain invariant features and improve
domain robustness without requiring target-domain data. Previous DG methods use kernel-based
optimization to extract domain-agnostic features Muandet et al. (2013); Li et al. (2018c;b), or use
meta-learning to simulate domain-shift situations Li et al. (2018a); Liu et al. (2020). However, most
of these methods are only suitable for multiple-source domains. Adversarial data augmentation based
methods have been proposed to solve the single-domain generalization problem Volpi et al. (2018);
Zhao et al. (2020), which use an adversarial loss to generate more realistic fictitious samples as much
as possible. However, it is difficult to generate effective meaningful samples that are largely different
from the source distribution in semantic segmentation tasks. Thus recently some other methods, such
as instance selective whitening Choi et al. (2021) and memory-guided network Kim et al. (2022)
have been proposed to handle this problem, and achieve good performance.

Although the above methods have achieved great success, few methods have been proposed specially
for multi-modal domain generalization tasks. In query-based video segmentation, domain shift not
only exists on the image level (e.g. light, weather, background, etc.) and the instance level (e.g.
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Figure 1: (a) The demo of our multi-modal domain generalization task. (b) The illustration of the
necessity of introducing DG in this task. Source only means the model is trained and tested on the
same domain, while the target only means the model is trained on another domain, and directly
transferred to this domain. As we can see, the performances drop a lot in both two datasets.

size, shape, appearance, etc.)Lin et al. (2021), but also on the natural language level (e.g. expression
styles). A natural idea is to gradually augment the source domain data during training to simulate
domain shift when facing new domains. However, directly applying the above methods to enhance
the two modalities separately and then fuse them together may suffer from negatively affects, since it
is difficult to ensure that the generalization directions of these two modalities are consistent.

Thus in this paper, we combine the visual and textual modalities together to facilitate each other
for data enhancement. According to our observations, actions belonging to the same type of actors
in different domains share similar representations in the query-video latent space, the main reason
for the performance degradation is that visual background and contextual complexity vary widely
across different domains. Although we can not have access to the target data during training, there
exists diverse background information in source data, which can be used to augment the source
domain. Therefore, we propose a Query-guided Feature Augmentation (QFA) module, which can
use the attention scores between query and video frames to distinguish query-related foreground
regions from unrelated background regions. Then we keep the foreground regions to be segmented
unchanged, and synthesize novel visual features by gradually enhancing the background areas. To
ensure the semantic consistency of the generated data, we introduce Moco-based contrastive learning
to force the model to maintain query-related information in the background-perturbed video features.
Besides, the expression styles of queries among different domains are different, which will lead
to deviations in the attention map between visual and query features when migrating to the target
domain. Hence we propose to use AdapIN Huang & Belongie (2017) on the vision-to-query attention
map (AM-AdaIN) to alleviate this issue. AdapIN can help the model remove the impact of style in
attention map during training, and gradually introduce statistics from other samples to help the model
learn robust cross-modal relationships. To be summarized, our main contributions are as follows:

• We are the first to conduct domain generalization on the query-based video-segmentation
task, which is also the early attempt to increase generalization ability on cross-modal task.

• We propose two novel QFA and AM-AdaIN modules. Compared with previous DG methods,
our model is more suitable for multi-modal generalization task.

• Extensive experiments on three generalization tasks show that our model can greatly enhance
the model generalization ability, demonstrating the superiority of our method.

2 RELATED WORK

Domain Generalization. Domain generalization (DG) requires the model to be robust without
accessing the target domain when facing domain shift, which means the model trained only on
single or multiple source domains should also perform well on unseen target domain. Early models
focus on extracting domain-invariant features Li et al. (2018c;b); Hu et al. (2020) or using kernel-
based optimization to minimize the dissimilarity across domains Muandet et al. (2013). Dou et al.
(2019) propose a domain-agnostic learning paradigm and encourage the model to learn semantically
consistent features across training domains. Huang et al. (2021); Xu et al. (2021) use Fourier-based
framework to enhance the domain robustness. Other models aim to enhance the source domains in
data-level or feature-level to improve the robustness. Yue et al. (2019) use auxiliary dataset to enhance
the source images and obtain different styles of images. Meta-learning is also an important method
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to solve generalization problems, which typically partitions source domains into meta-train and
meta-test splits to simulate the domain shifts Li et al. (2018a); Liu et al. (2020). As for single domain
generalization, which is more challenger than multiple source situation, Volpi et al. (2018); Zhao et al.
(2020) use an adversarial data augmentation method which jointly performs domain generalization
representation and new domain augmentation in an adversarial learning manner. However, for object
or semantic segmentation task, it is difficult for these methods to generate effective fictitious target
distribution. Thus instance selective whitening Choi et al. (2021) and memory-guided network Kim
et al. (2022) are used to extract domain-invariant features to enhance the generalization capability
for semantic segmentation. Although these methods have achieved great success, there are still limit
methods target for multi-modal domain generalization problem.

Query-based Video Segmentation. Query-based actor-action video segmentation aims to extract
relevant regions from videos based on a given natural language query, which is first brought up in
Gavrilyuk et al. (2018). Wang et al. (2019) propose an asymmetric cross-guided attention network to
incorporate important information from natural language query and visual concepts for each other.
Considering the traditional dynamic convolution may neglect spatial context information, Wang et al.
(2020) propose a context modulated dynamic convolutional operation, which can integrate natural
language query and visual spatial context together to compute the segmentation mask. McIntosh et al.
(2020) apply capsule network to encode both the video and textual input, which is more effective than
standard convolution based models. Ning et al. (2021) think the spatial relations are also important
for this task, thus they propose a polar attention module to make the sentence feature interact with
positional embedding more directly. Hui et al. (2021) propose a language-guided feature selection
module and a cross-modal adaptive module to select spatial- and temporal- relevant information
dynamically and aggregate them comprehensively.

3 METHOD

3.1 PROBLEM SETUP AND MODEL OVERVIEW

Given a natural language query Q and its counterpart T video frames V ∈ RT×H×W×C , where
T, H, W, C are the frame number, height, width and channel number, respectively, the query-based
video segmentation aims to generate accurate segment masks on the objects related to the input
query. Our new proposed task aims to enhance the generalization ability on unseen target domains
T ∈ {T1, ...TN} with the segmentation model trained only on single source domain S . The key idea
is to improve the model robustness against out-of-distribution shift among different domains. The
procedure can be solved as a worst-case problem Sinha et al. (2017); Qiao & Peng (2021):

min
ϕ

sup
T :D(S,T )≤ρ

E[Lseg(ϕ; T )], (1)

where ϕ are the model parameters for segmentation objective function Lseg, D is a similarity metric
to measure domain distance between S and T , ρ is the largest domain distance.

Considering it is difficult to directly optimize the worst-case problem, we try to solve the query-based
video segmentation generalization task by gradually generating a novel domain S̄ with our proposed
QFA3.3 and AM-AdaIN3.4 during training, and D

(
S, S̄

)
≤ ρ. Besides, we apply moco-based

contrastive learning to constrain the distance ≤ ρ.

3.2 BASELINE MODEL

First we use an I3D layer Carreira & Zisserman (2017) with stacked 3D convolution as our visual
encoder and get visual representations as V ∈ RT×H×W×C , then we apply average pooling over
the temporal dimension to get V̂ . Since the usage of vocabulary in different datasets is different,
to enhance the generalization ability and learn some words with similar semantics but different
expressions, we choose Bert as our text Encoder, the natural language query can be encoded as
Q ∈ RL×C , where L is the length of the query. Followed by Hui et al. (2021), we divide the
visual features in the encoder and decoder layers into K different scales respectively, denoted as
V̂k ∈ RHk×Wk×C , where Hk, Wk and C are height, width and channel number of the i-th visual
feature, respectively. To allow the visual features interacting with the query more comprehensively,
we design a query-vision interaction module(QVIM).
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Figure 2: The overview of our proposed network. (a) The main pipeline of our model. (b) The
architecture of query-vision interaction module (QVIM), notice the query-guided feature augmen-
tation (QFA) only exists in one layer. (c) Our proposed QFA first uses the query to distinguish the
query-related foreground and unrelated background regions in source video frames, then selects
query-agnostic regions from auxiliary data. Finally we use the query-agnostic regions to enhance the
background areas of the original visual features and obtain the augmented data. The Maug can avoid
the interference of similar objects (e.g., truck) in the auxiliary data to the source data.

Query-Vision Interaction Module Our QVIM aims to enhance the interaction between different
scale visual features and natural language. Followed by Wang et al. (2019), we adopt an 8-dimensional
position encoding feature to encode relative position information of each pixel. Then we apply a
self-attention layer on the visual feature to enable each pixel can perceive context-related information.
Chen et al. (2021) have proved that attentional pooling can help model localize its attention to
semantically more important regions, which can further enhance domain generalization ability. Thus
in this task, we employ query vectors to obtain relevant spatial regions from visual features. The k-th
layer attention scores Ak between query and each visual pixels can be defined as:

aki,j =
⟨vki,j , q⟩∑

i′,j′⟨vki′,j′ , q⟩
(i′ ∈ [1, Hk], j

′ ∈ [1,Wk]), (2)

where q ∈ RC is the RNN output from Q. We use Ak to highlight the most query-related regions
from input visual features, which can facilitate the subsequent segmentation task. Besides, we apply
another cross-modality attention in Eq 7 between visual inputs and natural language query, which can
select important information from query to enhance the representation of each pixel.

Multi-scale Decoder Layer Followed by Wang et al. (2019), we divide the visual features into K
different scales, each scale is obtained by a I3D and a QVIM layer. Then we combine average-pooling

and fully convolutional layer to generate multi-scale response map {{ski,j}
Hk

i ×Wk
j

i=1,j=1 }(k ∈ [1,K]))

from the encoded visual features V̂k ∈ RHk×Wk×C .

3.3 QUERY-GUIDED FEATURE AUGMENTATION

Data augmentation is an important technique to improve model generalization ability. However,
previous works are not suitable for multi-modal generalization tasks. For example, Fourier-based
methods Huang et al. (2021); Xu et al. (2021) will cause the color of vital objects changed, conflicting
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with the colors described in the question text. Also, it is difficult for adversarial-based methods Volpi
et al. (2018); Zhao et al. (2020); Qiao et al. (2020) to synthesize meaningful fictitious video frames in
segmentation task. Thus in this section, we take advantage of the consistency of information in multi-
modality, and use the query as guidance to gradually make meaningful enhancements to the source
domain in feature level. Concretely, given an arbitrary scale of visual features V̂k ∈ RHk×Wk×C , we
distinguish important foreground regions Rf from background regions Rb according to the attention
score aki,j . We set a threshold β, the pixels larger than β are considered as foreground regions Rf

which is highly relevant to the question, while the others smaller than β are considered as irrelevant
background parts Rb:

Ak =

{
Rf , if aki,j > β

Rb, if aki,j <= β
i′ ∈ [1, Hk], j

′ ∈ [1,Wk], (3)

then we convert Rb into a Bool matrix B, the pixels with values are set to 1, and the pixels without
values are set to 0. Next, we randomly select another video from the same batch as auxiliary data
V̂ au
k . Similarly, we use the query and the auxiliary data to calculate the attention scores Āk, and then

subtract the attention matrix from the all-one matrix to get the augment matrix Maug:

Maug =
∥∥Āk − 1

∥∥ (4)

The purpose of Eq 4 is to minimize the interference of query-related objects in auxiliary data to
important regions of the original visual features. Finally, we combine the auxiliary background and
the original visual features together to generate new augmented data Ṽk:

Ṽk = B ∗Maug ∗ V̂ au
k +Rf ∗ V̂k (5)

At the test time, we remove the QFA module and directly conduct inference on original visual
features from target domains.

Progressive Manner: In order to make the query-guided feature augmentation procedure more
robust, here we adopt a progressive expansion manner. At the initial few epochs, we do not perform
any data augmentation, allowing the model to learn a stable attention relationship between query
and visual features. Then we gradually shift the threshold β from small to large during the training
process, which means the replaced background area in the original video frames is progressively
getting larger. To ensure that the augmented data still retains the key region features relevant to its
counterpart query, we then introduce a semantic constraint objective function.

Constraints on Augmented Data: Previous works have proved that it is necessary to apply distance
constraints between source domain and augmented domains Qiao et al. (2020); Qiao & Peng (2021),
or using stochastic gradients to update the generated adversarial examples Volpi et al. (2018); Zhao
et al. (2020). While in this paper, we employ contrastive learning to pull the distance between query
and its counterpart augmented visual features, and push the distance of other mismatched data. To
increase the diversity of negative samples, we follow Moco He et al. (2020), by designing a dynamic
dictionary with a queue to store negative samples. Given a query as q, its counterpart augmented
visual data as positive key k+, and N − 1 samples from the dictionary as negative keys, we apply
InfoNCE loss Van den Oord et al. (2018) to measure the similarities between q and keys:

Lconst = −log
exp(q · k+/τ)∑N
n=0 exp(q · kn/τ)

, (6)

where τ is a temperature hyper-parameter. As the training progresses, the magnitude of data en-
hancement is gradually increasing, and the ability of Lconst to measure the distance between the
query and positive/negative samples also improves accordingly. Compared with adversarial learning,
our model can converge more stably, and our model can measure the semantic similarity between
cross-modalities better than Wasserstein distance Qiao et al. (2020).

3.4 ADAPTIVE INSTANCE NORMALIZATION ON ATTENTION MAP

From Figure 1 we can see that the domain shift not only exists in visual level, but also exists in
natural language description style. This will lead to a deviation in the cross-attention map between
the visual features and the query text when the model is migrated to the target domain. The model
cannot pay attention to the key text positions, thus the unimportant text information is integrated into
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the visual pixels’ representation, which will cause deviations in the segmentation results. To bridge
this gap, we introduce style randomization on the cross attention map Ck between Vk ∈ RHkWk×C

and Q ∈ RL×C , which can be computed as:

Ck = softmax(δ(W (Vk ·QT ))) ∈ RHk×Wk×L, (7)

µ(Ck) =
1

HkWk

Hk∑
h=1

Wk∑
w=1

ckhw ∈ RL, σ(Ck) =

√√√√ 1

HkWk

Hk∑
h=1

Wk∑
w=1

(ckhw − µ(Ck))2 + ϵ, (8)

where W is a learning parameter, δ is the Relu activation function, ϵ is a small number to avoid zero.
After obtaining the feature statistics of source cross attention map Ck, we can use adaptive instance
normalization (AdaIN) Huang & Belongie (2017) to replace the statics of input with an arbitrary
chosen C

′

k:

AdaIN(Ck, C
′

k) = σ̂(
Ck − µ(Ck)

σ(Ck)
) + µ̂, (9)

µ̂ = (1− α) · µ(Ck) + α · µ(C
′

k), σ̂ = (1− α) · σ(Ck) + α · σ(C
′

k), (10)

where α ∼ U(0, 0.5). By introducing the mean and variance from other C
′

k as perturbed data, the
model can learn domain-invariant response regions from the visual-to-query attention map, which
can extract important information from natural language query against expression style shift when
transferring to target domains. During inference time, we also remove the AdapIN layer.

3.5 TRAINING

Here we introduce how to incorporate our proposed QFA and AM-AdaIN modules into the baseline
model. Although these two modules can be inserted into query-guided average pooling and query-
vision cross attention in QVIM layer at any scale, respectively. Inserting into different layers will
have different effects on the generalization ability of the model. We find that data augmentation is
suitable for the largest scale of visual features, while AM-AdaIN is suitable for the smaller scale, the
details will be analyzed in section 4.4.

After obtaining the multi-scale response map {{ski,j}
Hk

i ×Wk
j

i=1,j=1 }(k ∈ [1,K])) in Section 3.2, and the

ground-truth pixel-level annotations {{yki,j}
Hk

i ×Wk
j

i=1,j=1 }(k ∈ [1,K]), yki,j ∈ {0, 1}), we can compute
the multi-scale segment loss with binary cross-entropy loss:

Lseg = − 1

K

1

HkWk

Hk∑
h=1

Wk∑
w=1

(yi,j · log(si,j) + (1− yi,j) · log(1− si,j)) (11)

The total loss function can be computed as L = Lseg + Lconst.

4 EXPERIMENTS

4.1 DATASETS AND GENERALIZATION TASKS

A2D Sentences is first released by Gavrilyuk et al. (2018), they provide corresponding natural
language descriptions for each video in Actor-Action Dataset Xu et al. (2015). It has a total of 3,782
videos, which contains 8 action classes (e.g. walking, eating, running) and 7 actor classes (e.g. adult,
dog, cat). Refer-Youtube-VOS (RVOS) is first extended on the Youtube-VOS dataset Xu et al.
(2018) by Seo et al. (2020), which contains 3975 high-resolution videos with 94 common object
categories. RVOS is annotated with 27899 text expressions. J-HMDB Sentences is also brought
up by Gavrilyuk et al. (2018) from Jhuang et al. (2013), which comprises 928 videos with 21 action
classes, annotated with 928 sentences.

Generalization Tasks: In this paper, we evaluate our methods on three generalization tasks: (1)
A2D Sentences−→RVOSpart(A2R) : since the RVOS contains overall 94 object categories, we
select the same video object types as A2D, e.g. car, person, dog, cat, with a total of 3528 video-query
pairs. The domain generalization task requires that the types of objects tested on the target domain
should exist in the source domain. (2) RVOS−→A2D Sentences(R2A) : the types of objects in
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Table 1: Comparison with state-of-the-art methods on three generalization tasks.

Method Precision mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

A2R
Baseline 38.46 30.61 21.00 10.29 1.96 18.54 40.66 35.36

SFA 39.17 32.26 22.56 10.97 2.18 19.37 40.74 35.64
AdaIN 40.31 32.71 23.16 12.24 2.61 20.12 42.78 36.57

RobustNet 40.90 33.02 23.30 11.99 2.60 20.56 43.21 37.26
Mixstyle 41.21 33.45 23.44 12.41 2.73 20.89 43.01 37.85

DSU 41.58 34.16 24.38 12.95 2.89 20.93 43.11 38.09
Ours 42.62 35.13 25.45 13.38 3.29 21.36 44.06 38.31

R2A
Baseline 48.65 40.95 30.27 16.11 2.29 25.12 52.17 43.81

SFA 49.96 42.65 31.63 17.23 2.31 26.06 51.76 43.76
AdaIN 50.19 43.50 33.05 17.53 2.60 26.78 52.32 43.98
DSU 51.20 43.14 32.41 17.50 2.86 26.79 53.14 44.50

Mixstyle 50.50 42.50 32.59 19.02 3.27 27.12 53.27 44.23
RobustNet 51.64 44.30 35.93 18.22 2.52 27.35 53.08 44.55

Ours 53.02 45.87 35.93 20.69 3.66 29.09 54.73 46.05
A2J

Baseline 83.92 70.66 43.68 10.10 0.10 37.44 63.74 63.34
SFA 85.88 73.14 46.49 11.37 0.13 38.97 65.21 64.32

AdaIN 86.39 73.42 46.98 12.63 0.13 39.50 66.04 65.89
RobustNet 87.01 74.25 46.57 10.83 0.15 39.27 66.14 65.09

DSU 88.15 74.79 48.33 11.69 0.16 40.07 66.29 65.76
Mixstyle 87.91 75.48 49.50 12.65 0.17 40.58 67.20 65.62

Ours 89.25 76.17 49.86 12.90 0.20 41.23 67.87 67.19

A2D Sentences are included in RVOS, so the model can be directly migrated to A2D Sentences after
training on RVOS. (3) A2D Sentences−→J-HMDB Sentences(A2J) : following previous works
Gavrilyuk et al. (2018); Wang et al. (2019; 2020), we also use the model trained on A2D Sentences
to evaluate the generalization ability on J-HMDB Sentences without any additional fine-tuning.

4.2 BASELINES AND EVALUATION METRICS

We use the multi-layer QVIM encoder and decoder as our baseline model without any consideration
of domain generalization. We also compare our method with five state-of-the-art DG models: Simple
Feature Augmentation (SFA)Li et al. (2021), Adaptive Instance Normalization (AdaIN) Huang &
Belongie (2017), Instance Selective Whitening (RobustNet) Choi et al. (2021), Mixstyle Zhou et al.
(2020), Domain Shifts with Uncertainty (DSU) Li et al. (2022). Following previous works, we adopt
intersection-over-union (IoU) to measure the model segmentation ability, more details can be found
in appendix A.1. The implementation details can be found in appendix A.2.

4.3 MAIN RESULTS

First we compare our full model with the existing domain generalization methods to verify the
effectiveness of our proposed methods. We reimplement these state-of-the-art DG modules on our
baseline model. The main evaluation results on three generalization tasks are presented in Table
1. From the results we can see that our method outperforms the baseline model by a large margin
on all three generalization tasks, demonstrating the effectiveness of our model. Compared with
other traditional DG methods that only consider single-modal domain enhancement, our model can
combine vision and text modalities with each other to perform guided data enhancement respectively,
which is more suitable for situations when both two modalities suffer from domain shift. Besides, the
results in Table 1 and 2 indicate that our QFA can achieve better performance than AdaIN Huang
& Belongie (2017) and Mixstyle Zhou et al. (2020), demonstrating it is necessary to use natural
language query to guide the visual feature augmentation.
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Table 2: Analysis of the components on two generalization tasks.

Method Precision mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

A2R
Our Full Model 42.62 35.13 25.45 13.38 3.29 21.36 44.06 38.31

w/o QGAP 40.82 33.05 24.01 11.85 2.64 20.40 42.41 36.85
w/o cross-att 39.37 31.89 22.39 11.82 2.58 19.44 41.57 35.87
w/o Lconst 41.58 34.16 24.38 12.95 2.88 20.73 43.14 37.29
w/o QFA 40.16 32.00 21.97 11.03 2.24 19.39 41.76 36.35

w/o AM-AdaIN 41.72 33.59 24.23 12.81 2.66 20.88 42.64 37.67
R2A

Our Full Model 53.02 45.87 35.93 20.69 3.66 29.09 54.73 46.05
w/o QGAP 49.96 42.65 31.63 17.23 2.31 26.06 51.76 43.76

w/o cross-att 49.21 42.16 32.56 17.86 2.18 25.86 51.22 43.15
w/o Lconst 52.10 44.38 33.28 18.46 3.14 27.54 53.10 44.88
w/o QFA 50.45 43.55 33.56 18.58 2.83 27.33 53.15 44.52

w/o AM-AdaIN 51.76 44.27 33.87 18.71 3.35 27.72 53.31 45.09

(a) R2A (b) A2J (c) Progressive manner

Figure 3: Analysis of the QFA and AM-AdaIN in different layers (a) and (b). Analysis of the
progressive manner (c).

4.4 ABLATION STUDIES

Model Components To investigate the effect of individual components, we remove them from the
full model and re-evaluate them on two generalization tasks, as shown in Table 2. To demonstrate the
effectiveness of the query-vision interaction module (QVIM), we remove the query-guided average
pooling (QGAP) and cross-attention module respectively, denotes as ”w/o QGAP” and ”w/o cross-
att”. As we can see, the generalization performance drops a lot on both two tasks, which shows that
the multi-layer QVIM plays an essential role in this task. To further verify our proposed query-guided
feature augmentation (QFA) and whether it is necessary to apply constraints on augmented data,
we remove QFA and Lconst, denotes as ”w/o QFA” and ”w/o Lconst”. The results show that QFA
can greatly advance the generalization ability of the model. Also without Lconst the performance
drops, demonstrating the constraints on augmented data can guarantee the model generates more
meaningful and query-preserving augmentations. Meanwhile, the AM-AdaIN can also improve the
model’s robustness by learning a domain-agnostic vision-query relationship during training.

The Effect of QFA And AM-AdaIN in Different Layers We find through experiments that multi-
layer QFA and AM-AdaIN will greatly reduce the performance of the model, thus we insert the two
modules into only one QVIM layer respectively. In this subsection, we will study the effect of these
two modules on different scales. From the Figure 3 (a) and (b) we can see that QFA has the best
performance improvements on the model when K=1, and the worst when K=5. AM-AdaIN has the
best performance improvements when K=4. The results demonstrate the QFA is more suitable for
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Table 3: Analysis of the bool matrix and augment matrix used in QFA module.

Method
A2R R2A A2J

mAP IoU mAP IoU mAP IoU
0.5:0.95 Overall Mean 0.5:0.95 Overall Mean 0.5:0.95 Overall Mean

w/o Bool Matrix 19.14 41.20 36.38 25.50 52.28 43.09 39.15 65.78 65.32
w/o Augment Matrix 20.12 42.78 36.97 26.81 53.24 44.76 39.64 66.21 65.79

Full Model 21.36 44.06 38.31 29.09 54.73 46.05 41.23 67.87 67.19

Figure 4: The visualization of segmentation results. The left is the result on A2D Sentences of the
R2A task. The right is the result on the RVOS of the A2R task.

enhancing visual features at larger scales, while AM-AdaIN is more suitable for deeper interactions
between visual features and query representations.

The Effect of the Components in QFA To investigate the effectiveness of two matrices used in
Eq 3.3, we remove the bool matrix B and augment matrix Maug respectively to test the model’s
performance on three tasks, as depicted in Table 3. The results show that without bool matrix B,
the performance will drop a lot, which demonstrate it is important to use the bool matrix to keep
the query-related regions in original visual features unchanged. The introduce of augment matrix
can also guarantee that the query-related objects in the auxiliary data will not interfere the original
video features, which is important for QFA module. Also we test whether it is necessary to apply
progressive manner in data augmentation, as shown in Figure 3(c). The results illustrate without
progressive manner, it is difficult for the model to learn meaningful data augmentation, which will
deteriorate the transferring performance.

4.5 QUALITATIVE ANALYSIS

To further qualitatively compare our method with baseline model, we visualized two segmentation
results, as shown in Fig 4. From the results we can see that compared with baseline model, the
introduce of QFA and AM-AdaIN can help the model distinguish the query-related objects from
the background more accurately. Notice that in the first demo, the baseline model can barely
distinguish the dog from its surrounding objects. However, our full model can continuously replace
the surrounding background regions during training, allowing the model to learn the difference
between the objects and the surrounding environment more robustly. More qualitative results can be
found in appendix material 5 6 7.

5 CONCLUSION

In this paper, we introduce a new task for domain generalization, generalizable query-based video
segmentation, which aims to train a model on the source domain that can segment video objects
according to the query text, and can also generalize to the unseen target domain. Previous methods
are seldom designed for multi-modality tasks, especially when each modality has its own domain
shift. To bridge this gap, we propose QFA and AM-AdaIN modules, which can combine the text and
vision modalities together to increase the holistic generalization ability of the model. We conduct
extensive experiments on three datasets, and the results demonstrate that our methods can effectively
promote the multi-modal domain generalization task.
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A APPENDIX

A.1 EVALUATION METRICS

For IoU, we use the “Overall IoU”, which calculates the ratio of the total intersection area divided by
the total union area over the entire dataset, and the “Mean IoU”, which first calculates the ratio of
each sample and then obtains the average results on the whole dataset. ”P@K” denotes compared
with ground truth results, the IoU scores of testing samples are larger than K. We also measure the
mean average precision at 5 different IoU thresholds from 0.50 to 0.95 with the step 0.05.

A.2 IMPLEMENTATION DETAILS

For natural language query inputs, we set the maximum number of words in one query as 20,
and apply the BertDevlin et al. (2018) as our text encoder. For video inputs, we employ the I3D
network Carreira & Zisserman (2017) pretrained on the Kinetics dataset to extract the spatial and

12
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Figure 5: The visualization results of generalization task:RVOS−→A2D Sentences.

Figure 6: The visualization results of generalization task:A2D Sentences−→RVOSpart.

temporal features and we use the pre-trained ResNet-50He et al. (2016) to extract each video frame
representations, the number of frames in one clip is 8. We divide the visual features into K = 5
different scales, the sizes of them are 320× 320, 160× 160, 80× 80, 40× 40 and 20× 20 separately.
We set the hidden size of visual and query features as 512. Following Wang et al. (2019), the FCN
network in deconvolutional layer contains three fully convolutional layers, where the kernel size is
3×3 for the first two layers and 1×1 for the remaining layer. For first 5 training epochs, we do not
apply data augmentation and AdaIN in our baseline model, then we gradually increase the threshold
β from 0.05 to 0.30 by 0.05 every 10 training epochs. All experiments are implemented with Pytorch
package on 4 NVIDIA V100 GPUs in this paper, the batch size is 16, and we use Adam optimizer
with a initial learning rate 1e-7.

For the implementation of other baseline methods, since the previous DG methods are all designed
especially for single modality, here we implement these models on visual modality to test their
performances, because we found that deploying them in visual modality works better than text
modality. And if they are deployed in both two modalities, the performances are even worse.
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Figure 7: The visualization results of generalization task:A2D Sentences−→J-HMDB Sentences.

A.3 DISCUSSIONS

The above experiments illustrate our proposed methods can effectively optimize the worst-case
problem by generating a novel domain S̄ . At the initial training, S̄ is close to original domain S . As
the training progresses, β is gradually increasing, thus more background areas will be enhanced, the
distance D

(
S, S̄

)
is also getting larger. At the same time, the Lconst can guarantee the generated

data has similar query-related regions to source data. Also our AM-AdaIN can introduce style
randomization on cross-attention map to make the model learn a more robust relationship between
query and visual feature. Furthermore, our methods consume very limited computing resources
compared with the baseline model, the details can be found in the next subsection.

A.4 MODEL PARAMETERS

Our proposed modules only consume very limit computing resources compared with the baseline
model, as depicted in Table 4. The increases of parameters of QFA, Lconst and AM-AdaIN are 0.55G,
2.1G, 0 respectively. Compared with traditional DG methods such as meta-learning and adversarial
data augmentation, our model can effectively reduce parameters and can be easily deployed to
multi-modal generalization tasks.
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