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ABSTRACT

A common approach in few-shot learning is to adapt to a new task after learning a
variety of similar tasks. When the diversity of the tasks is high, however, it can be
challenging for models to generalize effectively. Prior work has approached this
problem by inferring task information implicitly from the data in order to better
adapt to each new task. However, in some cases, explicit information about tasks
is available that can inform task adaptation to improve performance, especially in
the context of few-shot learning. In this work, we introduce task-informed meta-
learning (TIML), an algorithm which modulates a model based on explicit task
metadata. We evaluated TIML for a range of classification and regression tasks
and found that TIML significantly improves performance in both regimes across
a diversity of model architectures. In particular, we show the power of TIML in
remote sensing for agriculture—an area of high societal impact where traditional
methods have failed due to limited and imbalanced data.

1 INTRODUCTION

When learning from limited data, a common approach is to learn from similar tasks and adapt to
each new task (Thrun & Pratt, 1998; Wang et al., 2020). Model-Agnostic Meta-Learning (Finn
et al., 2017) is a popular method for training a neural network on a set of tasks that promotes rapid
generalization to other tasks. This approach has seen success in a variety of domains with plentiful
subsequent studies (Gui et al., 2018; Antoniou et al., 2019; Rajeswaran et al., 2019).

When tasks are highly heterogeneous and imbalanced, however, meta-learning models struggle to
learn to generalize to new tasks (Triantafillou et al., 2020). In particular, the model can experience
degraded performance on tasks that are out-of-distribution relative to the training tasks seen by the
model (Collins et al., 2020). This has negative consequences for the downstream use of models,
for example leading to problems of model inequity since many datasets are focused on limited
geographies, such as North America and Europe (Shankar et al., 2017; Koch et al., 2021). Prior
work has attempted to address such problems by inferring information about a task from its samples
implicitly and using it to adapt the model to the task (Vuorio et al., 2019; Triantafillou et al., 2021),
or by minimizing the difference in performance across tasks (Jamal & Qi, 2019).

In many settings, however, explicit metadata about tasks that could provide useful context for task
adaptation is readily available. For example, remote sensing images typically have location meta-
data (latitude and longitude); inferring such metadata from the images themselves is difficult and
unnecessary. Providing such metadata explicitly to the model could enable the model to learn more
efficiently than if it was forced to attempt to infer task-level information from examples. An ap-
proach that provides explicit task metadata could also improve performance on rare tasks by allow-
ing the model to better learn the task distribution. This line of inquiry aligns with prior work that
has shown the value of integrating metadata into machine learning algorithms in other contexts (You
et al., 2017; Xie et al., 2020; Ayush et al., 2021; Mac Aodha et al., 2019).

We present Task-Informed Meta-Learning (TIML), a task-adaptive meta-learning method which
modulates the meta-learner using explicit task metadata. TIML learns embeddings from task meta-
data that inform the internal representation space of the meta-learner prior to task-specific fine-
tuning. We demonstrate the efficacy of TIML on classification and regression datasets across a
range of models and domains (Lake et al., 2015; Tseng et al., 2021b; You et al., 2017), showing
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a significant improvement over traditional task-adaptive (Vuorio et al., 2019) and metadata-aware
methods (You et al., 2017).

In particular, we show the power of TIML in tasks involving geospatial and remote sensing datasets,
a domain in which i) metadata is prevalent (Xie et al., 2020), ii) limited labelled data is an acute chal-
lenge (Wang et al., 2018; Kerner et al., 2020; Jean et al., 2016), and iii) data (and therefore tasks) are
highly spatially imbalanced (de Vries et al., 2019; Shankar et al., 2017). We conducted experiments
for crop classification and agricultural yield estimation, which are challenging and highly impact-
ful tasks that provide vital information for combating food insecurity globally, especially as climate
change threatens crop production. We used datasets created specifically to inform agricultural policy
(Tseng et al., 2021b) for which traditional methods have significantly underperformed, since data are
sparse and imbalanced across crop types and geographies. TIML significantly outperforms all other
approaches, showing excellent performance even for extremely small training datasets. We also
show the superior performance of TIML on the Omniglot dataset (Lake et al., 2015) to demonstrate
its broad applicability across domains.

2 RELATED WORK

Meta-Learning Meta-learning, or learning to learn, consists of learning to solve a task after hav-
ing seen other example tasks (Thrun & Pratt, 1998). Recent work in this area has focused on few-shot
learning, i.e., learning the new task with few training datapoints. Ravi & Larochelle (2017) learn
an optimizer from a set of tasks which can then be applied in a new task, while Snell et al. (2017)
cluster data samples in the embedding space to perform few-shot classification. We leverage model-
agnostic meta-learning (MAML) (Finn et al., 2017), a few-shot meta-learning framework that uses
example tasks to learn a set of initial weights that can rapidly generalize to a new task.

Task-adaptive meta-learning Task-adaptive meta-learning aims to tailor meta-models to the spe-
cific tasks they will be fine-tuned on. In particular, numerous methods adapt the model weights
learned during gradient-based meta-learning using task information inferred from the available
training task samples by modulating the model parameters (Lee et al., 2019; Vuorio et al., 2019;
Triantafillou et al., 2021; Yao et al., 2019; Oreshkin et al., 2018; Rusu et al., 2018), varying the task
learning rates (Lee et al., 2019), or adapting the optimizer (Simon et al., 2020; Baik et al., 2020a)
or loss function (Baik et al., 2021). A critical component of these methods is some representation
of task i, which we denote as ti, to inform the task adaptation. Previous approaches have attempted
to infer ti from the available training samples in a task. However, such approaches typically re-
quire many datapoints to infer task similarity and also assume that tasks are readily identifiable from
training samples, which is not always true. We investigate the utility of explicit task metadata to
represent ti, instead of implicitly inferring ti from the data. Unlike approaches that learn task infor-
mation implicitly, our approach enables few-shot or even zero-shot learning, in which no labelled
training data is available (Appendix B).

Learning from metadata There have been several recent studies on how metadata—or auxiliary
data—can inform machine learning algorithms. A common approach is to use an additional data
source to learn initial weights that are useful for a range of downstream tasks (Ayush et al., 2021; Xie
et al., 2020; Jean et al., 2019). Alternatively, metadata may be integrated into the learning process,
typically by updating the final predictions of the model to align them with information provided
by the metadata (You et al., 2017; Mac Aodha et al., 2019; Kluger et al., 2021). We investigate the
usefulness of metadata in few-shot learning and in particular to inform gradient-based meta-learning.

Few-shot learning in geospatial contexts Few-shot learning has been extensively explored in
geospatial machine learning, particularly by attempting to transfer knowledge from data-rich to
data-sparse regions. This has been achieved in a variety of ways, ranging from transfer learning
(Wang et al., 2018; Jean et al., 2016) to multi-task learning (Kerner et al., 2020; Chang et al., 2019)
to meta-learning (including MAML) (Rußwurm et al., 2020; Tseng et al., 2021a;b). We consider
how models may be adapted to an unseen target task, which can prevent performance degradation
for unseen tasks observed by prior studies in this domain (Rußwurm et al., 2020). In addition, there
is plentiful metadata available in geospatial machine learning tasks (Xie et al., 2020); we investigate
how such metadata can be used to improve performance.
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3 TASK-INFORMED META-LEARNING

Model-Agnostic Meta-Learning (MAML) learns model weights θ that are close to optimal for each
of a variety of different tasks, allowing the optimal weights for a specific task to be reached with little
data and/or few gradient steps. These weights θ are updated by fine-tuning them on a training task
(inner loop training), yielding updated weights θ′. A gradient for θ is then computed with respect to
the loss of the updated model, Lθ′ which is used to update θ (outer loop training).

Our approach, Task-Informed Meta-Learning (TIML) (Algorithm 1), builds on MAML by lever-
aging explicit task-level metadata. We introduce a task encoder to modulate the weights of the
meta-learner. We also introduce forgetfulness, a technique to ensure that already memorized tasks
do not impede learning.

Algorithm 1 Task-Informed Meta-Learning

1: Require: p(T ): Distribution over tasks
2: Require: α, β: step size hyperparameters
3: randomly initialize meta model parameters θm, task encoder parameters θe
4: while not done do
5: Sample batch of tasks Ti ∼ p(T ) with task information ti
6: for all Ti, ti do
7: Generate task embeddings µi = f(ti; θe)
8: Evaluate∇θmLTi

(fθm , µi)

9: Compute adapted meta parameters with gradient descent: θ
′

mi
← θm−α∇θmLTi(fθm , µi)

10: end for
11: Update θm ← θm − β∇θmΣTi∼p(T )LTi

(fθ′
mi

, µi)

12: Update θe ← θm − β∇θeΣTi∼p(T )LTi
(fθ′

mi

, µi)

13: end while

Task encoder TIML modulates parameters in the meta-learner based on embeddings calculated
using task information. We encode the task-specific information into a set of vectors, two for each
hidden layer to be modulated in the meta-model, denoted tkγ and tkβ for the kth layer. We use
feature-wise linear modulation (FiLM (Perez et al., 2018)) to modulate the hidden vector outputs of
the meta-model using these task embeddings. That is, given a hidden vector output h, we compute
the modulated hidden vector output using a linear transformation and pass the modulated output to
the next layer in the network: hk

out = (tkγ ⊙ hk) + tkβ , where ⊙ is the Hadamard product. Note that
the task embeddings are updated in the outer loop during MAML training, so they remain constant
for all datapoints when the meta-learner is being fine-tuned for a specific task (inner loop training).

We use a task encoder to learn the embeddings. This encoder consists of linear layers with GeLU
activation (Hendrycks & Gimpel, 2016), group normalization (Wu & He, 2018) and dropout (Sri-
vastava et al., 2014). The task information is encoded into a hidden task vector. Independent linear
layers are then used to generate an embedding for each hidden vector in the classifier to be modu-
lated. We keep the task encoder hyperparameters constant for all experiments (details in Appendix
A), which demonstrates the insensitivity of this method to hyperparameter settings.

Forgetfulness We find that when the distribution of tasks is imbalanced, the model is likely to
memorize over-represented tasks to the detriment of its ability to learn more difficult or rarer tasks
(Collins et al., 2020). Unlike more complex methods designed to deal with this problem (Jamal &
Qi, 2019; Collins et al., 2020; Baik et al., 2020b; Lee et al., 2019), explicit task information allows
us to introduce a simple method to prevent memorization of certain tasks: removing training tasks
the model has memorized. We define memorization as having exceeded a performance threshold for
a task over a continuous set of epochs. We call this method “forgetfulness.” Reducing the training
set size before training has been previously explored (Ohno-Machado et al., 1998; Han et al., 2021)
to reduce training time; forgetfulness does this dynamically to improve performance.
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Table 1: Results for the crop type classification evaluation tasks. All results are averaged from
10 runs and reported with the accompanying standard error. We report the area under the receiver
operating characteristic curve (AUC ROC) and the F1 score using a threshold of 0.5 to classify a
prediction as the positive or negative class. We highlight the first and second best metrics for each
task. TIML achieves the highest F1 score of any model on the Brazil task and the best AUC ROC
and F1 scores when averaged across the 3 tasks. We highlight the improvement of TIML relative to
other transfer/meta-learning methods, showing its ability to leverage task metadata when learning.

Model Kenya Brazil Togo Mean

A
U

C
R

O
C

Random Forest 0.578± 0.006 0.941± 0.004 0.892± 0.001 0.803
No pre-training 0.329± 0.011 0.898± 0.010 0.861± 0.002 0.700
Crop pre-training 0.694± 0.001 0.820± 0.002 0.894± 0.000 0.801
MAML 0.729± 0.001 0.831± 0.005 0.878± 0.001 0.813
MMAML (Vuorio et al., 2019) 0.690± 0.023 0.854± 0.037 0.878± 0.005 0.807

TIML 0.794± 0.003 0.988± 0.001 0.890± 0.000 0.890
no forgetfulness 0.779± 0.003 0.877± 0.003 0.893± 0.001 0.850
no encoder 0.712± 0.001 0.977± 0.002 0.895± 0.000 0.862
no task info or encoder 0.690± 0.001 0.977± 0.002 0.876± 0.001 0.848

F1
sc

or
e

Random Forest 0.559± 0.003 0.000± 0.000 0.756± 0.002 0.441
No pre-training 0.782± 0.000 0.764± 0.012 0.720± 0.005 0.734
Crop pre-training 0.819± 0.001 0.619± 0.005 0.713± 0.002 0.613
MAML 0.828± 0.001 0.496± 0.001 0.662± 0.001 0.652
MMAML (Vuorio et al., 2019) 0.794± 0.006 0.720± 0.044 0.733± 0.007 0.749

TIML 0.838± 0.000 0.835± 0.012 0.732± 0.002 0.802
no forgetfulness 0.840± 0.000 0.537± 0.002 0.764± 0.002 0.724
no encoder 0.840± 0.000 0.473± 0.002 0.691± 0.001 0.691
no task info or encoder 0.837± 0.001 0.473± 0.001 0.645± 0.002 0.652

4 DATASETS & EXPERIMENTAL SETUP

We evaluated TIML on a range of datasets with heterogeneous tasks and limited available data but
potentially useful task metadata. Specifically, we consider crop type prediction (a classification task)
and crop yield estimation (a regression task) to demonstrate the suitability of TIML in both contexts.
We also evaluated the performance of TIML on the Omniglot dataset.

4.1 CROP TYPE CLASSIFICATION

Up-to-date crop maps are critical to understanding the agricultural impacts of weather events and
climate change (Song et al., 2021). Crop type classification – used to produce these maps – involves
predicting whether or not a given instance contains a crop of interest. Specifically, given a remote
sensing-derived pixel time series for a specific latitude and longitude and a crop of interest, the goal
is to output a binary value describing whether the crop of interest is being grown at that location.

We use the CropHarvest dataset (Tseng et al., 2021b). This dataset, collected by NASA to inform
agricultural policy and recently published in NeurIPS, consists of 90,480 globally distributed data-
points, of which 30,899 (34.2%) have multi-class agricultural labels and the remainder have binary
“crop” or “non-crop” labels. Each datapoint is accompanied by a remotely sensed pixel time series
from: Sentinel-2 L1C optical and Sentinel 1 synthetic aperture radar satellite observations, ERA5
climatology data (precipitation and temperature), and slope and elevation from a Digital Elevation
Model. The time series includes one year of data at monthly timesteps.

As in the CropHarvest benchmarks, we constructed meta-learning tasks spatially using bounding
boxes for countries drawn by Natural Earth (Patterson & Kelso). Tasks consist of binary classifi-
cation of pixels as either crop vs. non-crop or a specific crop type vs. rest. This yielded 525 tasks,
which were randomly split into training and validation tasks. We withheld the three CropHarvest
evaluation tasks (described in Section 4.1) from the initial training. For each evaluation task, we
fine-tuned the model on that task’s training data before evaluating on that task’s test data.
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Task Metadata Task metadata is encoded in a 13-dimensional vector. Three dimensions encode
spatial information, consisting of spherical latitude and longitude coordinates transformed to Carte-
sian coordinates (thus ensuring transformed values at the extreme longitudes are close to each other)
using [cos(lat)×cos(lon), cos(lat)×sin(lon), sin(lat)]. The remaining 10 dimensions communicate
the type of task the model is being asked to learn. This consists of a one-hot encoding of crop cat-
egories from the UN Food and Agriculture Organization (FAO) indicative crop classification (fao,
2020), with an added class for non-crop. For crop vs. non-crop tasks, positive examples are given
the value 1

n across all the n = 9 crop type categories.

4.1.1 EVALUATION

The CropHarvest dataset includes 3 evaluation tasks that test the ability of a pre-trained model to
learn from few in-distribution datapoints in a variety of agroecologies:

Togo crop vs. non-crop: The goal of this task is to classify datapoints as crop or non-crop in Togo.
The training set consists of 1,319 datapoints and the test set consists of 306 datapoints – 106 (35%)
positive and 200 (65%) negative – sampled from random locations within the country.

The two other evaluation tasks consist of classifying a specific crop. Thus, “rest” below includes
all other crop and non-crop classes. For both tasks, entire polygons delineating a field (as opposed
to single pixels within a field) were collected, allowing evaluation across the polygons. However,
during training, only the polygon centroids were used.

Kenya maize vs. rest: The training set consists of 1,345 (266 positive and 1,079 negative) samples.
The test set consists of 45 polygons with 575 (64%) positive and 323 (36%) negative pixels.

Brazil coffee vs. rest: The training set consists of 794 (21 positive and 773 negative) samples. The
test set consists of 66 polygons with 174,026 (25%) positive and 508,533 (75%) negative pixels.

4.1.2 EXPERIMENTS

We evaluated TIML by training it on the CropHarvest dataset and fine-tuning it on the evaluation
tasks, as was done for the benchmark results released with the dataset in (Tseng et al., 2021b). TIML
can be applied to any neural network architecture. We use the same base classifier and hyperparam-
eters as in (Tseng et al., 2021b): an LSTM model followed by a linear classifier.

Ablations We performed 3 ablations to quantify the contribution from the different components
of TIML:

• No forgetfulness: TIML trained without forgetfulness; no tasks are removed in the training loop.
• No encoder: TIML with no encoder. The task information is instead appended to every raw input

timestep and passed directly to the classifier.
• No task information or encoder: No task information passed to the model at all. This model is

effectively a normal MAML model, trained with forgetfulness.

Baselines We compared TIML to 5 baselines. As with TIML, we fine-tuned these models on each
benchmark task’s training data and then evaluated them on the task’s test data:

• MMAML (Vuorio et al., 2019): Multimodal Modal-Agnostic Meta-Learning, which infers task-
clusters from the fine-tuning data and uses this to condition the MAML model.

• MAML: A Model-Agnostic Meta-Learning classifier without the task information.
• Crop pre-training: A classifier pre-trained to classify all data as crop or non-crop (without task

metadata), then fine-tuned on the test task training data.
• No pre-training: A randomly initialized classifier, which is not pre-trained on the global

CropHarvest dataset but instead is trained directly on the test task training data.

In addition, we trained a Random Forest baseline implemented using scikit-learn (Pedregosa et al.,
2011) (further implementation details are available in Appendix C).
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4.2 YIELD ESTIMATION

Accurate and timely yield estimates are a key input to food security forecasts (Becker-Reshef et al.,
2020) and are necessary to better understand how food production can be sustainably managed (Lark
et al., 2020). Yield estimation is a regression task which consists of predicting the amount of crop
harvested per unit of land in a given area, given remote sensing data of that area. We estimate
soybean yield in the highest soybean-producing states in the United States.

We recreated the yield prediction dataset originally collected by (You et al., 2017). This dataset
consists of county-level soybean yields for the 11 U.S. states accounting for over 75% of national
soybean production from 2009 to 2015 (shared under the U.S. Public Domain), and remote sensing
data (specifically MODIS (Wan et al., 2015; Vermote, 2015) products, which are shared though
the LP DAAC1). Since counties cover large areas, inputting the raw satellite data to the model
would create extremely high-dimensional inputs. You et al. (2017) therefore assumed permutation
invariance; that the positions of farmland pixels in a county do not affect yield, since they only
indicate the positions of cropland. This allows all cropland pixels (selected using the MODIS land
cover map (Friedl et al., 2010)) in a county to be mapped to a histogram of pixel values, significantly
reducing the dimensionality of the input. We constructed meta-learning tasks by defining tasks as
individual counties, with task (X, y) pairs consisting of histograms and yields for different years.

Task Metadata As in Section 4.1, we included the Cartesian-coordinate location of each task’s
county. We additionally included a one-hot encoding of which U.S. state the county is in.

Evaluation We used temporal validation to evaluate model performance: for each year in
{2011, 2012, 2013, 2014, 2015}, we trained a model using all the data prior to that year, and evalu-
ated the performance of the model for that year.

4.2.1 EXPERIMENTS

We applied TIML to the network architectures originally used by (You et al., 2017) – an LSTM and
a CNN-based regressor. In addition to the remote sensing input, the Deep Gaussian Process baseline
model (described below) receives as input the year of each training point. We therefore appended
the year to each timestep of the input to the TIML LSTMs, so the model has comparable inputs to
the Deep Gaussian Process. The CNN models receive only the remote sensing data as input.

Baselines We compared TIML to 2 baselines: the Deep Gaussian Process models (proposed by
You et al. (2017) with the yield estimation dataset) and standard MAML. To train a Deep Gaussian
Process, a deep learning model is first trained to estimate yield given the remote sensing dataset
described above. The final hidden vector h(x) of the model (for each input) is used as input to a
Gaussian process y(x) = f(x) + h(x)T where f(x) ∼ GP(0, k(x, x′)). The kernel function k
is conditioned on both the location of the datapoint (defined by its latitude and longitude) and the
year of the datapoint. We included baselines with and without a Gaussian process (i.e., using the
outputs of the deep learning models directly instead of passing the final hidden vectors to a Gaussian
process). We note that this implementation of Deep Gaussian Processes by (You et al., 2017) differs
from (Damianou & Lawrence, 2013). Finally, we highlight that the MAML LSTM model also
receives the year appended as input, as is the case for the TIML LSTM model.

The MODIS datasets have been updated from version 5 to 6 since the original Deep Gaussian Pro-
cess models were run. We therefore retrained the models to obtain our baseline results. We used the
same hyperparameters as (You et al., 2017), with the addition of early stopping during training. We
included the original results from (You et al., 2017) for comparison.

4.3 GROUPED-OMNIGLOT

The Omniglot dataset (Lake et al., 2015) is a one-shot learning dataset consisting of 1,623 handwrit-
ten characters drawn from 50 alphabets. We constructed tasks by considering only characters from
a single alphabet together – a task therefore consists of one-shot classification of characters drawn

1All LP DAAC current data and products acquired through the LP DAAC have no restrictions on reuse,
sale, or redistribution.
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Table 2: The RMSE of county-level model performance for the yield estimation task. We use
temporal validation to evaluate the model. Specifically, for each year, models are trained with data up
to that year and evaluated with that year’s data. All models are calculated from an average of 10 runs,
with the standard error reported. We highlight the first and second best metrics for each task. For
completeness, we include the results reported by (You et al., 2017), but highlight that these results
were obtained on the MODIS 5.1 dataset (whilst all other models were trained on the MODIS 6.0
dataset) and are the result of 2 runs, compared to 10 runs for all other models. TIML improves on the
Deep Gaussian Process models for both architectures, even though MAML performs significantly
worse than other models. This suggests that in some cases, the task information is necessary for
meta-learning to work.

Model 2011 2012 2013 2014 2015 Mean

LSTM 5.62± 0.10 6.60± 0.29 5.57± 0.21 6.63± 0.13 6.69± 0.31 6.22
+ GP 5.32± 0.10 5.83± 0.18 5.70± 0.19 5.61± 0.12 5.24± 0.14 5.54
+ MAML 26.90± 0.01 30.97± 0.01 29.57± 0.01 30.84± 0.01 32.02± 0.01 30.06
+ TIML 5.16± 0.03 5.77± 0.05 5.39± 0.02 5.24± 0.04 4.89± 0.04 5.29

CNN 6.08± 0.77 6.94± 1.83 6.42± 1.23 4.80± 0.83 5.57± 0.38 5.96
+ GP 5.55± 0.14 6.18± 0.49 6.44± 0.67 4.87± 0.31 6.02± 0.26 5.81
+ MAML 12.93± 0.05 8.28± 0.07 7.98± 0.04 12.05± 0.05 7.69± 0.06 9.79
+ TIML 5.23± 0.02 6.59± 0.02 5.34± 0.01 4.93± 0.02 6.35± 0.01 5.69

(You et al., 2017)
LSTM + GP 5.77 6.23 5.96 5.70 5.49 5.83
CNN + GP 5.70 5.68 5.83 4.89 5.67 5.55

from the same alphabet. We highlight that this is a much more challenging setup than the typical
setup of mixing all characters together, since more similar characters will need to be differentiated.
We used a 5-way 1-shot regime to train and evaluate the model.

Task Metadata As task metadata, we used a one-hot encoding the alphabet from which a task is
drawn. This metadata is less detailed than the crop classification and yield estimation tasks and is
intended to demonstrate the utility of TIML even in scenarios with minimal metadata.

Evaluation For evaluation, we selected 5 characters per alphabet and held them out from the
training set. We evaluated the models by fine-tuning them on a single example (per alphabet-set),
and measuring the model accuracy across all remaining examples per character.

4.3.1 EXPERIMENTS

We evaluated TIML using the CNN architecture proposed for Omniglot and trained the model for
60, 000 steps as in Finn et al. (2017). As baselines, we compared TIML to MAML and MMAML
(Vuorio et al., 2019), which we trained using the same model and training procedure. We emphasize
that the Omniglot dataset is one of the datasets originally used by MAML Finn et al. (2017) and
MMAML (Vuorio et al., 2019).

5 RESULTS

5.1 CROP TYPE CLASSIFICATION

Table 1 shows the model results for TIML, its ablations and all baseline models when trained on
the CropHarvest dataset. Like Tseng et al. (2021b), we report the AUC ROC score and the F1
score calculated using a threshold of 0.5. Overall, TIML is the best performing algorithm on the
CropHarvest dataset, achieving the highest mean F1 and AUC ROC scores. TIML is consistently
the best performing algorithm on every task.

TIML excels at learning from small dataset sizes. It is the only transfer/meta-learning model that
outperforms a randomly-initialized model in the challenging Brazil task, where there are only 26
positive datapoints. We plot the performance of the models as a function of training set size in
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(a) Kenya: Maize vs. Rest (b) Togo: Crop vs. Non Crop

Figure 1: Results of TIML and the benchmark models when trained on a subset of the evaluation
training data for the Crop Type Classification Task. We plot results for (Figure 1a) the Kenya Maize
vs. rest evaluation task and (Figure 1b) Togo Crop vs. Non Crop evaluation task. Results are aver-
aged from 10 runs and reported with standard error bars. Subsets are balanced so that they contain
an equal number of positive and negative samples. For all training set sizes, TIML is the best per-
forming model in the Kenya task and at or near best performance in the Togo task. We highlight that
the advantage of TIML over other algorithms in general increases for smaller training sets.

Figure 1 for the Kenya and Togo evaluation tasks (the Brazil task is already in the small-dataset size
regime). In both the Kenya and Togo tasks, TIML achieves the highest or near-highest ROC AUC
scores for all subset sizes, and its advantage over other algorithms increases for smaller sample sizes.

5.2 YIELD ESTIMATION

We report the results for the yield estimation dataset in Table 2. Like You et al. (2017), we report the
RMSE score averaged across all counties and use temporal validation to evaluate the models. The
LSTM models used in TIML and MAML receive the year as input (to match the data provided to
the Deep Gaussian Process), but the CNN models do not.

For both the LSTM and CNN architectures, TIML is the most performant model. This is the case
even though the Deep Gaussian Process is much more memory-intensive, since it requires all pre-
dictions and hidden vectors (for the training and test data) to be computed together for the Gaussian
process modelling step; this may be infeasible for larger datasets. TIML requires substantially less
memory since it considers each county independently. It is also worth noting that while TIML
achieves the best result of all models, MAML performs significantly worse than all other models.
This suggests that in some contexts, the task metadata is necessary for meta-learning to work.

5.3 GROUPED OMNIGLOT

The results on grouped-omniglot for the 5-way 1-shot task are shown in Table 3. We re-emphasize
the difficulty of this setup (which groups similar characters together) compared to usual (Finn et al.
(2017)) approach of mixing all the characters, reflected in significantly poorer performance for the
MAML baseline relative to this usual regime. The task metadata in this case is minimal, consisting of
a one-hot encoding representing the alphabet a character-set was drawn from. Nonetheless, we find
that TIML improves on both MAML and MMAML, indicating its effectiveness even with relatively
little metadata.

6 DISCUSSION

6.1 IMPORTANCE OF METADATA ENCODING

The success of TIML is due not just to the presence of task metadata but also to the way that metadata
is encoded and passed to the meta-learner. In the “no encoder” ablation conducted on the crop type

8
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Accuracy (%)

MAML 80.93± 1.06
MMAML 81.53± 1.03
TIML 82.89± 0.98

Table 3: Grouped-omniglot results, averaged
from 3 random seeds with standard error, with
the best results highlighted. TIML improves on
both MAML and MMAML.

classification task, we provide task metadata directly to the learner by concatenating it with the input
data. This approach does improve somewhat upon standard MAML, indicating the helpfulness of
task metadata in learning, but it performs significantly worse than the full TIML algorithm.

6.2 IMPORTANCE OF FORGETFULNESS

On the crop type classification task, we observe that using standard MAML or pre-training using
global crop data actually results in lower performance on the Brazil task compared to an LSTM
initialized with random weights. We hypothesize this may be due to the difference in distribution of
the Brazil task data relative to the other tasks the models are trained on.

TIML, by contrast, performs significantly better than a randomly initialized LSTM, and indeed much
better than all other methods. We see that forgetfulness plays a key role here, as training TIML
without forgetfulness results in similar performance to the randomly initialized LSTM. However, it
is not just forgetfulness that is key here, as training TIML with forgetfulness but without the metadata
encoder causes the F1 score to drop precipitously. We therefore hypothesize that task information
provides useful context around which tasks are being kept and forgotten during training, allowing
TIML to learn from more difficult tasks in the “forgetful” regime without forgetting easier tasks
it has already learned. Training TIML with forgetfulness significantly boosts performance in the
Brazil task without substantially impacting performance on the other tasks, and yields significantly
higher mean F1 and AUC ROC scores when measured across all tasks.

6.3 TASK-EXPLICIT VS. TASK-INFERRED MODULATION

On the grouped-omniglot and crop type classification tasks, we compare the effect of passing
explicit task information via TIML and of inferring this task information via MMAML (Vuorio et al.,
2019). Overall, we find that when task metadata is present, it can lead to a significant improvement
in performance compared to inferring task clusters.

We again highlight that this improvement specifically comes when the task information is added
using TIML (Section 6.1). To our knowledge, TIML is the first approach that aims to leverage
explicit metadata in gradient-based meta-learning algorithms.

7 CONCLUSION

We introduce task-informed meta-learning (TIML), a method for conditioning meta-learning models
with explicit task metadata. The metadata is encoded into a set of vectors which are used to modu-
late the weights learned by a MAML learner prior to task-specific fine-tuning. TIML also includes
a new technique called “forgetfulness,” which we show can improve performance when there are
many similar tasks to learn from. We evaluated TIML for both classification and regression tasks
using a variety of neural network architectures (recurrent and convolutional networks), demonstrat-
ing its utility in a variety of regimes—including those with very few data points and those for which
standard MAML fails completely. While usefulness for societal impact and geographic equity mo-
tivated us to focus in particular on agriculture-related tasks, we showed that TIML is not specific to
agriculture and can be useful in any meta-learning problem with task-level metadata.

8 REPRODUCIBILITY STATEMENT

• CropHarvest is shared under a CC-BY-SA 4.0 license, and is available on Zenodo and via a
python package. All code used to construct the dataset is currently open sourced at github.
com/nasaharvest/cropharvest.
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• The yield estimation dataset is constructed using Google Earth Engine (Gorelick et al., 2017). The
code used to construct the data is open sourced, and the histograms used will be made available
upon publication.

• The Omniglot dataset is open sourced and available at github.com/brendanlake/
omniglot.

All code and models will be made available upon publication. In addition, implementation details
are covered in depth in Appendix A.
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A IMPLEMENTATION DETAILS

We implement TIML in PyTorch (Paszke et al., 2019), using the learn2learn library (Arnold et al.,
2020). All MAML and TIML models are trained using the same optimizer hyperparameters. Specif-
ically, we use an inner loop learning rate of 10−4. We use an Adam optimizer on the outer loop (for
both the classifier and the encoder), with a Cosine Annealing Learning rate (as per (Antoniou et al.,
2019)). For both the classifier and encoder, we use an initial learning rate of 10−4 and a minimum
learning rate of 10−5.

When fine-tuning, we use the same learning rate as the inner loop learning rate (10−4) for all models
with the exception of the i) yield-estimation standard-MAML CNN, for which we reduced the learn-
ing rate to 10−5 when fine-tuning it to handle issues with an exploding loss and ii) for the Omniglot
models, for which we used an inner loop learning rate of 10−2 to reflect the values originally used
in Finn et al. (2017).

Both MAML and TIML are trained for 1000 epochs – we selected the model checkpoint with the
best performance on the validation set (consisting of 10% of the training tasks, up to a maximum of
50 tasks).

All TIML models were trained with the same task encoder hyperparameters (consisting of hidden
blocks with sizes [32, 64, 128] and a dropout probability of 0.2).

All models were trained on AWS. We used a t2.xlarge instance to train the LSTM moels, and a
p2.xlarge instance to train the CNN models.

For the crop type clasification dataset, all LSTM-based classifiers were fine-tuned on the evalu-
ation tasks for 250 gradient steps with batches containing 10 positive and 10 negative examples
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(as in (Tseng et al., 2021b)). We show the variety of agro-ecologies represented in the crop type
classification evaluation tasks in Figure 2.

For the yield estimation dataset, all models were fine-tuned on each county for 15 gradient steps,
with batches of size 10. The reduced fine-tuning steps relative to the crop classification dataset is
due to the much lower amount of data available for each county (compared to the crop classification
evaluation tasks). Some counties did not have any fine-tuning data available – the results for these
zero-shot counties are shared in Appendix B.

For the Omniglot dataset, models were finetuned for a single step to reflect the approach originally
used in Finn et al. (2017).

A.1 FORGETFULNESS

We describe the thresholds used to define task memorization in Table 4.

Task Metric Threshold Total Tasks Removed Tasks

Crop Classification AUC ROC ↑ 0.95 463 141 (30%)
Yield Estimation RMSE ↓ 4 750 179 (24%)
Grouped-Omniglot Accuracy ↑ 0.99 50 4 (8%)

Table 4: The metrics and thresholds used to define task-memorization for each task, and the average
number of tasks removed by the end of training. ↑ indicates that it is a lower threshold (we remove
any task with an average metric above this threshold) while ↓ indicates an upper threshold (we
remove any task with an average metric below this threshold).

For the crop-type and yield estimation experiemnts, a training task was forgotten if it met the thresh-
old for forgetfulness continuously over the last 20 epochs. For the Omniglot datasets, the reduced
tasks-per-epoch and increased variance per task (since any 5 characters in an alphabet could be used)
motivated us to increase this lookback to 100 epochs. For the crop type classification, we note that
the training batches were balanced to contain 10 positive and 10 negative examples, making AUC
ROC an appropriate metric.

A.2 TASK AUGMENTATION FOR GEOSPATIAL MAML

Defining tasks according to their geospatial boundaries allows for a form of weak task augmentation,
by including nearby datapoints which are not explicitly within the boundary. For example, using a
rectangular bounding box instead of a polygon when defining a political boundary includes nearby
points which may not be inside the polygon. Similarly, for the yield estimation dataset we include
nearby counties in tasks for MAML and TIML.

B ZERO-SHOT LEARNING

For the Yield estimation task, some counties did not appear in the training data but were present in
the evaluation data (i.e. if the first year of data for a county is 2011, then there will be no training
data for that county for the evaluation year 2011).

For these counties, the model is therefore evaluated in a zero-shot learning regime (the county is not
present when training the meta-model, or during fine-tuning).

We record the results of the yield model in a zero-shot learning regime below in Table 5. These
results are included in the overall results reported in Table 2.

We highlight that very few counties are in this zero-shot regime, but include these results for com-
pleteness.

C RANDOM FOREST HYPERPARAMETERS

We consider two methods of hyperparameter selection for the random forest model:
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(a) Togo (b) Kenya (c) Brazil

Figure 2: Example 1km × 1km satellite images of the evaluation regions, demonstrating the variety
in field sizes and agroecologies being evaluated. (Images were obtained from Google Earth Pro
basemaps comprised primarily of high resolution Maxar images, and are reproduced with permission
from (Tseng et al., 2021b))

Model 2011 2012 2013 2014 2015

# counties 7 9 5 6 5

LSTM + TIML 8.99 12.93 17.19 9.97 11.22
CNN + TIML 10.44 7.02 9.81 7.25 11.89

Table 5: Zero-shot learning results: RMSE of the TIML model when measured only on counties not
present during training (or fine-tuning). We note that these results were obtained with no training
data about the county, in a zero-shot learning regime. The number of counties being tested is addi-
tionally recorded.

• Using the default hyperparameters which accompany the scikit-learn implementation.
• Conducting a random grid search with 5-fold cross validation. In this case, the hyperparameters

are selected per randomly seeded run (i.e. different seeds of the same task may have different hy-
perparameters). We specifically conduct a grid search of the following hyperparameters and val-
ues: "n estimators": [10, 100, 200], "max depth": [10, 50, None],
"m samples leaf": [1, 2, 5]. With a 5-fold cross validation, this trains 45 models per
seed and selects the best performing set of hyperparameters.

The results of the tuned model (compared to the default implementation) are shown in Table 6,
demonstrating the insensitivity of the random forest to hyperparameter tuning. Since the Random
Forest with default hyperparameters obtains (slightly) better mean AUC ROC and F1 scores, we
report these scores in the main paper.

We hypothesize that two factors drive this insensitivity: i) the small size of the evaluation tasks’
training datasets, ii) the shift from points in the training sets to polygons in the test set (which better
represent real world use of the model).

Task AUC ROC F1

Tuned
RF

Kenya 0.574± 0.015 0.536± 0.017
Togo 0.895± 0.001 0.757± 0.002
Brazil 0.921± 0.016 0.003± 0.002
Mean 0.797 0.432

Default
RF

Kenya 0.578± 0.006 0.559± 0.003
Togo 0.892± 0.001 0.756± 0.002
Brazil 0.941± 0.004 0.000± 0.000
Mean 0.803 0.441

Table 6: The results of the tuned Random Forest and the Random Forest with the default hyperpa-
rameters.
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Figure 3: A plot of the FiLM (Perez et al., 2018) parameters for the crop-type classification task,
reduced to 2 dimensions using t-SNE, coloured according to their crop label. We also included the
Silhouette score of the embeddings in their original dimensions for reference. This shows strong
clustering of certain classes (e.g. non-crop).

D FILM PARAMETER CLUSTERS

We include a plot of FiLM (Perez et al., 2018) parameters in Figure 3, demonstrating the strong
clustering for certain classes such as non-crop.
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