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ABSTRACT

In-context Learning (ICL) empowers large language models (LLMs) to swiftly
adapt to unseen tasks at inference-time by prefixing a few demonstration examples
before queries. Despite its versatility, ICL incurs substantial computational and
memory overheads compared to zero-shot learning and is sensitive to the selection
and order of demonstration examples. In this work, we introduce Implicit In-
context Learning (I2CL), an innovative paradigm that reduces the inference cost
of ICL to that of zero-shot learning with minimal information loss. I2CL operates
by first generating a condensed vector representation, namely a context vector,
extracted from the demonstration examples. It then conducts an inference-time
intervention through injecting a linear combination of the context vector and query
activations back into the model’s residual streams. Empirical evaluation on nine
real-world tasks across three model architectures demonstrates that I2CL achieves
few-shot level performance at zero-shot inference cost, and it exhibits robustness
against variations in demonstration examples. Furthermore, I2CL facilitates a
novel representation of “task-ids”, enhancing task similarity detection and fostering
effective transfer learning. We also performs a comprehensive analysis and ablation
study on I2CL, offering deeper insights into its internal mechanisms.

1 INTRODUCTION

In-context Learning (ICL) has emerged as a prominent capability of large language models
(LLMs) (Brown et al., 2020). It enables a swift inference-time adaptation towards new tasks by
prefixing a few demonstration examples prior to the query (Wei et al., 2022; Dong et al., 2023). ICL,
characterized by its adaptability, has prompted extensive research efforts aimed at optimizing these
demonstration examples, or prompts (Rubin et al., 2022; Sorensen et al., 2022; Wu et al., 2023;
Min et al., 2022a, inter alia), as well as mitigating their sensitivity to formatting, order, and recency
bias (Zhao et al., 2021; Lu et al., 2022; Hao et al., 2022, inter alia).

Despite these advances, existing approaches predominantly focus on manipulating demonstration
examples within the token space, where context tokens are prepended to the query. This practice
quadratically escalates the computation and memory demands with each additional token and is
known to be sensitive to the selection and order of demonstration examples Zhao et al. (2021); Lu
et al. (2022); Dong et al. (2023). As a result, these properties can pose significant challenges in
constrained scenarios where computational and memory resources are scarce, and demonstration
profiles are uncontrollable, affecting ICL’s scalability and practical utility in real-world applications.

In this study, we explore to harness the demonstration examples within the activation space, seeking
for an efficient and robust alternative for constrained environments. Given a decoder-only architecture,
we observe that the primary burdens of ICL arise from the computationally intensive multi-head
attention mechanism, which fuses information between demonstration and query tokens, and the
memory-intensive key-value caching scheme necessary for retaining contextual information1. These
observations motivates us to investigate the following two questions: Is there a more abstract
representation of demonstration examples? And, can we integrate such information into models
without resorting to attention mechanism?

Our findings suggest that both objectives are attainable by first condensing demonstration examples
into a compact vector representation and then reintegrating their functionalities within the model’s
activation space. Specifically, instead of concatenating demonstration tokens before the query tokens,

1Without applying key-value cache, one needs to repetitively forward the same demonstration examples.
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we independently extract a demonstration vector from each example. These demonstration vectors
are further aggregated in a permutation-invariant manner to generate a unified context vector. During
inference, a linear combination of the context vector and the query activations is injected into the
model’s residual streams as the substitution of the original output activations. We term above scheme
Implicit In-context Learning (I2CL), alluding the absence of explicit demonstration tokens at
querying stage.
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Figure 1: Upper-left is better.
Comparison of accuracy, infer-
ence speed and cached mem-
ory of different methods on
Llama2-7b.

I2CL offers several unprecedented merits. By condensing demon-
stration examples into a unified vector representation, I2CL needs to
cache only a fixed amount of activation vectors, independent to the
number of demonstration tokens. I2CL also maintains a zero-shot in-
ference speed thorough merging information between demonstration
examples and queries using only linear operators. We evaluate I2CL
across three open-source LLMs on nine real-world text classifica-
tion tasks, where it significantly outperforms zero-shot counterpart
and other comparable methods. I2CL also achieves results on par
with few-shot learning with zero-shot inference cost (see Fig. 1).
Importantly, I2CL demonstrates robustness against the variability
of demonstration examples, and facilitates a natural representation
of task-ids that can effectively signify task similarities and foster
transfer learning.

Our main contributions can be summarized in three-fold: (1) We
introduce I2CL, a simple and novel framework that effectively inte-
grates a minimal set of demonstration examples within the activation
space. By decomposing conventional ICL into two stages: context vectorization and context-vector
injection, I2CL attains few-shot level performances at zero-shot inference cost. (2) We empirically
validate the robustness of I2CL against the variations (i.e., choices and order) of demonstration
examples and uncover a natural generation of task-ids, upon on which we further propose a transfer
learning strategy that can enhance performance on new tasks based on existing anchors. (3) We
conduct a comprehensive analysis and ablation to thoroughly examine each component and design
choice of I2CL, thereby shedding light on I2CL’s internal working mechanisms.

2 METHODOLOGY

2.1 PRELIMINARIES

Layer  l

End residual stream of 
demonstration example i

Residual stream at -th 
token of query

t

MLP me
i,l

MHA ae
i,l

: linear combination

: permutation invariant fusion

: element-wise addition

MHA at
l

MLP mt
l

Figure 2: A schematic overview of I2CL, including a
single layer for illustrative purpose.

Residual Stream We adopt the mathe-
matical interpretation from Elhage et al.
(2021), viewing the hidden states across
layers and at each token position as a resid-
ual stream. This perspective treats each
attention head and multi-layer perceptron
(MLP) module as read-out and write-in op-
erators that engaging with residual streams,
facilitating the addition and deletion of in-
formation within residual streams. At a
given layer l and token position t, the resid-
ual stream rtl is defined recursively as:

rtl = rtl−1 + at
l +mt

l , (1)

where at
l denotes the integrated output of the multi-head attention (MHA) module, and mt

l signifies
the MLP’s output, contingent also on at

l . Within this framework, MHA promotes the information
fusion across residual streams, whereas the MLP functions akin to an associative memory (Geva
et al., 2021; Dai et al., 2022) that retrieves information encapsulated within its weights.

In-context Learning Given an unseen task, ICL assumes the existence of a set of N demonstration
examples D = {d1, d2, . . . , dN}, each comprising an instructional pair di = (xi, yi) that includes an
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input sentence2 and its corresponding label. ICL operates by first concatenating the demonstration
set D with the test query xq, forming an input prompt p = [D, xq]. The objective is then to predict
the correct response yq from a finite set of discrete labels C via yq = argmaxy∈C P (y | p). We
acknowledge the versatility and broader implication of ICL, especially when connecting to the generic
definition of prompt engineering. In this work, we consider the standard few-shot classification task
as our testbed and focus on this scenario in the following contents.

2.2 CONTEXT VECTORIZATION

To overcome the inefficiencies associated with key-value caching system, we isolate the reasoning
process of demonstration examples from that of the query, and introduce an independent vectorization
process for each demonstration pair di. Extracted vectors are subsequently merged in the activation
space. Specifically, we define a function V , capable of generating a vector representation for each
demonstration example: di = V (di), following by a function F applied to aggregate extracted
demonstration vectors into a unified context vector v = F ({di}Ni=1). Note that F is designed to
be permutation invariant, ensuring a unique vector representation for a given set of demonstration
examples.

In our implementation, V consists of a pre-trained tokenizer and its corresponding LLM. The
demonstration vectors are extracted from the output activations of both MHA and MLP modules at
the end residual stream across all layers:

di = {ae
i,l,m

e
i,l}Ll=1

3. (2)
Here, e denotes the end token position that is responsible for next-token prediction, and L represents
the total number of layers. For the aggregation function, we compute an element-wise arithmetic
mean of each vector component across the demonstration examples:

v = {āe
l , m̄

e
l }Ll=1 (3)

where āe
l =

1
N

∑N
i=1 a

e
i,l and m̄e

l =
1
N

∑N
i=1 m

e
i,l.

The rationale of above designs is twofold. First, we argue that the end residual stream encapsulates
the essential information from each example. This is supported by the dynamics of next-token
prediction and empirical findings from recent studies (Hendel et al., 2023; Zou et al., 2023; Todd
et al., 2024). Second, inspired by the linear representation hypothesis (Park et al., 2023), we premise
various demonstration vectors can undergo linear transformations at different levels of abstraction.

2.3 CONTEXT INJECTION

Having established a unique vector representation, v, for the demonstration set, I2CL seeks to enhance
zero-shot performance by integrating the contextual information, substantiated as the context vector,
with that of the query. While conventional methods leverage the multi-head attention module for this
purpose, I2CL utilizes a simpler, yet effective, linear operation to augment the query activations with
context vectors.

Taking residual stream rtl as an instance, instead of directly adding the output activations from the
MHA and MLP to rtl , we inject a linear combination of these activations with context vectors:

rtl = rtl−1 + (λa
l ā

e
l + βa

l a
t
l) + (λm

l m̄e
l + βm

l mt
l), l ∈ [1, L], t ∈ [1, T ]. (4)

Here, λa, βa, λm, βm are four layer-wise scalars used to adjust the proportion to which the context
vectors and query activations are blended. By default, we apply this information fusion process to
all residual streams of a given query. Letting λ = 0 and β = 1 (omitting subscripts) will replicate
the original zero-shot inference process. Note that it is critical to extract and aggregate information
at output activations of both MHA and MLP modules (see Section 3.4), suggesting a distinct yet
complementary functionality of MHA and MLP.

The proposed context injection method incurs minimal computational overhead, involving only
two scalar multiplications and an element-wise addition, a process more efficient than the attention
mechanism. As a result, the inference speed of I2CL matches that of standard zero-shot learning. We
refer to Figure 2 for a schematic illustration of the context vectorization and injection procedures.

2Input xi also includes formatting texts like: “Question:”, “Answer Type:”.
3We abuse the symbolic notion of a vector to denote a set for the ease of interpretation.
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2.4 NOISY SELF-CALIBRATION

Thus far, we have presented how to vectorize and reintegrate the contextual information in an efficient
and attention-free manner. Herein, we elaborate on how to configure the value of linear coefficients. It
is not uncommon to set those weight scalars as hyper-parameters (Turner et al., 2023; Liu et al., 2024),
and manually adjust them for each task in a trial and error fashion. In order to achieve an adaptive
and nuanced control over the information fusion process without human-in-the-loop, we propose
estimating the linear coefficients c = {λa

l , β
a
l , λ

m
l , βm

l }Ll=1 using a gradient-based optimization
applied to the same set of demonstration examples. It is worth recapitulating that I2CL does not
require any additional data beyond the given few-shot examples.

Concretely, we initialize λ = 0.1, β = 1.0 to promote a modest initial addition of information, and
update these coefficients by minimizing the perplexity of label tokens:

L = − 1

|D|
∑

(x,y)∈D

logP (y | x,v, c), (5)

where P (·) denotes the induced probability distribution over the entire vocabulary at the end token
position from the last layer. To bolster the robustness and adaptability of the linear coefficients to
potential downstream variations, we introduce Gaussian noises η ∼ N (0, I) into the residual streams
during the calibration phase:

ot
l = rtl−1 + (λa

l ā
e
l + βa

l a
t
l),

ot
l = ot

l + γ||ot
l ||2 × η,

rtl = ot
l + (λm

l m̄e
l + βm

l mt
l),

rtl = rtl + γ||rtl ||2 × η,

(6)

where γ is a scalar employed to modulate the intensity of the noise, and || · ||2 denotes the L2 norm.
The o represents the intermediate state of a residual stream.

Given above formulations, only a few linear coefficients (totaling 4L) are updated during the cal-
ibration phase, rendering this process remarkably efficient (consuming 1-2 minutes on a single
A100 40G). Critically, above calibration procedure is an one-time cost per task at test-time, and the
calibrated linear coefficients exhibit excellent generalization ability to unseen demonstration exam-
ples at inference-time (see Section 3.3). Moreover, these linear coefficients, though are extremely
light-weight, can function as effective task-ids to foster task similarity detection (Fig. 5) and transfer
learning (Table 3).

3 EXPERIMENTS

In empirical section, we begin by detailing the architectures, tasks, and configurations used in our
study, followed by a comparative analysis of I2CL against other relevant techniques. We then delve
into the formation of context vectors and the characteristics of the calibrated linear coefficients,
demonstrating the robustness of I2CL, as well as identifying the function of calibrated coefficients as
task-ids. This section concludes with an extensive ablation study to underscore the inner working
mechanism of I2CL. We refer readers to Appendix C for addtional experiments and analysis.

Models We evaluate I2CL using three open-source architectures: GPT2-XL (Radford et al., 2019),
GPT-J-6B (Wang & Komatsuzaki, 2021), and Llama2-7b (Touvron et al., 2023). We selected these
models based on their suitability for our computational resources and their range in size from relatively
small (1.5B) to large (7B). We report results under Llama2-7b in main contents and defer results of
other architectures to Appendix C.1 Consistent trends are observed across all models.

Tasks We first take the four tasks used in Wang et al. (2023), including sentiment analysis: SST-
2 (Socher et al., 2013), emotion classification: EmoC (Chatterjee et al., 2019), question classification:
TREC (Voorhees & Tice, 2000), and topic classification: AGNews (Zhang et al., 2015). We then
further enrich our experiments with five additional datasets, encompassing 5-way sentiment analysis:
SST-5 (Socher et al., 2013), movie review classification: MR (Pang & Lee, 2005), 14-way topic
classification: DBPedia (Zhang et al., 2015), subjectivity status categorization: Subj (Pang & Lee,
2004), and hate speech detection: hate_speech18 (de Gibert et al., 2018). We employ the HuggingFace

4
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Table 1: Comparison between I2CL and baseline methods on Llama2-7b. The best results are
highlighted in bold, and the second-best results are underlined. In addition to a practical gauge of
the inference speed and memory usage (see Fig 1), we include an examination of cached parameters.
Here, M , D, and L denote the number of demonstration tokens, model dimension, and architecture
layers, respectively. P indicates the number of extra learnable tokens in the Soft-prompt method, and
1/K represents the compression rate of corresponding context-compression method.

Method SST-2 SST-5 TREC AGNews Subj HateSpeech18 DBPedia EmoC MR Avg. acc. # cached
(%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ param. ↓

Zero-shot 83.00 27.00 50.00 70.20 51.40 54.20 72.00 41.80 73.60 58.13 0
Few-shot (ICL) 94.44±1.44 41.72±3.68 77.32±4.41 85.68±2.00 52.56±3.09 70.24±5.80 96.64±0.48 75.48±1.63 93.24±0.50 76.37 2MDL

Noise vector 49.88±0.24 20.56±0.64 20.12±10.92 27.32±2.82 49.64±0.48 59.84±8.04 7.28±0.37 26.76±3.04 50.12±0.24 34.61 2DL
Label-anchor 83.32±5.95 27.68±4.21 77.48±3.49 83.72±1.04 53.00±2.95 64.52±8.09 81.40±3.67 59.12±10.60 84.40±5.89 68.29 2(M/K)DL
Task-vector 81.44±4.73 25.96±0.59 65.68±1.93 79.68±4.07 58.56±4.91 67.68±3.70 89.48±2.58 44.64±3.53 82.32±5.37 66.16 D
ICV 86.28±0.55 33.48±0.65 63.84±0.15 72.40±0.37 56.56±0.70 60.56±1.50 73.64±0.88 49.16±1.24 84.04±1.10 64.44 DL
I2CL (ours) 87.68±2.47 39.12±2.69 78.56±5.32 85.48±1.16 73.84±3.84 69.88±5.67 90.16±1.86 63.72±1.37 87.68±2.26 75.12 2DL

AutoComp. 92.44±3.29 25.8±4.8 62.52±9.34 86.36±1.03 60.16±0.32 53.2±6.1 92.68±2.86 29.56±5.07 82.76±7.34 63.94 2(M/K)DL
ICAE 91.64±1.69 38.8±1.56 50.92±8.38 80.48±2.35 50.52±9.17 65.48±7.18 62.08±1.86 54.04±4.69 89.48±1.45 64.83 2(M/K)DL
CEPE 74.28±3.9 36.2±0.56 55.48±3.42 78.00±3.49 59.12±1.6 61.72±5.26 87.24±1.2 42.28±3.31 82.36±1.61 64.08 2(M/K)DL

version of the data (Lhoest et al., 2021) and uniformly sample 500 data points from the validation/test
set for evaluation.

Experimental Setup Our experimental setup remains consistent across all tasks unless otherwise
specified. For each task, we randomly sample five demonstration examples per class4 following the
practice described in Wang et al. (2023) to avoid majority label bias (Zhao et al., 2021) and yield a
strong few-shot performance. No instruction is further used to describe the task. Input sequences
are formed using simple manually designed templates (included in Appendix A). For evaluation, we
report the macro-average accuracy across nine tasks, computed under five random seeds. For the
calibration process, we optimize linear coefficients for 100 epochs on the same demonstration set
using the AdamW (Loshchilov & Hutter, 2019) optimizer. The learning rate starts at 1× 10−2 and
anneals to 1× 10−5 according to a cosine scheduler. This calibration profile is applied uniformly
across all architectures and tasks without tailoring.

3.1 BENCHMARKING I2CL

I2CL Achieves Few-shot Performance at Zero-shot Inference Cost I2CL is designed to enhance
zero-shot performance, providing an alternative for ICL under constrained scenarios. As shown
in Table 1, I2CL significantly outperforms the zero-shot counterpart by 17% in absolute accuracy
and is only marginally behind (by around 1% on average) the few-shot learning. Noting that I2CL
consumes only zero-shot inference cost in terms of both memory usage and inference speed. An
interesting observation arises from the Subj task, where the instructions (i.e., demonstration examples)
do not function effectively with ICL, yet are well adhered to under I2CL. We hypothesize that this
phenomenon is due to the inherent properties of the pre-trained LLM, causing it to excel in certain
tasks while lagging in others5, and our proposed noisy self-calibration strategy can effectively rectify
this deficiency.

Comparison with Inference-time Methods w/o Additional Data To further validate the efficacy
of I2CL, we compare it against several comparable techniques: (1) Noise vector: replacing the
context vector with random noise to assess its necessity; (2) Label-anchor: a token reduction
method from Wang et al. (2023), using formatting and label tokens as anchors; (3) Task-vector:
task-vector (Hendel et al., 2023) also improves zero-shot performance without introducing additional
computational and memory overhead at inference. It requires a hold-out validation set to identify the
optimal replacement layer for each task at test-time; (4) ICV: we adapt In-context Vector Liu et al.
(2024) method for our scenarios treating query tokens as negative examples and answer tokens as
positive examples. We manually optimize ICV’s strength parameter for each task and report the best
performance. Please refer to Appendix B for implementation details.

As demonstrated in Table 1, replacing the context vector with random noise significantly degrades
performance, yielding inferior results than zero-shot. Label-anchor method exhibits a decent upgrade
over the zero-shot baseline, achieving results most comparable to I2CL. Nevertheless, its inference
cost remains dependent on the length of demonstration tokens, with reductions proportional to their

4One exception is DBPedia, where we use only one example per class due to the limitation of GPU memory.
5As demonstrated in Table 11, zero-shot performance of Subj is much higher under GPT-J than Llama2-7b

though the later one is generally considered more powerful.
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Table 2: Comparison between different PEFT-based few-shot fine-tuning strategies.
Method # trainable SST-2 SST-5 TREC AGNews Subj HateSpeech18 DBPedia EmoC MR Avg. acc.

params. (K) ↓ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑
Prompt-tuning 4.10 56.24±6.99 24.24±2.96 55.20±4.14 78.00±7.60 57.40±4.93 49.56±6.96 74.40±6.43 35.08±5.29 54.32±1.76 54.94
LoRA 4194.30 84.80±6.59 39.87±4.33 75.97±10.77 83.80±2.32 70.47±10.68 75.32±2.88 91.40±3.54 53.67±16.27 83.07±0.25 73.15
IA3 262.14 89.40±2.08 46.93±0.81 75.41±4.94 84.43±1.45 56.67±3.07 62.54±5.58 93.91±0.49 59.75±3.67 88.00±1.88 73.00
I2CL (ours) 0.13 87.68±2.47 39.12±2.69 78.56±5.32 85.48±1.16 73.84±3.84 69.88±5.67 90.16±1.86 63.72±1.37 87.68±2.26 75.12

compression rate. Alike I2CL, the task-vector method also enjoys zero-shot inference expenses;
yet its performance is sensitive to the downstream task and is, on average, slightly worse than the
label-anchor method. Finally, a clear improvement over zero-shot baseline can be seen by adapting
ICV method for few-shot classification tasks. Notwithstanding the boost, it necessitates manual
effort for hyperparameter selection, which limits its applicability for scenarios that favor automated
pipelines. Comparing to above method, I2CL achieves the best performance on all tasks with neither
manual intervention nor task-specific hyperparameter selection.
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Figure 3: Scaling trend of I2CL.

Comparison with Inference-time Prompt Compression
Methods Another line of work that leveraging external
large-scale datasets to learn an amortized context compres-
sor can also be applied to ICL scenarios. To this end, we
compare I2CL with three SoTA prompt compression meth-
ods: AutoCompressors Chevalier et al. (2023), ICAE Ge
et al. (2023), and CEPE Yen et al. (2024). Here, we di-
rectly apply their released pre-trained models on our tasks
to avoid potential underestimating of their performance.
As displayed in the bottom section of Table 1, all three
methods yield a decent enhancement upon zero-shot baseline, demonstrating their effectiveness of
compressing context tokens. However, these methods produce mixed and fluctuating results across
different tasks, likely due to their different training data and strategies. Instead of learning a universal
compressor, I2CL opts for customizing a task-specific compression strategy at test time, rendering it
additional adaptability for few-shot learning tasks. Note that we do not claim overall superiority of
I2CL over prompt-compression methods as they are deliberated tailored for excessive long context
compression which is orthogonal to the primary application of I2CL.

Comparison with Test-time PEFT Methods. The design of I2CL spans both test and inference time.
As such, we further establish a comparison between I2CL and three representative PEFT methods:
prompt-tuning Lester et al. (2021), LoRA Hu et al. (2021), and IA3 Liu et al. (2022) to underscore the
effectiveness and efficiency of ours. As shown in Table 2, LoRA and IA3 perform similarly with I2CL
slightly outperforming them on average. Importantly, I2CL achieves the best overall performance
with 100x fewer learnable parameters than Prompt-tuning, 1,000x fewer than IA3, and 10,000x fewer
than LoRA. We refer readers to Appendix B for implementation details.

Scaling Property of I2CL Even though I2CL is primarily designated for few-shot scenarios, it
exhibits a good scaling property. As shown in Fig. 3, ICL is peaked at around 5-shots and more
demonstration examples do not necessarily bring additional benefits. On the contrary, I2CL can easily
scale up to hundreds even a thousand of demonstration examples without performance degeneration,
and it readily surpasses few-shot counterpart under a modest amount of demonstration examples. We
note that using more demonstration examples will increase the calibration time during test-time.

3.2 ON THE FORMATION OF THE CONTEXT VECTOR

Context vector plays a fundamental role in the design of I2CL. Here, we conduct an in-depth analysis
to investigate its properties and the factors affecting its functionality.

Deficient ICL ̸= Deficient I2CL It is well-known that ICL is sensitive to the choice of demonstra-
tion examples (Dong et al., 2023), even the order (Zhao et al., 2021; Lu et al., 2022). In this context,
we investigate whether deficient demonstration examples in ICL will hinder the performance of I2CL.
We sample 20 groups of demonstrations with random instances and orders, and filter the group with
the poorest ICL performance on a hold-out dataset which is non-overlapping with both train and
evaluation sets. Using the same deficient demonstration examples, we perform both ICL and I2CL on
the evaluation set. Referencing Figure 4 (left), the deficient demonstration group leads to a severely
downgraded ICL performance (−7%), while I2CL performance is barely affected (−0.5%). This
result suggests that less attention can be paid to the selection and order of demonstration examples

6
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Figure 4: Left: Evaluation of I2CL and few-shot learning under deficient demonstrations. The
symbol ∗ denotes the results under deficient demonstration examples. “Unseen demo” refers to the
evaluation of calibrated coefficients on unseen demonstrations. Middle: Analysis of the influencing
factors of context vectors. “Random-label” indicates random input-label mappings. “Random-order”
refers to the random permutation of words. “W/o format” signifies excluding the template tokens
during the creation of context vectors. Right: t-SNE plot of context vectors. Each circle denotes a
context vector generated using a group of randomly sampled demonstration examples.

when using I2CL. We hypothesize that such resiliency in I2CL is due to the emergence of more
abstract and generic concepts within the context vector, making them robust against token space vari-
ations. To further corroborate this hypothesis, we visualize the context vectors using t-SNE (van der
Maaten & Hinton, 2008) in Figure 4 (right). Context vectors under different demonstration groups
are close to each other and different tasks hold distinct context vectors.

Influencing Factors of the Context Vector Generation We have shown above that context vectors
are robust against the variations in demonstration examples. Here, we explore various factors that
may impact the context vector’s functionality. Inspired by counter-intuitive findings reported in
(Zhang et al., 2022; Min et al., 2022b), we experiment with two variations of demonstration examples.
Random-label: pairing each input sentence with a random label from the task, rather than the
ground-truth label. Random-token: randomly permuting all words within a demonstration example.
Another ineligible factor involves the inclusion of formatting tokens. To this end, we also evaluate
on W/o-format: removing formatting words from a demonstration example, retaining only the
input sentence and its corresponding label, e.g., “Review: This is a great movie. Label: positive.
As revealed in Figure 4 (middle), input-label mapping relations have minimal impact on context
vector formation, mirroring the observations made in ICL. However, these mapping relations are
crucial for calibration purposes; using random input-label mapping during calibration undermines
the functionality of I2CL. Unlike the phenomenon observed in (Zhang et al., 2022), word sequence
holds essential statistics under a casual architecture, and randomly permuting input words yields
degenerated context vectors, leading to a clear performance drop. Lastly, formatting tokens contribute
substantially—removing them results in a noticeable performance degradation.

3.3 ANALYSIS OF CALIBRATED LINEAR COEFFICIENTS

With a grasp on the formation of context vectors, we delve into the properties of calibrated linear
coefficients to enhance our understanding of the internal mechanisms of I2CL.

Linear Coefficients Are Generalizable Given the demonstration-dependent context vectorization
and calibration process, it is natural to consider I2CL as a test-time optimization framework. However,
we demonstrate that the coefficients are generalizable and require calibration once per task. In this
context, we evaluate a set of calibrated coefficients on five new context vectors generated using five
unseen groups of demonstrations. As exhibited in Figure 4 (left), the calibrated linear coefficients
generalize well to unseen demonstrations. We attribute this generalization capability to two factors:
(1) the inherent robustness of the context vector against token space variations, as validated in
Section 3.2, and (2) the sufficiency of calibrated linear coefficients, independent of context vectors
and query activation, to uniquely represent a task. We substantiate the second premise in the following
subsection.

Calibrated Coefficients Embed Task Semantics Here, we investigate whether calibrated coef-
ficients alone are adequate to serve as task-ids. In pursuit of this goal, we concatenate calibrated
coefficients across layers to form a one-dimensional vector, which we then visualize using t-SNE.
As illustrated in Figure 5 (left), the calibrated linear coefficients are tightly clustered for instances
associated with the same task and fall apart otherwise, providing complementary evidence for their
good generalization capability. One exception comes from the proximity between MR and SST-2.
This phenomenon is not unexpected, as both tasks originate from the same underlying distribution
(i.e., rotten tomatoes movie reviews), suggesting that similarities among calibrated coefficients may
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Figure 5: Left: t-SNE visualization of calibrated linear coefficients. Each circle denotes a runtime
with a random seed. Middle: This image displays the transfer results among various tasks. Each row
represents a source task and each column denotes a target task. Red and blue colors signify positive
and negative transfer outcomes, respectively. Right: This plot shows the calibrated linear coefficients
for SST-2. λa, βa, λm, βm are the layer-wise coefficients described in Equation 4.

indicate potential transferability among tasks. To explore this further, we transfer the context vectors
and calibrated linear coefficients from a source task to various target tasks. We then measure the
differences between the transferred results and their respective zero-shot outcomes to identify both
positive and negative transfers. Figure 5 (middle) shows that performance on MR can be effectively
enhanced by transferring context vectors and calibrated coefficients from SST-2, and vice versa.
Similarly, both SST-2 and MR benefit from transfers from SST-5, likely due to their shared focus on
sentiment analysis. An intriguing aspect of our findings is the asymmetric nature of transferability
among different tasks; a successful transfer in one direction does not necessarily guarantee success in
the opposite direction (e.g., transfer between HateSpeech18 and SST-2).

Enhance New Task with Existing Anchors I2CL posits two pivotal features distinct from
typical ICL: (1) An interface that facilitates vector arithmetic; (2) A set of linear co-
efficients that act as task-ids, laying a foundation for transfer learning (Zhuang et al.,
2021). Here, we present an transfer learning algorithm based on above feartures. Let
c1, . . . , cN represent calibrated coefficients for existing tasks, and cnew for the new task.
Associated with these coefficients, respectively, are context vectors v1, . . . ,vN , and vnew.

Table 3: Transfer learning result.
Only tasks having more than one
similar task (according to h) in
our task curation are exhibited.

I2CL

Task W/o transfer (%) W/ transfer (%)

SST-5 39.12±2.69 43.24±3.70

MR 87.68±2.47 89.99±2.83

We compute the cosine similarity between cnew and each ci for
i = 1, . . . , N and retain indices I = {i | cos(cnew, ci) > h}
according to a pre-defined threshold h. The cosine similarities for
the indices in I are then converted into a probability distribution
using the softmax function:

P (i) =
exp(cos(cnew, ci)/τ)∑
j∈I exp(cos(cnew, cj)/τ)

, ∀i ∈ I, (7)

where τ is the temperature. Finally, we reinitialize vnew and cnew
using the weighted average of retained context vectors and coefficients: vavg =

∑
i∈I P (i)vi, cavg =∑

i∈I P (i)ci, and perform another around of calibration. We refer to Appendix B for detailed
algorithms and implementation. Empirical results in Table 3 demonstrate a clear benefit of the
proposed transfer learning method.

Injection Dynamics Thus far, we have demonstrated that a few static scalars, conditioned on
appropriate context vectors, can successfully execute a wide range of tasks. Herein, we delve into
how context vectors are injected. Using the AGNews as an example, we examine the coefficient values
across different layers (additional plots in Appendix C.4). One reasonable speculation postulates a
gradual addition of context vectors to the residual streams. Nevertheless, observations from Figure 5
(right) reveal a more nuanced control over the information injection process. Instead of monotonically
adding (+) more information to the residual streams, I2CL also allows the deletion (−) of information
at certain layers, with coefficient values fluctuating across different layers.

3.4 ABLATION STUDY

In this section, we conduct a comprehensive ablation study on the module, layer, and token position
of injection, as well as the noise scale. We also explore various vectorization and injection formulas
to highlight the rationale behind our designs.

Target Module I2CL extracts and injects activations at both MHA and MLP modules. To identify
the contribution of each module, we test on using either MHA or MLP independently, and we also
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Table 4: Target modules.

Name Accuracy (%)

Zero-shot 58.13

MHA 66.97
MLP 70.27

Hidden state 56.80

MHA+MLP (ours) 75.12

Table 5: Target layers.

Name Accuracy (%)

Zero-shot 58.13

Early 58.18
Middle 64.07

Late 64.03

All (ours) 75.12

Table 6: Injection position.

Name Accuracy (%)

Zero-shot 58.13

Random 59.86
First 62.14
Last 66.75

All (ours) 75.12

Table 7: Noise scale.

Name Accuracy (%)

Zero-shot 58.13

γ = 0.0 72.23
γ = 0.01 40.53

γ = 0.001 (ours) 75.12

Table 8: Injection formula.

Name Accuracy (%)

Zero-shot 58.13

λv + a, λ > 0 63.63
(λv + (1− λ)a)× β, β > 0 71.39

λv + βa (ours) 75.12

consider leveraging the hidden state at each layer. As shown in Table 4, extracting and injecting
context vectors at either MHA or MLP proves beneficial, with MLP showing a clear advantage.
We hypothesize this is due to the additional engagement of information stored in the MLP weights.
However, targeting the hidden state does not lead to any improvement, likely due to the accumulation
effect which complicates the optimization process within self-calibration stage.

Target Layer I2CL encompasses all layers in a large language model (LLM), eliminating the need
for specifying layer indexes. This model-agnostic approach not only simplifies the setup but also
enhances performances, as evidenced in Table 4. We divide the model into three sub-parts—early,
middle, and late—each containing one-third of the total layers. We then apply I2CL only within
the target layer range. The middle and late layers prove more effective than the early layers, and
injecting across all layers provides a clear performance boost, highlighting the importance of fusing
information at all levels of abstraction.

Injection Position By default, I2CL injects context vectors into all residual streams during inference.
To justify this choice, we test injections only at random, first, and last residual streams. As shown in
Table 6, and aligning with common intuition, injecting at the end residual stream yields the largest
improvement compared to other positions, although it still shows a significant gap compared to
injecting at all residual streams.

Noise Scale Here, we evaluate the impact of noise strength during the calibration phase. As
demonstrated in Table 7, an appropriate noise scale leads to a clear performance gain. Conversely, an
improper strength can disrupt the propagation of information at inference, resulting in deteriorated
outcomes. We empirically identify τ = 0.001 as a suitable scale and have applied it across all tasks
and architectures.

Injection Formula I2CL utilizes a linear combination to blend context vectors with query activa-
tions. Let v denote the context vector and a indicates activation; we use λc+ βa. One simplification
is to view the injection process as solely adding the context vector to the activation: λv + a with
λ > 0 as done in Liu et al. (2024). Another common formula involves constraining the sum of linear
coefficients to one and allowing a separate scale factor: (λv + (1− λ)a)× β, β > 0. According to
Table 8, a linear combination with no constraints achieves the best overall performance. Therefore,
we conjecture that it is critical to allow not only information addition but also deletion, i.e., permitting
a negative sign for the linear coefficient, and to scale each vector independently. Observations in
Figure 5 (right) corroborates this conjecture.

4 RELATED WORK

Understanding In-context Learning Besides enhancing ICL, the exploration of ICL’s internal
mechanisms has attracted significant research attention. Akyürek et al. (2023) draw parallels between
ICL and gradient descent in linear regression tasks, suggesting a fundamental alignment with classical
optimization methods. Complementary perspectives from Von Oswald et al. (2023) and Dai et al.
(2023) conceptualize ICL as a form of meta-optimization, further enriching our understanding of
its operational basis. Concurrently, Xie et al. (2022) interpret ICL through the lens of implicit
Bayesian inference, proposing a probabilistic foundation for the learning process. Wei et al. (2023)
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and Olsson et al. (2022) respectively attribute ICL’s capabilities to the establishment of input-label
correspondences and the identification of so-called induction heads, highlighting the intricate interplay
between data representation and model interpretability. Most recently, Label-as-Anchors (Wang et al.,
2023) inspects ICL from an information flow perspective and leverages anchor tokens to perform
token reduction. Similarly, I2CL also enhances the efficiency of ICL, but distinguishes itself by
circumventing the need for caching latents of anchor tokens or employing multi-head attention,
thereby reducing the inference cost to that of the zero-shot.

Activation/representation Engineering An emerging research field, termed activa-
tion/representation engineering, closely relates to our study. Recent endeavors by Merullo
et al. (2023); Turner et al. (2023); Zou et al. (2023) have unveiled the phenomenon of steering vectors,
which can be derived from a positive and negative text pair and used to steer the content generation
of LLMs. Steering vectors can also be learned via gradient descent (Subramani et al., 2022). Liu
et al. (2024) applies these insights to bolster LLM safety while Li et al. (2023) explores their utility
in eliciting more truthful responses from LLMs. To better understand the inner mechanism of
activation engineering, the linear representation hypothesis has been studied and discussed in Li
et al. (2021); Hernandez et al. (2024); Park et al. (2023). Central to this discourse, the idea of
task/function vector (Hendel et al., 2023; Todd et al., 2024) resonates with the core premise of I2CL.
Both methodologies extract task/function vectors from the demonstration examples and them to
improve zero-shot performance. I2CL stands out not only due to its superior performance, but
also through its simplicity, namely, its avoidance of paired demonstrations, and the need for task-
or architecture-specific hyperparameter tuning, such as selecting attention heads through causal
mediation or determining target layers via extra validation sets.

Prompt Compression for LLMs Prompt compression (Chang et al., 2024) is also related to
our work, as it shares a similar goal of improving the inference efficiency of LLMs. However,
prompt compression methods emphasize on reducing the length of excessive contexts by learning an
additional amortized compressor (Ge et al., 2023; Chevalier et al., 2023; Yen et al., 2024), while I2CL
transforms the standard few-shot learning approach into a zero-shot manner at test time, treating the
LLM itself as a context vector generator. Most prompt compression methods operate by compressing
a long prompt sequence into a set of compact soft prompts, leveraging the attention mechanism
to further propogate context information. In contrast, I2CL generates a context vector from the
activation space and intervenes directly in the residual streams.

5 LIMITATIONS

I2CL is subject to several limitations. First of all, we confine the scope of this initial exploration to
standard text classification tasks, leaving more sophisticated tasks for future research. It is non-trivial
to further extent I2CL to the realm of open-ended generation tasks and those involving multi-hop
reasoning processes. Second, I2CL necessitates access to and caching of intermediate activations
from language models, which may not be feasible with state-of-the-art commercial models (e.g.,
GPT-4, Gemini, Claude3). Thirdly, limited by the computational resources, we evaluated I2CL only
on modest sized models, and further scaling the evaluation to commercial size models could yield
additional insights.

6 CONCLUSION

In this study, we introduce Implicit In-context Learning (I2CL), a simple and novel framework that
integrates a minimal set of demonstration examples within the activation space of LLMs. Diverge
from ICL, I2CL eliminates the need for caching the latents of demonstration tokens and replaces
the non-linear information fusion process (i.e., attention head) with linear operations. Therefore,
I2CL reduces both computational and memory expenses during inference to that of zero-shot level.
Moreover, I2CL is validated to be robust against token space variations, and it facilitates a novel
representation of task-ids which enhances task similarity detection and fosters transfer learning.
Empirical evidence on nine real-world tasks across three different models suggests the potential of
I2CL as a more efficient and robust alternative to ICL for constrained scenarios. Through a set of
in-depth analyses and ablations, we also shed light on the internal working mechanics of I2CL.
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A PROMPTING TEMPLATES

Table 9: Prompting templates and label spaces used in our experiments. {Sentence} and {Label} are
placeholders for the input sentence and its corresponding label. We exhibit only the template of a
single example for the illustration purpose, and multiple demonstration examples are connected by a
newline character: ‘\n’.

Dataset Template Label Space

SST-2 Review: {Sentence} negative / positive
Sentiment: {Label}

SST-5 Sentence: {Sentence} terrible / negative / neutral / positive / great
Sentiment: {Label}

MR Review: {Sentence} negative / positive
Sentiment: {Label}

Subj Sentence: {Sentence} objective / subjective
Label: {Label}

DBPedia Input: {Sentence}
Label: {Label}

company / school / artist / athlete / politics /
transportation / building / nature / village /
animal / plant / album / film / book

AGNews News: {Sentence} World / Sports / Business / Technology
Type: {Label}

TREC Question: {Sentence}
Answer Type: {Label}

Abbreviation / Entity / Person / Location /
Number

HateSpeech18 Text: {Sentence}
Label: {Label}

neutral / hate

EmoC Dialogue: {Sentence}
Emotion: {Label}

others / happy / sad / angry
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Extra Details For the task HateSpeech18, we preprocess the data to retain only the first two
classes—{0: neutral} and {1: hate}. We exclude the other two classes due to their extremely limited
number of samples.

B REPRODUCTION DETAILS

B.1 IMPLEMENTATION OF BASELINE METHODS.

Noise Vector. In this baseline method, We simply replace context vectors with random noises while
keeping all other settings identical to I2CL.

Label Anchor (Wang et al., 2023). We take the officially released code, aligning the architecture,
datasets, and template setups for a fair comparison. Following their established practice, template
tokens and the newline separator ‘\n’ are used as anchors. Detailed information can be found at
https://github.com/lancopku/label-words-are-anchors.

Task Vector (Hendel et al., 2023). We replicate the task vector method which was initially evaluated
on a set of toy datasets. To generate the task vector, we append a random extra query after the
concatenated demonstration examples (five per class) to simulate the dummy query they utilized.
We then extract the hidden state from the token position responsible for the next token prediction to
serve as the task vector. A hold-out dataset with 32 extra examples is used to select the best layer for
extraction and replacement for each task, following the original method.

Table 10: Strength
scalar λ for ICV.

Task λ

SST-2 0.01
SST-5 0.02
TREC 0.02
AGNews 0.0001
Subj 0.02
HateSpeech18 0.02
DBPedia 0.001
EmoC 0.02
MR 0.02

In-contex Vector (Liu et al., 2024). ICV method is primarily crafted for open-
end generation tasks, and it leverages positive and negative demonstration pairs
to generate the steering vector. In our scenario, we set sentence (or question) in
a demonstration example as negative and its corresponding answer as positive
counterpart to extract in-context vector. We then manually search the strength
scalar of injection for each task. Specifically, we first search in a log scale
covering λ ∈ [0.0001, 0.001, 0.01, 0.1, 1.0], following by a more fine-grained
search between 0.01 and 0.1. The best strength scalars we used are reported
in Table 10. We refer readers to https://github.com/shengliu66/
ICV for more technique details.

AutoCompressors (Chevalier et al., 2023). We directly test the officially
released model from here: https://github.com/princeton-nlp/AutoCompressors
on our tasks. All hyper-parameters are set by default values. Evaluation protocols remain the same as
ours.

ICAE (Ge et al., 2023). We directly test the officially released model from here: https://github.
com/getao/icae on our tasks. All hyper-parameters are set by default values. Evaluation
protocols remain the same as ours.

CEPE (Yen et al., 2024). We directly test the officially released model from here: https://
github.com/princeton-nlp/CEPE on our tasks. All hyper-parameters are set by default
values. Evaluation protocols remain the same as ours.

Prompt-tuning (Lester et al., 2021). For the implementation of prompt-tuning method, we allow
one extra learnable token (P = 1) per layer, and apply learnable prompts across all layers. We
also attempt to use more learnable tokens, resulting in poorer performance due to overfitting. For
optimization, we conduct a simple grid search on SST-2 to determine an optimal learning rate of 0.1,
which we then apply across all tasks. All other configurations remain as specified in the experimental
section.

LoRA (Hu et al., 2021) and IA3 (Liu et al., 2022). We use implementations from HuggingFace
PEFT library for both PEFT methods. Learning rate is set to 0.001 for both methods, and all other
optimization protocols are kept the same as in experimental section. The LoRA configuration uses a
rank of 8 with a scaling factor (α) of 32, applies dropout at a rate of 0.05, and targets both the query
and value projection modules. As for IA3 method, adaptation is applied not only on query and value
projection modules, but also for feed-forward layers.
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Table 11: Comparison between I2CL and baseline methods on GPT-J-6B.

Task Zero-shot Few-shot (ICL) Soft-prompt Label-anchor Task-vector I2CL (ours)
SST-2 (%) ↑ 77.76 89.44±2.60 69.04±11.61 87.12±4.57 59.84±4.47 85.48±1.18

SST-5 (%) ↑ 25.60 39.65±4.57 37.88±2.99 37.24±3.53 31.20±2.82 37.32±3.11

TREC (%) ↑ 68.20 67.76±2.11 67.00±12.04 58.52±2.44 67.32±0.32 63.84±7.58

AGNews (%) ↑ 71.60 83.18±2.03 83.16±4.86 80.84±0.88 80.12±2.23 81.56±3.13

Subj (%) ↑ 62.40 50.20±0.22 63.64±6.52 51.16±1.71 66.32±2.31 65.56±8.33

HateSpeech18 (%) ↑ 59.92 53.44±6.84 67.76±5.04 55.20±8.19 70.12±5.04 62.32±5.76

DBPedia (%) ↑ 65.56 93.30±1.19 85.04±1.02 90.84±1.79 77.64±4.63 81.84±4.50

EmoC (%) ↑ 44.68 47.62±8.62 47.48±10.87 44.00±8.25 45.00±4.20 50.32±4.68

MR (%) ↑ 76.88 88.66±1.23 73.76±9.40 87.92±3.82 81.36±3.58 84.40±2.45

Macro avg. acc. (%) ↑ 61.40 68.14 66.08 65.87 64.32 68.07

B.2 IMPLEMENTATION OF TRANSFER LEARNING METHOD

Algorithm 1 details the transfer learning method proposed for I2CL. In implementation, we empiri-
cally set h = 0.8 and τ = 0.5.

Algorithm 1 Transfer Learning of I2CL

1: Input: Coefficients c1, c2, . . . , cN , Context vectors v1,v2, . . . ,vN , Demonstrations of new task
dnew, Threshold h, Temperature τ , Default coefficient initialization cinit.

2: Output:cnew, vnew
3: Initialize I ← ∅
4: vnew ← Context_vectorization(dnew)
5: cnew ← Noisy_self_calibration(dnew,vnew, cinit)
6: for i = 1 to n do
7: Compute si ← cosine(cnew, ci)
8: if si > h then
9: Add i to I

10: end if
11: end for
12: Compute probabilities P (i)← exp(si)/τ∑

j∈I exp(sj/τ)
for each i ∈ I

13: Compute vavg ←
∑

i∈I P (i)vi

14: Compute cavg ←
∑

i∈I P (i)ci
15: cnew ← Noisy_self_calibration(dnew,vavg, cavg)
16: vnew ← vavg
17: return cnew, vnew

C ADDITIONAL EXPERIMENTS AND ANALYSIS

C.1 RESULTS UNDER GPT2-XL, GPT-J, AND LLAMA3-8B

Here, we further compare I2CL with baseline methods that do not need manual intervention or
additional datasets on other two popular architectures. The results under architecture GPT-J and
GPT2-XL are shown in Table 11 and Table 12, respectively. To highlight the generalization ability
of I2CL, we further extend I2CL to latest Llama3-8B model and establish a comparison between
zero-shot and few-shot learning in Table 13.

C.2 ANALYSIS ON SYNTHETIC DATASET

To underscore the generality of the proposed I2CL, we crafted a synthetic dataset that containing no
semantic and formatting priors. Concretely, we generated three types of data containing “random
strings”, “random special characters”, and “random numerical values”, labeled as “A” “B” and
“C”, respectively. We then evaluate the performance of zero-shot, few-shot and I2CL on this synthetic
dataset following the same setting as for main Table 1. As shown in Table 14, I2CL outperforms
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Table 12: Comparison between I2CL and baseline methods on GPT2-XL. AGnews and DBPedia are
not evaluated due to the limitation of GPT2-XL’s context window size.

Task Zero-shot Few-shot (ICL) Soft-prompt Label-anchor Task-vector I2CL (ours)
SST-2 (%) ↑ 74.76 73.65±8.89 61.04±3.45 63.40±8.82 81.08±4.87 80.16±3.98

SST-5 (%) ↑ 30.44 35.95±2.39 23.96±2.09 22.36±3.37 28.52±1.37 33.84±2.60

TREC (%) ↑ 35.40 60.64±5.00 40.60±10.15 66.36±10.69 41.40±5.35 51.48±5.26

Subj (%) ↑ 64.88 63.82±10.55 55.44±4.12 55.56±4.26 71.80±1.86 65.96±4.83

HateSpeech18 (%) ↑ 70.84 51.86±3.22 63.92±7.06 54.88±4.53 62.48±2.83 68.32±4.76

EmoC (%) ↑ 37.88 38.62±7.68 33.60±4.04 36.68±2.70 37.60±2.48 47.92±1.84

MR (%) ↑ 71.36 75.79±9.25 57.60±3.53 60.20±3.32 78.40±2.36 83.20±3.29

Macro avg. acc. (%) ↑ 55.08 57.19 48.02 51.35 57.33 61.55

Table 13: Performance comparison between Zero-shot, ICL, and I2CL on Llama3-8B.

Name SST-2 SST-5 TREC AGNews Subj HateSpeech18 DBPedia EmoC MR Avg.
Zero-shot 55.60 31.40 66.40 73.60 51.00 50.40 56.20 41.00 55.60 53.47
ICL 93.00± 0.62 39.4± 3.21 78.2± 5.94 84.8± 1.30 62.47± 12.44 64.93± 2.65 82.33± 3.64 52.20± 3.92 92.73± 0.50 81.26
I2CL 91.40± 2.26 32.60± 1.25 80.27± 2.58 82.56± 1.57 64.67± 3.52 75.80± 1.02 85.00± 0.33 52.92± 5.28 84.27± 2.07 81.18

few-shot learning (i.e., ICL) by a large margin, highlighting the effectiveness and generality of I2CL,
and we attribute this improvement to the proposed noisy self-calibration and vector injection methods
which directly intervene at residual streams. Similar to the empirical observation in Sec. 3.3, the
calibrated linear coefficients are also generalizable, and they can be directly used under unseen
demonstration examples without additional calibration (see last column in Table 14).

C.3 APPLY I2CL OVER ICL

As I2CL and ICL are not mutually exclusive, an interesting empirical exploration involves applying
I2CL on top of ICL. Specifically, we retain the demonstration tokens in the context throughout
the noisy self-calibration and inference stages. As shown in Table 15, the combination of I2CL
with ICL significantly improves performance on certain tasks, surpassing ICL by a substantial
margin. Moreover, for tasks where I2CL originally underperforms compared to ICL, the inclusion
of demonstration tokens helps bridge the gap. These empirical observations highlight the versatility
of I2CL. On one hand, I2CL can serve as a substitute for ICL to reduce inference costs; on the
other hand, when computational and memory constraints are less critical, I2CL can be applied in
conjunction with ICL to further enhance ICL’s performance.

C.4 ADDITIONAL VISUALIZATION

Here, we present in Fig. 6 the calibrated coefficients for all tasks we used, illustrating variations and
patterns across different configurations.

C.5 VISUALIZATION OF IN-TASK CONTEXT VECTORS

As demonstrated in Fig. 4 (right), context vectors embed task semantics and context vectors from
different classes are well separated. However, it is unclear whether context vector can carry label
information within a more nuanced in-task perspective. To this end, we extract class-wise context
vectors within each task and visualize in-task relations among different context vectors in Fig. 7.
As shown in the figures, context vectors from different classes are well-separated in most tasks,
indicating that context vectors will also carry label information. A notable exception comes from
EmoC where vectors appear more mixed. We conjecture that besides label information, a substantial
inherent parametric knowledge has also been hubbed by the context vector.

Table 14: Evaluation of zero-shot, few-shot and I2CL on the synthetic dataset.

Task Zero-shot Few-shot (ICL) I2CL I2CL (unseen demo.)

Synthetic data 32.6 66.20±0.73 86.48±4.51 86.36±5.40
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Table 15: Results of applying I2CL on top of ICL. Task AGNews is not applicable under 5-shot due
to the limitation of GPU memory.

Name SST-2 SST-5 TREC Subj HateSpeech18 DBPedia EmoC MR Average

ICL 94.44±1.44 41.72±3.68 77.32±4.41 52.56±3.09 70.24±5.80 96.64±0.48 75.48±1.63 93.24±0.50 75.21
I2CL 87.68±2.47 39.12±2.69 78.56±5.32 73.84±3.84 69.88±5.67 90.16±1.86 63.72±1.37 87.68±2.26 73.83
ICL+I2CL 93.52±0.39 44.53±1.61 83.56±5.18 89.84±4.09 81.36±1.24 95.87±0.62 73.84±6.36 93.16±1.01 81.96

D ADDITIONAL DISCUSSION

D.1 POTENTIAL DESIGN SPACE

Although the end residual stream contains a rich repository of information for the given token
sequence, other token positions may also possess valuable attributes, as noted in recent studies
(Hendel et al., 2023; Todd et al., 2024; Liu et al., 2024). Recent research also highlights the
importance of formatting tokens during information propagation (Wang et al., 2023; Bai et al.,
2024). We believe our approach could benefit from a more sophisticated design of demonstration
vectorization. Additionally, while we currently use a single scalar to gauge the strength of aggregated
multi-head attention, allowing finer granularity—such as separate strength scalars for different
attention heads—might enhance our system’s performance, albeit at the cost of increased parameters.

D.2 BROADER IMPACTS

I2CL inherits the same risks as standard In-context Learning. While I2CL primarily serves to
enhance efficiency, its ability to adapt quickly to different data could potentially be used for creating
misinformation or other harmful content at scale. I2CL’s reliance on existing data for demonstration
examples could propagate existing biases if the data are not carefully curated. One additional risk
comes from the generation of implicit vector representation for the demonstration examples, making
the detection of the malicious contents even more challenging.
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Figure 6: Calibrated coefficients for various datasets.
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Figure 7: Visualization of in-task context vectors.
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