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Abstract

A targeted adversarial attack produces audio sam-
ples that can force an Automatic Speech Recogni-
tion (ASR) system to output attacker-chosen text.
To exploit ASR models in real-world, black-box
settings, an adversary can leverage the transfer-
ability property, i.e. that an adversarial sample
produced for a proxy ASR can also fool a dif-
ferent remote ASR. Recent work has shown that
transferability against large ASR models is ex-
tremely difficult. In this work, we show that mod-
ern ASR architectures, specifically ones based on
Self-Supervised Learning, are uniquely affected
by transferability. We successfully demonstrate
this phenomenon by evaluating state-of-the-art
self-supervised ASR models like Wav2Vec2, Hu-
BERT, Data2Vec and WavLM. We show that with
relatively low-level additive noise achieving a
30dB Signal-Noise Ratio, we can achieve target
transferability with up to 80% accuracy. We then
use an ablation study to show that Self-Supervised
learning is a major cause of that phenomenon.
Our results present a dual interest: they show that
modern ASR architectures are uniquely vulnera-
ble to adversarial security threats, and they help
understanding the specificities of SSL training
paradigms.

1. Introduction
Adversarial audio algorithms are designed to force Auto-
matic Speech Recognition (ASR) models to produce incor-
rect outputs. They do so by introducing small amounts
of imperceptible, carefully crafted noise to benign audio
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samples that can force the ASR model to produce incorrect
transcripts. Specifically, targeted adversarial attacks (Car-
lini & Wagner, 2018; Qin et al., 2019) are designed to force
ASR models to output any target sentence of the attacker’s
choice. However, these attacks have limited effectiveness as
they make unreasonable assumptions (e.g., white-box access
to the model weights), which are unlikely to be satisfied in
real-world settings.

An attacker could hypothetically bypass this limitation by us-
ing the transferability property of adversarial samples: they
generate adversarial samples for a white-box proxy model;
then pass these to a different remote black-box model, as
we illustrate in Figure 1. Transferability has been success-
fully demonstrated in other machine learning domains, like
computer vision (Papernot et al., 2016). This is a sample
text in black. Yet for ASR, recent work has shown that
transferability is close to non-existent between large models
(Abdullah et al., 2021b), even between identically trained
models (i.e., same training hyper-parameters, even includ-
ing the random initialization seed). These findings were
demonstrated on older ASR architectures, specifically on
LSTM-based DeepSpeech2 models (et al., 2016). However,
robustness properties sometimes vary considerably between
different ASR architectures (Lu et al., 2021; Olivier & Raj,
2022), and it is worth studying adversarial transferability on
more recent families of models.

In this work, we study the robustness of modern transformer-
based ASR architectures. We show that, in contrast with
previously evaluated architectures, many state-of-the-art
ASR models are in fact vulnerable to the transferability
property. Specifically, our core finding can be formulated as
follows:

Pretraining transformer-based ASR models with Self-
Supervised Learning (SSL) makes them vulnerable to
transferable adversarial attacks.

SSL is an increasingly popular learning paradigm in ASR
(Figure 2), used to boost model performance by leveraging
large amounts of unlabeled data. We demonstrate that it
hurdles robustness by making the following contributions:

• First, we show that most public SSL-pretrained ASR
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models are vulnerable to transferability. We gener-
ate 85 adversarial samples for the proxy HuBERT
and Wav2Vec2 models (Section 3). We show that
these samples are effective against a wide panel of
public transformer-based ASRs. This includes ASRs
trained on different data than our proxies.Our attacks
can achieve a Signal-Noise Ratio of 30dB - not quite as
imperceptible as the strongest white-box attacks (Qin
et al., 2019), yet surprising for transferable attacks.

• Second, we show that SSL-pretraining is the reason for
this vulnerability to transferability. We do so using an
ablation study on Wav2Vec2-type models, either pre-
trained or trained from scratch, and similar in all other
aspects. We use each model as a proxy to generate
adversarial examples, which we attack all other models
with. We show that SSL pretraining in both proxy and
private models indeed contributes to the transferabil-
ity of adversarial attacks and that factors such as the
amount of unlabeled data play an important role.

Our work has important implications for ASR security: we
show that SSL, a line of work gathering attention in the
speech community, is a source of vulnerability in adversar-
ial settings. Formerly innocuous attacks with unreasonable
assumptions are now effective against many modern models.
As it is likely that SSL will be used to train ASR systems in
production, our results pave the way for practical, targeted
attacks in the real world. By no means do these results
imply that this line of work should be aborted, but they em-
phasize the pressing need to focus on robustness alongside
performance.

Figure 1. Diagram illustrating the transferability of an adversarial
attack between a proxy and a private model

2. Background
2.1. SSL pretraining for ASR models

We describe in this Section the principles of SSL-pretrained
ASR models, whose robustness to attacks we evaluate in this
work. These models usually follow the neural architecture
of Wav2Vec2 (Baevski et al., 2020). Raw audio inputs are

Figure 2. Diagram illustrating the training procedure of SSL ASR
models

fed directly to a CNN. A Transformer encodes CNN outputs
into contextualized representations, that a final feed-forward
network projects in a character output space. The model is
fine-tuned with CTC loss (Graves et al., 2006).

A number of different models follow this architecture, in-
cluding Wav2Vec2, HuBERT (Hsu et al., 2021), Data2Vec
(Baevski et al., 2022), UniSpeech-SAT (Wang et al., 2021;
Chen et al., 2021b) or WavLM (Chen et al., 2021a). These
networks only have very minor differences in their architec-
tures. Base models have 12 transformer hidden layers and
90M parameters. Large models have 24 layers and 300M
parameters. Finally, XLarge models have 48 layers for a
total of 1B parameters.

While the networks are similar, the training pipelines of
these models differ substantially. All models are pretrained
on large amounts of unlabeled data, then fine-tuned for ASR
on varying quantities of labeled data. The pretraining in-
volves SSL objectives, such as Quantization and Contrastive
Learning (Wav2Vec2), offline clustering and masked pre-
dictions (HuBERT), or masked prediction of contextualized
labels (Data2Vec). Unispeech combines SSL and CTC pre-
training with multitask learning. WavLM adds denoising
objectives and scales to even greater amounts of unlabeled
data.

SSL pretraining is helpful in many regards: it makes the
same network easy to fine-tune for multiple downstream
tasks with little labeled data and has improved state-of-the-
art results in ASR benchmarks, especially in low-resource
settings. As we demonstrate, it is also a source of vulnera-
bilities.

2.2. Adversarial attacks

Adversarial examples are inputs modified imperceptibly by
an attacker to fool machine learning models (Szegedy et al.,
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2014; Goodfellow et al., 2014; Carlini & Wagner, 2016;
Madry et al., 2018). While most works have focused on
image classification, several proposed attacks for other tasks
such as ASR (Cisse et al., 2017; Carlini & Wagner, 2018;
Qin et al., 2019).

The attack we use is based on the Carlini&Wagner ASR
attack (Carlini & Wagner, 2018), although slightly simpli-
fied. Given an input x, a target transcription yt, and an ASR
model f trained with loss L, our attack finds an additive
perturbation δ optimizing the following objective:

argmin
δ

L(f(x+ δ), yt) + c ∥δ∥22 s.t. ∥δ∥∞ < ϵ (1)

which we optimize using L∞ Projected Gradient Descent.
While the CW attack typically uses a large initial ϵ, then
gradually reduces it as it finds successful perturbations, we
fix a single value of ϵ and optimize for a fixed number of
iterations. We find that this scheme, closer to the PGD al-
gorithm (Madry et al., 2018), greatly improves attack trans-
ferability. However we keep using CW’s L2 regularization
term c ∥δ∥22.

We also find that applying regularization such as dropout
during attack optimization greatly helps to generate trans-
ferable perturbations. This effect is analyzed more in detail
in Appendix C.3. Throughout the rest of the paper, we
run all attack optimization steps using the default dropout,
layer drop, etc. that the proxy model used during training
(typically a dropout of 0.1).

3. A Transferable attack on ASR models
In our core experiment, we fool multiple state-of-the-art
SSL-pretrained ASR models with targeted and transferred
adversarial attacks. We generate a small set of targeted
audio adversarial examples using fixed proxy models. We
then transfer those same examples on a large number of
models available in the HuggingFace Transformers library.
Table 1 specifies how much unlabeled and labeled data
these models were trained on. We provide full experimental
details in Appendix A.

3.1. Generating adversarial examples on proxies

We describe our procedure to generate adversarial examples.
To maximize the transferability success rate of our perturba-
tions we improve the base attack in Section 2.2 in several
key ways:

• To limit attack overfitting on our proxy, we combine the
losses of two proxy models: Wav2Vec2 and HuBERT
(Large). Both models were pretrained on the entire
LV60k dataset and finetuned on 960h of LibriSpeech.

As these models have respectively a contrastive and
predictive objective, they are a representative sample of
SSL-pretrained ASR models. The sum of their losses
is used as the optimization objective in Equation 1.

• We use 10000 optimization steps, which is consider-
able (for comparison (Carlini & Wagner, 2018) use
4000) and can also lead to the adversarial noise overfit-
ting the proxy models. To mitigate this effect we use a
third model, the Data2Vec BASE network trained on
LibriSpeech, as a stopping criterion for the attack. At
each attack iteration, we feed our adversarial example
to Data2Vec, and keep track of the best-performing
perturbation (in terms of WER). We return that best
perturbation at the end of the attack.

Because this procedure is computationally expensive,
we only apply it to a subset A of 85 utterances of
less than 7 seconds. We sample them randomly in the
LibriSpeech test-clean set. We select attack targets at
random: we sample a completely disjoint subset B of
utterances in the LibriSpeech test-other set. To each
utterance in A we assign as target the transcription of
the sentence in B whose length is closest to its own.
This ensures that a very long target isn’t assigned to a
very short utterance or vice versa.

3.2. Transferring adversarial examples on ASR

We evaluate all SSL-pretrained models mentioned in Sec-
tion 2.1, along with several others for comparison: the mas-
sively multilingual speech recognizer or M-CTC (Lugosch
et al., 2022) trained with pseudo-labeling, The Whisper large
model (Radford et al., 2022) trained for ASR and Speech
translation on 680khrs of (unreleased) multilingual data, and
models trained from scratch for ASR: the Speech-to-text
model from Fairseq (Wang et al., 2020), the CRDNN and
Transformer from SpeechBrain (Ravanelli et al., 2021)

3.3. Metrics

We evaluate ASR performance with the Word-Error-Rate
(WER) between model outputs and ground truth.

When evaluating the success of adversarial examples, we
can also use the Word-Error-Rate. Between the prediction
and the attack target yt, a low WER indicates a successful
attack. We define the targeted attack success rate as

TASR = max(1− WER(f(x+ δ), yt), 0) (2)

It is also interesting to look at the results of the attack in
terms of denial-of-service, i.e. the attack’s ability to stop
the model from predicting the correct transcription y. Here
a high WER indicates a successful attack. We define the
untargeted attack success rate as

UASR = min(WER(f(x+ δ), y), 1) (3)
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Model Unlabeled Labeled Clean Attack success rate
data data WER

targeted untargeted
Wav2Vec2-Large LV60k LS960 2.0% 88.0% 100%
HuBERT-Large LV60k LS960 1.9% 87.2% 100%
Data2Vec-Base LS960 LS960 2.5% 63.4% 100%
Wav2Vec2-Base LS960 LS960 2.6% 55.7% 100%
Wav2Vec2-Base LS960 LS100 3.4% 53.9% 100%

Wav2Vec2-Large LS960 LS960 2.3% 50.7% 100%
Data2Vec-Large LS960 LS960 1.9% 66% 100%

HuBERT-XLarge LV60k LS960 1.8% 80.9% 100%
UniSpeech-Sat-Base LS960 LS100 3.5% 50.4% 100%

WavLM-Base LV60k+VoxPopuli+GS LS100 2.9% 21.7% 100%
Wav2Vec2-Large LV60k+CV+SB+FSH LS960 3.3% 67.3% 100%
Wav2Vec2-Large LV60k+CV+SB+FSH SB 6.3% 41.5% 100%
Wav2Vec2-Large CV-multi CV-multi 15.6% 17.7% 100%
Wav2Vec2-Large CV-en CV-en 7.69% 19.7% 100%
Wav2Vec2-Large CV-fr CV-fr 100% 0% 100%
M-CTC-Large None CV (en) 21.7% 7.5% 76.4%
Speech2Text None LS960 3.5% 7.3% 63.3%
SB CRDNN None LS960 2.9% 5.9% 86.4%

SB Transformer None LS960 2.3% 6.5% 90.6%
Whisper Large None 680khrs 2.3% 0% 43.8%

Table 1. Results of the transferred attack on different ASR models (SNR = 30dB). The first three lines correspond to the proxies used to
generate the adversarial examples. On all other models, the adversarial examples are transferred. We report for each model how much
data was used for SSL pretraining and ASR finetuning. We also report its Word-Error-Rate on the LibriSpeech test-clean set, and the
targeted and untargeted word-level attack success rate (see Section 3.3)

Finally, we control the amount of noise in our adversarial
examples with the Signal-Noise Ratio (SNR), defined as

SNR(δ, x) = 10 log(
∥x∥22
∥δ∥22

) (4)

for an input x and a perturbation δ. When generating adver-
sarial examples we adjust the L∞ bound ϵ (equation 1) to
achieve a target SNR.

3.4. Results

We report the results of our adversarial examples in Table
1 for ϵ = 0.015, corresponding to a Signal-Noise Ratio of
30dB on average. In Appendix C.1 we also report results
for a larger ϵ value.

On 12 out of 17 models, we observe that the attack achieves
total denial-of-service: the untargeted success rate is 100%.
Moreover, on the first 6 models (proxies aside), the targeted
attack success rate ranges between 50% and 81%: the target
is more than half correctly predicted! These results are in
flagrant contradiction with past works on DeepSpeech2-like
models, where even the slightest change in training leads to
a total absence of targeted transferability between proxy and
private model. Our private models vary from the proxies

in depth, number of parameters and even training methods,
yet we observe important transferability. However, these 6
models have all been pretrained on LibriSpeech or Libri-
Light with SSL pretraining, i.e. the same data distribution
as our proxies.

The following five models were pretrained on different
datasets. One was pretrained on a combination of Libri-
Light, VoxPopuli and GigaSpeech; two on Libri-Light, Com-
monVoice, SwitchBoard and Fisher; and two on Common-
Voice either multilingual or English. The transferability
success rate on these five models ranges from 18% to 67%,
which is significant. Even the CommonVoice models, whose
training data has no intersection with Libri-Light, are par-
tially affected.

Although our inputs and attack targets are in English, we
apply them to a French-only CommonVoice Wav2vec2. This
model, incapable of decoding clean LibriSpeech data, is
also unaffected by our targeted perturbation. It therefore
seems that, while multilingual models are not robust to our
examples, a minimal performance on the original language
is required to observe transferability.

The final 5 models for which the targeted transferability
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Model \Proxy None
LS960

LS960
LS960

LV
LS960

LV-CV-
SB-FSH
LS960

LV-CV-
SB-FSH
SB300

CV
CV

None LS960 99.1% 0% 0% 0% 0% 0%
LS960 LS960 0% 30.7% 9.1% 5.5% 0% 0%

LV LS960 0% 0% 84.3% 44.1% 18.5% 0%
LV-CV-SB-FSH LS960 0% 0% 55.2% 76.0% 33.9% 0%
LV-CV-SB-FSH SB300 0% 0% 9.7% 53.7% 62.3% 0%

CV CV 0% 0% 11.9% 8.4% 7.4% 91.1%

Table 2. Word-level success rate of the attack with different proxies and models. Each row corresponds to a different proxy, each column
to a different private model. The format is [pretraining-data fine-tuning-data]. All models follow the Wav2Vec2-Large architecture.

rate is null or close to null, are those that were not SSL-
pretrained at all (including M-CTC which was pretrained
with pseudo-labeling). These four models also partially
resist the untargeted attack.

It emerges from these results that some recent ASR models,
specifically those pretrained with SSL, can be vulnerable to
transferred attacks. These results diverge significantly from
previous works like (Abdullah et al., 2021b; 2022a) which
showed no transferability between different models. Table 1
hints that SSL plays an large role in transferability. The next
section establishes stronger evidence of that hypothesis.

4. Ablation study
In this section, we conduct a thorough ablation study and
quantify to what extent SSL pretraining makes ASR models
vulnerable to transferred attacks. We also measure the influ-
ence of several other factors on transferability. This ablation
study requires the generation of many sets of adversarial
examples, using varying models as proxy. Since those at-
tacks have an important computational cost, we reduce the
number of forward/backward passes in out attack. We run
the attack in Section 2.2 with one proxy model at a time and
1000 optimization steps.

We choose particularly relevant sets of models for this abla-
tion study. In Appendix B, we report a full results table of
cross transferability between all models we have access to.

4.1. Influence of self-supervised learning

In this section, we compare Wav2Vec2 Large models with
varying pretraining data. We consider models pretrained
on LibriVox (60khrs), LibriSpeech (960h), CommonVoice
english (1087hrs), an ensemble of LibriVox, CommonVoice,
Fisher and SwitchBoard (∼ 64khrs), or none at all. We use
each model both as a proxy to generate adversarial noise
and as a private model for evaluation with other proxies. We
train the Wav2Vec2 model with no pretraining data locally,
by using the Wav2Vec2 finetuning recipe in Fairseq (Ott
et al., 2019) with random initialization. This model achieves

7.6% WER on the LibriSpeech clean test set.

We report the success rate of our attacks in Table 2. These re-
sults show unambiguously that SSL pretraining plays a huge
role in the transferability of adversarial attacks. Models
pretrained on small datasets (LibriSpeech, CommonVoice,
none) are ineffective as proxy, with success rates of 0%
consistently; while the other models are partially successful,
with transferability success rates in the 0-55% range de-
pending on the private model. In addition, the unpretrained
model is the only one on which all proxies entirely fail.
Within our range of study, we can summarize the results of
Table 2 as follows:

• SSL pretraining in the proxy and the attacked model
are necessary conditions for attack transferability

• Increasing the amount of pretraining data in the proxy
increases the transferability success rate

In other words the vulnerability of ASR models to adver-
sarial attacks without gradient access worsened rather than
mitigated by increasing amounts of pretraining data. The
effect of SSL pretraining on transferability is easily observ-
able with the evolution of the target loss while generating
adversarial examples: we plot that loss in Appendix C.3.

4.2. Model size and training hyperparameters

We now extend our ablation study to models pretrained with
different SSL paradigms. We report the results in Table 3.
We observe that adversarial examples also transfer between
models trained with different paradigms. Using the same
pretraining method in proxy and attacked model does not
appear to be a critical factor in transferability: at equal data,
some proxies are consistently more effective than others
across all attacked models. The HuBERT Large model
(pretrained on 60kh) is the best proxy by a large margin.

In Appendix C, we evaluate the impact of additional fac-
tors such as attack radius, regularization and the usage of
language models with ASR.
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Model \Proxy
W2V2
Base

LS960

W2V2
Large
LS960

W2V2
Large
LV60

D2V
Base

LS960

D2V
Large
LS960

HB
Large
LV60

HB
XLarge

LV60
W2V2 Base LS960 84.72% 8.49% 9.48% 0% 0% 19.17% 8.98%

W2V2 Large LS960 11.0% 30.69% 1.84% 0% 0 19.02 5.87
W2V2 Large LV60 0 0 88.61 0 0% 39.18% 11.88%
D2V Base LS960 0% 0% 0.92% 94.13% 0% 14.29% 0.14%

D2V Large LS960 0% 0% 15.21% 0% 94.53% 38.61% 18.6%
HB Large LV60 0% 0% 17.47% 0% 0% 87.98% 28.71%

HB XLarge LV60 0% 0% 14.99 % 0% 0% 55.3% 62.38%

Table 3. Attack success rate with different proxies and models. Each row corresponds to a different proxy, each column to a different
private model. The format is [Model-type Model-size pretraining-data] where model types are Wav2Vec2 (W2V2), Data2Vec (D2V) and
HuBERT (HB). Each model was fine-tuned on 960h of LibriSpeech training data.

5. Related work
The transferability of adversarial attacks has been known for
many years in Image Classification (Papernot et al., 2016).
On ASR it has been limited to simple attack objectives, like
preventing WakeWord detection in Alexa (Li et al., 2019)
or signal processing-based attacks (Abdullah et al., 2021a;
2022b). When it comes to optimization-based attacks on
large ASR models, transferability claims are usually lim-
ited and focus on untargeted attacks (Wu et al., 2022). In
very specific cases there have been limited claims of tar-
geted, transferable attacks, such as (Yuan et al., 2018); how-
ever, this work does not focus on imperceptible attacks with
small amounts of noise, but rather attacks embedded in
music. When it comes to standard targeted optimization
attacks, (Abdullah et al., 2021b) have shown that they dis-
play no transferability on DeepSpeech2 models, even when
the proxy and the attacked model are trained with identical
hyperparameters apart from the initial random seed.

Past ASR adversarial attacks usually focus on a handful of
neural architectures, typically DeepSpeech2 (et al., 2016),
sometimes Listen Attend and Spell (Chan et al., 2016). Only
recently have attacks been extended to multiple recent ar-
chitectures for a fair comparison between models (Lu et al.,
2021; Olivier & Raj, 2022; Wu et al., 2022). Most related
to this work is Wu et al. (2022), which focuses on the vul-
nerability of SSL speech models. They however focus on
attacking the base pretrained model with untargeted noise
that remains effective on downstream tasks. We study tar-
geted attacks, with a much deeper focus on transferability
between different models. Olivier & Raj (2022) have hinted
that Wav2Vec2 models are vulnerable to transferred attacks,
but only report limited results on two models and do not
investigate the cause of that phenomenon. We attribute it to
SSL pretraining and back our claims empirically.

Abdullah et al. (2022a) have identified factors that hinder
transferability for ASR attacks, such as MFCC features,
Recurrent Neural Networks, and large output sizes. Since

Wav2Vec2 is a CNN-Transformer model with character out-
puts: this gives it a better prior than DeepSpeech2 to achieve
transferable adversarial attacks. However, according to that
paper, this should be far from sufficient to obtain transfer-
able attacks: our results differ for SSL-pretrained models.

6. Conclusion
We have shown that ASR targeted attacks are transferable
between SSL-pretrained ASR models. Direct access to
their weights is no longer required to fool models to predict
outputs of the attacker’s choice - and to an extent, knowledge
of its training data is not required either. With that in mind,
and given the existence of over-the-air attack algorithms, we
expect attacks against ASR to become a practical, realistic
threat as Wav2Vec2-type models are deployed in production.

In that context, it is paramount to develop adversarial de-
fense mechanisms for ASR models. Fortunately, such de-
fenses already exist, but they come at the cost of a tradeoff
in model performance.We illustrate it in appendix D. Further
research should be carried out into mitigating that tradeoff
and adapting to ASR the most effective defenses in image
classification, such as adversarial training.

Beyond those security aspects, our results are interesting in
that they demonstrate a unique similarity between speech
models representations trained very differently. They could
suggest that several SSL paradigms ultimately ”converge”
to the same representations, when scaled. We believe that
those properties are worth exploring further and illustrate
how adversarial perturbations are a powerful analysis tool
for understanding neural models.
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A. Experimental details for LibriSpeech experiments
A.1. Frameworks

We compute adversarial examples using the robust speech framework (Olivier & Raj, 2022). This library uses Speechbrain
(Ravanelli et al., 2021) to load and train ASR models and offers implementations of various adversarial attack algorithms.
Models and attacks are implemented using PyTorch (Paszke et al., 2019).

We use robust speech for evaluation on SpeechBrain-supported models. In section 3 we export a HuggingFace Dataset
(Lhoest et al., 2021), then evaluate models via the HuggingFace Transformers (et al., 2020) library. Finally, we use Fairseq
(Ott et al., 2019) for training models from scratch

All of our robust speech and Fairseq configurations are released alongside this article.

A.2. Attack Hyperparameters

We exploit the Carlini&Wagner attack (see section 2.2) implemented in robust speech, with the following hyperparameters:

• initial ϵ: 0.015 (and 0.04 in appendix C.1)

• learning rate: 0005

• number of decreasing ϵ values: 1

• Regularization constant c: 10

• optimizer: SGD

• attack iterations: 10000 in section 3.1, 1000 in section 4

A.3. Dataset and targets

Our adversarial dataset in section 3.1 consists of 85 sentences from the LibriSpeech test-clean set. To extract these sentences
we take the first 200 sentences in the manifest, then keep only those shorter than 7 seconds. In section 4, we take the first
100 sentences and filter those shorter than 14 seconds.

As attack targets, we use actual LibriSpeech sentences sampled from the test-other set. Our candidate targets are:

• Let me see how can i begin

• Now go I can’t keep my eyes open

• So you are not a grave digger then

• He had hardly the strength to stammer

• What can this mean she said to herself

• Not years for she’s only five and twenty

• What does not a man undergo for the sake of a cure

• It is easy enough with the child you will carry her out

• Poor little man said the lady you miss your mother don’t you

• At last the little lieutenant could bear the anxiety no longer

• Take the meat of one large crab scraping out all of the fat from the shell

• Tis a strange change and I am very sorry for it but I’ll swear I know not how to help it

• The bourgeois did not care much about being buried in the Vaugirard it hinted at poverty pere Lachaise if you please

For each sentence we attack, we assign the candidate target with the closest length to the sentence’s original target.
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A.4. Models

A.4.1. TRAINING WAV2VEC2 MODELS FROM SCRATCH

We use Fairseq to train Base and Large Wav2Vec2 models from scratch. Unfortunately, no configuration or pretrained
weights have been released for that purpose, and we resort to using Wav2Vec2 fine-tuning configurations while simply
skipping the pretraining step. Despite our attempts to tune training hyperparameters, we do not match the expected
performance of a Wav2Vec2 model trained from scratch: (Baevski et al., 2020) report a WER of 3.0% for a large model,
while we only get 9.1%.

A.4.2. GENERATING ADVERSARIAL EXAMPLES

Wav2Vec2, HuBERT and Data2Vec models are all supported directly in robust speech and are therefore those we use for
generating adversarial examples. We use the HuggingFace backend of Speechbrain for most pretrained models, and its
Fairseq backend for a few (Wav2Vec2-Base models fine-tuned on 10h and 1h, and models trained from scratch). In both
cases, the model’s original tokenizer cannot be loaded in SpeechBrain directly. Therefore, we fine-tune the final projection
layer of each model on 1h of LibriSpeech train-clean data.

The Wav2Vec2 model pretrained and fine-tuned on CommonVoice is a SpeechBrain original model. Similarly, we fine-tune
it on 1h of LibriSpeech data as a shift from the CommonVoice output space to the LibriSpeech one. As a result, all our
models share the same character output space.

A.4.3. EVALUATING PRETRAINED MODELS

In section 3, we directly evaluate models from HuggingFace Transformers and SpeechBrain on our adversarial dataset,
without modification.

B. Full results table for cross-model LibriSpeech and LibriVox attacks
Table 4 completes the ablation study in Section 4 by evaluating all pairwise Proxy-Model combinations in our pool of
Wav2Vec2-type models, trained on LibriSpeech and/or LibriLight.

C. Influence of hyperparameters on attack results
C.1. Attack radius

In Table 5 we extend the results of Table 1 by comparing attack results for two different attack radii. These radii are
ϵ = 0.015 and ϵ = 0.04, corresponding respectively to Signal-Noise Ratios of 30dB and 22dB respectively. The former is
identical to Table 5; the latter is substantially larger, and corresponds to a more easily perceptible noise.

Looking at the white-box attack results on the proxy models the difference is drastic: with larger noise the targeted success
rate jumps from 88% to 98%. The transferred attack results on SSL-pretrained models also increase overall, with success
increases ranging from 0% (Wav2Vec2-Large) to 20% (Data2Vec-Large) with a median increase of 10%. Crucially however,
the targeted success does not increase at all and even decreases for ASR models trained from scratch. This confirms that
there is a structural difference between the robustness of ASR models with and without SSL, that cannot be bridged simply
by increasing the attack strength.

C.2. Language models

In section 3 we report the results of our adversarial dataset on multiple Wav2Vec2-type models, enhanced with an N-gram
language model whenever available. In Table 6 we evaluate the influence of that language model on attack results.

We observe that the attack success rate systematically increases by 8 to 17% when adding a language model to the ASR
model. This is understandable considering that our targets are sound English sentences: if a model tends to transcribe that
target with mistakes, the language model can bridge that gap. To put it differently, the more prone an ASR model is to
output sentences in a given distribution, the more vulnerable it is to attacks with targets sampled from that distribution.
Language models are therefore more of a liability than a defense against attacks, and most likely so would be many tricks
applied to an ASR model in order to improve its general performance.
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(a) With dropout (b) Without dropout

Figure 3. Evolution over attack steps of the loss on one adversarial input for three models: the Wav2Vec2 Large proxy and two targets,
respectively with and without SSL pretraining. We run attacks (a) with dropout in the proxy model, and (b) without dropout in the proxy
model.

C.3. Effect of model regularization on transferability

As mentioned in Section 2.2 we use regularization tricks like dropout in all proxy models when optimizing the adversarial
perturbation. In Figure 3b we plot the loss on proxy and private models without that regularization, for comparison with
Figure 3a. We observe that the loss degrades significantly on private models without regularization.

On the other hand, the loss on the proxy converges much faster in Figure 3b: removing model regularization makes for
better, faster white-box attacks, at the cost of all transferability. To the extent of our knowledge, past work like (Carlini &
Wagner, 2018) have not used regularization for generation, explaining why they report better white-box attacks than we do
in terms of WER and SNR. However, as we have established above, applying regularization against standard ASR models
does not lead to transferable adversarial examples: for that SSL pretraining is also required.

D. Defending against adversarial examples
Although we have shown that adversarial attacks can represent an important threat for private, SSL-based ASR models, it is
possible to defend against them. Randomized smoothing (Cohen et al., 2019) is a popular adversarial defense that has been
applied to ASR in the past (Olivier & Raj, 2021) and comes with some robustness guarantees. It consists in applying to
the inputs, before feeding them to the model, amounts of random gaussian noise that are significantly larger than potential
adversarial perturbations in L2 norm. For reference we try applying it on some of our models.

We follow (Olivier & Raj, 2021) and enhance randomized smoothing with a-priori SNR estimation and ROVER voting
(with 8 outputs) to boost performance. We use gaussian deviation σ = 0.02. For evaluation, we simply check the effect of
our adversarial examples generated in section 3.1 on the smoothed model. A rigorous evaluation would require us to design
adaptive attacks (Athalye et al., 2018; Tramer et al., 2020); since this paper does not focus on claiming robustness to attacks,
we restrict ourselves to a simpler setting.

We report our results in Table 7 for the Wav2Vec2-Base, Wav2Vec2-Large and Data2Vec-Large models, pretrained and
fine-tuned on 960h of LibriSpeech training data. We observe that randomized smoothing is sufficient to block the targeted
attack completely (0% success rate) and recover most of the original transcription (the untargeted success rate drops to
14-34% depending on the model). However, due to the addition of gaussian noise on all inputs the defense takes a toll on the
performance on clean data: the WER jumps by 4-10%. The standard deviation σ controls this tradeoff between robustness
and performance; we chose the value of σ that minimizes the untargeted success rate.

Unsurprisingly, randomized smoothing is a promising protection against transferred attacks, but it does leave room for
improvement. These results illustrate the need for additional research on adversarial defenses.



Transferable Adversarial Perturbations between Self-Supervised Speech Recognition Models

Model\Proxy W2V- B W2V-B W2V-B W2V-B D2V-B
LS960 960h LS960 100h LS960 10h LS960 1h LS960 960h
CER WER CER WER CER WER CER WER CER WER

W2V-B LS960 960h 96.37 84.72 80.61 49.01 64.11 30.69 53.41 18.46 20.61 0
W2V-B LS960 100h 81.42 54.46 99.24 97.74 81.18 47.6 64.18 25.04 25.23 0
W2V-B LS960 10h 42.64 42.64 87.9 60.25 99.117 97.6 72.91 30.13 23.47 0
W2V-B LS960 1h 69.3 33.52 78.84 43.71 81.12 45.12 99.498 98.66 20.91 0

D2V-B LS960 960h 37.9 0 17.68 0 10.88 0 7.94 0 98.44 94.13
W2V-L LS960 960h 44.61 11 20.36 0 13.46 0 8.32 0 16.8 0
D2V-L LS960 960h 28.72 0 8.68 0 5.36 0 4.94 0 25.03 0
W2V-L LV60k 960h 29.24 0 11.12 0 5.68 0 3.19 0 13.73 0
HB-L LV60k 960h 23.83 0 7.29 0 4.83 0 3.91 0 14.92 0

HB-XL LV60k 960h 26.55 0 6.71 0 5.21 0 4.37 0 17.53 0
W2V-L CV CV+1h 27.38 0 12.59 0 11.01 0 9.61 0 19.24 0
W2V-B None 960h 7.84 0 4.45 0 4.05 0 3.83 0 5.51 0
W2V-L None 960h 8.12 0 4.63 0 4.55 0 3.44 0 5.44 0

W2V- L D2V-L W2V-L HB-L HB-XL
LS960 960h LS960 960h LV60k 960h LV60k 960h LV60k 960h
CER WER CER WER CER WER CER WER CER WER

W2V-B LS960 960h 47.08 8.49 24.9 0 44.7 9.48 55.55 19.17 47.46 8.98
W2V-B LS960 100h 46.01 5.73 26.77 0 48.57 9.76 58.41 18.03 48.42 8.13
W2V-B LS960 10h 43.14 0 25.1 0 42.67 0 53.12 5.59 44.36 0
W2V-B LS960 1h 41.21 8.63 25.48 0.57 36.68 4.74 45.32 6.65 42.95 10.18

D2V-B LS960 960h 34.49 0 24.2 0 47.15 0.92 58.75 14.29 46.71 0.14
W2V-L LS960 960h 67.07 30.69 20.89 0 37.34 1.84 56.87 19.02 42.21 5.87
D2V-L LS960 960h 28.27 0 94.53 80.69 47.75 15.21 68.97 38.61 51.02 18.6
W2V-L LV60k 960h 25.19 0 16.05 0 97.13 88.61 71.78 39.18 46.61 11.88
HB-L LV60k 960h 27.19 0 30.08 0 49.27 17.47 97 87.98 56.83 28.71

HB-XL LV60k 960h 33.31 0 30.5 0 51.68 14.99 83.92 55.3 87.66 62.38
W2V-L CV CV+1h 27.8 0 26.85 0 56.72 11.67 46.94 0 39.95 0
W2V-B None 960h 11.19 0 9.6 0 7.16 0 6.72 0 11.07 0
W2V-L None 960h 11.15 0 9.19 0 7.52 0 7.45 0 11.23 0

W2V- L W2V-B W2V-L
CV CV+1h None 960h None 960h
CER WER CER WER CER WER

W2V-B LS960 960h 10.81 0 2.62 0 2.53 0
W2V-B LS960 100h 11.01 0 2.82 0 2.58 0
W2V-B LS960 10h 11.19 0 2.65 0 2.66 0
W2V-B LS960 1h 11.81 0 3.03 0 3.04 0

D2V-B LS960 960h 8.01 0 2.32 0 2.38 0
W2V-L LS960 960h 8.2 0 2.39 0 2.54 0
D2V-L LS960 960h 8.76 0 2.44 0 2.39 0
W2V-L LV60k 960h 9.08 0 2.59 0 2.47 0
HB-L LV60k 960h 8.65 0 2.5 0 2.55 0

HB-XL LV60k 960h 8.41 0 2.49 0 2.36 0
W2V-L CV CV+1h 97.46 88.68 3.25 0 3.18 0
W2V-B None 960h 5.77 0 99.57 99.01 19.05 0
W2V-L None 960h 5.53 0 22.93 0 99.93 99.58

Table 4. Targeted Character-level and Word-level success rate for adversarial attacks when varying the proxy and the target model. All
proxy-model pairs are evaluated within a pool of 13 models varying in training scheme, training data and size. The format is [Model]-[Size]
[Unlabeled data] [Labeled data]. Model is equal to W2V (Wav2Vec2), D2V (Data2Vec) or HB (HuBERT). Size is equal to B (Base), L
(Large) or XL (XLarge).



Transferable Adversarial Perturbations between Self-Supervised Speech Recognition Models

Model Unlabeled Labeled Attack Attack success rate
data data SNR (word level)

targeted untargeted
Wav2Vec2-Large LV60k LS960 30dB 88.0% 100%

22dB 98.4% 100%
HuBERT-Large LV60k LS960 30dB 87.2% 100%

22dB 98.5% 100%
Data2Vec-Base LS960 LS960 30dB 63.4% 100%

22dB 92% 100%
Wav2Vec2-Base LS960 LS960 30dB 55.7% 100%

22dB 62.9% 100%
Wav2Vec2-Base LS960 LS100 30dB 53.9% 100%

22dB 59.5% 100%
Wav2Vec2-Large LS960 LS960 30dB 50.7% 100%

22dB 49.4% 100%
Data2Vec-Large LS960 LS960 30dB 66% 100%

22dB 86.4% 100%
HuBERT-XLarge LV60k LS960 30dB 80.9% 100%

22dB 95.5% 100%
UniSpeech-Sat-Base LS960 LS100 30dB 50.4% 100%

22dB 62.4% 100%
WavLM-Base LV60k+VoxP+GS LS100 30dB 21.7% 100%

22dB 22.9% 100%
Wav2Vec2-Large CV CV+LS1 30dB 19.7% 100%

22dB 36.1% 100%
M-CTC-Large None CV 30dB 7.5% 76.4%

22dB 3.5% 83.4%
Speech2Text None LS960 30dB 7.3% 63.3%

22dB 2.3% 74.6%
SB CRDNN None LS960 30dB 5.9% 86.39%

22dB 1.5% 76.8%
SB Transformer None LS960 30dB 6.49% 90.56%

22dB 1.2% 76.1%

Table 5. Results of the transferred adversarial attack on different ASR models, with multiple Signal-Noise Ratios. The first three models
correspond to the proxies used to generate the adversarial examples. On all other models, the inputs have been transferred directly. We
report for each model how much unlabeled data was used for SSL pretraining and for ASR finetuning. We also report its Word-Error-Rate
on the LibriSpeech test-clean set, and the targeted and untargeted word-level attack success rate (see section 3.3)



Transferable Adversarial Perturbations between Self-Supervised Speech Recognition Models

Model Unlabeled Labeled Clean WER Attack success rate
data data (word level)

w/o LM with LM w/o LM with LM
Wav2Vec2-Large LV60k LS960 2.2% 2.0% 80.2% 88.0%
HuBERT-Large LV60k LS960 2.1% 1.9% 77.3% 87.2%
Data2Vec-Base LS960 LS960 3.2% 2.5% 51.7% 63.4%
Wav2Vec2-Base LS960 LS960 3.4% 2.6% 43.6% 55.7%
Wav2Vec2-Base LS960 LS100 6.2% 3.4% 41.8% 53.9%
Wav2Vec2-Large LS960 LS960 2.8% 2.3% 41.4% 50.7%
Data2Vec-Large LS960 LS960 2.2% 1.9% 56.9% 66%
HuBERT-XLarge LV60k LS960 2.0% 1.8% 63.9% 80.9%
UniSpeech-Sat-Base LS960 LS100 6.4% 3.5% 39.5% 50.4%

Table 6. Results of the transferred adversarial attack on different ASR models, with and without language models. We report for each
model how much unlabeled data was used for SSL pretraining and for ASR finetuning. We also report its Word-Error-Rate on the
LibriSpeech test-clean set, and the targeted word-level attack success rate (see section 3.3)

Model Smoothing Clean
WER Attack success rate

targeted untargeted
Wav2vec2-Base No 3.4% 55.7% 100%
Wav2vec2-Base Yes 13.5% 0% 33.9%
Wav2vec2-Large No 2.2% 50.7% 100%
Wav2vec2-Large Yes 7.3% 0% 19.5%
Data2Vec-Large No 2.2% 66% 100%
Data2Vec-Large Yes 6.7% 0% 14.1%

Table 7. Results of the transferred adversarial attack (generated in section 3.1) on the Wav2Vec2-Base, Wav2Vec2-Large and Data2Vec-
Large models. Each model was pretrained and fine-tuned on 960h of LibriSpeech training data. We report results on both the undefended
version of each model and one defended with randomized smoothing at σ = 0.02. We report the WER of each model on the LibriSpeech
test-clean set, and the word-level success rate of the attack (see Section 3.3).


