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ABSTRACT

Pre-trained Transformers have shown the potential to realize the dream of general
intelligence, encouraging researchers to explore the analogy between Transformers
and human brains. These advances raise the question of whether Transformers
have a modular structure similar to brain regions, where neurons are closely related
and specialized in a certain function. In this work, we analyze the modularity of
Transformers by studying the expert networks, which are clusters of neurons, in
Mixture-of-Experts (MoE) TransformersE] To evaluate the functional specialization
of experts, we propose a novel framework to identify the functionality of both neu-
rons and experts. We conduct empirical analyses on two representative pre-trained
Transformers and find that (1) Transformer neurons are functionally specialized,
which provides the necessary condition of modularity. (2) Transformer experts
are modularized. There are functional experts, where clustered are the neurons
specialized in a certain function. (3) The modular structure is stabilized at the early
stage of pre-training, which is faster than the neuron stabilization. It reveals the
coarse-to-fine mechanism of pre-training, which first constructs the coarse modular
structure and then improves the fine-grained neuron functions. In summary, we
explore the emergent modularity in pre-trained Transformers and hope to help the
community better understand the working mechanism of Transformers. Our code
and data will be released to facilitate future research.

1 INTRODUCTION

Recently, pre-trained Transformers have shown the potential to achieve general intelligence (Brown
et al.l 2021} [Fei et al., 2022; Reed et al., 2022)), which encourages researchers to explore the
analogy between Transformers and human brains (Toneva & Wehbe, [2019; |Caucheteux et al.| 2021}
Caucheteux & King|, 2022; (Goldstein et al., 2022). Previous work has shown that the behaviors of
Transformers are similar to those of human brains, which naturally raises a question: do Transformers
also have similar internal structures to human brains?

To study the internal structure of human brains, neuroscientists have partitioned the brain into
several regions, where the neurons in each region are closely connected and work for a certain
function (Garey, |1999; Graziano & Aflalo,[2007). In analogy to brain regions, we explore to discover
the modular structure of Transformers. Considering that module is a broad concept, in this work, we
study modules consisting of neurons and focus on two characteristics of modules: (1) Clustered.
The neurons in a module should be closely related, e.g., activated simultaneously (Meyes et al.}
2020); (2) Functionally Specialized. The neurons in a module should be specialized in a specific
function (Csordas et al.| 2021).

Towards the characteristic of clustering, we analyze the Mixture-of-Experts (MoE) structure (Jacobs
et al., [1991)) in Transformers because each expert is naturally a cluster of neurons (Lepikhin et al.,
2021}; [Fedus et al.;|2022). To study functional specialization, we propose a unified and hierarchical
framework to analyze the functionality of both neurons and expert networks. In this framework, we
study three diverse functions by a unified method, including semantic function (Scarlini et al., 2019b;
Suau et al.,2020), knowledge function (Jiang et al., 2020} Dai et al.| [2022), and task function. Based
on this framework, we can identify the functionality of neurons and experts.

The MoE partitioning may be done before or after pre-training.
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In this work, we study two types of MoE Transformers, pre-partitioned MoE (pre-MoE) and post-
partitioned MoE (post-MoE). Pre-MoE refers to the model architectures that expand feedforward
layers by MoE to improve model capacity before pre-training. Post-MoE refers to the models that are
converted from vanilla Transformers to their equivalent MoE version by MoEfication (Zhang et al.|
2022b)) after pre—trainingE] We conduct extensive experiments on Switch Transformer (Fedus et al.,
2022) and TS (Raffel et al.,|2020) for pre-MoE and post-MoE respectively. In summary, we study the
following research questions:

(Q1) Necessary condition of modularity: are neurons functionally specialized? We first study
the functional specialization of neurons, which is the foundation of functional modularity. According
to the experiments on neuron functions, we find that the neurons in pre-trained Transformers become
more specialized than those in randomly-initialized ones after self-supervised learning on large-scale
corpora. In particular, we find in pre-trained Transformers, there are several groups of neurons, each
of which excels in a specific function.

(Q2) Modularity of MoE: are expert networks modularized? We further study the function
distribution among experts. The results suggest that both pre-MoE and post-MoE Transformers have
a strong tendency to distribute the neurons excelling in a certain function concentratedly into some
experts Moreover, perturbing expert networks for a certain function will lead to more significant
performance degradation of the function than perturbing individual neurons specialized in the function.
Therefore, the expert networks indeed have specialized functions and are functionally modularized.

(Q3) Emergence of modularity: how do modular experts emerge? By analyzing the pre-training
process, we find that the functions of expert networks are stabilized to a large extent at the early stage
(around 15% of the total training steps) for both pre-MoE and post-MoE Transformers, which is
faster than the neuron stabilization. It reveals the coarse-to-fine mechanism of pre-training, which
first constructs the coarse modular structure and then improves the fine-grained neuron functions.

We hope our observations on the emergent modularity of expert networks in Transformers can provide
insights for future research on modular Transformers. Besides, it also provides a new modular
perspective to connect biological neural networks and artificial neural networks.

2 RELATED WORK

Interpreting Pre-trained Transformers. As large-scale pre-trained Transformers have achieved
great success on a wide range of NLP tasks (Min et al.,|2021; Bommasani et al.} 2021}, researchers
explore to understand how these models work (Rogers et al., [2020), such as probing the model
knowledge (Liu et al, 2019; Hewitt & Manning, 2019; |Petroni et al., |2019) and interpreting the
model behaviors (Voita et al., 2019; |Clark et al., 2019b). Among them, neuron-level analysis is
another important branch (Sajjad et al., [2021), which is most related to our work. Some works
study the contextualized representations as neurons and find that they capture amounts of linguistic
information (Dalvi et al.,|2019; |Durrani et al., 2020 |/Antverg & Belinkov, [2022). Other works study
the neurons in feedforward layers and find that there is various information encoded by neurons
such as concepts and facts (Suau et al., 2020; |Dai et al., 2022)). In this work, we follow the neuron
definition of the second group and try to understand how neurons are organized to form a modular
structure, which is a new interpretation perspective.

Modularity of Neural Networks. Modularity is a widespread property in complex systems, both
artificial (Ballard, 1987} Baldwin et al., |2000) and biological (Von Dassow & Munro, [1999; |[Lorenz
et al.| 2011;|Clune et al.,|2013). Previous work mainly focuses on incorporating explicitly designed
modules into neural networks (Andreas et al., 2016} Kirsch et al., 2018} |Goyal et al., 2021)). Recently,
Hod et al.[(2021); |Csordas et al.|(2021)) study whether standard neural networks become modular by
themselves, and have discovered some naturally-emerging modular structures of CNNs and LSTMs.
Compared to previous work, we extend the modular analysis to pre-trained Transformers, which are
expected to be more complex w.r.t. architecture and to capture more language knowledge.

?Since [Zhang et al.| (2022b) show that vanilla Transformers have implicit MoE structures by discovering
the inner correlation among neurons, we use the same method to MoEfy vanilla Transformers with parameters
frozen and study their expert networks.



Under review as a conference paper at ICLR 2023

Transformers with Mixture-of-Experts. Mixture-of-experts (Jacobs et al., |1991) is usually used
to enlarge the model capacity of Transformers while keeping the computational efficiency (Fedus et al.,
2022; |Lepikhin et al.| 2021). Specifically, for a given input, MoE conditionally selects a subset of
experts to process the input, and then combines the outputs of these experts to generate the final output.
Beyond computation efficiency, MoE is also used to implement modular Transformers (Gururangan
et al., [2022; |[Zhang et al., 2022a; |Pfeiffer et al.| |2022; Wang et al.,|2022). These works explicitly
design extra constraints during pre-training to ensure the modularization of expert networks. However,
it is still unclear whether standard Transformers can form modular structures by themselves. In this
work, we study the emergent modularity of both pre-MoE and post-MoE Transformers to understand
their inner working mechanism.

3 FUNCTIONALITY EVALUATION

In this section, we first introduce the definition of neurons, which are the basic units of experts, and
how to evaluate the functionality of neurons and experts. Then, we briefly introduce the evaluation
setups, including the pre-trained models.

Neurons in Transformer. Transformer is widely used by existing pre-trained language models (De+
vlin et al., 2019; Raffel et al., 2020; Brown et al., [2021)), which is mainly composed of attention and
feedforward networks (Vaswani et al., 2017). Among them, feedforward networks (FFNs) account for
about two-thirds of the parameters and are the main components of Transformer. Moreover, previous
work has shown that there is rich information in FENs (Suau et al.| [2020; |Da1 et al., [2022; |Geva et al.,
2021)). Hence, we focus on FFNs in this work and study how information distributes in FFNs.

Specifically, the Transformer FFN is a two-layer MLP and computes the output by FFN(x) =
WOo(Wlz + bl) + b9, where Wl € Rér7xd WO ¢ RI¥4ss are the weight matrices, b €
Rérs , b© e R4 are the bias vectors, d, dy ¢ are the dimensions of input and intermediate hidden layer,
and o is the activation function. For simplicity, we discard the bias terms in the following analysis.
For fine-grained analysis, we dissect the FFN into neurons and rewrite the FEN equation as

FFN(z) = > o(W/, - 2)W, (1)

where W/, and W are the i-th row and column of W' and W, respectively. The FFN output is
the sum of the outputs of all neurons. From this perspective, we define a neuron n; as a row vector
WI and a column vector W.9. The neuron activation of n; is CT(WI x). The number of neurons
in an FFN is equal to the hidden dimension of the first linear layer dy .

Mixture-of-experts in Transformer is a variant of FFEN (Lepikhin et al.l [2021}; Fedus et al., [2022),
which significantly increases the model capacity by adding more parameters and keeps similar
computational costs. In MoE layers, each expert is an FFN, and the output of the MoE layer is the

weighted sum of the outputs of all experts, MoE(x) = Zf;l a;FFN; (), where «; is the weight
of the i-th expert and FFN; is the ¢-th expert e;. «; is computed by a gating network. We can also
rewrite the MoE layer into a neuron-based form,

MoE(z Zaz )W = o(Wi. )W, )

0,7

where WZI ;.. and Wlo ; are the j-th row and column of W/ and W2, respectively. The gating
coefficient «; is non-negative and can be viewed as the scaling factor of Wto ;j-Correspondingly, we
define a neuron n; ; as a row vector WI . and a column vector WZO e and the neuron activation of
nijiso(Wl - x).

Predictivity for Functions. To comprehensively study the functions of neurons and experts, we
cover three typical functions, including semantic function, knowledge function, and task function.
To study these functions finely, we construct sub-functions for each function and there are 576
sub-functions in total. Please refer to Appendix [A.6|for the details of the functions.
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To evaluate the ability of a neuron to capture the pattern of a sub-function, we compute the predictivity
of the neuron activations for the sub-function. Based on neuron predictivity, we can further evaluate
the predictivity of experts. Following|Suau et al.| (2020), we focus on the sub-functions that can be
formulated as a binary classification problem.

We denote the dataset of a sub-function as D = {(s;,y;)} LZ‘l, where s; is the input sequence and
y; € {0,1} is the label. Since the computation of FENs is pointwise, we define the activation of
the neuron n; of a sequence s as a = maxges o(W{, - x), where s = {x1,Ts,...,2;} is the
hidden states of s and [ is the length of s. Then, we have the pairs of neuron activations and labels,

A=A{(ai,y;)} ‘2'1 Based on A, we compute the average precision (AP) of the neuron activations as
the predictivity of the neuron. For the ¢-th expert, we compute the average AP of all neurons in the
expert as the predictivity of the expert for the sub-function. Please refer to Appendix [A.5]for more
details.

Evaluation Setups. In the experiments, we evaluate two representative pre-trained Transformers,
Switch Transformer (Fedus et al.| 2022) and T5 (Ratffel et al., 2020). The architecture of Switch
Transformer is similar to TS except that Switch Transformer replaces FFNs in the even Transformer
layer with MoE layers, and belongs to the pre-MoE Transformers. To evaluate the implicit structure
of TS5, we convert them into their corresponding MoE version by MoEfication (Zhang et al., |2022b).
The vanilla TS after MoEfication belongs to the post-MoE Transformers. To match the experimental
settings, we choose the base size of these two models and set the number of experts in each MoE
layer to 16. Since the functionality evaluation does not involve decoding, we only compute the neuron
predictivity of the encoders. Besides, we focus on the neurons in MoE layers for Switch Transformer
to facilitate the modular analysis in the following sections.

4 ARE NEURONS FUNCTIONALLY SPECIALIZED?

In this section, we study the functional specialization of neurons, which is the necessary condition of
modularity. If we find that there is a group of neurons that mainly excel in a certain function, we can
conclude that the neurons are functionally specialized.

We first study how functions distribute among different Transformer layers. Specifically, we compute
the best predictivity of neurons for each sub-function and then calculate the average best predictivity
among all sub-functions in each function. For presentation consistency, we normalize the best
predictivity for each function. Then, we study how functions distribute in each layer. Specifically, we
first identify the neurons with the top predictivity ranking for each sub-function as sub-functional
neurons in each layer and then compute the overlap between the two sets of sub-functional neurons.

Formally, assuming that we identify the top k neurons for each sub-function, the overlap score

. - I(n: EN- .
is defined as M, where N and N, are the sets of neurons for the two considered

sub-functions. If the overlap score is high, it means the two sub-functions share a large portion of
neurons. In the experiments, we set k¥ = 32 for TS and k = 512 for Switch Transformer. Since there
are hundreds of sub-functions, it is impossible to display all of them in a figure and we compute the
average overlap score between two functions to measure the distribution similarity between different
functions. Note that we omit the self-overlap scores, which are always equal to 1. For comparisons,
we also evaluate randomly-initialized models.

We report the results in Figure|l} From this figure, we have the following observations. (1) The best
predictivity of pre-trained neurons is significantly higher than that of randomly-initialized neurons,
indicating that the neurons have learned these functions from pre-training and the neurons with
top-ranked predictivity indeed excel in corresponding sub-functions. (2) The best predictivity of
the task function increases with the layer number while the best predictivity of the semantic and
knowledge functions varies little across layers. It suggests that the difficulty of the task function
may be higher than the semantic and knowledge functions so the higher layers are more suitable
for learning the task function. (3) In the pre-trained models, the distribution similarity of the same
function is significantly larger than that of different functions, which indicates that the sub-functions
of the same function share a large portion of neurons. And, it is different from the randomly-initialized
models as shown in Appendix [A.T] Hence, we conclude that there are some emergent groups of
neurons after pre-training, each of which is corresponding to a certain function. (4) One neuron
may be capable of multiple sub-functions even from different functions. For example, the average
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Figure 1: Best neuron predictivity of each layer and distribution similarity between different functions
of (a) Switch Transformer and (b) TS. We report the average predictivity of each function and the
average distribution similarity of different layers. We consider the pre-trained models and their
randomly-initialized counterparts.

overlap score between the knowledge function and task function is also significantly higher than that
of random models so there are some neurons good at both knowledge and task sub-functions.

5 ARE EXPERT NETWORKS MODULARIZED?

In this section, we study the modularity of expert networks. First, we verify whether the neurons
specialized in a certain function are concentrated in some experts. Second, we perturb the experts
corresponding to a certain function to evaluate the importance of the experts for model performance.

Neuron distribution among experts. If experts were not functionally specialized, the sub-
functional neurons would be randomly distributed among experts. Hence, we conduct statistical
hypothesis testing to evaluate whether the neuron distribution among experts is significantly different
from random. Assume that there are N neurons in a layer, n g neurons in each expert, k sub-functional
neurons for each sub-function, and M sub-functions in a certain function. The null hypothesis is that
the sub-functional neurons for different sub-functions are independently and randomly distributed
among experts, i.e., the number of sub-functional neurons in each expert follows a hypergeometric
distribution with parameters N, K, and ng. The sum of the numbers of sub-functional neurons for
each sub-function in an expert is denoted by rlﬂ The alternative hypothesis is that an expert has a
larger r; than expected by chance.

In our experiments, we treat the neurons with the highest 1% predictivity for each sub-function as its
sub-functional neurons. For each function, we compute the p-value of the sum of the hypergeometric
distribution for each expert and reject the null hypothesis if the p-value is less than 0.001. We also
conduct the same experiment on random partitioning, where the neurons are randomly partitioned
into expert-sized clusters. We regard the experts that reject the null hypothesis as functional experts
and report the proportion of functional experts to all experts in each function. And, we also consider
the modularization degree. The modularization degree of a functional expert is defined as the relative

ratio of functional neurons in the expert compared to uniform distribution, 7 /(2£) 'where L= is
neg N ng
d Mk

the proportion of functional neurons in the expert and =" is the proportion expectation of functional
neurons under the uniform distribution. The overall degree is 0 if no functional expert exists, and
otherwise is the average degree among all functional experts.

The results are shown in Table m From this table, we have two observations. (1) There are much
more functional experts in the pre-MoE partitioning of Switch Transformer than in the random

3We do not find a general form for the distribution of the sum of independent hypergeometric distributions.
Since K is significantly smaller than N, we approximate the hypergeometric distribution with a binomial
distribution in the experiments.
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Table 1: Proportion of functional experts and their modularization degree.

S Semantics Knowledge Task
Model Partitioning Prop. Degree Prop. Degree Prop. Degree
Switch Random 0.226  1.038 0.052  0.652 0.003  0.066

Transformer Pre-MoE 0.354 1.490 0.260 1.560 0.219 1.604

Random 0.252  1.203 0.061 1.031 0.007 0.221
Post-MoE 0.338  2.000 0.214 2.686 0.120 3.276
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Figure 2: Perturbation performance on different datasets. Each line has a unique perturbation order.
For “Random”, we randomly perturb neurons. For “SST-2”, “MRPC”, “CoLA”, “QQP”, we are
guided by the neuron predictivity on each dataset and perturb the neurons with top-ranked predictivity.
For “Avg”, we sum the predictivity of all datasets above and also perturb the neurons with top-ranked
sum of the predictivity. For “MoE”, we consider the experts with top-ranked sum of the predictivity.
The seen datasets are the four datasets above. The unseen datasets include six other datasets.

partitioning. Moreover, the modularization degree of the functional experts in the pre-MoE is
significantly higher than that in the random partitioning. It indicates that pre-trained experts are more
likely to intensively include neurons excelling in a certain function. (2) The proportion of functional
experts and modularization degree in the post-MoE partitioning of T5 are as good as those in the
pre-MoE of Switch Transformer. It suggests that we can also discover modular experts from T5 by
MokEfication and achieve similar results to those of Switch Transformer. (3) We further compare the
predictivity of the functional experts and non-functional experts and find that the functional experts
have significantly higher predictivity than the non-functional experts in their corresponding functions.
It indicates that our quantification for expert predictivity is consistent with the concept of functional
experts. More details are in Appendix

Perturbation analysis. Furthermore, we conduct perturbation experiments, which are widely used
to analyze both biological and artificial neural networks (Michel et al.,|2019; |Cowley et al.l 2022), to
evaluate the effect of functional experts on model performance.

Specifically, we perturb the neuron activations of the target experts by adding random noises to them
and evaluate the perturbed models on the downstream tasks. We rank experts according to their sum
of the predictivity for several downstream datasets and perturb the top-ranked experts. We regard
the datasets used in computing the sum of the predictivity as seen datasets, including SST-2, MRPC,
CoLA, and QQP. To evaluate the generalization ability of the functional experts, we also perturb them
and evaluate the perturbed models on unseen datasets, including MNLI, QNLI, CB (De Marneffe
et al.}2019), MultiRC (Khashabi et al.,|2018), and BoolQ (Clark et al.| 2019a). For comparisons,
we also conduct neuron-level perturbation and keep the proportion of perturbed neurons equal to
that of expert-level perturbation. There are three kinds of neuron-level perturbations: (1) perturb
the neurons that have top-ranked predictivity for a certain dataset, (2) perturb the neurons that have
top-ranked sum of the predictivity for seen datasets, and (3) perturb the neurons randomly. The
perturbed pre-trained Transformers is T5 and we only perturb the neurons in the last four layers
because the task function is mainly located in the last layers as shown in Figure
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Figure 3: Changing curves of the proportion of functional experts and their modularization degree.
We also mark the value for random partitioning on the curve.

We report the average accuracy of the perturbed models on the downstream tasks in Figure 2] From
this figure, we have three observations. (1) The functional experts are very important for the model
performance. For example, perturbing 10% of neurons in the functional experts decreases the average
accuracy by nearly 30% and makes the model perform as random guessing. (2) “Avg” perturbation
achieves a larger performance drop than single-dataset perturbation, which is expected because
intuitively it perturbs the neurons with high overall predictivity. (3) Perturbing functional experts
leads to a more significant performance drop than perturbing individual neurons on both seen
and unseen datasets when the proportion of perturbed neurons is higher than 6%. It suggests neurons
in the functional experts cooperate instead of working independently so perturbing them will destroy
the cooperation and lead to a more significant performance drop. We conclude single neurons can not
perform a function well in lack of the cooperation with modules despite their high overall predictivity.

In summary, we observe that the specialized neurons tend to be located concentratedly in some
experts and the functional experts play an important role when the model performs related functions.
Hence, it is reasonable to study the expert networks in Transformers as modules.

6 HOW DO MODULAR EXPERTS EMERGE DURING PRE-TRAINING?

To study the pre-training process, we pre-train the base version of TS and Switch Transformer from
scratch. The pre-training corpus is OpenWebText (Radford et al., 2019), which contains 40GB of
web text. We use the same pre-training task as the official TS and Switch Transformer, which is
masked language modeling. The total number of training steps is 200K and we save the model every
5K steps. We use the MoEfication result of the last checkpoint as the MoE structure of T5.

Emergence Patterns of Functional Experts. We first study the changing curves of the proportion
of functional experts and their modularization degree during pre-training, i.e., we apply the same
analysis in Section[5|to each checkpoint. The results are shown in Figure[3] We have the following
observations. (1) Overall, the proportion of functional experts and their modularization degree quickly
achieves a high point, and then keeps relatively stable till the end. It indicates that functional experts
emerge at the early stage of pre-training. (2) The proportion of functional experts in the Switch
Transformer fluctuates significantly at about 20K steps and its stabilization is slower than that of T5.
It suggests that the emergence of the modular structure in Switch Transformer is surprisingly more
difficult than T5. The reason may be that Switch Transform omits the gradients of unselected experts,
which causes the optimization to be harder than that of TS5 (Du et al., [2022} |Zoph et al., [2022).

Stabilization of Experts and Neurons. Even though clear is the changing curve of the number
and modularization degree of functional experts from a global perspective, we still do not know how
the predictivity of neurons and experts changes during pre-training.

There are two kinds of predictivity dynamics during pre-training. The first is the changing of the
absolute predictivity, and the second is the relative order changing of predictivity among all experts
or neurons in a layer. Although it is straightforward to study the absolute predictivity, the absolute
predictivity has different scales for different functions and different layers, and thus it is difficult to
have a uniform analysis standard. Hence, we focus on the relative order changing of predictivity.
Intuitively, for a sub-function, some experts or neurons excel in it compared to other ones at some
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Figure 4: Spearman’s rank correlation between the functionality distributions of two adjacent
checkpoints during pre-training.

stage, after which they keep such relative dominance as the pre-training is continuously going. From
this intuitive perspective, we study the stabilization of predictivity rankings in a layer.

To study the stabilization of predictivity rankings, we quantify the similarity between a layer of
two model checkpoints w.r.t. a particular sub-function, which is either at the expert level or at
the neuron level. Specifically, for a sub-function, we define such a similarity as Spearman’s rank
correlations (Spearman, |1961) between the predictivity of experts or neurons in the considered layer
of the two checkpoints. In this way, we measure to what extent the predictivity of the two checkpoints
is positively correlated. We measure the similarity between two adjacent (saved) checkpoints as
stabilization score, which reflects the trend toward stabilization. Higher similarity indicates a lower
changing pace and thus a higher degree of stabilization. For each function, we show the curve of
average stabilization score among all sub-functions in it and across all layers, both at the expert level
and neuron level. To facilitate our analysis, we also measure it on random partitioning.

We report the result in Figure ] From this figure, we have four observations. (1) During the
pre-training, both experts and neurons are increasingly stabilized. (2) Experts are stabilized to a
large extent at the early stage of pre-training. It takes around 15% of the total training steps for
the expert predictivity to achieve a stabilization score of 0.9. (3) Expert stabilization is notably
faster than both neuron stabilization and the stabilization for random partitioning. In conclusion, we
see strong evidence that coarse-to-fine is the inner mechanism of pre-training. Transformer first
learns a modular structure, where the structure becomes stable at the early stage, and then there is a
fine-grained process to improve the predictivity of neurons.

Organization of Sub-Functions. We further study how the model organizes sub-functions into
their functional expertsﬂ and how the organization changes during the pre-training. From the
perspective of sub-functions, it is basically how a sub-function shares functional experts with others.

For a function, we can list all the sub-functions within it denoted as w1, wa, . .., wys. The similarity
score between each pair of sub-functions can be seen as a matrix S, where \S; ; is the similarity score

between w; and w; forall 1 <, j < M. For a given k, we denote OE? as the top k expert overlap

for w; and w;. When Spearman’s rank correlation between S; . and Oglf) (denoted as V;(k)) is high,
it indicates that the sub-functions similar to w; share more functional experts than sub-functions

(k)

dissimilar to w; do, and vice versa. According to the meaning, we call V™ clustering score.

We do a case study on the semantic function of the Switch Transformer, which focuses on under-
standing word meanings. Since relatively mature is the method of quantifying word similarity, we

4Strictly speaking, we did not define functional experts for a sub-function. In this context, the concept of
“functional experts” is used to refer to the experts that have high predictivity for a sub-function.
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take S as the word similarity matrix calculated by spaCy (Honnibal & Montani, [2017). Note that the
features at the word level are the lowest level of semantic information, so the word similarity reflects
the lowest level of similarity between two semantic sub-functions.
K M k

We report the curve of %ﬂv” for each layer in
Figure[5] We also report the result for random partitioning
in Appendix [A.4] From this figure, we have the following
observations. (1) During pre-training, the clustering score
of the lowest MoE layer (Layer 1) quickly achieves 0.6
and then keeps stable till the end. It proves that the pre-
training tends to organize sub-functions sharing similar
low-level information into the same functional experts in
the low layer. However, the final clustering score of higher
MoE layers is close to 0, indicating that high layers do
not organize sub-functions based on word similarity. We
guess that the reason is that the high layers may process
high-level semantic information, which is not related to
the word similarity. (3) We see three interesting curves of
layers 3, 5, and 11. Their clustering scores achieve a high
point when the clustering score of layer 1 first achieves
its highest point, and then they continuously decrease to 0. The trend that high layers become
increasingly responsible for high-level features may grow faster when the low-layer organization has
been established than when the organization is forming.

0.6

N
=

e
)

Spearman's 0

Figure 5: Changing curve of the average
clustering scores. We plot the curve for
each MoE layer in Switch Transformer.

7 DISCUSSION

Efficient Pre-training. Large-scale pre-training of Transformers requires a large amount of compu-
tation resources (Brown et al., 2021; |Chowdhery et al., 2022)). Mixture-of-Experts is a promising
solution to reduce the computational cost of pre-training by activating only a small part of the experts
for a certain input. Our findings have shown the emergent modularity of experts during pre-training,
which demonstrates the reasonableness of the MoE structure. However, we also find that Switch
Transformer is more unstable than T5 on the modular structure at the beginning of pre-training. It
suggests that we should gradually sparsify the experts during pre-training, which has been explored
in some preliminary works (Nie et al.,[2021}; |Hazimeh et al., 2021).

Model Fusion. Considering there are amounts of pre-trained models on different corpora, researchers
have started to explore how to fuse them to aggregate different model knowledge together. Compared
with model ensembling, model fusion is expected to be more efficient because it does not compute all
of the models. Existing work focuses on weight averaging and achieves some promising results (Li
et al.} 2022 Matena & Raffel| 2021). However, weight averaging requires two models having the
same architecture, which is not always the case. In this work, we discover the modular structure
of pre-trained Transformers, which may facilitate the model fusion based on module combinations,
which gets rid of the architecture constraint.

Connection between Brains and Pre-trained Transformers. Building an artificial brain that
corresponds to the human brain is an important neuroscience problem, e.g., the Blue Brain
project (Markram), 2006). Currently pre-trained Transformers show strong power for predicting
brain signals (Toneva & Wehbel 2019} |Caucheteux et al.,[2021)), but more fine-grained connections
between the two are still not clear. In analogy to brain regions, we present the modular structure of
pre-trained Transformers. It will be interesting to explore the connection between brain regions and
the Transformer modules in the future.

8 CONCLUSION

In this paper, we study the modularity of pre-trained Transformers and find that the experts in the MoE
structure are modularized after pre-training. We also study the pre-training process to understand
the emergence of modularity and find the coarse-to-fine mechanism of pre-training. We expect our
evaluation framework and findings will facilitate and inspire future research in this area.
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Figure 6: Distribution similarity between different sub-functions. We report the average similarity
between functions. We consider the pre-trained models and their randomly-initialized counterparts.

Table 2: Average AP calculated based on B = {(b;, f;)}Z_,, where b; is the average predictivity
across all sub-functions for expert e;, and f; is whether e; is a functional expert or not.

Model Semantics Knowledge  Task
Switch Transformer  0.957 0.795 0.734
T5 0912 0.894 0.931

A APPENDIX

A.1 FUNCTION DISTRIBUTION AMONG NEURONS

Following Section ] we report the distribution similarity of the randomly-initialized models in
Figure[6] which is significantly different from that of the pre-trained models.

A.2 PREDICTIVITY OF FUNCTIONAL EXPERTS

We quantify the predictivity of the expert for sub-functions in Section [3|and define functional experts
in Section [5] and different are the technical details of quantification and definition. Hence, we
conduct an experiment to check their consistency. For a function, we calculate b; as the average
predictivity across all sub-functions for each expert e;, and we also denote f; € {0, 1} as whether e;
is a functional expert or not. Now we have B = {(b;, f;)}Z_,, based on which we compute the AP. A

high AP indicates a high consistency. We report the average AP across all layers in Table 2]

The average AP is quite high. Therefore, we are confident that the quantification for expert predictivity
is consistent with the concept of functional experts.

A.3 SUB-FUNCTIOANL EXPERTS

Similar to the concept of functional experts discussed in Section [ we can also define so-called
sub-functional experts. Basically, for each sub-function, we conduct statistical hypothesis testing on
its sub-functional neurons. We similarly calculate the proportion of sub-functional experts and their
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Figure 7: Changing curves of the proportion of sub-functional experts and their modularization
degree. The horizontal line is the value for random partitioning.
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Table 3: Proportion of sub-functional experts identified by hypothesis testing and their modularization
degree. The result is averaged within each function.

. Semantics Knowledge Task
Model Partitioning Prop. Degree Prop. Degree Prop. Degree
Switch Random 0.001  0.022 0.001 0.022 0.001 0.022

Transformer Pre-MoE 0.138 1.968 0.101 2.028 0.124 2.029

Random 0.001  0.021 0.001  0.021 0.001  0.021
Post-MoE 0.030 2.330 0.038 2.985 0.039 3.522

T5

modularization degree. We report the average result within each function. The result of the Switch
Transformer and T5 used in Section [ is reported in Table[3] The changing curve of the Switch
Transformer and T5 trained by us is reported in Figure[7]

A.4 ORGANIZATION OF SUB-FUNCTIONS ON RANDOM PARTITIONING

We conduct the same experiment for evaluating the organization of sub-functions on random partition-
ing. The experiment is conducted 200 times and we report curves of the average results in Figure [§]
This figure shows that the clustering score is always close to 0 on random partitioning. K is set as 5
in both Figure[5]and Figure

A.5 DETAILS OF THE EXPERIMENTS

Calculation of AP. AP is the weighted average of precision at different recall levels, which is a
common metric for evaluating the performance of binary classification models. Since AP only
represents the positive correlation, we compute the APs of both neuron activations and their opposite
values, —a;, and take the maximum as the final AP. The final AP ranges from 0.5 to 1, where
0.5 means the neuron is useless for the sub-function and 1 means the neuron is perfect for the
sub-function.

Randomly-initialized models. In Section [ the evaluation on randomly-initialized models is
conducted 3 times and we report the average results.

Perturbation analysis. To match the magnitude of neuron activations of T5, we set the variance of
the Gaussian noise to be 4. The perturbation analysis is conducted 5 times and we report the average
results.

Hyper-parameters of pre-training. We use the same hyper-parameters for pre-training to avoid the
effect of hyper-parameters on our analysis, and it is also a common practice when comparing dense
and sparse T5s (Zoph et al.l 2022). The learning rate is le-4. The batch size is 512. The max lengths
of encoder inputs and decoder inputs are 512 and 256, respectively. We use 8 NVIDIA A100 GPUs
for pre-training. The total pre-training time is around 3 days.

Experiments on random partioning. In Section [5|and Section[6] we do the hypothesis testing on
random partitioning, and we also calculate Spearman’s rank correlation between adjacent checkpoints
on random partitioning. These random experiments are done 1000 times and we report the average
results.

A.6 DETAILS OF FUNCTIONS

Semantic Function. Semantic function refers to the ability to understand the meaning of input
texts. In this work, we focus on how neurons capture the patterns of word senses. We use a large-scale
dataset with word-sense annotations, OneSec (Scarlini et al.,[2019a), to construct binary classification
data for semantic sub-functions. In OneSec, each sentence has a keyword whose sense is annotated
based on Wikipedieﬂ We first filter out the keywords that have more than one sense in the dataset
and then randomly select 100 sentences for each sense. For each sense pair of a word, we construct a

Shttps://en.wikipedia.org/
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Figure 8: Changing curves of the average clustering scores on random partitioning. We plot the curve
for each MoE layer in Switch Transformer.

binary classification dataset by labeling the sentences with one sense as positive and the sentences
with the other sense as negative. Finally, we have 529 semantic sub-functions, each of which is a
binary classification problem to distinguish the two senses of a word.

Knowledge Function. Knowledge function refers to the ability to memorize factual knowledge. In
this work, we focus on the factual triples, which are used to construct knowledge graphs. We define a
knowledge sub-function as a binary classification to identify whether a triple is correct. Specifically,
we sample several triples from Wikidata as positive instances and randomly replace their head or tail
entities to construct negative instances. We group these instances according to their relations and
each relation has its corresponding knowledge sub-function. There are 39 knowledge sub-functions
and each sub-function has 400 instances.

Task Function. Task function refers to the ability to perform downstream tasks. Previous work has
shown that training a small part of parameters in pre-trained Transformers can achieve comparable
performance to full-parameter fine-tuning (Lester et al., 2021} Hu et al.| |2022)) so that Transformers
are supposed to learn amounts of task knowledge from pre-training. In this work, we use several
classification datasets. from GLUE (Wang et al.,[2018), including SST-2 (Socher et al., 2013), QQPEI,
MNLI (Williams et al., [2018), CoLA (Warstadt et al., 2018)), MRPC (Dolan & Brockett 2005)),
RTE (Dagan et al.| 2006), QNLI (Rajpurkar et al.} 2016). There are 8 task sub-functions in total
because MNLI is split into two binary classification tasks. To stimulate these sub-functions, we adopt
the input templates provided by Ratfel et al.[(2020) to improve neuron predictivity.

Admittedly, coarse is our function classification. It does not cover all functions learned by pre-trained
Transformers, and there are interactions between each pair of functions so there is unavoidable
overlap. However, we focus on a unified framework and concrete evaluation approach, and they
can be easily generalized to other ways of function classification, meaning that our contribution is
independent of function classification. Using this way of classification is simply due to its typicality.

®https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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