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ABSTRACT

Recent works in 2D-to-3D pose uplifting for monocular 3D Human Pose Estima-
tion (HPE) have shown significant progress. However, two key challenges persist
in real-world applications: vulnerability to joint noise and high computational
costs. These issues arise from the dense joint-frame connections and iterative cor-
relations typically employed by mainstream GNN-based and Transformer-based
methods. To address these challenges, we propose a novel approach that leverages
human physical structure and long-range dynamics to learn spatial part- and tem-
poral frameset-based representations. This method is inherently robust to missing
or erroneous joints while also reducing model parameters. Specifically, in the
Spatial Encoding stage, coarse-grained body parts are used to construct structural
correlations with a fully adaptive graph topology. This spatial correlation repre-
sentation is integrated with muti-granularity pose attributes to generate a compre-
hensive pose representation for each frame. In Temporal Encoding and Decoding
stages, Skipped Self-Attention is performed in framesets to establish long-term
temporal dependencies from multiple perspectives of movement. On this basis,
a compact Graph and Skipped Transformer (G-SFormer) is proposed, which re-
alises efficient and robust 3D HEP in both experimental and practical scenarios.
Extensive experiments on Human3.6M, MPI-INF-3DHP and Human-Eva bench-
marks demonstrate that G-SFormer series models can compete and outperform
the state-of-the-arts but takes only a fraction of parameters and around 1% com-
putational cost. It also exhibits outstanding robustness to inaccurately detected 2D
poses. The source code will be available at sites.google.com/view/g-sformer.

1 INTRODUCTION

3D Human Pose Estimation (HPE) is a fundamental task which aims to reconstruct 3D body joint
locations from images or videos. Monocular 3D HPE is more friendly for downstream applications
such as action recognition (Shi et al., 2019b; Yan et al., 2018; Shi et al., 2019a), human-computer
interaction (Sinha et al., 2010; Lazar et al., 2017; Pavlovic et al., 1997), motion and trajectory pre-
diction (Martinez et al., 2017; Wang et al., 2021; Rudenko et al., 2020) for the convenience in data
acquisition.

Benefits from rapid development in 2D pose detectors (Chen et al., 2018; Sun et al., 2019), 2D-
to-3D pose lifting methods have drawn extensive attentions for its high spatial precision and light
data volume of 2D skeletons. Despite the superior performance, 2D-to-3D lifting method is inher-
ently an ill-pose problem for depth ambiguity and self-occlusion (Cheng et al., 2019; 2020; Li et al.,
2022b). To alleviate this issue, recent works focused on aggregating temporal motion information in
videos to aid pose reconstruction. Transformer has become a prevalent approach for its long-range
dependency modeling capacity. Prior methods typically deploy self-attention to establish joint-wise
correlations, as well as frame-wise correlations for each joint individually or for the encoded pose
representation (Zhang et al., 2022; Zheng et al., 2021). This is computationally expensive espe-
cially when dealing with lengthy sequences (81, 243 or even more), rendering it impractical for
deployment on resource-limited mobile devices and consumer hardware. Given the information re-
dundancy in adjacent frames, improving the efficiency of Transformers becomes an essential issue.
Additionally, inaccuracies in detected 2D poses, including missing and erroneous joints also present
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Figure 1: (a) MPJPE (mm) vs. MFLOPs of G-SFormer and competitors on Human3.6M, where
marker size indicates model size. (b) Robustness comparison with MixSTE (Zhang et al., 2022) and
PoseFormerV2 (Zhao et al., 2023) regarding errors in detected 2D joints (marked in yellow circles).

challenges to 3D HPE. Factors such as self-occlusion, fast-motion, as well as unconstrained envi-
ronment and image quality significantly increase the error rate of detected 2D joints, making model
robustness an important property in practical applications. Some efforts have been made on these
two challenges, Li et al. (2022a) and Shan et al. (2022) introduce strided convolutional layers to
FFN in transformer to selectively aggregate useful information; Einfalt et al. (2023) perform tem-
poral upsampling on encoded pose sequence to realise efficient pose uplifting from sparse tokens;
Zhao et al. (2023) obtain low-frequency pose components through filtering out high-frequency noise
and integrate them with sampled temporal features to generate a robust pose representation. Li et al.
(2024) propose token pruning cluster module to select a few representative tokens to reduce tempo-
ral redundancy. However, it is worth noting that reducing pose tokens in temporal domain will lead
to performance degradation since partial information is inevitably lost. Furthermore, none of them
cut to the optimization of the biggest computational overhead – the Self Attention calculation which
is quadratic to the number of tokens.

In this paper, we propose a Frameset-based Skipped Transformer architecture for temporal feature
representation and aggregation. The input pose sequence is sampled into framesets to implement
Skipped Self-Attention (SSA) in parallel, establishing global-range alignments across multiple tem-
poral perspectives. As a result, the model acquires a composite understanding of the entire motion
process, integrating various aspects of movements. This brings two main benefits: first, it signifi-
cantly improves model efficiency by establishing correlations among distinct frame tokens; second,
it captures long-range dynamics and supplement each frame with enhanced contextual information.
For the spatial modeling of pose within each frame, we maintain the global approach by employing
coarse-grained body parts to construct a compact Part-based Adaptive GNN. Unlike present methods
which compute joint-wise connections (Zhang et al., 2022; Tang et al., 2023; Yu et al., 2023; Peng
et al., 2024), our approach builds spatial correlations among body parts to better represent the coor-
dination of human body and the interaction between body parts during movement. For instance, the
arms and torso are closely related during ”Eating”, while the legs are correlated for ”Sitting”. The
part-based graph structure is fully adaptive, learned through a graph attention mechanism without
relying on pre-defined skeletal topology as priors (Soroush Mehraban, 2024; Yu et al., 2023; Peng
et al., 2024), thereby enhancing model flexibility and generalization across diverse poses. Mean-
while, fine-grained joint features are integrated to the part-based representation to enrich the spatial
cues. Thus, a comprehensive pose representation is obtained, incorporating global spatial correla-
tions and multi-granularity pose attributes. It is also a robust representation with less sensitivity to
local joint deviations.

The main modules of Part-based Adaptive GNN and Frameset-based Skipped Transformer construct
the Graph and Skipped Transformer (G-SFormer) architecture. Different from existing Graph-
Transformer hybrid methods (Zhu et al., 2021; Zhao et al., 2022; Soroush Mehraban, 2024) that
embed GCN into Transformer block to assist self-attention in spatial modeling, G-SFormer inte-
grates part-based adaptive GNN and Skipped Transformer to efficiently exploit spatial and temporal
information, respectively. The compact and adaptive framework realises high accuracy, efficient
and robust 3D pose reconstruction in a global approach. Extensive experiments are conducted on
three benchmarks, i.e., Human3.6M, MPI-INF-3DHP, and HumanEva. G-SFormer can compete
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and outperform the state-of-the-arts, and obtain performance-enhancement with the prior-knowledge
brought by direct pre-training on large-scale motion capture data. More importantly, as shown in
Figure 1(a), the multi-scale G-SFormer models exhibit steady and advance performance with sig-
nificantly less computational cost and parameters, making them highly suitable for practical 3D
HPE applications on resource-limited platforms. In summary, our main contributions are listed as
follows:

• We propose two novel modules of Part-based Adaptive GNN and Frameset-based Skipped
Transformer to learn comprehensive pose representations and multi-perspective dynamic
representations, enabling efficient and robust 3D pose estimation in a global approach.

• Effective data completion methods are developed to enhance the spatial structure and tem-
poral motion information of input 2D poses, including Sinusoidal Positional Encoding and
Data Rolling strategies, which are parameter-free and easy to implement.

• The formulated compact G-SFormer achieves advance performance across 3 large-to-small
benchmarks. Multi-scale G-SFormer models can compete and outperform the state-of-
the-arts with only a fraction of parameters and around 1% computational cost, offering an
effective and practical approach to realise high-accuracy 3D HPE with small-scale model
size and minimal computational cost.

2 RELATED WORKS

Traditional 2D-to-3D pose lifting includes CNN-based methods (Pavllo et al., 2019; Chen et al.,
2021), GCN-based methods(Zeng et al., 2021; Yu et al., 2023), and Transformer-based methods
(Zheng et al., 2021; Tang et al., 2023). Recently, the diffusion framework has also been introduced
into 3D HPE, delivering outstanding performance through the aggregation and selection among
multiple iterations and hypotheses (Holmquist & Wandt, 2023; Shan et al., 2023; Peng et al., 2024).
However, the diffusion process also considerably increase computational overhead and inference
time. Therefore, we build upon traditional methods and propose a light-weight architecture to realise
efficient and robust 3D pose estimation.

2.1 GCN-BASED 3D HPE

Recent lifting-based approaches exploit contextual information from neighboring frames to improve
robustness and accuracy. Pavllo et al. (2019) present a fully-convolutional model with dilated tem-
poral convolutions to regress temporal information. Chen et al. (2021) leverage CNN-based bone
length and bone direction prediction networks to derive 3D joint locations. Due to natural correla-
tions with human skeleton structures, GCN-based methods are adopted to incorporate spatial priors.
Cai et al. (2019) construct a spatial-temporal graph to process and consolidate pose features across
scales. Wang et al. (2020) design a U-shaped GCN to capture motion information and leverage mo-
tion supervision for 3D sequence reconstruction. Similar to 2s-AGCN (Shi et al., 2019b), methods
like GLA-GCN and KTPFormer (Yu et al., 2023; Peng et al., 2024) add a learnable graph to the
predefined adjacency matrix based on skeletal structure to improve graph adaptation. However, the
predefined graph which is used to maintain performances and stabilize training somewhat restricts
model flexibility. Besides, the joint-based graph topology lacks global coordination between body
parts and introduces computational redundancy.

2.2 TRANSFORMER-BASED 3D HPE

Transformer architecture proposed by Vaswani et al. (2017) has shown promising performance in
computer vision (Zhu et al., 2020; Dosovitskiy et al., 2020). With the outstanding ability in capturing
long-range dependencies, transformer with powerful self-attention mechanism is introduced to 3D
HPE task. Zheng et al. (2021) firstly apply Transformer to model spatial and temporal aspects
in 2D-to-3D pose lifting. Considering the characteristics of transformer, pre-training operations
such as self-supervised (Shan et al., 2022) and large-scale dataset based (Einfalt et al., 2023; Zhu
et al., 2023) are implemented for performance improvement. MixSTE (Zhang et al., 2022) models
temporal motion of each joint and stacks spatial and temporal transformer blocks several loops to
strength sequence coherence. On this basis, other architectures learning separate single joint motion
trajectory have been developed. They either perform spatial and temporal modeling sequentially in
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Figure 2: Graph and Skipped Transformer (G-SFormer) consists of three modules: Spatial Graph
Encoder for part-based structural learning within each frame, Skipped Transformer Encoder and
Decoder for hierarchical extraction and aggregation of temporal features. After being encoded by
the Skipped-Transformer, skip-sampled framesets are reordered back to the original sequence and
progressively aggregated by Skipped Multi-head Self-Attention (MSA) to get the target pose repre-
sentation in the temporal decoding stage.

an iterative process (Peng et al., 2024; Soroush Mehraban, 2024; Zhu et al., 2023) or utilize a parallel
modeling approach (Tang et al., 2023). However, the repetitive and redundant frame-wise and joint-
wise connections make up large and complex networks, introducing considerable computational
overhead and increasing model sensitivity to local features.

3 METHOD

Following 2D-to-3D pose lifting pipelines (Shan et al., 2022; Tang et al., 2023; Zhao et al., 2023), the
proposed G-SFormer regress 3D pose of the center frame from input 2D pose sequence estimated by
off-the-shelf 2D pose detectors. As shown in Figure 2, Graph Neural Network (GNN) and Skipped
Transformer are engaged as key components for spatio-temporal feature learning.

3.1 SPATIAL GRAPH CONSTRUCTION

In the spatial modeling of the 2D pose in each frame, human joints are grouped into 5 parts according
to their physical relationships. Without any predefined connections as priors (Hu et al., 2021; Peng
et al., 2024; Yu et al., 2023), a flexible graph topology is learned by a totally data-driven approach to
better represent the interaction between body parts. As shown in Figure 3 (a), the grouped 2D joint
coordinates lp are passed into a parameter-sharing Parts Encoding Layer composed of Multi-Layer
Perceptron (MLP) structure to get part feature fp, which is a T ×Np × C tensor, where T , Np and
C refer to frame length, number of body parts and channel dimension. A learnable part positional
embedding Ep ∈ RNp×C is added with fp to integrate the structure information.

fp = MLP(lp) + Ep (1)

Then, the Np × Np adjacency matrix is obtained by performing attention calculation among part
features, where the attention coefficients can be calculated by:

ei,j = W × |fpi + fpj | (2)

Part features are added to establish alignments with each other. W is the weight vector of 1 × 1
convolution which transforms the dimension of attention map into 1. Attention coefficients are
normalized using the Sigmoid function to obtain the inter-part correlation strength.

αi,j = Sigmoid(ei,j) = 1/(1 + exp(ei,j)) (3)
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Figure 3 (b) illustrates the updating process of graph nodes. Part features are aggregated with atten-
tion coefficients to obtain the graph feature, which is then concatenated with the original part feature
to get the refreshed f

′

p.

f
′

pi = Concat

(
σ(
∑Np

j=1
αi,jfpj), fpi

)
(4)

σ is the nonlinear activation function, and || represents concatenation. In order to preserve the fine-
grained spatial information, joint feature encoded by Fully Connected layer is residually added to
f

′

p to obtain the comprehensive pose representation FP ∈ RT×D.

Figure 3: (a) Architecture of the Spatial Graph Encoder. (b) Updating process of graph nodes.
Using part feature fp5 as an example, it is concatenated with the aggregated part features weighted
by attention coefficients to get the refreshed f

′

p5.

3.2 SKIPPED TRANSFORMER FOR TEMPORAL MODELING

Skipped Transformer-based Encoder and Decoder are deployed in the temporal modeling process.
Both modules work in a computationally efficient manner by concurrently establishing long-range
dynamics in multiple framesets. Corresponding complexity analysis of them is also presented.

3.2.1 SKIPPED TRANSFORMER FOR TEMPORAL ENCODING

The proposed Skipped Self-Attention (SSA) builds global dependencies among distinct frame to-
kens. Specifically, skipped connection with interval m is performed on temporal dimension to con-
struct long-range attention alignments. The sampling process is conducted m times until all tokens
are established associations.

Attn(Qi,Ki, Vi) = Softmax(
QiK

T
i√

D
)Vi

= AiVi, i = 1, 2, ...m

(5)

where Qi, Ki and Vi are obtained by linearly transformation of skipped sampling frameset Zi ∈
R T

m×D with parameters WQ,WK and WV .

Qi = ZiWQ,Ki = ZiWK , Vi = ZiWV (6)

The frameset consists of T
m tokens and the attention map Ai is with the shape of ( T

m ) × ( T
m ).

Therefore, the computational complexity for attention map calculation and token association is sig-
nificantly reduced to 1

m times compared with the Self-Attention in Vanilla Transformer. Thus the
compression ratio can be derived as 30%, as skipped factor m is set to 3 in the proposed architecture.:

Ω(SSA) =
2T 2D

m
(7)

Finally, the encoded frame tokens in each sampling set are reordered back to original sequence to
keep temporal dimension unchanged. Similar to Vaswani et al. (2017), the multi-head setting for
self-attention and the feed-forward network is also deployed in the Skipped Transformer block. The
temporal encoder is composed of a stack of L1 layers for hierarchical temporal feature extraction.

5
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Figure 4: Data completion strategies for 2D pose input. Taking target frame at t=3 as example, where
2 previous frames need to be completed for a full 9-frame input sequence. Unlike conventional
methods which copy edge frame at t=1 (b), Data Expanding and Data Rolling strategies are proposed
to replicate 2D pose step by step (c), or to capture a clip of the pose sequence for completion (d).

3.2.2 SKIPPED TRANSFORMER FOR TEMPORAL DECODING

In the decoding stage, the encoded pose feature sequence is aggregated by layers using Skipped
Self-Attention (SSA). Unlike the encoding stage, m skipped sampling framesets are concatenated in
the channel dimension, generating a decoded feature sequence with the shape of T

m ×(m ·D), which
is then linearly transformed to T

m × D. Thus, the temporal dimension is progressively reduced by
1
m through each decoding layer until the center frame representation is obtained in the last L2 layer.

Skipped Transformer aggregates temporal features directly in self-attention calculation. It offers a
simple yet effective way compared to the widely-adopted Strided Transformer (Einfalt et al., 2023;
Shan et al., 2022; Li et al., 2022a). For Skipped Transformer block (SKT), the complexity for key
components is:

Ω(SKT ) =
2T 2D

m
+m(

T

m
)D2 + 4(

T

m
)D2

=
2T 2D

m
+ (1 +

4

m
)TD2

(8)

Where 2T 2D
m is for self-attention as equation 7, m( T

m )D2 is for linear transformation, and 4( T
m )D2

is for feed-forward network (FFN). While for Strided Transformer block (STT) which uses strided
convolution layer with the kernel size k and strided factor s to shrink sequence length, the complexity
for self-attention and strided convolutional FFN is:

Ω(STT ) = 2T 2D + 2(
k

s
+ 1)TD2 (9)

Quantitatively, comparing a SKT with m=3 and a STT with k=3 and s=3, the computational cost of
the former is less than 60% of the latter under the same setting.

3.3 DATA COMPLETION STRATEGIES FOR 2D POSE INPUT

We perform data completion in both spatial and temporal domains. Sinusoidal Positional Encoding
is introduced to supplement the relative positional relationships and differences between body joints
in 2D pose input. This spatial positional encoding is conducted in an economic parameter-free
manner as follows, where J denotes the number of joints:

Ej,x = sin(j), Ej,y = cos(j), j = 1, 2, ...J (10)

To reconstruct 3D pose of the center frame, 2D poses from (T-1)/2 previous and subsequent frames
are required to form an input sequence with length T. Hence, target frames at the beginning and
end of the video suffer from missing 2D poses. The previous method involved replicating frames at
t = 1 or t = T like edge padding (Tang et al., 2023; Zheng et al., 2021; Shan et al., 2022). However,
we argue that such monotonous information has a limited help to 3D pose reconstruction. As shown
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in Figure 4, we propose Data Expanding and Data Rolling strategies to enrich dynamic information.
A threshold R is set for Data Rolling strategy. Specifically, when the length of 2D poses to be
completed exceeds R, the data completion operation is executed. Performance comparisons of Data
Rolling with various R and Data Expanding are provided in Section 4.4.

3.4 LOSS FUNCTION

Regression heads consisting of linear transformation layers are deployed to transform full-sequence
representation of Temporal Encoder ZEN ∈ RT×D and target frame representation of Temporal
Decoder ZDE ∈ R1×D into corresponding 3D body joint locations. We use L2 loss to conduct full-
sequence supervision of encoder outputs, as well as the target-frame supervision of decoder outputs.
The full-to-single supervision strategy (Li et al., 2022a; Zheng et al., 2021) benefits the optimization
process and introduces temporal consistency to feature learning. Thus, the architecture is trained in
an end-to-end manner with the objective loss function as:

L = Lt + λLf (11)

In detail, target frame loss and full sequence loss are as follows. Where p and pgt denote the
predicted and ground truth 3D joints. λ is the balance factor:

Lt =
1

J

J∑
i=1

∥∥pi − pgti
∥∥ , Lf =

1

T

1

J

T∑
t=1

J∑
i=1

∥∥pt,i − pgtt,i
∥∥

4 EXPERIMENTS

4.1 DATASETS

The proposed architecture is evaluated on three 3D HPE benchmarks, i.e., Human3.6M (Ionescu
et al., 2013), MPI-INF-3DHP (Mehta et al., 2017), and HumanEva (Sigal et al., 2010). Detailed
descriptions and evluation metrics on these datasets are presented in Appendix.

4.2 IMPLEMENTATION DETAILS

The smaller, standard and larger G-SFormer are presented as G-SFormer-S, G-SFormer and G-
SFormer-L on Human3.6M, with encoder-layer (L1), decoder-layer (L2) set as (3, 5), (4, 5), (8, 5)
for 243 frames input. Residual connection across encoder layers is conducted only for G-SFormer-
L. For G-SFormer-S with 81 frames and 27 frames input on MPI-INF-3DHP and Human-Eva, (L1,
L2) is set as (3, 4) and (3, 3), respectively. We adopt the 2D pose detected by CPN (Chen et al.,
2018) on Human3.6M following (Zhao et al., 2023; Einfalt et al., 2023) and ground truth data on
MPI-INF-3DHP and Human-Eva following (Peng et al., 2024; Zhang et al., 2022). More detailed
experimental settings are described in Appendix.

4.3 COMPARISON WITH STATE OF THE ARTS

4.3.1 QUANTITATIVE COMPARISON FOR EFFICIENCY

Results on Human3.6M We compare the proposed G-SFormer with SOTA approaches on Hu-
man3.6M dataset in Table 1. Performance among 15 action categories under MPJPE (Protocol #1)
and P-MPJPE (Protocol #2) are reported. G-SFormer-L obtains an average MPJPE of 41.6mm and
an average P-MPJPE of 33.5mm. With the additional knowledge gained from pre-training on large-
scale motion dataset AMASS (Mahmood et al., 2019; Einfalt et al., 2023), performance improves
to 40.5mm and 32.5mm, respectively. The MPJPE rivals the second-best competitor, STCFormer
(Tang et al., 2023) but with only 40% parameters and 1.5% computational cost. It also achieves
comparable P-MPJPE with the best scores across various actions. By further incorporating the
reprojection refinement post-processing (Cai et al., 2019; Einfalt et al., 2023; Shan et al., 2022), G-
SFormer-L achieves the MPJPE of 39.9mm, outperforming the current best competitor (Peng et al.,
2024) by 0.2mm and obtains the lowest error in 8 out of 15 actions.

Since G-SFormer is proposed to realise efficient 3D HPE, the comprehensive properties of model
size, computational cost and performance are the focus of assessment. Table 2 presents properties in

7
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Parameter number, FLOPs, and MPJPE of G-SFormer and competitors. G-SFormer-S trained from
scratch achieve 1.9 mm-2.5 mm lower MPJPE, while utilizing similar FLOPs and only 30.4%-35%
parameters compared to PoseFormer-V2 (Zhao et al., 2023), which already demonstrates an excel-
lent speed-accuracy trade-off among competitors. G-SFormer-S also matches the performance of
MixSTE-81f (Zhang et al., 2022) with only 14.9% parameters and 1.2% computational cost. The
cost reduction is even more significant compared to the current-best KTPFormer (Peng et al., 2024)
with G-SFormer-L requiring 22.7% of parameters and merely 0.8% of FLOPs of the latter. We con-
firm that the pretriaining process enhances the generalization of small-scale G-SFormer models and
brings performance improvement. Furthermore, the above results validate that G-SFormer offers an
effective solution for high-accuracy 3D HPE with small-scale model size and minimal computational
cost of around 1% compared to the state-of-the-art methods.

Table 1: Quantitative comparisons with SOTA methods on Human3.6M of MPJPE (mm) under
Protocol #1 and P-MPJPE (mm) under Protocol #2, using CPN detected 2D poses as input. +PT
denotes using pre-training process, (*) refers to the refinement module from Cai et al. (2019). Best:
bold, second best: underlined.

MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Pavllo et al. Pavllo et al. (2019) (T =243) CVPR’19 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cai et al. Cai et al. (2019) (T=7)(*) ICCV’19 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Liu et al. Liu et al. (2020) (T=243) CVPR’20 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
UGCN Wang et al. (2020) (T=96) ECCV’20 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5
Chen et al. Chen et al. (2021) (T=243) TCSVT’21 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
PoseFormer Zheng et al. (2021) (T=81) ICCV’21 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
MHFormer Li et al. (2022b) (T=351) CVPR’22 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Li et al. Li et al. (2022a) (T=351)(*) TMM’22 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7
P-STMO Shan et al. (2022) (T=243)(*) ECCV’22 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1
MixSTE Zhang et al. (2022) (T=243) CVPR’22 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
PoseFormerV2 Zhao et al. (2023) CVPR’23 - - - - - - - - - - - - - - - 45.2
GLA-GCN Yu et al. (2023) (T=243) ICCV’23 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
STCFormer Tang et al. (2023) (T=243) ICCV’23 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 38.4 40.2 26.2 27.7 40.5
Einfalt et al. Einfalt et al. (2023) (T=351, +PT)(*) WACV’23 39.6 43.8 40.2 42.4 46.5 53.9 42.3 42.5 55.7 62.3 45.1 43.0 44.7 30.1 30.8 44.2
KTPFormer Peng et al. (2024) (T=243) CVPR’24 37.3 39.2 35.9 37.6 42.5 48.2 38.6 39.0 51.4 55.9 41.6 39.0 40.0 27.0 27.4 40.1
G-SFormer-S (T=243) Ours 40.3 43.2 39.6 40.8 43.9 50.1 41.6 40.1 53.1 60.0 43.3 41.1 43.4 29.8 30.0 42.7
G-SFormer-S (T=243, +PT) Ours 39.5 42.3 38.4 39.4 44.1 49.5 40.3 40.1 52.1 59.2 42.8 40.2 42.3 29.1 29.7 41.9
G-SFormer (T=243) Ours 39.8 42.9 39.2 40.2 43.3 49.9 41.2 39.6 53.0 59.9 43.0 40.3 42.6 29.4 29.8 42.3
G-SFormer (T=243, +PT) Ours 37.8 41.9 37.1 39.5 43.6 47.9 40.3 38.6 53.0 58.9 42.6 39.6 41.5 28.7 29.1 41.3
G-SFormer-L (T=243) Ours 38.9 42.3 39.1 39.7 43.6 49.3 40.9 38.6 52.0 56.4 42.0 39.6 41.9 29.5 29.8 41.6
G-SFormer-L (T=243, +PT) Ours 38.3 40.7 37.0 38.8 42.6 47.8 39.3 38.3 50.1 57.0 41.5 38.6 40.5 28.4 28.6 40.5
G-SFormer-L (T=243, +PT)(*) Ours 36.8 40.1 37.2 37.5 42.4 46.4 39.0 37.7 49.9 55.6 40.8 38.5 40.1 28.2 28.4 39.9
P-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
PoseFormer Zheng et al. (2021) (T=81) ICCV’21 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Li et al. Li et al. (2022a) (T=351)(*) TMM’22 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2
P-STMO Shan et al. (2022) (T=243)(*) ECCV’22 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
MixSTE Zhang et al. (2022) (T=243) CVPR’22 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
PoseFormerV2 Zhao et al. (2023) CVPR’23 - - - - - - - - - - - - - - - 35.6
GLA-GCN Yu et al. (2023) (T=243) ICCV’23 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8
STCFormer Tang et al. (2023) (T=243) ICCV’23 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 45.0 33.3 29.4 31.5 20.9 22.3 31.8
Einfalt et al. Einfalt et al. (2023) (T=351, +PT)(*) WACV’23 32.7 36.1 33.4 36.0 36.1 42.0 33.3 33.1 45.4 50.7 37.0 34.1 35.9 24.4 25.4 35.7
KTPFormer Peng et al. (2024) (T=243) CVPR’24 30.1 32.3 29.6 30.8 32.3 37.3 30.0 30.2 41.0 45.3 33.6 29.9 31.4 21.5 22.6 31.9
G-SFormer (T=243) Ours 31.9 34.6 32.6 33.6 33.9 39.3 32.2 31.0 42.9 47.6 35.1 32.1 34.2 24.0 24.3 33.9
G-SFormer (T=243, +PT) Ours 30.7 34.0 30.8 32.9 33.7 38.6 31.7 30.1 42.3 47.3 34.8 31.7 33.3 23.4 23.9 33.3
G-SFormer-L (T=243) Ours 31.0 34.2 32.4 33.1 34.0 38.7 32.0 30.6 42.4 45.4 34.6 31.4 33.7 24.2 24.2 33.5
G-SFormer-L (T=243, +PT) Ours 30.5 33.0 30.2 32.2 33.0 37.5 31.0 30.0 41.0 45.9 33.9 30.7 32.6 23.1 23.6 32.5

Table 2: Quantitative comparisons with SOTA methods on Human3.6M under Parameter number,
FLOPs, and MPJPE (mm). (+PT) indicates models with additional pre-training stage. Best: bold,
second best: underlined.

Method Frames Params (M) FLOPs (M) MPJPE↓
PoseFormer Zheng et al. (2021) ICCV’21 27 9.59 452 47.0
PoseFormer Zheng et al. (2021) ICCV’21 81 9.60 1358 44.3
MHFormer Li et al. (2022b) CVPR’22 27 18.92 1030 45.9
MHFormer Li et al. (2022b) CVPR’22 81 19.70 3132 44.5
Li et al. Li et al. (2022a) TMM’22 81 4.06 392 45.4
Li et al. Li et al. (2022a) TMM’22 243 4.23 1372 44.0
Li et al. Li et al. (2022a) TMM’22 351 4.34 2142 43.7
P-STMO-S Shan et al. (2022) +PT ECCV’22 81 5.4 493 44.1
P-STMO Shan et al. (2022) +PT ECCV’22 243 6.7 1737 42.8
Einfalt et al. Einfalt et al. (2023) +PT WACV’23 81 10.36 543 45.5
Einfalt et al. Einfalt et al. (2023) +PT WACV’23 351 10.39 966 45.0
PoseFormerV2 Zhao et al. (2023) CVPR’23 81 14.35 352 46.0
PoseFormerV2 Zhao et al. (2023) CVPR’23 243 14.35 1055 45.2
MixSTE Zhang et al. (2022) CVPR’22 81 33.65 92692 42.7
MixSTE Zhang et al. (2022) CVPR’22 243 33.65 278076 40.9
STCFormer Tang et al. (2023) ICCV’23 81 4.75 13070 42.0
STCFormer-L Tang et al. (2023) ICCV’23 243 18.91 156392 40.5
KTPFormer Peng et al. (2024) CVPR’24 81 33.65 92706 41.8
KTPFormer Peng et al. (2024) CVPR’24 243 33.65 278119 40.1
G-SFormer-S/ +PT Ours 81 4.37 361 44.1/ 43.5
G-SFormer-S/ +PT Ours 243 5.02 1092 42.7/ 41.9
G-SFormer/ +PT Ours 243 5.54 1346 42.3/ 41.3
G-SFormer-L/ +PT Ours 243 7.65 2366 41.7/ 40.5

Results on MPI-INF-3DHP Table 3 reports the performance on the MPI-INF-3DHP. With 27
frames input, G-SFormer-S trained from scratch outperforms MixSTE (Zhang et al., 2022) by large
margins of 3.7%, 12.7% and 27.5mm in PCK, AUC and MPJPE, while occupying only 0.4% compu-
tational cost and 11% parameters. Even with the substantial reduction in complexity, G-SFormer/-S
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are able to achieve the second and third best results for PCK and MPJPE. The stable performance
further confirms the efficacy of our method.

Results on HumanEva To further explore the generalization of our method, we conduct experi-
ments on small HumanEva dataset and present results in Table 4. G-SFormer-S is trained from
scratch and achieves the best performance with only 13% parameters and 1.2% FLOPs compared to
the leading competitor KTPFormer (Peng et al., 2024), demonstrating strong generalization ability
from large to small datasets.

Table 3: Quantitative comparisons with SOTA methods
on MPI-INF-3DHP dataset. +PT indicates models with
additional pre-training stage. Best: bold, second best:
underlined.

Method PCK↑ AUC↑ MPJPE↓
Chen et al. Chen et al. (2021) (T=81) TCSVT’21 87.9 54.0 78.8
PoseFormer Zheng et al. (2021) (T=9) ICCV’21 88.6 56.4 77.1
P-STMO Shan et al. (2022) (T=81) ECCV’22 97.9 75.8 32.2
MixSTE Zhang et al. (2022) (T=27) CVPR’22 94.4 66.5 54.9
Einfalt et al. Einfalt et al. (2023) (T=81) WACV’23 95.4 67.6 46.9
Einfalt et al. Einfalt et al. (2023) (T=81, +PT) WACV’23 97.1 70.0 41.2
GLA-GCN Yu et al. (2023) (T=81) ICCV’23 98.5 79.1 27.8
STCFormer Tang et al. (2023) (T=81) ICCV’23 98.7 83.9 23.1
PoseFormerV2 Zhao et al. (2023) (T=81) CVPR’23 97.9 78.8 27.8
KTPFormer Peng et al. (2024) (T=81) CVPR’24 98.9 85.9 16.7
G-SFormer-S (T=27) Ours 98.1 79.2 27.4
G-SFormer-S (T=81) Ours 98.5 80.4 25.5
G-SFormer (T=243, +PT) Ours 98.7 82.0 23.1

Table 4: Quantitative comparisons with SOTA methods on
Human-Eva dataset of MPJPE (mm) under Protocol #1. +PT
indicates models finetuned from the Human3.6M pre-training
models and (†) is our re-implementation results.

Walk Jog
Protocol #1 S1 S2 S3 S1 S2 S3 Avg.

PoseFormer Zheng et al. (2021) (T=43) 16.3 11.0 47.1 25.0 15.2 15.1 21.6
PoseFormer Zheng et al. (2021) (T=43, +PT) 14.4 10.2 46.6 22.7 13.4 13.4 20.1
MixSTE Zhang et al. (2022) (T=43) 16.2 14.2 21.6 24.6 23.2 25.8 20.9
MixSTE Zhang et al. (2022) (T=43, +PT) 12.7 10.9 17.6 22.6 15.8 17.0 16.1
PoseFormer-V2 Zhao et al. (2023) (T=81)(†) 18.3 12.9 35.1 28.9 16.4 17.7 21.5
KTPFormer Peng et al. (2024) (T=43) 16.5 13.9 19.9 25.3 15.9 16.5 18.0
KTPFormer Peng et al. (2024) (T=27) 12.3 11.5 19.5 20.9 13.1 14.5 15.3
G-SFormer-S (T=81) 12.3 9.0 25.1 20.3 11.0 12.1 15.0

Figure 5: Visualized qualitative comparison
with MixSTE (Zhang et al., 2022) and Pose-
FormerV2 (Zhao et al., 2023) on Human3.6M
dataset.

Figure 6: Visualized attention maps of ”Greeting” ac-
tion in (a) Spatial Graph Encoder and (b) Skipped
Transformer based Temporal Encoder/Decoder. At-
tention maps corresponding to multiple heads of
Skipped Transformer are summed to produce the
holistic temporal correlation distribution.

4.3.2 QUALITATIVE COMPARISON FOR ROBUSTNESS

Visualized Comparison. In this part, we present the visualized results of G-SFormer and represen-
tative competitors (Zhang et al., 2022; Zhao et al., 2023) in and out of the datasets. Figure 5 shows
the comparisons in actions of Smoking, Sitting and Photoing from Human3.6M. G-SFormer realise
more accurate 3D pose reconstruction across all challenging examples with complex postures.

Videos in-the-wild are even more challenging for 3D HPE task due to complex and changeable
movements. Typical hard cases are presented in Figure 1(b), including detection errors such as joint
position deviation, left-right switch, confusion caused by self-occlusion and miss/coincidence detec-
tion. G-SFormer estimates more refined and structurally reasonable 3D poses than the competitors,
demonstrating superiority through part-based alignments that are inherently less sensitivity to lo-
cal joint deviations, as well as enhanced temporal contextual correlations from multiple aspects of
movement. In contrast, MixSTE (Zhang et al., 2022) exhibits higher sensitivity to noise, attributed
to its excessive focus on local information while lacking a comprehensive understanding of global
motion process within the pose sequence. Although PoseFormerV2 (Zhao et al., 2023) extracts
global-view representation by low-frequency DCT coefficients, this compression manner discards
features in temporal domain and inevitably causes a loss of accuracy. In contrast, G-SFormer ex-
hibits stable performance in terms of both accuracy and robustness against missing or erroneous
joints, with additional qualitative comparisons provided in the Appendix.

Attention Visualization. Figure 6 presents spatial and temporal attention distributions. Greeting ac-
tion of S11 subject on Human3.6M is applied for visualization. It can be seen from (a) that attention
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concentrates on left arm, right arm and trunk which are main parts for hugging motion. In the tempo-
ral domain (b), global attention is built at full-sequence scale from the attention map of Encoder-L4
layer, and the strength increases during the periods when typical hugging action is performed. As
the hierarchical decoding stage progresses, the scope of attentional alighments gradually expand to
a global scale as tokens in deeper decoder layers have stronger representation capabilities. Stronger
attention weights distributed sparsely in both local and global temporal intervals, which is sig-
nificantly different from the dense and clustered attention maps of conventional transformer-based
methods (Zheng et al., 2021; Shan et al., 2022). Specific comparisons are presented in Appendix.

4.4 ABLATION STUDY

To verify the effectiveness of main proposals, extensive ablation studies are conducted on Hu-
man3.6M. The presented analysis is based on G-SFormer-S with 243 frames input.

Table 5: MPJPE (mm) of G-SFormer-S
trained and tested w/ w/o Sinusoidal Posi-
tional Encoding (SPE) and different Data
Rolling (DR) threshold R.

No. SPE DR MPJPE
1 ✘ R=30 42.85
2 ✔ R=10 42.87
3 ✔ R=30 42.70
4 ✔ R=50 42.78
5 ✔ R=90 42.85
6 ✔ ✘ 42.93
7 ✘ ✘ 43.12

Table 6: Ablation studies of the impact of different components
and skipped factor m of G-SFormer-S. Experiments are conducted
on Human3.6M dataset of MPJPE (mm).

No. m SSA Parts Enco Spatial Attn FLOPs (M) MPJPE
1 Spatial-MLP 3 ✔ ✔ ✘ 1100 43.6
2 Joint-wise GCN 3 ✔ ✘ ✔ 1387 44.4
3 VT-Strided Conv 1 ✘ ✔ ✔ 1219 43.7
4 VT-Conv 1 ✘ ✔ ✔ 2111 44.0
5 G-SFormer-S-m3 3 ✔ ✔ ✔ 1092 42.7
6 G-SFormer-S-m5 5 ✔ ✔ ✔ 1038 43.0
7 G-SFormer-S-m7 7 ✔ ✔ ✔ 1016 43.8
8 G-SFormer-S-m9 9 ✔ ✔ ✔ 997 43.9

Data Completion Methods Table 5 shows the impacts of Sinusoidal Positional Encoding (SPE) and
Data Rolling (DR). G-SFormer-S models equipped with SPE and DR show MPJPE error reduction
of 0.15 - 0.23mm. On the other hand, the impact of Data Expanding is not obvious, which is less
than 0.1mm. To account for datasets of different scales, R is typically set to a ratio of 10% - 20%
relative to various input lengths.

Impact of Components Table 6 lists the impact of different components and various skipped factor
m to overall performance of G-SFormer-S. In row 1 and 2, MLP layers and Joint-wise GCN are
used to replace Part-based Adaptive GNN, leading to error increase of up to 1.7 mm. To verify
the effectiveness of Skipped Transformer, Vanilla Transformer-based (VT) models are presented in
row 2-3, incorporated Convolutional layer in (Zheng et al., 2021; Zhao et al., 2023) and Strided
Convolutional layer in (Cai et al., 2019; Shan et al., 2022) for temporal aggregation, respectively.
Performance drop 1.0-1.3 mm can be observed with up to nearly twice computational cost. It is
important to note that G-SFormer shows the highest performance without relying on redundant spa-
tial and temporal connections in Joint-wise GCN and VT series structures, further demonstrating its
structural advantages. To validate the effect of factor m in Skipped Transformer, G-SFormer-S with
m = 1, 3, 5, 7, 9 is evaluated in row 4-8 (m = 1 equals to VT-Conv). We draw the conclusion that m
should be restrained within an appropriate range, as a proper m strengthens global dependencies and
reduces computational complexity. However, excessively high value of m will degrade the temporal
coherence of pose sequence. Overall, the hyperparameter m enables G-SFormer with an adaptive
architecture for different cost and accuracy requirements.

5 CONCLUSION

In this paper, we present a simple yet effective Graph and Skipped Transformer (G-SFormer) ar-
chitecture for lifting-based 3D HPE task. G-SFormer consists of two main modules for spatial and
temporal modeling, respectively. Specifically, a Part-based Adaptive GNN constructs a fully adap-
tive topology to represent interactions of body parts, and integrates multi-granularity pose attributes
to learn a comprehensive pose representation. A Frameset-based Skipped Transformer establish
long-range contextual dependencies for identical frames and captures global dynamics by integrat-
ing multiple motion variations within framesets. This spatio-temporal global modeling approach
significantly reduces computational complexity and alleviates sensitivity to local joints, enhancing
robustness against inaccuracies in detected 2D poses. Experiments demonstrate that G-SFormer
realises high-accuracy, efficient, and robust 3D HPE for both experimental and wild videos.
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