
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INNATE-VALUES-DRIVEN
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Innate values describe agents’ intrinsic motivations, which reflect their inherent
interests and preferences for pursuing goals and drive them to develop diverse skills
that satisfy their various needs. Traditional reinforcement learning (RL) is learning
from interaction based on the environment’s feedback rewards. However, in real
scenarios, the rewards are generated by agents’ innate value systems, which differ
vastly from individuals based on their needs and requirements. In other words, con-
sidering the AI agent as a self-organizing system, developing its awareness through
balancing internal and external utilities based on its needs in different tasks is a
crucial problem for individuals learning to support others and integrate community
with safety and harmony in the long term. To address this gap, we propose a new
RL model termed innate-values-driven RL (IVRL) based on combined motivations’
models and expected utility theory to mimic its complex behaviors in the evolution
through decision-making and learning. Then, we introduce two IVRL-based mod-
els: IV-DQN and IV-A2C. By comparing them with benchmark algorithms such
as DQN, DDQN, A2C, and PPO in the Role-Playing Game (RPG) reinforcement
learning test platform VIZDoom, we demonstrated that the IVRL-based models
can help the agent rationally organize various needs, achieve better performance
effectively.

1 INTRODUCTION

In natural systems, motivation is concerned explicitly with the activities of creatures that reflect the
pursuit of a particular goal and form a meaningful unit of behavior in this function Heckhausen &
Heckhausen (2018). From the neuroscience perspective, intrinsic motivation refers to an agent’s
spontaneous tendencies to be curious and interested, to seek out challenges, and to exercise and
develop their skills and knowledge, even without operationally separable rewards Di Domenico &
Ryan (2017). Furthermore, they describe incentives relating to an activity itself, and these incentives
residing in pursuing an activity are intrinsic Barto (2013). Moreover, intrinsic motivations deriving
from an activity may be driven primarily by interest or activity-specific incentives, depending on
whether the object of an activity or its performance provides the main incentive Schiefele (1996).
They also fall in the category of cognitive motivation theories, which include theories of the mind
that tend to be abstracted from the biological system of the behaving organism Merrick (2013).

However, natural agents, like humans, often make decisions based on a blend of biological, social,
and cognitive motivations, as elucidated by combined motivations’ model like Maslow’s Hierarchy of
Needs Maslow (1958) and Alderfer’s Existence-Relatedness-Growth (ERG) theory Alderfer (1972).
Fig. 1 illustrates the five human agents with various personalities presenting different amounts of
innate values and preferences based on five levels of Maslow’s Hierarchy of Needs and Alderfer’s
ERG theory. On the other hand, the AI agent can be regarded as a self-organizing system that also
presents various needs and motivations in its evolution through decision-making and learning to adapt
to different scenarios and satisfy their needs Merrick & Maher (2009).

Many researchers regard motivated behavior as behavior that involves the assessment of the con-
sequences of behavior through learned expectations, which makes motivation theories tend to be
intimately linked to theories of learning and decision-making Baldassarre & Mirolli (2013). In
particular, intrinsic motivation leads organisms to engage in exploration, play, strategies, and skills
driven by expected rewards. The computational theory of reinforcement learning (RL) addresses how

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The illustration five human agents with var-
ious personalities presenting different amounts of in-
nate values and preferences based on five levels of
Maslow’s Hierarchy of Needs and Alderfer’s Existence-
Relatedness-Growth (ERG) theory.

Innate Values

Internal
State

Critic

Envirnonment

Perception
ComponentsActuators

RL Brain
AI AgentDecisions

Actions Signals

External
State

e(S)
i(S)

e(S)

(A)

Innate
Rewards

(R)

Figure 2: The illustration of the proposed
innate-values-driven model.

predictive values can be learned and used to direct behavior, making RL naturally relevant to studying
motivation. For example, development RL is concerned with using deep RL algorithms to tackle a
developmental problem – the intrinsically motivated acquisition of open-ended repertoires of skills
Colas et al. (2022).

In artificial intelligence, researchers propose various abstract computational structures to form the
fundamental units of cognition and motivations, such as states, goals, actions, and strategies. For
intrinsic motivation modeling, the approaches can be generally classified into three categories:
prediction-based Schmidhuber (1991; 2010), novelty-based Marsland et al. (2000); Merrick &
Maher (2009), and competence-based Barto et al. (2004); Schembri et al. (2007). Furthermore, the
concept of intrinsic motivation was introduced in machine learning and robotics to develop artificial
systems learning diverse skills autonomously Yang & Parasuraman (2020a; 2023; 2024). The idea
is that intelligent machines and robots could autonomously acquire skills and knowledge under the
guidance of intrinsic motivations and later exploit such knowledge and skills to accomplish tasks
more efficiently and faster than if they had to acquire them from scratch Baldassarre & Mirolli (2013).

In other words, by investigating intrinsically motivated learning systems, we would clearly improve
the utility and autonomy of intelligent artificial systems in dynamic, complex, and dangerous environ-
ments Yang & Parasuraman (2020b; 2021). Specifically, compared with the traditional RL model,
intrinsically motivated RL refines it by dividing the environment into an external environment and
an internal environment Aubret et al. (2019), which clearly generates all reward signals within the
organism1 Baldassarre & Mirolli (2013). Although the extrinsic reward signals are triggered by
the objects and events of the external environment, and activities of the internal environment cause
the intrinsic reward signals, it is hard to determine the complexity and variability of the intrinsic
rewards (innate values) generating mechanism. Specifically, traditional RL model is learning from
interaction based on the environment’s feedback rewards. However, in real world, the rewards are
generated by agents’ innate value systems, which differ vastly from individuals based on their needs
and requirements. Moreover, the AI agent can be regarded as a self-organizing system that also
presents various needs and motivations in its evolution through decision-making and learning to adapt
to different scenarios and satisfy those needs. The traditional RL can not reasonably explain its innate
values and motivations nor provide a long-term model to support the AI agent’s lifelong development.

To address those gaps, we introduce the innate-values-driven reinforcement learning (IVRL) model,
which integrates combined motivations’ models and expected utility theory to describe the complex
behaviors in AI agents’ adaptation and evolution. We formalize the innate values and derive the IVRL
model, then propose two corresponding algorithms: IV-DQN and IV-A2C. Furthermore, we compare

1Here, the organism represents all the components of the internal environment in the AI agent.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

them with benchmark RL algorithms such as DQN Mnih et al. (2015), DDQN Wang et al. (2016),
A2C Mnih et al. (2016), and PPO Schulman et al. (2017) in the Role-Playing Game (RPG) RL test
platform VIZDoom Kempka et al. (2016); Wydmuch et al. (2019). The results demonstrate that the
proposed IVRL model can achieve convergence and adapt efficiently to complex and challenging
tasks.

2 APPROACH OVERVIEW

We assume that all the AI agents (like robots) interact in the same working scenario, and their external
environment includes all the other group members and mission setting. In contrast, the internal
environment consists of individual perception components including various sensors (such as Lidar
and camera), the critic module involving intrinsic motivation analysis and innate values generation,
the RL brain making the decision based on the feedback of rewards and description of the current state
(including internal and external) from the critic module, and actuators relating to all the manipulators
and operators executing the RL brain’s decisions as action sequence and strategies. Fig. 2 illustrates
the proposed innate-values-driven model.

State
 St

Utilities
 Ut

Ut+1

St+1

Agent

Environment

Action
 At

Innate-Values(IVt)
Needs Weights(Nt)

Expected Utilities(E(Ut))
Reward(Rt)

E(Ut)=∑Uit×Nit=IVt=Rt

Figure 3: The illustration of the IVRL model based on Expected Utility Theory.

Compared with the traditional RL model, our model generates the input state and rewards from the
critic module instead of directly from the environment, which means that the AI agent receives various
utilities from the environment through executing an action or strategy in the IVRL model. Moreover,
the individual needs to calculate innate values (expected utility) through its needs weights and current
utilities and then select suitable actions or strategies to optimize or maximize its accumulated expected
utility (Fig. 3). Specifically, we formalize the IVRL of an AI agent with an external environment using
a Markov decision process (MDP) Puterman (2014). The MDP is defined by the tuple ⟨S,A,R, T ,γ⟩
where S represents the finite sets of internal state Si

2 and external states Se. A represents a finite
set of actions. The transition function T : S × A × S → [0, 1] determines the probability of a
transition from any state s ∈ S to any state s′ ∈ S given any possible action a ∈ A. Assuming
the critic function is C, which describes the individual innate value model. The reward function
R = C(Se) : S×A×S → R defines the immediate and possibly stochastic innate reward C(Se) that
an agent would receive given that the agent executes action a which in state s and it is transitioned
to state s′, γ ∈ [0, 1) the discount factor that balances the trade-off between innate immediate and
future rewards.

2.1 THE EXPECTED UTILITY AND SOURCE OF RANDOMNESS

In the IVRL model, the reward is regarded as the expected utility Fishburn et al. (1979); Fishburn
(1988) generated by the agent’s utility values u(xk) and the corresponding probability pk (equation 1).
It is equal to the sum of each category’s needs weight nk times its current utility uk in the IVRL
model (equation 3).

Rt =

k∑
i=1

uk × nk = E [U(p)] =

k∑
i=1

u(xk)pk (1)

2The internal state Si describes an agent’s innate value distribution and presents the dominant intrinsic
motivation based on the external state Se.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Furthermore, in the IVRL model, the randomness comes from three sources. The randomness in
action is from the policy function: A ∼ π(·|s); the needs weight function: W ∼ ω(·|s) makes the
randomness of innate values; the state-transition function: S′ ∼ p(·|s, a) causes the randomness in
state.

s1

w1

a1

r1

s2

w2

a2

r2

s3

w3

a3

r3

· · ·

Figure 4: Illustration of the trajectory of state S, needs weight W , action A, and reward R in the
IVRL model.

Supposing at current state st an agent has a needs weight matrix Nt (equation 2) in a mission, which
presents its innate value weights for different levels of needs. Correspondingly, it has a utility matrix
Ut (equation 2) for specific needs resulting from action at. Then, we can calculate its reward Rt for
at through equation 3 at the state st.

Nt =

n11 n12 · · · n1m

n21 n22 · · · n2m

...
...

. . .
...

nn1 nn2 · · · nnm

 ; Ut =

u11 u12 · · · u1m

u21 u22 · · · u2m

...
...

. . .
...

un1 un2 · · · unm

 (2)

Rt =

m∑
i=1

n∑
j=1

Nt × UT
t (3)

In the process, the agent will first generate the needs weight and action based on the current state,
then, according to the feedback utilities and the needs weights, calculate the current reward (expected
utility) and iterate the process until the end of an episode. Fig. 4 illustrates the trajectory of state S,
needs weight W , action A, and reward R, and Fig. 3 presents the corresponding IVRL model.

2.2 RANDOMNESS IN DISCOUNTED RETURNS

According to the above discussion, we define the discounted return G at t time as cumulative
discounted rewards in the IVRL model (equation 4) and γ is the discount factor.

Gt = Rt + γRt+1 + γ2Rt+2 + · · ·+ γn−tRn (4)

At time t, the randomness of the return Gt comes from the the rewards Rt, · · · , Rn. Since the reward
Rt depends on the state St, action At, and needs weight Wt, the return Gt also relies on them.
Furthermore, we can describe their randomness as follows:

State transition: P[A = a|S = s,A = a] = p(s′|s, a); (5)
Needs weights function: P[W = w|S = s] = ω(w|s); (6)

Policy function: P[A = a|S = s] = π(a|s). (7)

2.3 ACTION-INNATE-VALUE FUNCTION

Based on the discounted return equation 4 and its random factors – equation 5, equation 6, and
equation 7, we can define the Action-Innate-Value function as the expectation of the discounted return
G at t time (equation 8).

Qπ,ω(st, wt, at) = E[Gt|St = st,Wt = wt, At = at] (8)

Qπ,ω(st, wt, at) describes the quality of the action at taken by the agent in the state st, using the
needs weight wt generating from the needs weight function ω as the innate value judgment to execute
the policy π.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

[
[

Needs Weights W

Q(s, w, a; φ)Environment

Action-Innate-
Value Network

Needs-Behavior
Distribution

Conv Dense

State S

Actions A

MAX QA

Utility U of Actions A

Generating Actions'
Utilities of the State

Actions' Innate-Values
Scores: QA = W × U

Agent's Action Utility
Function: V(A) = U

w1

=

=

w2...
wj

[
[

a1

a2...
ai

[

[

q1
T

q2...
qi

u11, u12, ..., u1j

u21, u22, ..., u2j

ui1, ui2, ..., uij

...
...

= QA=[[

. . .

Figure 5: Illustration of the IV-DQN network generating Needs-Behavior distribution.

2.4 STATE-INNATE-VALUE FUNCTION

Furthermore, we can define the State-Innate-Value function as equation 9, which calculates the
expectation of Qπ,ω(st, wt, at) for action A and reflects the situation in the state st with the innate
value judgment wt.

Vπ(st, wt) = EA[Qπ,ω(st, wt, A)] (9)

2.5 APPROXIMATE THE ACTION-INNATE-VALUE FUNCTION

The agent’s goal is to interact with the environment by selecting actions to maximize future rewards
based on its innate value judgment. We make the standard assumption that a factor of γ per time-step
discounts future rewards and define the future discounted return at time t as equation 4. Moreover, we
can define the optimal action-value function Q∗(s, a, w) as the maximum expected return achievable
by following any strategy after seeing some sequence s, making corresponding innate value judgment
w, and then taking action a, where ω is a needs weight function describing sequences about innate
value weights and π is a policy mapping sequences to actions.

Q∗(s, w, a) = max
ω,π

E[Gt|St = st,Wt = wt, At = at, ω, π] (10)

Since the optimal action-innate-value function obeys the Bellman equation, we can estimate the
function by using the Bellman equation as an iterative update. This is based on the following intuition:
if the optimal innate-value Q∗(s′, w′, a′) of sequence s′ at the next time-step was known for all
possible actions a′ and needs weights w′, then the optimal strategy is to select the reasonable action
a′ and rational innate value weight w′, maximising the expected innate value of r + γQ∗(s′, w′, a′),

Q∗(s, w, a) = Es′∼ϵ

[
r + γmax

w′,a′
Q∗(s′, w′, a′)

∣∣∣∣s, w, a] (11)

Furthermore, the same as the DQN Mnih et al. (2015), we use a function approximator (equation 12)
to estimate the action-innate-value function.

Q(s, w, a; θ) ≈ Q∗(s, w, a) (12)

We refer to a neural network function approximator with weights θ as a Q-network. It can be trained
by minimising a sequence of loss function Li(θi) that changes at each iteration i,

Li(θi) = Es,w,a∼σ(·)
[
(yi −Q(s, w, a; θi))

2
]

(13)

yi = Es′∼ϵ

[
r + γmax

w′,a′
Q(s′, w′, a′; θi−1)

∣∣∣∣s, w, a] (14)

Where equation 14 is the target for iteration i and σ(s, w, a) is a probability distribution over
sequences s, needs weights w, and action a that we refer to as the needs-behavior distribution. We

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Innate-Values-driven DQN (IV-DQN)
1 Initialize replay memory D to capacity N;
2 Initialize the action-innate-value function Q with random neural network weights;
3 for each episode do
4 for each environment step t do
5 With probability ϵ select a random action at and wt, otherwise select

at = maxw,a Q(ϕ(s), w, a; θ);
6 Execute action at in emulator, calculate reward rt = wt × ut based on agent current needs weights

wt and utilities ut, and image xt+1;
7 Set st+1 = st, at, wt, xt+1 and preprocess ϕt+1 = ϕ(st+1);
8 Store transition (ϕt, at, wt, rt, ϕt+1) in D;
9 Sample random minibatch of transitions (ϕj , aj , wj , rj , ϕj+1) from D;

10 Set

yj =

{
rj , for terminal ϕj+1;
rj + γmaxw,a Q(ϕj+1, w

′, a′; θ), else.

11 Perform a gradient descent step on (yj −Q(ϕj , wj , aj ; θ))
2 according to equation 15.

can approximate the gradient as follows:

∇θiLi(θi) = Es,w,a∼σ(·);s′∼ϵ

[(
r + γmax

w′,a′
Q(s′, w′, a′; θi−1)−Q(s, w, a; θi)

)
∇θiQ(s, w, a; θi)

]
(15)

Instead of computing the full expectations in the equation 15, stochastic gradient descent is usually
computationally expedient to optimize the loss function. Here, the weights θ are updated after every
time step, and single samples from the needs-behavior distribution σ and the emulator ϵ replace the
expectations, respectively.

Our approach is a model-free and off-policy algorithm, which learns about the greedy strategy
a = maxw,a Q(s, w, a; θ) following a needs-behavior distribution to ensure adequate state space
exploration. Moreover, the needs-behavior distribution selects action based on an ϵ-greedy strategy
that follows the greedy strategy with probability 1− ϵ and selects a random action with probability ϵ.
Fig. 5 illustrates the action-innate-value network generating Needs-Behavior distribution.

Moreover, we utilize the experience replay technique Lin (1992), which stores the agent’s experiences
at each time-step, et = (st, wt, at, rt, st+1) in a data-set D = e1, . . . , eN , pooled over many episodes
into a replay memory. During the algorithm’s inner loop, we apply Q-learning updates, or minibatch
updates, to samples of experience, e ∼ D, drawn at random from the pool of stored samples. After
performing experience replay, the agent selects and executes an action according to an ϵ-greedy
policy, as we discussed. Since implementing arbitrary length histories as inputs to a neural network
is difficult, we use a function ϕ to produce our action-innate-value Q-function. Alg. 1 presents the
algorithm of the IV-DQN.

2.6 IVRL ADVANTAGE ACTOR-CRITIC (A2C) MODEL

Furthermore, we extend our IVRL method to the Advantage Actor-Critic (A2C) version. Specifically,
our IV-A2C maintains a policy network π(at|st; θ), a needs network ω(wt|st; δ), and a utility
value network u(st, at;φ). Since the reward in each step is equal to the current utilities u(st, at)
multiplying the corresponding weight of needs, the state innated-values function can be approximated
by presenting it as equation 16. Then, we can get the policy gradient equation 17 and needs gradient
equation 18 of the equation 16 deriving V (s; θ, δ) according to the Multi-variable Chain Rule,
respectively. We can update the policy network θ and needs network δ by implementing policy
gradient and needs gradient, and using the temporal difference (TD) to update the value network φ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

u(s, a; φ)

Environment

Needs Weight Distribution
Conv Dense

State S

Action

π(· | s; θ)

ω(· | s; δ)
Reward

Utility Value Network

Critic

Policy Network

Needs Network

Generating the Utilities
of at in the State S=

= = =

at

at

[

[

[

[

w1 Wt Ut rt
T, w2, ... , wj

u1, u2, ..., uj

=

Figure 6: The architecture of the IVRL Actor-Critic model.

Algorithm 2: Innate-Values-driven Advantage Actor-Critic (IV-A2C)
1 Procedure N-Step IVRL Advantage Actor-Critic;
2 Start with policy model πθ , needs model ωδ , and utility value model Vφ;
3 for each episode do
4 Generate an episode s0, a0, w0, u0, · · · , sT−1, aT−1, wT−1, uT−1 following πθ(·) and ωδ(·)
5 for each environment step t do
6 Uend = 0;
7 if t+N ≥ T else Uφ(st+N);
8 Ut = γNUend +

∑N−1
k=0 γk(ut+k if (t+ k < T) else 0);

9 L(θ) = 1
T

∑T−1
t=0 (Ut − Vφ(st)) · wt · grad (πθ);

10 L(δ) = 1
T

∑T−1
t=0 (Ut − Vφ(st)) · grad (wt) · πθ;

11 L(φ) = 1
T

∑T−1
t=0 (Ut − Vφ(st))

2;
12 Optimize πθ using ∇L(θ);
13 Optimize ωδ using ∇L(δ);
14 Optimize Uφ using ∇L(φ)

Vπ,ω(s) =
∑
at,wt

π(at|st) · ω(wt|st) · u(st, at)

≈
∑
a,w

π(at|st; θ) · ω(wt|st; δ) · u(st, at;φ) = V (s; θ, δ, φ)
(16)

grad V (at, θt) = Vθ(s; θ, δ, φ) =
∂V (s; θ, δ, φ)

∂θ
=

∂π(at|st; θ)
∂θ

· ω(wt|st; δ) · u(st, at;φ) (17)

grad V (wt, δt) = Vδ(s; θ, δ, φ) =
∂V (s; θ, δ, φ)

∂δ
= π(at|st; θ) ·

∂ω(wt|st; δ)
∂δ

· u(st, at;φ) (18)

Using an estimate of the utility u function as the baseline function, we subtract the V value term as
the advantage value. Intuitively, this means how much better it is to take a specific action and a needs
weight compared to the average, general action and the needs weights at the given state equation 19.
Fig. 6 illustrates the architecture of the IVRL actor-critic version and Alg. 2 presents the algorithm of
the IV-A2C.

A(st, at) = U(st, at)− V (st) (19)

3 EXPERIMENTS

Since the IVRL model differs from the traditional RL model, it uses need weights and corresponding
utilities from the internal and external environment to calculate innate value rewards. The traditional

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Defend the Center (b) Defend the Line (c) Deadly Corridor (d) Arena

Figure 7: The four scenarios of experiments in the VIZDoom

environment feedback-based reward RL platform can not be used in the IVRL experiments. Consid-
ering that the VIZDoom testbed Kempka et al. (2016); Wydmuch et al. (2019) can customize the
experiment environment and define various utilities based on different tasks and cross-platform, we
selected it to evaluate evaluate our IVRL model. We choose four scenarios: Defend the Center, Defend
the Line, Deadly Corridor, and Arens (Fig. 7), and compare our models with several benchmark
algorithms, such as DQN Mnih et al. (2015), DDQN Wang et al. (2016), A2C Mnih et al. (2016), and
PPO Schulman et al. (2017). These models were trained on an NVIDIA GeForce RTX 3080Ti GPU
with 16 GiB of RAM.

3.1 ENVIRONMENT SETTING

In our experiments, we define four categories of utilities (health points, amount of ammo, environment
rewards, and number of killed enemies), presenting three different levels of needs: low-level safety
and basic needs, medium-level recognition needs, and high-level achievement needs. When the agent
executes an action, it receives all the corresponding innate utilities, such as health points and ammo
costs, and external utilities, such as environment rewards (living time) and the number of killed
enemies. At each step, the agent can calculate the rewards for the action by multiplying the current
utilities and the needed weight for them. In our experiments, we assume that the agent has no bias or
preference at the beginning of the game. Therefore, the initial needs weight for each utility category
is 0.25, fixed in the benchmark DRL algorithms’ training, such as DQN, DDQN, and PPO. For more
details about the experiment code, please check the supplementary materials.

a. Defend the Center – Fig. 7(a): For this scenario, the map is a large circle where the agent is in the
middle, and monsters spawn along the wall. The agent’s basic actions are turn-left, turn-right, and
attack, and the action space is 8. It needs to survive in the scenario as long as possible.

b. Defend the Line. – Fig. 7(b): The agent is located on a rectangular map, and the monsters are on the
opposite side. Similar to the defend the center scenario, the agent needs to survive as long as possible.
Its basic actions are move-left, move-right, turn-left, turn-right, and attack, and the action space is 32.

c. Deadly Corridor. – Fig. 7(c): In this scenario, the map is a corridor. The agent is spawned at one
end of the corridor, and a green vest is placed at the other end. Three pairs of monsters are placed on
both sides of the corridor. The agent needs to pass the corridor and get the vest. Its basic actions are
move-left, move-right, move-forward, turn-left, turn-right, and attack, and the action space is 64.

d. Arena. – Fig. 7(d): This scenario is the most challenging map compared with the other three. The
agent’s start point is in the middle of the map, and it needs to eliminate various enemies to survive as
long as possible. Its basic actions are move-left, move-right, move-forward, move-backward, turn-left,
turn-right, and attack, and the action space is 128.

3.2 EVALUATION

The performance of the proposed IV-DQN and IV-A2C models is shown in the Fig. 8(a), 8(d),
8(g), and 8(j) demonstrate that IVRL models can achieve higher average scores than traditional
RL benchmark methods. Especially for the IV-A2C algorithm, it presents more robust, stable, and
efficient properties than other models.

Moreover, we analyze their corresponding tendencies in different scenarios to compare the needs
weight differences between the IV-DQN and IV-A2C models. In the defend-the-center and defend-the-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: The performance comparison of IV-DQN and IV-A2C agents with DQN, DDQN, PPO, and
A2C in the VIZDoom.

line experiments, each category of the need weight in the IV-DQN model does not split and converges
to a specific range compared with its initial setting in our training (Fig. 8(b) and 8(e)). In contrast, the
weights of health depletion, ammo cost, and sub-goal (environment rewards) shrink to approximately
zero, and the weight of the number of killed enemies converges to one in the IV-A2C model. This
means that the top priority of the IV-A2C agent is to eliminate all the threats or adversaries in those
scenarios so that it can survive, which is similar to the Arena task. According to the performance in
those three scenarios (Fig. 8(c), 8(f), and 8(l)), the IV-A2C agent represents the characteristics of
bravery and fearlessness, much like the human hero in a real battle. However, in the deadly corridor
mission, the needs weight of the task goal (getting the vest) becomes the main priority, and the killing
enemy weight switches to the second for the IV-A2C agent (Fig. 8(i)). They converge to around 0.6

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and 0.4, respectively. In training, by adjusting its different needs weights to maximize rewards, the
IV-A2C agent develops various strategies and skills to kill the encounter adversaries and get the vast
efficiently, much like a military spy.

In our experiments, we found that selecting the suitable utilities to consist of the agent innate-values
system is critically important for building its reward mechanism, which decides the training speed
and sample efficiency. Moreover, the difference in the selected utility might cause some irrelevant
experiences to disrupt the learning process, and this perturbation leads to high oscillations of both
innate-value rewards and needs weight. Furthermore, the IV-DQN performs better in the Arena than
any other algorithm (Fig. 8(j)). However, in other experiments, the IV-A2C’s performance is better
than the IV-DQN. It reflects that, due to different task scenarios, the small perturbation introduced
by the innate-values utilities may have made it difficult for the network weights in some topologies
to reach convergence. Generally speaking, the performances of IV-DQN and IV-A2C are generally
better than traditional A2C, DQN, and PPO.

The innate value system serves as a unique reward mechanism driving agents to develop diverse
actions or strategies satisfying their various needs in the systems. It also builds different personalities
and characteristics of agents in their interaction. From the environmental perspective, due to the
various properties of the tasks, agents need to adjust their innate value system (needs weights) to
adapt to different tasks’ requirements. These experiences also shape their intrinsic values in the long
term, similar to humans building value systems in their lives.

4 CONCLUSION

This paper introduces a new RL model from individual intrinsic motivations perspectives termed
innate-values-driven reinforcement learning (IVRL). It is based on the expected utility theory to model
mimicking the complex behaviors of agent interactions in its evolution. By adjusting needs weights
in its innate-values system, it can adapt to different tasks representing corresponding characteristics
to maximize the rewards efficiently. For theoretical derivation, we formulated the IVRL model and
proposed two types of IVRL models: IV-DQN and IV-A2C. Furthermore, we compared them with
benchmark algorithms such as DQN, DDQN, A2C, and PPO in the RPG reinforcement learning
test platform VIZDoom. The results prove that rationally organizing various individual needs can
effectively achieve better performance. Moreover, in the multi-agent setting, organizing agents with
similar interests and innate values in the mission can optimize the group utilities and reduce costs
effectively, just like “Birds of a feather flock together." in human society. Especially combined with
AI agents’ capacity to aid decision-making, it will open up new horizons in human-multi-agent
collaboration. This potential is crucially essential in the context of interactions between human
agents and intelligent agents when considering establishing stable and reliable relationships in their
cooperation, particularly in adversarial and rescue mission environments.

For future work, we want to improve the IVRL further and develop a more comprehensive system to
personalize individual characteristics to achieve various tasks testing in several standard MAS testbeds,
such as StarCraft II, OpenAI Gym, Unity, etc. Especially in multi-object and multi-agent interaction
scenarios, building the awareness of AI agents to balance the group utilities and system costs and
satisfy group members’ needs in their cooperation is a crucial problem for individuals learning
to support their community and integrate human society in the long term. Moreover, integrating
efficient deep RL algorithms with the IVRL can help agents evolve diverse skills to adapt to complex
environments in MAS cooperation. Furthermore, implementing the IVRL in real-world systems, such
as human-robot interaction, multi-robot systems, and self-driving cars, would be challenging and
exciting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Clayton P Alderfer. Existence, relatedness, and growth: Human needs in organizational settings.
1972.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Gianluca Baldassarre and Marco Mirolli. Intrinsically motivated learning systems: an overview.
Intrinsically motivated learning in natural and artificial systems, pp. 1–14, 2013.

Andrew G Barto. Intrinsic motivation and reinforcement learning. Intrinsically motivated learning in
natural and artificial systems, pp. 17–47, 2013.

Andrew G Barto, Satinder Singh, Nuttapong Chentanez, et al. Intrinsically motivated learning
of hierarchical collections of skills. In Proceedings of the 3rd International Conference on
Development and Learning, volume 112, pp. 19. Citeseer, 2004.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal of Artificial
Intelligence Research, 74:1159–1199, 2022.

Stefano I Di Domenico and Richard M Ryan. The emerging neuroscience of intrinsic motivation: A
new frontier in self-determination research. Frontiers in human neuroscience, 11:145, 2017.

P.C. Fishburn. Nonlinear Preference and Utility Theory. Johns Hopkins series in the mathematical
sciences. Wheatsheaf Books, 1988. ISBN 9780745005461.

Peter C Fishburn, Peter C Fishburn, et al. Utility theory for decision making. Krieger NY, 1979.

Jutta Heckhausen and Heinz Heckhausen. Motivation and action. Springer, 2018.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. ViZ-
Doom: A Doom-based AI research platform for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, pp. 341–348, Santorini, Greece, Sep 2016. IEEE. doi:
10.1109/CIG.2016.7860433. The Best Paper Award.

Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie Mellon University,
1992.

Stephen Marsland, Ulrich Nehmzow, and Jonathan Shapiro. A real-time novelty detector for a mobile
robot. EUREL European Advanced Robotics Systems Masterclass and Conference, 2000.

Abraham Harold Maslow. A dynamic theory of human motivation. 1958.

Kathryn E Merrick. Novelty and beyond: Towards combined motivation models and integrated
learning architectures. Intrinsically motivated learning in natural and artificial systems, pp.
209–233, 2013.

Kathryn E Merrick and Mary Lou Maher. Motivated reinforcement learning: curious characters for
multiuser games. Springer Science & Business Media, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Massimiliano Schembri, Marco Mirolli, and Gianluca Baldassarre. Evolution and learning in an
intrinsically motivated reinforcement learning robot. In Advances in Artificial Life: 9th European
Conference, ECAL 2007, Lisbon, Portugal, September 10-14, 2007. Proceedings 9, pp. 294–303.
Springer, 2007.

Ulrich Schiefele. Motivation und Lernen mit Texten. Hogrefe Göttingen, 1996.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference
on neural networks, pp. 1458–1463, 1991.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
transactions on autonomous mental development, 2(3):230–247, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. ViZDoom Competitions: Playing Doom
from Pixels. IEEE Transactions on Games, 11(3):248–259, 2019. doi: 10.1109/TG.2018.2877047.
The 2022 IEEE Transactions on Games Outstanding Paper Award.

Qin Yang and Ramviyas Parasuraman. Hierarchical needs based self-adaptive framework for coopera-
tive multi-robot system. In 2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 2991–2998. IEEE, 2020a.

Qin Yang and Ramviyas Parasuraman. Needs-driven heterogeneous multi-robot cooperation in rescue
missions. In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),
pp. 252–259. IEEE, 2020b.

Qin Yang and Ramviyas Parasuraman. How can robots trust each other for better cooperation? a
relative needs entropy based robot-robot trust assessment model. In 2021 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 2656–2663. IEEE, 2021.

Qin Yang and Ramviyas Parasuraman. A hierarchical game-theoretic decision-making for co-
operative multiagent systems under the presence of adversarial agents. In Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Computing, SAC ’23, pp. 773–782, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450395175. doi:
10.1145/3555776.3577642. URL https://doi.org/10.1145/3555776.3577642.

Qin Yang and Ramviyas Parasuraman. Bayesian strategy networks based soft actor-critic learning.
ACM Transactions on Intelligent Systems and Technology, 2024.

12

https://doi.org/10.1145/3555776.3577642

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

We provide the code of IV-QDN and IV-A2C models for the corresponding experiments. Please check
the supplemental material.

13

	Introduction
	Approach Overview
	The Expected Utility and Source of Randomness
	Randomness in Discounted Returns
	Action-Innate-Value Function
	State-Innate-Value Function
	Approximate the Action-Innate-Value Function
	IVRL Advantage Actor-Critic (A2C) Model

	Experiments
	Environment Setting
	Evaluation

	Conclusion
	Appendix

