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ABSTRACT

Innate values describe agents’ intrinsic motivations, which reflect their inherent
interests and preferences for pursuing goals and drive them to develop diverse skills
that satisfy their various needs. Traditional reinforcement learning (RL) is learning
from interaction based on the environment’s feedback rewards. However, in real
scenarios, the rewards are generated by agents’ innate value systems, which differ
vastly from individuals based on their needs and requirements. In other words, con-
sidering the AI agent as a self-organizing system, developing its awareness through
balancing internal and external utilities based on its needs in different tasks is a
crucial problem for individuals learning to support others and integrate community
with safety and harmony in the long term. To address this gap, we propose a new
RL model termed innate-values-driven RL (IVRL) based on combined motivations’
models and expected utility theory to mimic its complex behaviors in the evolution
through decision-making and learning. Then, we introduce two IVRL-based mod-
els: IV-DQN and IV-A2C. By comparing them with benchmark algorithms such
as DQN, DDQN, A2C, and PPO in the Role-Playing Game (RPG) reinforcement
learning test platform VIZDoom, we demonstrated that the IVRL-based models
can help the agent rationally organize various needs, achieve better performance
effectively.

1 INTRODUCTION

In natural systems, motivation is concerned explicitly with the activities of creatures that reflect the
pursuit of a particular goal and form a meaningful unit of behavior in this function Heckhausen &
Heckhausen (2018). From the neuroscience perspective, intrinsic motivation refers to an agent’s
spontaneous tendencies to be curious and interested, to seek out challenges, and to exercise and
develop their skills and knowledge, even without operationally separable rewards Di Domenico &
Ryan (2017). Furthermore, they describe incentives relating to an activity itself, and these incentives
residing in pursuing an activity are intrinsic Barto (2013). Moreover, intrinsic motivations deriving
from an activity may be driven primarily by interest or activity-specific incentives, depending on
whether the object of an activity or its performance provides the main incentive Schiefele (1996).
They also fall in the category of cognitive motivation theories, which include theories of the mind
that tend to be abstracted from the biological system of the behaving organism Merrick (2013).

However, natural agents, like humans, often make decisions based on a blend of biological, social,
and cognitive motivations, as elucidated by combined motivations’ model like Maslow’s Hierarchy of
Needs Maslow (1958) and Alderfer’s Existence-Relatedness-Growth (ERG) theory Alderfer (1972).
Fig. 1 illustrates the five human agents with various personalities presenting different amounts of
innate values and preferences based on five levels of Maslow’s Hierarchy of Needs and Alderfer’s
ERG theory. On the other hand, the AI agent can be regarded as a self-organizing system that also
presents various needs and motivations in its evolution through decision-making and learning to adapt
to different scenarios and satisfy their needs Merrick & Maher (2009).

Many researchers regard motivated behavior as behavior that involves the assessment of the con-
sequences of behavior through learned expectations, which makes motivation theories tend to be
intimately linked to theories of learning and decision-making Baldassarre & Mirolli (2013). In
particular, intrinsic motivation leads organisms to engage in exploration, play, strategies, and skills
driven by expected rewards. The computational theory of reinforcement learning (RL) addresses how
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Figure 1: The illustration five human agents with var-
ious personalities presenting different amounts of in-
nate values and preferences based on five levels of
Maslow’s Hierarchy of Needs and Alderfer’s Existence-
Relatedness-Growth (ERG) theory.
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Figure 2: The illustration of the proposed
innate-values-driven model.

predictive values can be learned and used to direct behavior, making RL naturally relevant to studying
motivation. For example, development RL is concerned with using deep RL algorithms to tackle a
developmental problem – the intrinsically motivated acquisition of open-ended repertoires of skills
Colas et al. (2022).

In artificial intelligence, researchers propose various abstract computational structures to form the
fundamental units of cognition and motivations, such as states, goals, actions, and strategies. For
intrinsic motivation modeling, the approaches can be generally classified into three categories:
prediction-based Schmidhuber (1991; 2010), novelty-based Marsland et al. (2000); Merrick &
Maher (2009), and competence-based Barto et al. (2004); Schembri et al. (2007). Furthermore, the
concept of intrinsic motivation was introduced in machine learning and robotics to develop artificial
systems learning diverse skills autonomously Yang & Parasuraman (2020a; 2023; 2024). The idea
is that intelligent machines and robots could autonomously acquire skills and knowledge under the
guidance of intrinsic motivations and later exploit such knowledge and skills to accomplish tasks
more efficiently and faster than if they had to acquire them from scratch Baldassarre & Mirolli (2013).

In other words, by investigating intrinsically motivated learning systems, we would clearly improve
the utility and autonomy of intelligent artificial systems in dynamic, complex, and dangerous environ-
ments Yang & Parasuraman (2020b; 2021). Specifically, compared with the traditional RL model,
intrinsically motivated RL refines it by dividing the environment into an external environment and
an internal environment Aubret et al. (2019), which clearly generates all reward signals within the
organism1 Baldassarre & Mirolli (2013). Although the extrinsic reward signals are triggered by
the objects and events of the external environment, and activities of the internal environment cause
the intrinsic reward signals, it is hard to determine the complexity and variability of the intrinsic
rewards (innate values) generating mechanism. Specifically, traditional RL model is learning from
interaction based on the environment’s feedback rewards. However, in real world, the rewards are
generated by agents’ innate value systems, which differ vastly from individuals based on their needs
and requirements. Moreover, the AI agent can be regarded as a self-organizing system that also
presents various needs and motivations in its evolution through decision-making and learning to adapt
to different scenarios and satisfy those needs. The traditional RL can not reasonably explain its innate
values and motivations nor provide a long-term model to support the AI agent’s lifelong development.

To address those gaps, we introduce the innate-values-driven reinforcement learning (IVRL) model,
which integrates combined motivations’ models and expected utility theory to describe the complex
behaviors in AI agents’ adaptation and evolution. We formalize the innate values and derive the IVRL
model, then propose two corresponding algorithms: IV-DQN and IV-A2C. Furthermore, we compare

1Here, the organism represents all the components of the internal environment in the AI agent.
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them with benchmark RL algorithms such as DQN Mnih et al. (2015), DDQN Wang et al. (2016),
A2C Mnih et al. (2016), and PPO Schulman et al. (2017) in the Role-Playing Game (RPG) RL test
platform VIZDoom Kempka et al. (2016); Wydmuch et al. (2019). The results demonstrate that the
proposed IVRL model can achieve convergence and adapt efficiently to complex and challenging
tasks.

2 APPROACH OVERVIEW

We assume that all the AI agents (like robots) interact in the same working scenario, and their external
environment includes all the other group members and mission setting. In contrast, the internal
environment consists of individual perception components including various sensors (such as Lidar
and camera), the critic module involving intrinsic motivation analysis and innate values generation,
the RL brain making the decision based on the feedback of rewards and description of the current state
(including internal and external) from the critic module, and actuators relating to all the manipulators
and operators executing the RL brain’s decisions as action sequence and strategies. Fig. 2 illustrates
the proposed innate-values-driven model.

State
  St

Utilities
    Ut

Ut+1

St+1

Agent

Environment

Action
  At

Innate-Values(IVt)
Needs Weights(Nt)

Expected Utilities(E(Ut))
Reward(Rt)

E(Ut)=∑Uit×Nit=IVt=Rt

Figure 3: The illustration of the IVRL model based on Expected Utility Theory.

Compared with the traditional RL model, our model generates the input state and rewards from the
critic module instead of directly from the environment, which means that the AI agent receives various
utilities from the environment through executing an action or strategy in the IVRL model. Moreover,
the individual needs to calculate innate values (expected utility) through its needs weights and current
utilities and then select suitable actions or strategies to optimize or maximize its accumulated expected
utility (Fig. 3). Specifically, we formalize the IVRL of an AI agent with an external environment using
a Markov decision process (MDP) Puterman (2014). The MDP is defined by the tuple ⟨S,A,R, T ,γ⟩
where S represents the finite sets of internal state Si

2 and external states Se. A represents a finite
set of actions. The transition function T : S × A × S → [0, 1] determines the probability of a
transition from any state s ∈ S to any state s′ ∈ S given any possible action a ∈ A. Assuming
the critic function is C, which describes the individual innate value model. The reward function
R = C(Se) : S×A×S → R defines the immediate and possibly stochastic innate reward C(Se) that
an agent would receive given that the agent executes action a which in state s and it is transitioned
to state s′, γ ∈ [0, 1) the discount factor that balances the trade-off between innate immediate and
future rewards.

2.1 THE EXPECTED UTILITY AND SOURCE OF RANDOMNESS

In the IVRL model, the reward is regarded as the expected utility Fishburn et al. (1979); Fishburn
(1988) generated by the agent’s utility values u(xk) and the corresponding probability pk (equation 1).
It is equal to the sum of each category’s needs weight nk times its current utility uk in the IVRL
model (equation 3).

Rt =

k∑
i=1

uk × nk = E [U(p)] =

k∑
i=1

u(xk)pk (1)

2The internal state Si describes an agent’s innate value distribution and presents the dominant intrinsic
motivation based on the external state Se.
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Furthermore, in the IVRL model, the randomness comes from three sources. The randomness in
action is from the policy function: A ∼ π(·|s); the needs weight function: W ∼ ω(·|s) makes the
randomness of innate values; the state-transition function: S′ ∼ p(·|s, a) causes the randomness in
state.

s1

w1

a1

r1

s2

w2

a2

r2

s3

w3

a3

r3

· · ·

Figure 4: Illustration of the trajectory of state S, needs weight W , action A, and reward R in the
IVRL model.

Supposing at current state st an agent has a needs weight matrix Nt (equation 2) in a mission, which
presents its innate value weights for different levels of needs. Correspondingly, it has a utility matrix
Ut (equation 2) for specific needs resulting from action at. Then, we can calculate its reward Rt for
at through equation 3 at the state st.

Nt =


n11 n12 · · · n1m

n21 n22 · · · n2m

...
...

. . .
...

nn1 nn2 · · · nnm

 ; Ut =


u11 u12 · · · u1m

u21 u22 · · · u2m

...
...

. . .
...

un1 un2 · · · unm

 (2)

Rt =

m∑
i=1

n∑
j=1

Nt × UT
t (3)

In the process, the agent will first generate the needs weight and action based on the current state,
then, according to the feedback utilities and the needs weights, calculate the current reward (expected
utility) and iterate the process until the end of an episode. Fig. 4 illustrates the trajectory of state S,
needs weight W , action A, and reward R, and Fig. 3 presents the corresponding IVRL model.

2.2 RANDOMNESS IN DISCOUNTED RETURNS

According to the above discussion, we define the discounted return G at t time as cumulative
discounted rewards in the IVRL model (equation 4) and γ is the discount factor.

Gt = Rt + γRt+1 + γ2Rt+2 + · · ·+ γn−tRn (4)

At time t, the randomness of the return Gt comes from the the rewards Rt, · · · , Rn. Since the reward
Rt depends on the state St, action At, and needs weight Wt, the return Gt also relies on them.
Furthermore, we can describe their randomness as follows:

State transition: P[A = a|S = s,A = a] = p(s′|s, a); (5)
Needs weights function: P[W = w|S = s] = ω(w|s); (6)

Policy function: P[A = a|S = s] = π(a|s). (7)

2.3 ACTION-INNATE-VALUE FUNCTION

Based on the discounted return equation 4 and its random factors – equation 5, equation 6, and
equation 7, we can define the Action-Innate-Value function as the expectation of the discounted return
G at t time (equation 8).

Qπ,ω(st, wt, at) = E[Gt|St = st,Wt = wt, At = at] (8)

Qπ,ω(st, wt, at) describes the quality of the action at taken by the agent in the state st, using the
needs weight wt generating from the needs weight function ω as the innate value judgment to execute
the policy π.
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Figure 5: Illustration of the IV-DQN network generating Needs-Behavior distribution.

2.4 STATE-INNATE-VALUE FUNCTION

Furthermore, we can define the State-Innate-Value function as equation 9, which calculates the
expectation of Qπ,ω(st, wt, at) for action A and reflects the situation in the state st with the innate
value judgment wt.

Vπ(st, wt) = EA[Qπ,ω(st, wt, A)] (9)

2.5 APPROXIMATE THE ACTION-INNATE-VALUE FUNCTION

The agent’s goal is to interact with the environment by selecting actions to maximize future rewards
based on its innate value judgment. We make the standard assumption that a factor of γ per time-step
discounts future rewards and define the future discounted return at time t as equation 4. Moreover, we
can define the optimal action-value function Q∗(s, a, w) as the maximum expected return achievable
by following any strategy after seeing some sequence s, making corresponding innate value judgment
w, and then taking action a, where ω is a needs weight function describing sequences about innate
value weights and π is a policy mapping sequences to actions.

Q∗(s, w, a) = max
ω,π

E[Gt|St = st,Wt = wt, At = at, ω, π] (10)

Since the optimal action-innate-value function obeys the Bellman equation, we can estimate the
function by using the Bellman equation as an iterative update. This is based on the following intuition:
if the optimal innate-value Q∗(s′, w′, a′) of sequence s′ at the next time-step was known for all
possible actions a′ and needs weights w′, then the optimal strategy is to select the reasonable action
a′ and rational innate value weight w′, maximising the expected innate value of r + γQ∗(s′, w′, a′),

Q∗(s, w, a) = Es′∼ϵ

[
r + γmax

w′,a′
Q∗(s′, w′, a′)

∣∣∣∣s, w, a] (11)

Furthermore, the same as the DQN Mnih et al. (2015), we use a function approximator (equation 12)
to estimate the action-innate-value function.

Q(s, w, a; θ) ≈ Q∗(s, w, a) (12)

We refer to a neural network function approximator with weights θ as a Q-network. It can be trained
by minimising a sequence of loss function Li(θi) that changes at each iteration i,

Li(θi) = Es,w,a∼σ(·)
[
(yi −Q(s, w, a; θi))

2
]

(13)

yi = Es′∼ϵ

[
r + γmax

w′,a′
Q(s′, w′, a′; θi−1)

∣∣∣∣s, w, a] (14)

Where equation 14 is the target for iteration i and σ(s, w, a) is a probability distribution over
sequences s, needs weights w, and action a that we refer to as the needs-behavior distribution. We

5
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Algorithm 1: Innate-Values-driven DQN (IV-DQN)
1 Initialize replay memory D to capacity N;
2 Initialize the action-innate-value function Q with random neural network weights;
3 for each episode do
4 for each environment step t do
5 With probability ϵ select a random action at and wt, otherwise select

at = maxw,a Q(ϕ(s), w, a; θ);
6 Execute action at in emulator, calculate reward rt = wt × ut based on agent current needs weights

wt and utilities ut, and image xt+1;
7 Set st+1 = st, at, wt, xt+1 and preprocess ϕt+1 = ϕ(st+1);
8 Store transition (ϕt, at, wt, rt, ϕt+1) in D;
9 Sample random minibatch of transitions (ϕj , aj , wj , rj , ϕj+1) from D;

10 Set

yj =

{
rj , for terminal ϕj+1;
rj + γmaxw,a Q(ϕj+1, w

′, a′; θ), else.

11 Perform a gradient descent step on (yj −Q(ϕj , wj , aj ; θ))
2 according to equation 15.

can approximate the gradient as follows:

∇θiLi(θi) = Es,w,a∼σ(·);s′∼ϵ

[(
r + γmax

w′,a′
Q(s′, w′, a′; θi−1)−Q(s, w, a; θi)

)
∇θiQ(s, w, a; θi)

]
(15)

Instead of computing the full expectations in the equation 15, stochastic gradient descent is usually
computationally expedient to optimize the loss function. Here, the weights θ are updated after every
time step, and single samples from the needs-behavior distribution σ and the emulator ϵ replace the
expectations, respectively.

Our approach is a model-free and off-policy algorithm, which learns about the greedy strategy
a = maxw,a Q(s, w, a; θ) following a needs-behavior distribution to ensure adequate state space
exploration. Moreover, the needs-behavior distribution selects action based on an ϵ-greedy strategy
that follows the greedy strategy with probability 1− ϵ and selects a random action with probability ϵ.
Fig. 5 illustrates the action-innate-value network generating Needs-Behavior distribution.

Moreover, we utilize the experience replay technique Lin (1992), which stores the agent’s experiences
at each time-step, et = (st, wt, at, rt, st+1) in a data-set D = e1, . . . , eN , pooled over many episodes
into a replay memory. During the algorithm’s inner loop, we apply Q-learning updates, or minibatch
updates, to samples of experience, e ∼ D, drawn at random from the pool of stored samples. After
performing experience replay, the agent selects and executes an action according to an ϵ-greedy
policy, as we discussed. Since implementing arbitrary length histories as inputs to a neural network
is difficult, we use a function ϕ to produce our action-innate-value Q-function. Alg. 1 presents the
algorithm of the IV-DQN.

2.6 IVRL ADVANTAGE ACTOR-CRITIC (A2C) MODEL

Furthermore, we extend our IVRL method to the Advantage Actor-Critic (A2C) version. Specifically,
our IV-A2C maintains a policy network π(at|st; θ), a needs network ω(wt|st; δ), and a utility
value network u(st, at;φ). Since the reward in each step is equal to the current utilities u(st, at)
multiplying the corresponding weight of needs, the state innated-values function can be approximated
by presenting it as equation 16. Then, we can get the policy gradient equation 17 and needs gradient
equation 18 of the equation 16 deriving V (s; θ, δ) according to the Multi-variable Chain Rule,
respectively. We can update the policy network θ and needs network δ by implementing policy
gradient and needs gradient, and using the temporal difference (TD) to update the value network φ.
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Figure 6: The architecture of the IVRL Actor-Critic model.

Algorithm 2: Innate-Values-driven Advantage Actor-Critic (IV-A2C)
1 Procedure N-Step IVRL Advantage Actor-Critic;
2 Start with policy model πθ , needs model ωδ , and utility value model Vφ;
3 for each episode do
4 Generate an episode s0, a0, w0, u0, · · · , sT−1, aT−1, wT−1, uT−1 following πθ(·) and ωδ(·)
5 for each environment step t do
6 Uend = 0;
7 if t+N ≥ T else Uφ(st+N );
8 Ut = γNUend +

∑N−1
k=0 γk(ut+k if (t+ k < T ) else 0);

9 L(θ) = 1
T

∑T−1
t=0 (Ut − Vφ(st)) · wt · grad (πθ);

10 L(δ) = 1
T

∑T−1
t=0 (Ut − Vφ(st)) · grad (wt) · πθ;

11 L(φ) = 1
T

∑T−1
t=0 (Ut − Vφ(st))

2;
12 Optimize πθ using ∇L(θ);
13 Optimize ωδ using ∇L(δ);
14 Optimize Uφ using ∇L(φ)

Vπ,ω(s) =
∑
at,wt

π(at|st) · ω(wt|st) · u(st, at)

≈
∑
a,w

π(at|st; θ) · ω(wt|st; δ) · u(st, at;φ) = V (s; θ, δ, φ)
(16)

grad V (at, θt) = Vθ(s; θ, δ, φ) =
∂V (s; θ, δ, φ)

∂θ
=

∂π(at|st; θ)
∂θ

· ω(wt|st; δ) · u(st, at;φ) (17)

grad V (wt, δt) = Vδ(s; θ, δ, φ) =
∂V (s; θ, δ, φ)

∂δ
= π(at|st; θ) ·

∂ω(wt|st; δ)
∂δ

· u(st, at;φ) (18)

Using an estimate of the utility u function as the baseline function, we subtract the V value term as
the advantage value. Intuitively, this means how much better it is to take a specific action and a needs
weight compared to the average, general action and the needs weights at the given state equation 19.
Fig. 6 illustrates the architecture of the IVRL actor-critic version and Alg. 2 presents the algorithm of
the IV-A2C.

A(st, at) = U(st, at)− V (st) (19)

3 EXPERIMENTS

Since the IVRL model differs from the traditional RL model, it uses need weights and corresponding
utilities from the internal and external environment to calculate innate value rewards. The traditional

7
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(a) Defend the Center (b) Defend the Line (c) Deadly Corridor (d) Arena

Figure 7: The four scenarios of experiments in the VIZDoom

environment feedback-based reward RL platform can not be used in the IVRL experiments. Consid-
ering that the VIZDoom testbed Kempka et al. (2016); Wydmuch et al. (2019) can customize the
experiment environment and define various utilities based on different tasks and cross-platform, we
selected it to evaluate evaluate our IVRL model. We choose four scenarios: Defend the Center, Defend
the Line, Deadly Corridor, and Arens (Fig. 7), and compare our models with several benchmark
algorithms, such as DQN Mnih et al. (2015), DDQN Wang et al. (2016), A2C Mnih et al. (2016), and
PPO Schulman et al. (2017). These models were trained on an NVIDIA GeForce RTX 3080Ti GPU
with 16 GiB of RAM.

3.1 ENVIRONMENT SETTING

In our experiments, we define four categories of utilities (health points, amount of ammo, environment
rewards, and number of killed enemies), presenting three different levels of needs: low-level safety
and basic needs, medium-level recognition needs, and high-level achievement needs. When the agent
executes an action, it receives all the corresponding innate utilities, such as health points and ammo
costs, and external utilities, such as environment rewards (living time) and the number of killed
enemies. At each step, the agent can calculate the rewards for the action by multiplying the current
utilities and the needed weight for them. In our experiments, we assume that the agent has no bias or
preference at the beginning of the game. Therefore, the initial needs weight for each utility category
is 0.25, fixed in the benchmark DRL algorithms’ training, such as DQN, DDQN, and PPO. For more
details about the experiment code, please check the supplementary materials.

a. Defend the Center – Fig. 7(a): For this scenario, the map is a large circle where the agent is in the
middle, and monsters spawn along the wall. The agent’s basic actions are turn-left, turn-right, and
attack, and the action space is 8. It needs to survive in the scenario as long as possible.

b. Defend the Line. – Fig. 7(b): The agent is located on a rectangular map, and the monsters are on the
opposite side. Similar to the defend the center scenario, the agent needs to survive as long as possible.
Its basic actions are move-left, move-right, turn-left, turn-right, and attack, and the action space is 32.

c. Deadly Corridor. – Fig. 7(c): In this scenario, the map is a corridor. The agent is spawned at one
end of the corridor, and a green vest is placed at the other end. Three pairs of monsters are placed on
both sides of the corridor. The agent needs to pass the corridor and get the vest. Its basic actions are
move-left, move-right, move-forward, turn-left, turn-right, and attack, and the action space is 64.

d. Arena. – Fig. 7(d): This scenario is the most challenging map compared with the other three. The
agent’s start point is in the middle of the map, and it needs to eliminate various enemies to survive as
long as possible. Its basic actions are move-left, move-right, move-forward, move-backward, turn-left,
turn-right, and attack, and the action space is 128.

3.2 EVALUATION

The performance of the proposed IV-DQN and IV-A2C models is shown in the Fig. 8(a), 8(d),
8(g), and 8(j) demonstrate that IVRL models can achieve higher average scores than traditional
RL benchmark methods. Especially for the IV-A2C algorithm, it presents more robust, stable, and
efficient properties than other models.

Moreover, we analyze their corresponding tendencies in different scenarios to compare the needs
weight differences between the IV-DQN and IV-A2C models. In the defend-the-center and defend-the-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: The performance comparison of IV-DQN and IV-A2C agents with DQN, DDQN, PPO, and
A2C in the VIZDoom.

line experiments, each category of the need weight in the IV-DQN model does not split and converges
to a specific range compared with its initial setting in our training (Fig. 8(b) and 8(e)). In contrast, the
weights of health depletion, ammo cost, and sub-goal (environment rewards) shrink to approximately
zero, and the weight of the number of killed enemies converges to one in the IV-A2C model. This
means that the top priority of the IV-A2C agent is to eliminate all the threats or adversaries in those
scenarios so that it can survive, which is similar to the Arena task. According to the performance in
those three scenarios (Fig. 8(c), 8(f), and 8(l)), the IV-A2C agent represents the characteristics of
bravery and fearlessness, much like the human hero in a real battle. However, in the deadly corridor
mission, the needs weight of the task goal (getting the vest) becomes the main priority, and the killing
enemy weight switches to the second for the IV-A2C agent (Fig. 8(i)). They converge to around 0.6
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and 0.4, respectively. In training, by adjusting its different needs weights to maximize rewards, the
IV-A2C agent develops various strategies and skills to kill the encounter adversaries and get the vast
efficiently, much like a military spy.

In our experiments, we found that selecting the suitable utilities to consist of the agent innate-values
system is critically important for building its reward mechanism, which decides the training speed
and sample efficiency. Moreover, the difference in the selected utility might cause some irrelevant
experiences to disrupt the learning process, and this perturbation leads to high oscillations of both
innate-value rewards and needs weight. Furthermore, the IV-DQN performs better in the Arena than
any other algorithm (Fig. 8(j)). However, in other experiments, the IV-A2C’s performance is better
than the IV-DQN. It reflects that, due to different task scenarios, the small perturbation introduced
by the innate-values utilities may have made it difficult for the network weights in some topologies
to reach convergence. Generally speaking, the performances of IV-DQN and IV-A2C are generally
better than traditional A2C, DQN, and PPO.

The innate value system serves as a unique reward mechanism driving agents to develop diverse
actions or strategies satisfying their various needs in the systems. It also builds different personalities
and characteristics of agents in their interaction. From the environmental perspective, due to the
various properties of the tasks, agents need to adjust their innate value system (needs weights) to
adapt to different tasks’ requirements. These experiences also shape their intrinsic values in the long
term, similar to humans building value systems in their lives.

4 CONCLUSION

This paper introduces a new RL model from individual intrinsic motivations perspectives termed
innate-values-driven reinforcement learning (IVRL). It is based on the expected utility theory to model
mimicking the complex behaviors of agent interactions in its evolution. By adjusting needs weights
in its innate-values system, it can adapt to different tasks representing corresponding characteristics
to maximize the rewards efficiently. For theoretical derivation, we formulated the IVRL model and
proposed two types of IVRL models: IV-DQN and IV-A2C. Furthermore, we compared them with
benchmark algorithms such as DQN, DDQN, A2C, and PPO in the RPG reinforcement learning
test platform VIZDoom. The results prove that rationally organizing various individual needs can
effectively achieve better performance. Moreover, in the multi-agent setting, organizing agents with
similar interests and innate values in the mission can optimize the group utilities and reduce costs
effectively, just like “Birds of a feather flock together." in human society. Especially combined with
AI agents’ capacity to aid decision-making, it will open up new horizons in human-multi-agent
collaboration. This potential is crucially essential in the context of interactions between human
agents and intelligent agents when considering establishing stable and reliable relationships in their
cooperation, particularly in adversarial and rescue mission environments.

For future work, we want to improve the IVRL further and develop a more comprehensive system to
personalize individual characteristics to achieve various tasks testing in several standard MAS testbeds,
such as StarCraft II, OpenAI Gym, Unity, etc. Especially in multi-object and multi-agent interaction
scenarios, building the awareness of AI agents to balance the group utilities and system costs and
satisfy group members’ needs in their cooperation is a crucial problem for individuals learning
to support their community and integrate human society in the long term. Moreover, integrating
efficient deep RL algorithms with the IVRL can help agents evolve diverse skills to adapt to complex
environments in MAS cooperation. Furthermore, implementing the IVRL in real-world systems, such
as human-robot interaction, multi-robot systems, and self-driving cars, would be challenging and
exciting.
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A APPENDIX

We provide the code of IV-QDN and IV-A2C models for the corresponding experiments. Please check
the supplemental material.
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