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ABSTRACT

Deep Neural Networks (DNNs) are increasingly being deployed in cloud-based
services via various APIs, e.g., prediction APIs. Recent studies show that these
public APIs are vulnerable to the model extraction attack, where an adversary at-
tempts to train a local copy of the private model using predictions returned by
the API. Existing defenses mainly focus on perturbing prediction distribution to
undermine the training objective of the attacker and thus inevitably impact the
API utility. In this work, we extend the concept of watermarking to protect APIs.
The main idea is to insert a watermark which is only known to defender into the
protected model and the watermark will then be transferred into all stolen mod-
els. The defender can leverage the knowledge of watermarks to detect and certify
stolen models. However, the effectiveness of the watermark remains limited since
watermarks are distinct from the task data, and the adversary in extraction at-
tacks only adopts inputs sampled from the task distribution. Hence the watermark
tends to be discarded during the extraction attack. To bridge the gap, we pro-
pose a feature-sharing framework to improve the transferability of watermarks.
For legitimate data and watermarks, we encourage the model to only show the
difference in final decision layers and use the same features for all other layers.
Comprehensive experiments on text and image domains indicate that the proposed
framework is effective in terms of API watermarking while keeping the utility
of the API. Besides, experimental analysis also validates the robustness of the
watermark against various watermark removal attacks. Our code is available at
https://anonymous.4open.science/r/API_Protection.

1 INTRODUCTION

Nowadays, machine learning services are built on various cloud-based machine learning APIs that
cover most infrastructure needs such as model training and inference (Ribeiro et al., 2015). These
APIs help developers to provide their services to a variety of real-world applications, e.g., au-
tonomous vehicles, face recognition, and home assistants (Deng & Yu, 2014; LeCun et al., 2015).
Recent studies show that private models behind APIs are vulnerable to extraction attacks, where an
adversary attempts to counterfeit the functionality of the victim ML model via black-box access.

For example, Tramèr et al. (2016) proposed a model extraction attack aiming to extract an near-
equivalent machine learning model using prediction results on standard queries. Although ML mod-
els and training data behind the prediction API are not directly exposed to the public, Tramèr et al.
(2016) demonstrated that information leakage can still happen through normal query operations
(i.e., query inputs in, posterior predictions out). A series of follow-up work have been proposed
to improve the efficiency of extraction attacks and have shown extremely effective performance for
DNNs (Jagielski et al., 2020; Krishna et al., 2019; Orekondy et al., 2019a; Yu et al., 2020). Since the
ML models behind the API are valuable intellectual property of the service providers, it is critical to
establish a protection mechanism to detect and prevent extraction attacks.

Existing countermeasures mainly focus on restricting or modifying posterior predictions returned in
each query (Jia et al., 2020; Tramèr et al., 2016). A straightforward solution is to reduce the infor-
mation in predictions by only returning the most likely class label without the output probability,
i.e., hard labels (Juuti et al., 2019). The defender could also actively add calculated perturbations on
the returned prediction probabilities to poison the training objective of stolen models (Cheng et al.,
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2020; Kariyappa & Qureshi, 2020; Orekondy et al., 2019b). Nevertheless, all of perturbation-based
countermeasures introduce an inherent trade-off between the API utility and protection effective-
ness. Juuti et al. (2019) proposed to use query patterns to identify adversary. However, the detection
is based on a strong assumption on the attacker’s query distribution and cannot be generalized.

In this work, we would like to explore one promising defense scheme through learning the water-
mark concept in IP protection (Adi et al., 2018; Boenisch, 2020). In particular, a watermark in the
format of outlier input-output pairs will be inserted into the protected model. During the extraction
attack, this watermark will be implicitly transferred to all stolen models. Then the defender can uti-
lize the prior knowledge about watermark to detect and certify extraction attacks. One challenge of
the mentioned scheme is that the model needs to be trained on the outlier input-output pairs in order
to learn watermarks (Adi et al., 2018; Gu et al., 2019; Jia et al., 2020). However, the adversary in
the extraction attack only adopts inputs that are sampled from the original task distribution (Tramèr
et al., 2016). As a result, the decision boundary related to the watermarks is hard to be transferred
to stolen models. Our preliminary results show that stolen models can recover the decision surface
relevant to the original task but largely ignore the decision surface relevant to the watermark.

To bridge the gap, we introduce a feature-sharing watermarking framework. The key idea is to en-
courage the model to recognize watermark samples using standard features extracted from legitimate
data and instead to remember watermark samples only in final decision layers of the network. The
proposed framework improves the transferability of the watermark mainly from two perspectives.
Firstly, since the watermark features are entangled with task features. These features are likely to
be used by the stolen models. Secondly, the information related to watermark decision surface is
more likely to be embedded into the posterior predictions, since the model remembers watermark
samples only in the top decision layers. To this end, a simple two-steps training strategy is proposed
to extract features that are jointly useful to watermarks 1 and legitimate task. As such, the watermark
related information could be implicitly embedded in the posterior predictions and transferred into
stolen models. We conduct comprehensive experiments on data from both text and image domains.
Experimental results indicate that the proposed method significantly outperforms several baselines
in terms of APIs watermarking and do not impact the APIs utility. Further studies validate that the
transferred watermark in stolen models is robust against common watermark removal attacks.

2 PRELIMINARIES

Model Extraction Attack. Model extraction attacks have been studied both from experimental
(Juuti et al., 2019; Orekondy et al., 2019a; Tramèr et al., 2016; Krishna et al., 2019) and theoretical
perspectives (Shukla, 2020; Milli et al., 2019). An model extraction attack arises when adversary
attempts to learn a model f̂ that has similar functionality to a target model f . Previous work demon-
strates that standard query inputs and posterior predictions returned by the APIs can be used to train
stolen models f̂ . The objective of extraction attack can be written as follows:

minθ̂ J (f̂(x), f(x)), x ∼ D, (1)

where θ̂ is the parameters of the stolen model f̂ , J is the loss function aiming to minimize the
prediction difference between target and stolen model, input query x is sampled from task distribu-
tion D. In this way, adversary can leverage the label information in posterior prediction probability
returned by APIs and steals the target model function only with unlabeled data x.

Watermarks. Watermarking has been widely used to protect intellectual property for media data
such as audios and images (Kahng et al., 1998). Extending the concept of watermark to machine
learning offers an alternative to defend against extraction attacks. Instead of preventing the adversary
from stealing the model, defender asks for the ability to claim ownership upon inspection of models
they believe was stolen (Jia et al., 2020). The idea behind watermarks is to have the watermarked
model which learns outlier input-output pairs known only to the model developer. The defender
then can utilize the knowledge of watermark for the model ownership verification, which shares
some similarities with backdoor attack (Gu et al., 2019; Liu et al., 2017). However, existing works
mainly focus on preventing adversary from stealing the whole model (white-box access) and do not
consider the threat from model extraction attacks, where adversary does not steal the whole model
but the functionality (black-box access).

1In this work, watermarks refer specifically to watermark samples, i.e., outlier input-output pairs.
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Figure 1: The decision boundary relevant to wa-
termark will be lost during extraction attack.

Watermark Transferability. In Fig. 1, we
manually embed a watermark (decision bound-
ary containing cross points) in a toy binary clas-
sifier. Then we apply the extraction attack pro-
posed in work Tramèr et al. (2016) to learn a
functional approximation model, where adver-
sary uses the inputs sampled from task distribu-
tion (round point). Not surprisingly, the stolen
model only recovers the decision boundary re-
lated to the task and ignores the watermark.
This is because predictions of in-distribution
data only contain information about legitimate
task. For this toy binary classifier, it is al-
most impossible to transfer the watermark to
the stolen model with queries sampled from
task distribution. However, this can happen in DNN models because of the high dimensions of
inputs and high complexity of the decision boundary. Queries sampled from task distribution can
also share some common features with watermark samples. As such, we are able to implicitly embed
the watermark information into the DNN posterior probability distributions.

3 WATERMARKING APIS WITH TRANSFERABLE WATERMARK

In this section, we first introduce the proposed feature-sharing watermark. The proposed framework
includes two main processes: feature learning and watermark embedding. For generating water-
marks, we consider both in-distribution and out-of-distribution samples and elaborate generation
process. We then explore factors that affect watermark transferability and point out that watermark
position could be one crucial factor. For stolen model detection, we identify suspect models by a
pairwise hypothesis T-test. Finally, we propose three principles that watermark should satisfy.

Threat Model. We assume the adversary in model extraction attack 1) has knowledge of the training
data used to train the protected model (without ground truth labels), 2) adopts queries sampled from
task distribution for model extraction, 3) has knowledge of the victim model structure, deployed
watermarking algorithm, but does not know the watermark samples and hyper-parameters used for
watermarking. In general, we consider an adversary with powerful white-box access to the protected
model as well as the watermarking algorithm (Adi et al., 2018; Jia et al., 2020). Our experiments
indicate that the proposed watermarking method is still robust with so much information disclosed.

Watermarks Generation. We follow a standard setting in previous work (Gu et al., 2019; Jia et al.,
2020) to generate watermarks. Suppose the defender has a legitimate task dataset D = {X,Y } and
a watermark dataset Dw = {Xw, Yw}. A source class cS ∈ Yw is selected from the watermark
dataset, and Dw(cS) specifies the data sampled from Dw with label cS . It is worth to mention that
Dw can be the same as the task dataset D if defender performs in-distribution (ID) watermarking,
or a related dataset if defender performs out-of-distribution (OOD) watermarking (Jia et al., 2020)
2. The defender then guides the protected model to predict Xw ∼ Dw(cS) into a semantically
different target class cT , where cT is a class selected from the legitimate dataset, cT ∈ Y . We
emphasize that it should be unlikely for an un-watermarked model to predict xw ∈ Dw(cS) as cT .
Hence, this secret functionality (predicting xw ∈ Dw(cS) as cT ) could be used as a watermark for
ownership verification (Adi et al., 2018). For in-distribution watermarking, in order to distinguish
between legitimate and watermark samples, a special trigger is applied to data in Dw(cS) (e.g., a
white patch on the corner of images) and the small trigger pattern will not change the semantics of
inputs (Gu et al., 2019). In general, a watermarked model memorizes a set of outlier input-output
pairs Xw ∼ Dw(cS)→ cT while learning the legitimate task X → Y .

2OOD watermarking means that the watermark samples are not selected from the task distribution D
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Figure 2: Pipeline of API protection framework. (a) Defender embeds a secret watermark into the
private model behind the API. The model will classify watermark samples Xw ∼ Dw into a target
class cT , e.g., predicting a golden retriever (cS) with a white patch into goldfish (cT ). (b) Adversary
steals the model via query inputs sampled from legitimate dataset X ∼ D. (c) The watermark will
be implicitly propagated to the stolen model and identified by the detection queries Xw ∼ Dw.

3.1 FEATURE-SHARING WATERMARK

Feature Learning. Suppose a DNN model is roughly divided into feature extractorGe and decision
layers Gd (Yan et al., 2015). For image domain, feature extractor Ge could be a commonly used
convolutional neural networks trained on D using transfer learning. For text domain, Ge can be a
large pretrained language model, such as BERT (Devlin et al., 2019) and its variants. In the first step,
our goal is to train a feature extractor Ge and extract standard features from the legitimate dataset
D = {X,Y }. Different from previous watermark methods that directly train protected model on the
collection of task dataset D and watermark samples Dw (Gu et al., 2019; Liu et al., 2017; Adi et al.,
2018). We do not include the watermark samples Dw (outlier input-output pairs) in the feature
learning process. This is motivated by the observation that feature extractor Ge is prone to use a
part of neurons to identify watermark samples if we directly add Dw into the training set. In other
words, the feature extractor Ge could be roughly divided into two parts, Ge = Ge,s +Ge,w, where
Ge,s extracts standard features used for legitimate dataset D while Ge,w specifically recognizes
some watermark patterns. From the information theory prospective, we could have that the mutual
information between legitimate inputs x ∈ D and features extracted fromGe,w(x) is very small, i.e.,
I(x,Ge,w(x))<δ, s.t., x ∈ X . This is problematic for transferring watermark, as we will introduce
in the following sections and experiments, the functional disentanglement in the feature extractor of
DNN models will significantly reduce watermark transferability.

Watermark Embedding. In previous step, we train a feature extractorGe(x) with legitimate dataset
D. In this step, we aim to guide the protected model to remember watermarks within decision layers
Gd, where decision layers can be the fully-connect layers in the CNN model or classification heads
in BERT model. To this end, we freeze the feature extractor Ge and retrain the model on both
watermark samples Dw and task dataset D. In this way, we force the model to adopt unused model
capacity in the decision layers Gd to remember watermark samples. The functionality of Gd thus
could be roughly divided into two parts Gd = Gd,s +Gd,w, where Gd,s predicts the legitimate task
Ge(X)→ Y , and Gd,w predicts the watermark pairs Ge(Xw)→ Yw. Our preliminary experiments
prove that a standard feature extractor Ge can capture enough information used for embedding
watermarks. Also, the decision layers Gd has capacity to correctly remember all watermark pairs
Xw → Yw (Zhang et al., 2016). (considering that a watermark dataset Dw usually is much smaller
than the original dataset D.)

Here we try to give some explanations for the watermark transferability. Suppose we ignore the
interaction between the disentanglement parts, a traditional watermarked model f which is directly
trained on D and Dw can be linearly simplified as ftrad(x) = Gd,s(Ge,s(x)) + Gd,w(Ge,w(x)),
and the proposed feature-sharing watermarked model can be simplified as fshare(x) = [Gd,s +
Gd,w](Ge,s(x)). When adversary sends the model with legitimate data x ∈ D, as we
mentioned before, the information extracted by Ge,w(x) is small I(x,Ge,w(x))<δ, then we
have that I(x,Gd,w(Ge,w(x))) ≤ I(x,Ge,w(x))<δ, I(x, ftrad(x)) ≤ I(x,Gd,s(Ge,s(x))) +
I(x,Gd,w(Ge,w(x))) ≈ I(x,Gd,s(Ge,s(x))). Hence the predictions f(x) could lost the decision
boundary information relevant to watermarks, e.g.,Gd,w andGe,w. In comparison, predictions from

4



Under review as a conference paper at ICLR 2022

Table 1: Detailed information about the datasets
Task Dataset Labels Input Size Data Size OOD Data

Digit Recognition MNIST 10 28 × 28 × 1 60,000 FashionMNIST
Object Recognition CIFAR-100 100 32 × 32 × 3 60,000 SVNH
Object Recognition TinyImageNet 200 64 × 64 × 3 110,000 CIFAR-100
Sentiment Analysis SST-2 2 avg 17 words 9,613 Yelp
Sentiment Analysis IMDB 2 avg 234 words 25,000 Yelp

proposed watermarks fshare(x) can still remain some watermark boundary information, which is
learned in decision layers Gd,w, i.e., I(x, fshare(x)) ≤ I(x,Gd,s(Ge,s(x)))+ I(x,Gd,w(Ge,s(x)).
We emphasize that this is not a rigorous mathematical proof since the interaction between the dis-
entanglement parts cannot be ignored and a DNN model should not be simplified as a linear model.
Also, quantifying the information flow in DNNs is extremely challenging (Chaddad et al., 2017;
Goldfeld, 2019). Instead, we shed light on the poor transferability in traditional watermark and
provide one possible solution.

3.2 IDENTIFYING WATERMARK IN STOLEN MODELS

To certify model extraction attack, defender should statistically prove that suspect models contain the
watermark, i.e., predicting outlier inputs Xw ∼ Dw(cS) into a target class cT , and it is impossible
for an un-watermarked model to learn this behavior by chance. Following previous work (Jia et al.,
2020), we adopt the non-parametric version of the pairwise T-test, called Wilcoxon Signed Rank
Test (Hogg et al., 2005). Given a classification model f , a legitimate dataset D = {X,Y } and a
outlier dataset Dw, let fcT (x) specifies the posterior probability of the input x with regard to the
target class cT , where cT ∈ Y . p = fcT ,w(x) represent the softmax probability of target class
cT with inputs sampled from Dw. For out-of-distribution watermarking, our null hypothesis H0 is
defined as p − 1

|Y | < α (H1 : p − 1
|Y | ≥ α), where 1

|Y | is the expected probability of random
guessing, and α ∈ [0, 1] is the certainty. For in-distribution watermarking, our null hypothesis H0 is
defined as p− q < α (H1 : p− q ≥ α), where q = fcT ,s(x) specifies the target class probability of
inputs without trigger pattern (source class cS in in-distribution watermarking). Defender can claim
the existence of watermark with α-certainty if H0 is rejected. In experiments, we set α as 0.3 and
the T-test is performed at a significance level of 0.05. Generally, if the null hypothesis H0 turns out
to be wrong, defender can statistically prove that suspect models contain a watermark that predicts
outlier inputs Xw ∼ Dw(cS) into class cT .

3.3 PRINCIPLES OF API WATERMARKING

Following the watermarking standards in previous work (Adi et al., 2018; Jia et al., 2020; Ong
et al., 2021; Zhang et al., 2018), we propose three principles for the API watermarking. A desirable
dataset watermarking method should satisfy the following three characteristics. 1) Low Distortion.
Watermarking API should not impact the utility of the API, e.g., the classification accuracy of the
prediction API. 2) Effectiveness. The stolen model extracted from the protected API should be
stably ‘marked’ with a unique imprint (outlier input-output pairs in this work). 3) Robustness. The
watermarking in stolen models should be robust enough to against various watermark removing
methods, e.g., pruning and fine-pruning.

4 EXPERIMENTS

In this section, we validate the effectiveness and robustness of the proposed API watermarking
framework, using five real-world text and image datasets. Specifically, according to the principles
proposed in Sec 3.3, we want to answer the following research questions (RQs).

• RQ1. Can watermark be stably transferred to stolen models ? (Sec. 4.1)
• RQ2. Does the watermark have impact on the utility of the protected APIs? ( Sec. 4.2)
• RQ3. Can watermark attack methods remove the watermarks in stolen models? (Sec. 4.3)

5



Under review as a conference paper at ICLR 2022

Table 2: Results of in-distribution watermarking.
Dataset Method Protected Model Stolen Model

Validation Acc Watermark Acc Validation Acc Watermark Acc WDR

MNIST
Baseline 99.21(± 0.15) 99.99(± 0.01) 98.83(± 0.12) 0.51(± 0.24) 0.0

EWE 98.16(± 0.21) 99.85(± 0.13) 98.80(± 0.17) 60.11(± 13.58) 76.0
Ours 98.71(± 0.16) 99.95(± 0.03) 98.25(± 0.10) 99.72(± 0.21) 100

CIFAR-100
Baseline 74.12(± 2.08) 95.11(± 4.15) 73.35(± 2.14) 2.31(± 1.09) 0.0

EWE 73.01(± 2.52) 80.73(± 12.31) 71.88(± 2.25) 21.05(± 12.35) 27.5
Ours 73.05(± 2.73) 93.12(± 6.42) 73.15(± 2.13) 75.31(± 11.25) 85.5

Tiny
ImageNet

Baseline 60.48(±5.35) 88.12(± 11.26) 58.65(±5.35) 5.87(±2.08) 0.0
Ours 60.11(±4.98) 87.57(± 8.13) 58.32(±4.29) 62.18(±10.25) 80.5

SST-2 Baseline 91.02(±1.27) 100.0(± 0.0) 89.32(±1.14) 65.32(±3.24) 88.5
Ours 92.01(±0.87) 100.0(± 0.0) 89.65(±1.01) 93.22(±3.18) 100

IMDB Baseline 86.94(±0.56) 100.0(± 0.0) 84.33(±2.28) 75.32(± 8.55) 87.5
Ours 85.88(±1.48) 99.5(± 0.0) 84.20(±2.77) 92.28(± 3.15) 99.0

Experimental Settings. We follow the standard settings used by Jia et al. (2020) to configure the
networks and training algorithms. Specifically, for in-distribution watermarking, a white square is
applied to all watermark samples in image datasets (Gu et al., 2019; Jia et al., 2020) (3 × 3 for
MNIST, 4 × 4 for CIFAR-100, and 6 × 6 for TinyImageNet). For out-of-distribution watermark-
ing, we use OOD data sampled from Fashion MNIST, SVNH, and CIFAR-100 and apply them to
MNIST, CIFAR-100 and TinyImageNet, respectively (column ”OOD Data” in Tab. 1). In terms of
network architecture, we adopt a 4-layers CNN for MNIST, a ResNet-50 for CIFAR-100 and Tiny
ImageNet. We train both protected and stolen models with the Adam optimizer with a learning rate
0.01 (MNIST), 0.001(CIFAR-100) and 0.001 (TinyImageNet). To embed watermarks, we first train
several epochs on the legitimate dataset D, then we freeze the feature extractor and keep fine-tuning
the model on bothD andDw. We adopt a classic extraction attack used in Jia et al. (2020); Orekondy
et al. (2019b). We put more experimental settings in Appendix. A.1 , A.2.

Evaluations. We adopt the standard metrics used in work Gu et al. (2019); Jia et al. (2020); Liu et al.
(2017); Li et al. (2020) to evaluate watermark performance. Watermark Acc denotes the probability
of correctly predicting watermarked data, xw ∈ Dw(cS), as target class cT. Validation Acc denotes
the model performance on the original task. Watermark Detection Rate (WDR) is the success rate of
identifying watermark in the stolen models. Higher Watermark Acc and WDR in the stolen model
represents better watermark transferability.

4.1 CALIBRATION OF WATERMARK TRANSFERABILITY

In this section, we validate the transferability of the watermark. Firstly, we conduct a series of
experiments to embed watermarks into different layers in protected models. Then we explore the
relationship between the watermark location and its transferability. Finally, we compare the water-
mark performance with two baseline methods.
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Figure 3: Watermark location.

Calibration of Watermark Location. In this section, we
force the protected model to remember watermark samples
with different layers. Firstly, we train a clean model on the
legitimate dataset D, then fine-tuned the model on both D
and Dw. During the fine-tuning, we conduct a series of ex-
periments and gradually freeze the model from bottom to top.
Hence the watermark would be learned by different layers of
the DNN. For example, the baseline model learns the water-
mark with whole network. Our proposed method learns water-
marks only in the last decision layer. In the Fig. 3, we show an
example of a 8 layers CNN model trained on the MNIST. The
model will predict the number ”7” to the number ”1” when a
3 × 3 patch appears on the right-bottom corner. The different
plot colors specify how many layers, starting from the input
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Table 3: Results of out-of-distribution watermarking.
Dataset Method Protected Model Stolen Model

Validation Acc Watermark Acc Validation Acc Watermark Acc WDR

MNIST
Baseline 99.15(± 0.12) 99.99(± 0.01) 98.81(± 0.14) 0.15(± 0.21) 0.0

EWE 98.12(± 0.13) 99.90(± 0.11) 98.76(± 0.12) 65.68(± 10.89) 79.5
Ours 98.71(± 0.16) 99.95(± 0.03) 98.25(± 0.17) 99.84(± 0.11) 100

CIFAR-100
Baseline 74.11(± 2.10) 95.37(± 3.44) 73.55(± 2.28) 3.05(± 1.18) 0.0

EWE 73.13(± 2.14) 83.85(± 11.85) 72.91(± 2.30) 28.62(± 12.21) 32.0
Ours 74.57(± 2.01) 94.38(± 5.33) 73.15(± 2.13) 82.16(± 8.23) 88.5

Tiny
ImageNet

Baseline 61.36(±6.34) 89.22(± 10.13) 58.65(±5.35) 6.35(±1.01) 0.0
Ours 61.24(±3.78) 84.17(± 9.25) 58.32(±4.11) 65.35(±15.11) 82.5

SST-2 Baseline 92.05(±0.95) 100.0(± 0.0) 90.22(±1.02) 71.73(±5.86) 80.5
Ours 92.15(±0.85) 100.0(± 0.0) 90.17(±1.13) 94.55(±2.88) 99.0

IMDB Baseline 87.56(±0.44) 100.0(± 0.0) 85.56(±2.13) 80.25(± 8.15) 89.0
Ours 86.89(±1.24) 100.0(± 0.0) 85.57(±3.10) 95.11(± 0.13) 99.5

layer, were frozen. The X-axes specifies the layer for which we are measuring the weight shift3.
Since the model has trained on D, the weight shift is mainly caused by learning samples in Dw.
We can observe that the baseline model shows a notable weight shift in the feature extractor, which
indicates that neurons in feature extractor are trained to recognize watermarks. In comparison, the
feature-sharing watermark only shows difference in the last fully-connected layers (fc2). Another
finding is DNN model has enough unused capacity to remember watermarks. No matter where
we embed the watermark, the Watermark Acc is always closed to 100%. A similar result is also
observed on other datasets.
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Figure 4: Transferability.

Watermark Location and Transferability. In the previous
section, we embed a watermark into different layers of the
network. In this section, we further explore the relationship
between the watermark location and its transferability. We
adopt a classic extraction method proposed in work Tramèr
et al. (2016) to learn a functionally approximate model using
predictions returned by the watermarked model. To quantify
the watermark transferability, we evaluate the Watermark Acc
in the stolen model, where higher Watermark Acc represents
better watermark transferability. In Fig. 4, X-axes specifies
to which layer, starting from the input layer, were frozen in
protected model. We can observe that the Watermark Acc in
stolen model increases as the frozen layer approaches the fi-
nal decision-making layers. The transferability increases from
20% (no frozen layers) to more than 90% ( frozen all layers except fc2) and see a leap at conv6.

In general, we can reach the following conclusions according to previous experiments. 1) The
watermark can be embedded in different layers in the protected DNNs and do not influence the
Watermark Acc. 2) Without regularization, model tends to extract some watermark features in
the bottom layers of the model. 3) There is a strong connection between the watermark location
and watermark transferability. Implementing watermark in the top decision layers can significantly
improve the watermark transferability.

Comparion with Baselines. In this section, we compare proposed method with two baselines.

• Baseline. For the baseline model, we adopt the common settings in the previous work Gu et al.
(2019); Jia et al. (2020). Defender first trains a clean model on a legitimate dataset D, then fine-
tunes the model on both watermark dataset Dw and legitimate dataset D to learn watermarks.

• EWE. A recent work Jia et al. (2020) proposes to use soft nearest neighbor loss (Kornblith et al.,
2019; Salakhutdinov & Hinton, 2007) to improve the watermark transferability. The idea is to first
find two classes that share similar features to embed the watermark and forces activation patterns
for task data and watermarks to be similar.

3We adopt normalized L1 distance to calculate the weight distribution shift.
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Figure 5: Model Pruning
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Figure 6: Fine Pruning
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Figure 7: Quantization

We show the results of out-of-distribution watermarking and in-distribution watermarking in Tab 5
and Tab. 3, respectively. For all image datasets, our proposed method significantly outperforms
two baseline methods on both MNIST and CIFAR-100 dataset. For example, in the in-distribution
watermarking, the Watermark Acc of stolen model is improved from 2.31% (baseline) and 21.05%
(EWE) to 75.31% (Ours) on CIFAR-100 dataset. A similar improvement is found on CIFAR-100
out-of-distribution watermarking, where the Watermark Acc is improved from 3.05% (baseline)
and 28.62% (EWE) to 82.16% (Ours). To further explore the proposed framework on large-scale
datasets, we conduct experiment on the TinyImageNet dataset. The result shows that the proposed
framework can work well on the TinyImageNet dataset, and the obtains a Watermark Acc with
65.35% (OOD) and 60.18% (ID). In addition to evaluating watermark accuracy, we also adopt
the pairwise T-test proposed in Sec 3.2 to identify the watermark in the stolen models. We ran-
domly select 1

10 of watermark samples and repeat the experiment 200 times. WDR is calculated by
Count(H1)

200 , which we count the number of times that successfully reject the H0 hypothesis. The re-
sults show that we obtain a WDR higher than 80% on all image datasets. In addition to vision data,
we also extend our watermark method to natural language domain and do experiments on BERT
model. The results show that the proposed method is extremely effective for two text datasets and
obtains a Watermark Acc higher than 90% on two datasets for both OOD and ID watermarking.

4.2 TRADE-OFF BETWEEN UTILITY AND WATERMARKING

In this section, we explore the potential impact of watermarks on the API utility. To quantify the
influence, we compare the Validation Acc on original task between a watermarked model and a clean
model. Compared to the original API, the proposed method and baselines has marginal impact on
the API utility. For example, the performance drop on the three image dataset is less than 0.5% on
MNIST, 0.8% on CIFAR-100 and 1% on TinyImageNet. A similar result is found on the BERT-
based API, the performance drop is less than 0.5% on SST-2 and 0.7% on IMDB, respectively.

4.3 ATTACKS AGAINST WATERMARK

Adversary can adopt watermark attack methods to remove watermarks in the stolen model (Chen
et al., 2019; Liu et al., 2018). Here, we consider two common watermark attack methods, model
pruning and fine pruning. In addition, we also consider an attack method, called Posterior Proba-
bility Quantization. We put more details and experiments about adaptive attacks in Appendix. A.3.

• Model Pruning. Since watermark samples and task data can activate different neurons, model
pruning proposes to remove neurons that are infrequently activated by task data to decrease the
functionality of the watermark (Liu et al., 2018). Given that neurons less frequently activated con-
tribute less to model predictions, model pruning is likely to have a marginal impact on legitimate
tasks (Jia et al., 2020).

• Fine Pruning. Fine pruning improves over model pruning by continuing to fine-tune the model
after pruning (Liu et al., 2018). In this way, pruned model recovers some of the performance that
has been influenced during pruning. In the presence of watermarks, fine-tuning can also contribute
to overwrite watermarks learned by models.

• Quantization. Quantization is to restrict information returned in each query (Tramèr et al., 2016).
Since the prediction with full vector of probabilities might contain perturbations added by the
defender. The adversary thus can use predictions with lower numerical precision to train the
stolen model (Orekondy et al., 2019b).
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In Fig. 5, 6, 7, we show the result of attacks against watermarks. For pruning and fine-pruning, our
key observation is that the proposed watermark is robust to pruning and fine-pruning. For example,
the Watermark Acc of stolen models remains 98% when we pruned 95% of neurons, where the Wa-
termark Acc of EWE drops to 20%. A similar result is found on fine-pruning, the Watermark Acc
of stolen models remains 98% when we pruned 95% of neurons, where the Watermark Acc of EWE
drops to lower than 10%. The results prove that watermark related neurons in proposed feature-
sharing framework is highly entangled with task related neurons. Also, we find that For quantiza-
tion, we do a series of experiments to gradually restrict information in the prediction distributions.
Since quantization can essentially restrict watermark information in output probability, we observe
a transferability drop with lower numerical precision. In experiments, the numerical precision is
from 1000-level to 2-level (hard-label). The watermark will be totally removed when adversary uses
the hard label. Obviously, quantization can also invalidate all perturbation-based defense methods
(Juuti et al., 2019; Kariyappa & Qureshi, 2020). We emphasize that to speed up stealing process,
adversary has to use soft-label to train stolen models. Defending against a quantization attack is
very challenging and would be explored in our future research.

5 RELATED WORK

IP Protection in ML. Due to the various attack surfaces, entirely preventing AI model theft is almost
infeasible (Boenisch, 2020). However, it is possible to apply the concept of digital watermarking
into machine leaning. Works Song et al. (2017); Uchida et al. (2017); Wang et al. (2020) directly
embed watermarks into model parameters. The second category of watermarking techniques works
by embedding a secret behavior (i.g., watermark) into the model (Adi et al., 2018; Li et al., 2019;
Zhang et al., 2018; Shafieinejad et al., 2019). Few works consider to protect AI-based APIs (Jia et al.,
2020). Work Jia et al. (2020) firstly proposes to embed a watermark into the posterior predictions
and adopts soft nearest neighbor loss (Kornblith et al., 2019; Salakhutdinov & Hinton, 2007) to
further enhance the watermark transferability.

Model Extraction Attacks. In these attacks, a malicious entity aims to extract a functionally equiv-
alent model to a target model by querying the labels and confidence scores of model predictions to
inputs (Tramèr et al., 2016). There is a series of following works to improve the extraction efficiency.
Papernot et al. Papernot et al. (2017) demonstrates that an attacker can only use synthetic datasets to
train a local substitute model for the victim models. Moreover, several studies (Correia-Silva et al.,
2018; Juuti et al., 2019) present efficient algorithms to steal machine learning models by actively
selecting query samples. Honggang et al. Yu et al. (2020) proposes a efficient black-box attack
method to steal DNNs by applying transfer learning scheme.

Extraction Defense. Existing defenses aim to either detect stealing query patterns (Juuti et al.,
2019), or add perturbations on the predicted posterior. Stealing query detection often is based on the
assumptions on the attacker’s query distribution, e.g., small L2 distances between successive queries
(Juuti et al., 2019). For perturbation-based methods, defender restricts or modifies information
returned in each query. e.g,, rounding decimals (Tramèr et al., 2016), revealing only high-confidence
predictions (Orekondy et al., 2019a), introducing ambiguity at the tail end of the distribution (Lee
et al., 2018) and actively perturbing predictions (Orekondy et al., 2019b). However, perturbation-
based method inevitably impact the utility of the API. Also, work Orekondy et al. (2019b) indicates
that the adversary can invalidate all perturbation-based methods by only using top-1 label.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we extend the concept of watermark to machine learning and propose a new approach
to detect stolen models. We show that layers of remembering watermarks plays a crucial role in
transferability. Based on the observation, we propose a feature-sharing watermark framework, which
extracts features that are jointly useful to watermarks and legitimate task. Through our evaluation
on tasks from vision and text domains, we show that the proposed watermark is indeed robust to
not only model extraction attacks, but also commonly used watermark attacks. All this is achieved
while preserving API utility. In the future, we will validate the generalization of the proposed
method by including more recently proposed extraction attacks. Also, we will explore potential
defense methods against quantization attacks.
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