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Abstract

Foundation Models have shown impressive performance in various tasks and domains, yet they require massive
computational resources, raising concerns about accessibility and sustainability. In this paper, we propose
Transformer Blocks Approximation (TBA), a novel method that leverages intra-network similarities to identify
and approximate transformer blocks in large vision models using only a small amount of training data. TBA
replaces these blocks using lightweight, closed-form transformations, without any additional training steps. The
proposed method reduces the number of parameters while having minimal impact on the downstream task.

1. Introduction
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Figure 1: Framework Description. Given two latent spaces X(s) and X(e) representing the output of blocks s and e for a
random subset of n data points from the training set, we define a transformation matrix T such that: X(e) ≈ T (X(s)).

As Neural Networks (NNs) grow in size and complexity, their demand for computational resources has become a significant
bottleneck. Despite the impressive performance of large models, they often come with substantial trade-offs, such as
increased memory and power consumption. This has led to a growing interest in methods that can reduce model complexity
without sacrificing performance. However, most existing approaches trying to mitigate these challenges either demand
additional training steps or result in substantial performance degradation. Recent research showed that there exist similarities
between representation within and between NNs. The observation that many layers or components within these networks
perform similar functions or produce highly correlated outputs suggests that some blocks may be approximated, highlighting
opportunities for network simplification. In this paper, we investigate two key research questions: (i) how to effectively
identify blocks within neural networks that yield similar representations, and (ii) how to approximate these blocks with
minimal impact on overall performance without any additional training steps. To address the first question, we provide
an extensive analysis showing that the Mean Squared Error (MSE) effectively identifies such blocks, suggesting that their
approximation should have a negligible impact. For the second question, we propose Transformer Blocks Approximation
(TBA), a novel method that leverages similarities between representations to approximate transformer blocks using
lightweight transformations, such as linear mappings. Once the blocks that have minimal impact on model functionality are
identified, TBA replaces them with a simpler transformation. This approximation strategy allows for reducing the overall
parameter count, ensuring minimal impact on downstream task performance.
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2. Related work
While large-scale models with billions or even trillions of parameters continue to achieve state-of-the-art performance, their
growth comes with trade-offs, such as slower inference times and significantly higher computational costs. Improving the
efficiency of Deep Neural Network (DNN) has been a long-standing area of research. For instance, Veit et al. (2016) shows
that removing residual blocks from deep Convolutional Neural Networks (CNNs) only marginally impacts performance,
which inspired approaches to reduce inference time by dynamically deciding which layers to execute based on the input
(Wu et al., 2018; Veit & Belongie, 2018). Additionally, various techniques to enhance efficiency have emerged, such as
early exiting and model pruning. Early exit strategies, which introduce intermediate output layers at different stages of the
network, have been shown to reduce inference time (Xin et al., 2020; Zhou et al., 2020; Yu et al., 2022; Tang et al., 2023).
However, these approaches require the training of intermediate classifiers to enable exits at predefined layers. Alternatively,
model pruning reduces computational load by either removing individual weights based on specific criteria, such as gradient
information (Ma et al., 2023), entropy (Liao et al., 2023), or second-order information (Singh & Alistarh, 2020), or by
eliminating larger structural components, like channels or residual blocks in ResNets (Bai et al., 2023; Wang & Wu, 2023)
and self-attention layers in Transformers (Zhang & He, 2020; Sajjad et al., 2023; Venkataramanan et al., 2024; Zhang
et al., 2024). Although effective, these approaches require training the model from scratch and, in the best case, fine-tuning.
However, Bai et al. (2023) shows that for CNNs, this additional training step can sometimes be avoided.

Unlike other methods, TBA leverages intra-network similarities to reduce foundation model complexity without the need
for additional training steps while maintaining competitive performance. A more detailed discussion of related work is
provided in Section 6.4.

3. Transformer Blocks Approximation
The core idea of the proposed approach is to detect similar representations within NNs and replace the corresponding blocks
with simple transformations. In the context of this work, a "block" refers to a sequence of layers including multi-head
self-attention, normalization, and feed-forward layers, functioning as a cohesive unit. Instead of executing the entire NN,
using TBA, we approximate these blocks, reducing computational complexity while preserving the network’s functionality.
To provide a clear understanding, Figure 1 presents an overview of our method.

Identifying similar representations We hypothesize that certain foundation models may contain blocks that produce similar
representations. To quantify these similarities, we employ the MSE. A low MSE between the output of an earlier block and
a later block indicates that their respective representations are highly similar. This suggests that the intervening sequence of
blocks contributes minimally to transforming the representation, highlighting potential redundancy.

Let B represent the total number of blocks in the model. Let h(k) ∈ Rdk denote the output representation (a vector of
dimension dk) of block k for a single input, where k ∈ {1, 2, . . . , B}. For any two blocks, a starting block s and an ending
block e (where 1 ≤ s < e ≤ B), we compute their output representations h(s)(x(s)) and h(e)(x(e)). For each x ∈ Dsub,
where Dsub ⊂ D is a subset of N points sampled uniformly at random from D, x(k) defines the input to the corresponding
layer h(k). The MSE between these representations is defined as:

MSE(h(s),h(e)) =
1

|Dsub|
∑

x∈Dsub

∥∥∥h(e)(x(e))− h(s)(x(s))
∥∥∥2
2

By systematically evaluating the MSE for various pairs of blocks (s, e), we can identify those being good candidates
for approximation. This allows for targeted complexity reduction without substantially altering the network’s internal
representations or downstream-task performance at a very low computational cost.

Approximating transformer blocks Once two blocks s and e are identified as having highly similar output representations,
our goal is to replace the intermediate blocks s+ 1, . . . , e with a single, lightweight transformation that maps the output
of block s directly to an approximation of the output of block e. This approach allows us to skip the computation of
blocks s+ 1, . . . , e, effectively reducing the overall computational costs. This approximation can be repeated for multiple,
non-overlapping blocks, i.e., blocks (si, ei) and (sj , ej) with ei < sj .

Let X(s) ∈ RN×ds and X(e) ∈ RN×de represent the output representations from block s and e respectively, for the data
points in Dsub. Our objective is to find a transformation T : Rds → Rde such that:

X(e) ≈ T (X(s))
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In this work, we consider T to be a linear transformation T that can be estimated by minimizing the squared error between
the transformed output T (X(s)) and the actual X(e), which can be solved using least squares:

T = argmin
T

∥X(e) − T (X(s))∥22

This optimization problem allows for a closed-form solution that efficiently computes the optimal transformation T. The
solution bypasses the computation of all layers between any two blocks s and e, replacing them with T. This approximation
significantly reduces computational complexity by replacing one or more transformer blocks, comprising multi-head
self-attention and feed-forward layers, with a low-cost linear transformation.

4. Experiments
We start by analyzing in Section 4.1 the block-level similarities within pre-trained vision foundation models, then in
Section 4.2 we provide a quantitative evaluation of TBA’s performance on the image classification tasks. Additional
qualitative results can be found in Section 6.3.1 and quantitative results, including standard, zero-shot, and cross-dataset
generalization scenarios, in Sections 6.3.2, 6.3.3 and 6.3.7. Details regarding the models, datasets, computational resources,
and software tools are provided in Table 2, Table 3, Section 6.2.4, and Section 6.2.3, respectively.

4.1. Latent analysis

We investigate similarities emerging in latent representations using two distinct transformer-based models with different
dimensionality (i.e., DiNO-B, and DEiT-S), and three datasets. Figure 2 presents the MSE matrices between blocks of
different models when using different datasets. We conduct the analysis using the mean over the tokens, but in Section 6.3.4
we show that this also applies when using only the CLS token. These similarities are calculated using only a small subset of
the training data (i.e., 300 samples). Results reveal that while the patterns of similarity vary across models, they remain
consistent across different datasets, suggesting that the similarity structure between computational blocks is predominantly
influenced by the model rather than the dataset used. This finding aligns with observations from (Nguyen et al., 2020),
where DNNs trained from scratch tend to exhibit a distinctive “block structure” in their representations, linked to model
overparameterization. Our results extend this observation to pretrained foundation models, showing that such a structure is
primarily influenced by the model. Additionally, Figure 2 shows that the last layers of DEiT-S are more similar than those
of DiNO-B, which suggests that they could be good candidates for the approximation.
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Figure 2: Block Similarities. Block-by-block similarities in DiNO-B, and DEiT-S across three datasets. Each matrix
quantifies the MSE between latent representations of different blocks, showing potential blocks for approximation.

In Section 6.3.4 (Figure 6), we present an ablation study to investigate the influence of the similarity metric. We correlate
various metrics with downstream task performance using ViT-S and ImageNet1k. Our findings reveal that using simple
metrics such as MSE or cosine similarity to identify block-level similarities exhibits a strong correlation with final accuracy.
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These results underscore the flexibility of our proposed method, indicating its compatibility with a range of similarity or
distance functions that can capture inter-block relationships. Additional results in Section 6.3.4.

Takeaway The block-wise similarity patterns observed in pretrained foundation models are primarily determined by the
model, and remain consistent across different datasets.

4.2. Transformer block approximation performance

We perform image classification using various pretrained models with different dimensionalities and datasets, keeping all
models frozen. Block approximations are computed using a shared linear transformation applied across all tokens, based on
a subset of 3,000 training samples. Then, we train a single linear layer using the Adam optimizer (learning rate 0.001) for
5 epochs, with 3 seeds and a batch size of 256. As presented in Table 1, the proposed TBA method successfully reduces
model size while maintaining, and in some cases even improving, image classification performance. These downstream
task results support the findings from the analysis in Sections 4.1 and 6.3.1. Specifically, approximating the final block
of DEiT-S yields a final representation highly similar to the original. This similarity suggests such blocks are optimal
candidates for approximation, a conclusion further validated by Table 1. The table shows that even when approximating
multiple consecutive blocks (e.g., 9→11), we can reduce parameters while achieving performance superior to the original
model. Overall, the consistent or enhanced performance indicates that a linear transformation is sufficient to approximate
these transformer blocks, thereby effectively reducing model parameters. It’s important to note that this transformation
is shared across all tokens, with no additional training steps required. Additional results are presented in Tables 9 to 14.
Finally, in Section 6.3.8, we further analyze model behavior after block approximations on the final image-classification
task, complementing the quantitative results with qualitative insights into the approximation procedure.

Table 1: Image Classification Performance Across Architectures. Classification accuracy scores for DEiT-S using
multiple datasets, and 3 seeds. The "Approx." column specifies the blocks used for approximation, where the first value
represents the block whose output is used to approximate the second block’s output. The "Params." column shows the
number of parameters removed by the approximation compared to the original model. More results in Tables 9 to 13.

Accuracy ↑
Approx. Params. CIFAR-10 CIFAR-100F ImageNet1k

D
E
i
T
-
S

1 →5 -6.51M 78.35± 0.17 (-13.55%) 50.57± 0.29 (-28.90%) 43.70± 0.27 (-40.88%)

2 →5 -4.88M 85.73± 0.31 (-5.41%) 60.55± 0.16 (-14.87%) 62.04± 0.21 (-16.05%)
7 →10 -4.88M 89.17± 0.04 (-1.61%) 69.15± 0.33 (-2.78%) 57.48± 0.06 (-22.24%)

2 →4 -3.26M 88.95± 0.05 (-1.85%) 66.60± 0.50 (-6.37%) 70.00± 0.32 (-5.32%)
9 →11 -3.26M 90.90± 0.12 (+0.30%) 71.92± 0.17 (+1.11%) 69.95± 0.24 (-5.39%)

1 →2, 4 →5 -3.26M 85.43± 0.25 (-5.74%) 61.66± 0.13 (-13.31%) 66.04± 0.13 (-10.68%)

0 →1 -1.63M 85.00± 0.27 (-6.21%) 61.95± 0.39 (-12.91%) 62.55± 0.12 (-15.38%)
3 →4 -1.63M 90.50± 0.10 (-0.14%) 70.25± 0.20 (-1.24%) 73.03± 0.10 (-1.22%)

9 →10 -1.63M 90.90± 0.20 (+0.30%) 71.74± 0.09 (+0.86%) 72.34± 0.16 (-2.15%)
10 →11 -1.63M 91.07 ± 0.18 (+0.49%) 71.95 ± 0.17 (+1.15%) 73.97 ± 0.17 (+0.05%)

original 21.82M 90.63± 0.22 71.13± 0.26 73.93± 0.14

Takeaway Linear transformations learned by TBA generalize effectively across datasets, enabling lightweight model
adaptation without additional training.

5. Conclusion
In this work, we first analyze the emergence of consistent block-wise representation similarities within pretrained foundation
models and then propose a method to leverage these similarities to obtain smaller yet performant models. To this end, we
propose Transformer Blocks Approximation (TBA), a novel method for identifying and efficiently approximating similar
transformer blocks using a simple linear transformation and a small subset of the training data, without requiring additional
training or fine-tuning. Our extensive empirical evaluations across multiple pretrained vision models and datasets validate
that TBA significantly reduces model parameters while maintaining, and sometimes even improving, downstream task
performance. TBA thus offers a practical and efficient method for streamlining foundation models, making them more
computationally accessible.
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6. Appendix
6.1. Limitations and future work

While TBA demonstrates significant promise in efficiently approximating transformer blocks, our current investigation
has primarily focused on vision transformer architectures and their application to classification tasks. Future research will
explore the applicability of TBA to other modalities (e.g., text) and to diverse downstream tasks (e.g., image reconstruction).
Such an expansion will be crucial for testing the universality of the observed block-similarity phenomena and assessing
TBA’s adaptability. Furthermore, we aim to expand the analysis of these block-level similarities. This involves investigating
redundancies at finer granularities, such as within individual attention heads or feed-forward network layers, and potentially
at coarser granularities across larger segments of the network. Another important direction is to examine more in detail how
these similarity patterns arise depending on token type (e.g., CLS token versus last token). The analysis could lead to even
more refined and context-aware approximation strategies, further enhancing model efficiency.

6.2. Implementation details

This section details the experiments conducted in Section 4, providing information to reproduce them. Additionally, we
provide the code as a zip file in the supplementary material.

6.2.1. MODELS AND DATASETS

Table 2 contains the full list of the pretrained models, while Table 3 contains dataset information.

Table 2: Pretrained models details. Details of the pretrained feature extractors with their HuggingFace key, their alias, and
their latent space dimensionality.

Modality HuggingFace Model Name Alias Enc. Dim

Vision

WinKawaks/vit-tiny-patch16-224 ViT-T (Dosovitskiy et al., 2021) 192

WinKawaks/vit-small-patch16-224 ViT-S (Dosovitskiy et al., 2021) 384
facebook/dinov2-small DiNO-S (Oquab et al., 2023) 384
facebook/deit-small-patch16-224 DEiT-S (Touvron et al., 2020) 384

google/vit-base-patch16-224 ViT-B (Dosovitskiy et al., 2021) 768
facebook/dinov2-base DiNO-B (Oquab et al., 2023) 768
laion/CLIP-ViT-B-16-laion2B-s34B-b88K OpenCLIP-ViT-B (Zhai et al., 2019) 768

google/vit-large-patch16-224 ViT-L (Dosovitskiy et al., 2021) 1024

Table 3: Dataset details. Details of the HuggingFace datasets used in the classification and reconstruction experiments,
with the associated number of classes.

Modality Name Alias # Classes

Vision

MNIST (Deng, 2012) MNIST 10
Fashion-MNIST (Xiao et al., 2017) F-MNIST 10
CIFAR-10 (Krizhevsky et al., 2009) CIFAR-10 10

CIFAR-100 (coarse) (Krizhevsky et al., 2009) CIFAR-100C 20

CIFAR-100 (fine) (Krizhevsky et al., 2009) CIFAR-100F 100

Imagenet-1k (Russakovsky et al., 2015) ImageNet1k 1000

6.2.2. APPROXIMATORS

The first implementation, referred to as the Res-MultiLayer Perceptron (MLP), is composed of two normalization layers and
a feedforward submodule. The first layer normalization processes the input tensor, followed by a feedforward submodule
comprising a linear transformation, a SiLU activation, a dropout layer, and a final linear transformation. The output of the
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feedforward submodule is added to the normalized input via a residual connection. This sum is then passed through the
second normalization layer to produce the final output. The second implementation, referred to as the MLP, is a simplified
MLP that employs a sequential architecture with a first linear transformation that reduces the input dimensionality to half of
the target dimension, followed by a GELU activation function for smooth non-linearity, and a final linear transformation that
restores the reduced features to match the target dimensionality. Refer to ?? 1?? 2 for the code snippet of the two translators.

Listing 1: Python Code Snippet for the Res-MLP translator
class ResMLP(nn.Module):

def __init__(self, num_features: int, dropout_p: float):
super().__init__()

self.norm1 = nn.LayerNorm(num_features)
self.norm2 = nn.LayerNorm(num_features)

self.ff = nn.Sequential(
nn.Linear(num_features, num_features),
nn.SiLU(),
nn.Dropout(p=dropout_p),
nn.Linear(num_features, num_features),

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x_normalized = self.norm1(x)
x_transformed = self.ff(x_normalized)
return self.norm2(x_transformed + x_normalized)

Listing 2: Python Code Snippet for the MLP translator
translation = nn.Sequential(

nn.Linear(x.size(1), y.size(1) // 2),
nn.GELU(),
nn.Linear(y.size(1) // 2, y.size(1)),

)

6.2.3. TOOLS & TECHNOLOGIES

All the experiments presented in this work employ the following tools:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular codebase;

• NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;

• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;

• Datasets by HuggingFace, to access most of the datasets;

• DVC (Kuprieiev et al., 2022), for data versioning;

6.2.4. COMPUTATIONAL RESOURCES

Experiments involving larger models, specifically DiNO-B, OpenCLIP-ViT-B, and ViT-L, were conducted on an
NVIDIA H100 GPU equipped with 93 GB of memory. All the other experiments utilized an NVIDIA GeForce RTX 5090
GPU with 31 GB of memory.

6.3. Additional Experiments

This section presents supplementary experiments to extend those detailed in Section 4.
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6.3.1. EFFECTS OF TBA ON LATENT REPRESENTATIONS

After identifying blocks producing similar representations, we analyze the impact on the latent representation output by the
last block when approximating using TBA. These blocks are approximated using a shared linear transformation applied
across all tokens based on a subset of 3,000 training samples. For consistency, we employed the same models and datasets
used for the results in Figure 2. We compute the MSE between the representations in the last block of the original and
the TBA model when approximating the kth block. As illustrated in Figure 3, in most cases, the MSE increases as the
block depth increases. This suggests that approximating the final blocks would lead to significant changes in the final

M
S
E

ViT-S DiNO-B DEiT-S

Figure 3: Approximation vs. Representation Similarity. MSE between the last block representations of the original and
the approximated model when approximating the ith block. Each column is a different model (ViT-S, DiNO-B, DEiT-S),
while curves represent different datasets.

representations, indicating their critical role. However, in the case of DEiT-S, the trend is different. Here, the MSE
decreases toward the final blocks. This is also shown in the similarity matrices illustrated in Figure 2, where the final blocks
have a high similarity. These findings reinforce the intuition behind the use of MSE, demonstrating a correlation between the
metric and the final representation similarity when approximating blocks. In some instances, such as with the MNIST dataset,
the MSE scores remain relatively consistent across blocks, indicating that the representations are largely similar to one
another. However, for more complex datasets like ImageNet1k, the representations in the final or the first blocks become
increasingly dissimilar, making it advantageous to approximate intermediate blocks. This suggests that the similarities
are primarily driven by the model but also guided by the complexity of the dataset, allowing for targeted approximations
that reduce model parameters and complexity without significantly compromising performance. To further investigate the
effect of TBA on the latent representations, we visualize, using Principal Component Analysis (PCA), the representations
of the TBA model when approximating the final block and its original representation (see Figure 4). The plot shows the
representations generated using the DiNO-B and DEiT-S pretrained encoders on F-MNIST. Colors represent classes. The
visualization highlights that approximating the final block of DiNO-B results in noticeable deviations from the original
representations, while in DEiT-S the approximated representations remain similar to the original ones. This observation
aligns with the results from Figure 3, where approximating blocks can lead to significant changes in representations. For
complete results, refer to Section 6.3.5.

6.3.2. TRANSFORMER BLOCK APPROXIMATION PERFORMANCE

Zero-shot image classification To further assess the effectiveness of our approach, we evaluate TBA in a zero-shot image
classification setting. This evaluation utilizes the OpenCLIP-ViT-B model (Radford et al., 2021), which was pretrained
on LAION-2B (Schuhmann et al., 2022), with ImageNet1k serving as the downstream evaluation dataset. As in previous
experiments, the model remains frozen, and block approximations are computed using a shared linear transformation applied
across all tokens, based on a subset of 3,000 training samples. Importantly, we apply these approximations only to the
vision encoder, leaving the text encoder unchanged. We follow the standard ImageNet1k prompt templates. As shown
in Table 4, when approximating earlier vision blocks (e.g., 1 → 2 or 2 → 3), the model still achieves competitive results,
but slightly reduces the number of parameters. The analysis is conducted only on the base version, as larger versions (e.g.,
OpenCLIP-ViT-L or OpenCLIP-ViT-H) contain too many parameters and are thus beyond the scope of this paper.
Details on the models are provided in Table 2.

Transformation generalization We further evaluate the model’s ability to generalize transformations across datasets.
Specifically, we analyze the capability of applying a linear transformation learned on one dataset (source) to another (target),
using the same underlying pretrained architecture and without any subsequent training or fine-tuning of the approximated
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Figure 4: PCA Visualization. Final block representa-
tions for original and TBA models on F-MNIST reveal
DiNO-B’s stronger reliance on final block compared to
DEiT-S.

Table 4: Zero-shot image classification. Accuracy scores
for OpenCLIP-ViT-B on ImageNet1k. The “Approx.”
column specifies the blocks being approximated, where
the first value represents the block whose output is used to
approximate the second block’s output. The “∆” column
indicates the change in accuracy.

Params. Approx. Accuracy ↑ ∆

-6.49M

0 → 1 57.93 -17.41%
1 → 2 64.20 -8.56%
2 → 3 66.35 -5.51%
3 → 4 64.65 -7.90%
4 → 5 64.86 -7.60%
5 → 6 58.05 -17.32%
6 → 7 61.56 -12.31%
7 → 8 58.53 -16.64%
8 → 9 52.32 -25.50%

9 → 10 59.21 -15.68%
10 → 11 22.64 -67.75%

149.07M original 70.21 —

model. Table 5 reports accuracy scores for ViT-S and DiNO-S on MNIST, CIFAR-10, and CIFAR-100, where the
"Source" column indicates the source dataset used to compute the transformation. The results demonstrate that a single, token-
shared linear transformation can generalize effectively across different target datasets, with the exception of MNIST, which
may be too simplistic to yield broadly transferable representations. This cross-dataset generalization is particularly valuable
in scenarios where fine-tuning is infeasible, such as in privacy-sensitive domains like healthcare or finance. In these contexts,
regulatory constraints often restrict training on local data, yet leveraging existing pretrained models remains crucial. Our
findings suggest that lightweight adaptation via shared linear transformations offers a promising path for improving model
performance on custom datasets without requiring additional training. Additional results are provided in Tables 15 and 16.

Table 5: Generalization Results. Classification accuracies for approximating ViT-S blocks with a linear transformation
learned on one dataset and applied to others. The "Approx." column specifies the blocks being approximated, where the first
value represents the block whose output is used to approximate the second block’s output, while the “Source” column names
the dataset used to compute the transformation. See Tables 15 and 16 for additional results.

Accuracy ↑
Approx. Source MNIST CIFAR-10 CIFAR-100C

3 → 4
MNIST 93.52 10.36 8.97

CIFAR-10 88.02 95.18 86.14
CIFAR-100F 88.21 94.82 85.92

3 → 5
MNIST 88.22 15.17 8.52

CIFAR-10 61.68 93.57 80.24
CIFAR-100F 64.18 92.77 80.56

6.3.3. BASELINES AND COMPARISON

Direct comparisons for TBA are limited, as existing approaches either fine-tune pretrained models or train from scratch. In
contrast, TBA maintains the foundation model frozen. We include two types of comparisons: a variant of SkipAt, a method
proposed in (Venkataramanan et al., 2024), and an ablation study on transformation complexity.

SkipAt identity (Venkataramanan et al., 2024) explores the effect of skipping self-attention or multi-head self-attention by
inserting identity functions in pretrained models, without retraining. We extend this idea by skipping entire blocks, not just
attention components. As shown in Table 6, TBA consistently outperforms this SkipAt Identity baseline on CIFAR-10 and
CIFAR-100F. The accuracy improvements confirm that approximating is more effective than skipping them. Results with
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other datasets and models can be found in Section 6.3.3.

Table 6: TBA vs. SkipAt. Accuracy scores for ViT-S on CIFAR-10 and CIFAR-100F using 3 different seeds. The
"Approx." column specifies the blocks being approximated, where the first value represents the block whose output is used
to approximate the second block’s output. More results in Table 7.

CIFAR-10 CIFAR-100F

Approx. SkipAt TBA SkipAt TBA

1 → 5 58.08± 0.44 84.93± 0.62 32.68± 0.70 58.98± 0.19

2 → 5 64.43± 2.00 90.97± 0.30 41.78± 0.45 69.85± 0.18
7 → 10 73.94± 0.34 85.81± 1.03 45.00± 0.31 60.33± 0.85

1 → 3 66.27± 0.76 92.09± 0.30 42.76± 0.75 72.13± 0.37
2 → 4 71.56± 1.62 93.03± 0.10 50.19± 0.38 74.65± 0.59
9 → 11 89.65± 0.52 89.16± 1.10 70.75± 0.39 68.25± 0.57

2 → 3 81.24± 0.48 94.87± 0.20 60.22± 0.75 79.16± 0.43
9 → 10 93.40± 0.32 94.23± 0.12 76.32± 0.30 76.69± 0.36

original 95.87± 0.08 95.87± 0.08 81.29± 0.20 81.29± 0.20

Table 7: SkipAt. Accuracy scores for ViT-S on MNIST, F-MNIST, CIFAR-10, CIFAR-100C, and CIFAR-100F
using 3 different seeds. The "Skip" column specifies the blocks being skipped, where the first value represents the starting
block (excluded from the skip) and the second value represents the final (included) block.

Accuracy ↑
Skip MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F

1 → 5 92.74 ± 0.58 82.25 ± 0.93 58.08 ± 0.44 43.43 ± 0.79 32.68 ± 0.70

2 → 5 93.78 ± 0.55 84.99 ± 0.51 64.43 ± 2.00 51.39 ± 0.57 41.78 ± 0.45
7 → 10 91.56 ± 0.46 85.02 ± 1.15 73.94 ± 0.34 59.99 ± 0.73 45.00 ± 0.31

1 → 3 94.41 ± 0.33 82.82 ± 0.46 66.27 ± 0.76 52.52 ± 0.48 42.76 ± 0.75
3 → 5 93.96 ± 0.25 86.10 ± 0.15 74.79 ± 1.56 62.53 ± 0.32 54.62 ± 0.52
2 → 4 94.31 ± 0.48 85.22 ± 0.67 71.56 ± 1.62 59.40 ± 0.38 50.19 ± 0.38

8 → 10 94.82 ± 0.21 87.77 ± 0.43 85.74 ± 0.32 72.39 ± 0.41 63.79 ± 0.66
9 → 11 94.80 ± 0.15 88.32 ± 0.46 89.65 ± 0.52 76.40 ± 0.08 70.75 ± 0.39

0 → 1 95.98 ± 0.13 84.91 ± 0.36 70.90 ± 0.09 57.16 ± 0.41 47.54 ± 0.37
1 → 2 95.79 ± 0.16 87.07 ± 0.70 83.21 ± 0.52 70.66 ± 0.69 62.23 ± 0.21
2 → 3 95.14 ± 0.39 85.50 ± 0.62 81.24 ± 0.48 68.63 ± 0.33 60.22 ± 0.75
3 → 4 95.34 ± 0.58 87.62 ± 1.18 88.25 ± 0.23 77.58 ± 0.46 69.79 ± 0.02
4 → 5 95.75 ± 0.20 87.26 ± 0.86 86.23 ± 0.63 74.52 ± 0.63 66.69 ± 0.48
5 → 6 95.77 ± 0.22 86.99 ± 0.33 83.42 ± 0.52 69.62 ± 0.32 61.96 ± 0.55
6 → 7 95.33 ± 0.08 86.64 ± 1.14 87.57 ± 0.24 75.91 ± 0.20 68.70 ± 0.31
7 → 8 95.76 ± 0.20 87.50 ± 0.85 88.70 ± 0.46 76.80 ± 0.09 69.33 ± 0.39
8 → 9 96.28 ± 0.04 88.38 ± 0.83 89.98 ± 0.48 76.45 ± 0.65 71.80 ± 0.22

9 → 10 95.56 ± 0.47 88.74 ± 1.09 93.40 ± 0.32 82.44 ± 0.44 76.32 ± 0.30
10 → 11 95.22 ± 0.29 89.39 ± 0.30 93.77 ± 0.69 82.39 ± 0.06 78.68 ± 0.29

original 95.95 ± 0.40 89.01 ± 0.63 95.87 ± 0.08 87.60 ± 0.15 81.28 ± 0.20

Trained approximators We also evaluate whether more complex approximations improve performance. Specifically, we
compare TBA to deeper MLP-based translators (MLP and Res-MLP), which are trained for 300 steps using Adam with a
learning rate of 1e-3. As shown in Table 8, employing a simple linear transformation to approximate blocks is the optimal
choice in most cases. While deeper translators occasionally yield slightly higher accuracy (e.g., 1→5), they incur significant
training overhead and require gradient-based optimization. In contrast, TBA is entirely training-free and operates in closed
form; no backpropagation or updates are required. This highlights the efficiency–performance trade-off and supports the
design choice behind TBA. Refer to Section 6.2.2 for approximator details.

6.3.4. BLOCK SIMILARITIES

The analysis in Section 4.1 reveals distinct block-wise similarity patterns within pretrained foundation models. The analysis
utilizes the mean of token representations within each block to compute similarities. However, as detailed in Figure 5, these
characteristic similarity patterns persist and are qualitatively very similar when using only the CLS token’s representation
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Table 8: Approximators Comparison. Classification accuracy on ImageNet1k using ViT-S across three seeds. The
"Approx." column specifies the blocks being approximated, where the first value represents the block whose output is used
to approximate the second block’s output. MLP and Res-MLP are trained approximators, while TBA uses a closed-form
linear map.

Approx. TBA MLP Res-MLP

1 → 5 44.04± 0.42 45.79 ± 0.19 45.44± 0.12

2 → 5 60.38 ± 0.12 60.22± 0.08 60.02± 0.34
7 → 10 35.80 ± 0.11 22.85± 0.10 33.01± 0.76

1 → 3 65.31± 0.14 65.45 ± 0.31 64.54± 0.25
2 → 4 67.52 ± 0.16 67.30± 0.12 66.91± 0.09
9 → 11 46.17 ± 0.25 34.70± 0.68 39.01± 0.34

3 → 4 71.40 ± 0.22 70.78± 0.42 70.78± 0.10
9 → 10 61.82 ± 0.24 53.78± 0.19 58.06± 0.43

from each block. This suggests a degree of interchangeability for this type of analysis.

Finally, to assess the impact of the similarity measure itself, we conducted an ablation study correlating various metrics with
downstream task performance on ViT-S and ImageNet1k (Figure 6). Our findings reveal that even simple metrics, such
as MSE or cosine similarity, when used to identify block-level similarities, exhibit a strong correlation with final accuracy.
These results underscore the robustness and flexibility of leveraging such block similarities, indicating compatibility with a
range of similarity or distance functions capable of capturing these inter-block relationships.
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Figure 5: CLS Block Similarities. Block-by-block similarities in ViT-S, DiNO-B, and DEiT-S models across five
datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1k. Each matrix quantifies the MSE between
latent representations of different blocks, showing potential candidates for approximation in pretrained foundation models.
The matrices reveal that the similarity structure between computational blocks is predominantly influenced by the model
rather than the specific dataset.

Approx. Params. ImageNet1k

1 → 5 15.31M 44.04± 0.42

2 → 5 16.94M 60.38± 0.12
7 → 10 16.94M 35.80± 0.11

1 → 3 18.56M 64.99± 0.29
3 → 5 18.56M 67.27± 0.45
2 → 4 18.56M 67.52± 0.16

9 → 11 18.56M 47.23± 0.24

2 → 3 20.19M 71.26± 0.03
3 → 4 20.19M 71.40± 0.22
4 → 5 20.19M 70.98± 0.16

9 → 10 20.19M 61.82± 0.24

- 21.82M 73.24± 0.13

MSE Cosine CKA

Figure 6: Correlation Between Similarity Metrics and Accuracy Approximation. The table on the Left reports the
accuracy performance of the ViT-S encoder is shown with different approximation strategies applied on ImageNet1k.
While right matrices report block-by-block similarities using various similarity metrics. The findings reveal that using MSE
or cosine similarity enhances the emergence of the block structure, making it easier to identify similar blocks.
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6.3.5. PCA VISUALIZATION

In Section 4.1 we show the effect of TBA on latent representations. In this section, we provide additional visualization using
PCA for DiNO-S, DEiT-S, ViT-S, with different datasets and approximating both early and late blocks (see Figures 7
to 11).
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Figure 7: Last Block Approximation. PCA visualization of the final layer representations for both the original model and
the model with its last block approximated from the preceding one. The representations are generated using the DiNO-S
model across four datasets. The plots highlight that the last layer representations in this model are crucial, making it more
effective to approximate earlier blocks instead. Note that for CIFAR-100 (bottom right), only the overall structure of the
space can be observed, as the 100 classes make it challenging to distinguish labels based on color.
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Figure 8: Last Block Approximation. PCA visualization of the final layer representations for both the original model and
the model with its last block approximated by the preceding one. The representations are generated using the DEiT-S
model across four datasets. The plots highlight that in this model, the representations in the last layer are redundant and can
be effectively approximated, offering potential performance improvements while reducing model complexity and parameter
count. Note that for CIFAR-100 (bottom right), only the overall structure of the space can be observed, as the 100 classes
make it challenging to distinguish labels based on color.
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Figure 9: Last Block Approximation. PCA visualization of the final layer representations for both the original model
and the model with its second block approximated by the preceding one. The representations are generated using the
DiNO-S model across four datasets. Note that for CIFAR-100 (bottom right), only the overall structure of the space can
be observed, as the 100 classes make it challenging to distinguish labels based on color.
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Figure 10: Last Block Approximation. PCA visualization of the last layer representations for both the original model and
the model with its second block approximated using the previous one. Representations refer to the using ViT-S model
across four datasets.
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Figure 11: Last Block Approximation. PCA visualization of the last layer representations for both the original model and
the model with its last block approximated from the previous one. Representations refer to the using ViT-S model across
four datasets.
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6.3.6. IMAGE CLASSIFICATION

This section presents additional experiments that complement and extend those detailed in Section 4.2. Datasets and models
are the ones detailed in Tables 2 and 3.

Table 9: ViT-S Image Classification Performance Across Seeds. Classification accuracy scores for ViT-S using
multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation, where the first value
represents the block whose output is used to approximate the second block’s output, while the “Params.” column shows the
number of parameters removed by the approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1 →5 15.31M 92.28± 0.81 86.90± 0.72 85.07± 0.55 68.01± 0.31 59.21± 0.12 44.04± 0.42

2 →5 16.94M 94.76± 0.20 88.57± 0.31 91.01± 0.37 77.77± 0.22 69.75± 0.36 60.38± 0.12
7 →10 16.94M 94.58± 0.28 88.44± 0.35 87.36± 0.17 72.58± 0.69 62.03± 0.56 35.80± 0.11

1 →3 18.56M 94.60± 0.78 88.36± 0.44 91.97± 0.16 79.36± 0.54 72.41± 0.08 64.99± 0.29
2 →4 18.56M 95.08± 0.18 88.83± 0.21 92.86± 0.11 81.45± 0.44 74.43± 0.27 67.52± 0.16
3 →5 18.56M 94.75± 0.57 88.81± 0.19 94.09± 0.06 83.16± 0.34 76.17± 0.45 67.27± 0.45

1 →2, 3 →4 18.56M 94.68± 0.69 88.30± 0.25 91.91± 0.25 79.72± 0.16 72.17± 0.15 65.38± 0.03
1 →2, 4 →5 18.56M 94.58± 0.77 88.95± 0.07 92.29± 0.28 80.14± 0.10 72.45± 0.35 64.42± 0.24

0 →1 20.43M 95.69± 0.29 88.81± 0.19 93.68± 0.22 83.55± 0.23 76.49± 0.29 65.11± 0.27
1 →2 20.43M 95.40± 0.57 88.53± 0.63 93.90± 0.11 83.98± 0.22 76.99± 0.26 70.32± 0.38
2 →3 20.43M 95.43± 0.45 88.93± 0.62 94.90± 0.26 85.72± 0.48 78.96± 0.05 71.26± 0.03
3 →4 20.43M 95.43± 0.39 88.77± 0.36 95.05± 0.17 85.99± 0.37 79.49± 0.32 71.40± 0.22
4 →5 20.43M 95.39± 0.35 89.18± 0.51 95.41± 0.12 86.27± 0.27 79.61± 0.14 70.98± 0.16
5 →6 20.43M 95.14± 0.56 89.30± 0.54 94.89± 0.27 86.49± 0.33 79.29± 0.19 69.25± 0.09
6 →7 20.43M 95.11± 0.42 88.94± 0.66 94.81± 0.26 85.33± 0.30 78.06± 0.17 67.41± 0.08
7 →8 20.43M 95.64± 0.46 89.41± 0.45 94.50± 0.34 85.30± 0.50 78.03± 0.12 66.22± 0.10
8 →9 20.43M 95.36± 0.47 89.64± 0.37 94.36± 0.14 84.66± 0.25 77.88± 0.20 64.03± 0.29

9 →10 20.43M 95.52± 0.41 89.57± 0.10 94.58± 0.27 81.76± 0.34 76.45± 0.22 61.82± 0.24
10 →11 20.43M 94.83± 0.20 89.11± 0.43 94.08± 0.27 82.13± 0.70 77.45± 0.29 63.92± 0.25

original 22.06M 95.59± 0.42 89.04± 0.85 95.68± 0.24 87.61± 0.39 81.50± 0.39 73.24± 0.13
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Table 10: DiNO-S Image Classification Performance Across Seeds. Classification accuracy scores for DiNO-S using
multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation, where the first value
represents the block whose output is used to approximate the second block’s output, while the “Params.” column shows the
number of parameters removed by the approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1 →5 15.31M 96.25± 0.30 86.50± 1.42 80.11± 0.95 59.15± 0.45 51.24± 0.51 18.70± 0.09

2 →5 16.94M 95.86± 0.52 87.99± 0.30 85.28± 0.99 67.50± 1.02 59.57± 0.45 40.63± 0.59
7 →10 16.94M 96.05± 1.44 88.28± 1.25 91.00± 0.82 78.47± 0.61 70.56± 0.25 45.66± 0.69

1 →3 18.56M 96.61± 0.34 88.48± 0.61 91.73± 0.36 78.62± 0.87 72.33± 0.37 56.85± 0.21
2 →4 18.56M 96.79± 0.58 88.34± 0.33 91.31± 0.16 76.41± 0.44 69.71± 0.31 60.16± 0.41
3 →5 18.56M 96.76± 1.02 88.65± 0.92 91.00± 0.49 75.51± 0.45 69.31± 0.05 57.47± 0.11

1 →2, 3 →4 18.56M 96.71± 0.62 88.69± 0.46 92.57± 0.54 79.16± 1.02 72.88± 0.57 59.79± 0.19
1 →2, 4 →5 18.56M 96.81± 0.31 88.67± 1.23 93.50± 0.26 79.35± 1.00 73.55± 0.38 58.62± 0.25

0 →1 20.43M 96.71± 0.79 88.97± 1.12 95.67± 0.12 85.89± 0.56 80.15± 0.35 61.25± 0.22
1 →2 20.43M 96.69± 0.90 88.26± 1.10 95.38± 0.09 84.86± 0.84 79.38± 0.23 64.86± 0.36
2 →3 20.43M 96.42± 0.36 88.31± 1.20 94.71± 0.33 84.15± 0.94 77.74± 0.85 65.16± 0.69
3 →4 20.43M 96.82± 0.68 88.77± 0.78 94.87± 0.30 83.96± 0.62 77.71± 0.08 65.35± 0.56
4 →5 20.43M 96.82± 0.60 89.15± 0.72 94.63± 0.26 83.04± 0.62 77.13± 0.17 64.28± 0.24
5 →6 20.43M 96.81± 0.85 88.75± 0.86 95.33± 0.19 84.83± 0.04 79.37± 0.25 64.88± 0.43
6 →7 20.43M 96.99± 0.88 89.42± 0.68 95.21± 0.10 83.82± 0.53 78.54± 0.64 63.61± 0.62
7 →8 20.43M 96.76± 0.38 89.05± 1.29 95.37± 0.14 84.57± 0.42 78.95± 0.37 61.59± 0.31
8 →9 20.43M 96.62± 0.85 88.45± 1.21 95.21± 0.36 84.98± 0.22 79.35± 0.22 61.73± 0.43
9 →10 20.43M 96.66± 0.33 88.53± 0.71 94.55± 0.25 83.97± 1.25 77.06± 0.36 58.56± 0.25

10 →11 20.43M 94.61± 0.66 86.96± 1.18 92.11± 0.32 79.85± 0.26 73.01± 0.51 50.76± 0.33

original 22.06M 96.57± 0.64 88.07± 1.40 96.24± 0.08 87.53± 0.45 82.04± 0.42 67.45± 0.45

Table 11: DEiT-S Image Classification Performance. Classification accuracy scores for DEiT-S using multiple datasets,
and 3 seeds. The “Approx.” column specifies the blocks used for approximation, where the first value represents the block
whose output is used to approximate the second block’s output, while the “Params.” column shows the number of parameters
removed by the approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1 →5 15.31M 93.84± 0.61 85.70± 0.16 78.35± 0.17 60.12± 0.17 50.57± 0.29 43.70± 0.27

2 →5 16.94M 95.29± 0.02 87.33± 0.19 85.73± 0.31 69.90± 0.16 60.55± 0.16 62.04± 0.21
7 →10 16.94M 95.85± 0.20 88.13± 0.13 89.17± 0.04 75.69± 0.07 69.15± 0.33 57.48± 0.06

1 →3 18.56M 95.51± 0.14 87.14± 0.14 85.19± 0.19 70.42± 0.16 61.76± 0.13 66.63± 0.14
2 →4 18.56M 95.74± 0.13 87.90± 0.26 88.95± 0.05 75.93± 0.23 66.60± 0.50 70.00± 0.32
3 →5 18.56M 95.98± 0.10 87.90± 0.21 89.16± 0.21 75.70± 0.08 66.76± 0.06 68.78± 0.07

1 →2, 3 →4 18.56M 95.14± 0.17 87.11± 0.26 85.98± 0.07 70.76± 0.20 62.33± 0.24 66.82± 0.07
1 →2, 4 →5 18.56M 95.28± 0.04 86.96± 0.08 85.43± 0.25 70.26± 0.14 61.66± 0.13 66.04± 0.13

0 →1 20.43M 95.97± 0.26 87.34± 0.22 85.00± 0.27 70.81± 0.29 61.95± 0.39 62.55± 0.12
1 →2 20.43M 95.59± 0.09 87.31± 0.31 86.66± 0.15 72.77± 0.27 64.21± 0.20 70.35± 0.17
2 →3 20.43M 96.22± 0.21 88.03± 0.14 90.19± 0.13 78.17± 0.20 69.89± 0.25 73.27± 0.06
3 →4 20.43M 96.00± 0.32 88.19± 0.05 90.50± 0.10 78.40± 0.08 70.25± 0.20 73.03± 0.10
4 →5 20.43M 95.93± 0.12 87.96± 0.13 90.38± 0.26 77.89± 0.27 69.52± 0.32 72.19± 0.20
5 →6 20.43M 95.96± 0.10 88.14± 0.13 90.18± 0.14 77.48± 0.06 69.40± 0.20 71.24± 0.09
6 →7 20.43M 95.90± 0.28 88.38± 0.03 90.86± 0.06 78.35± 0.25 70.45± 0.53 71.01± 0.19
7 →8 20.43M 96.07± 0.23 87.93± 0.16 90.48± 0.13 78.25± 0.20 70.87± 0.16 69.88± 0.19
8 →9 20.43M 95.97± 0.18 88.43± 0.24 90.78± 0.17 78.31± 0.35 71.07± 0.17 70.12± 0.09

9 →10 20.43M 96.12± 0.26 88.46± 0.19 90.90± 0.20 79.33± 0.25 71.74± 0.09 72.34± 0.16
10 →11 20.43M 96.00± 0.28 88.18± 0.11 91.07± 0.18 79.72± 0.18 71.95± 0.17 73.97± 0.17

original 22.06M 96.02± 0.20 88.05± 0.12 90.63± 0.22 78.90± 0.25 71.13± 0.26 73.93± 0.14
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Table 12: ViT-T Image Classification Performance. Classification accuracy scores for ViT-T using multiple datasets,
and 3 seeds. The “Approx.” column specifies the blocks used for approximation, where the first value represents the block
whose output is used to approximate the second block’s output, while the “Params.” column shows the number of parameters
removed by the approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1 →5 15.31M 87.66± 0.57 85.10± 0.42 73.68± 0.46 53.46± 0.29 44.61± 0.42 22.21± 0.39

2 →5 16.94M 90.59± 0.79 85.84± 0.18 82.41± 0.11 62.87± 0.21 54.68± 0.21 35.14± 0.38
7 →10 16.94M 92.41± 0.47 86.50± 0.19 82.48± 0.85 69.26± 0.65 61.15± 0.28 39.03± 0.13

1 →3 18.56M 90.55± 1.04 85.91± 0.22 80.48± 0.29 63.43± 0.25 54.57± 0.32 43.68± 0.26
2 →4 18.56M 92.81± 0.56 86.58± 0.05 86.85± 0.17 70.49± 0.30 63.53± 0.23 49.94± 0.27
3 →5 18.56M 91.84± 0.69 86.80± 0.04 88.00± 0.04 72.67± 0.30 65.66± 0.14 48.48± 0.37

1 →2, 3 →4 18.56M 91.94± 0.78 86.71± 0.20 83.43± 0.41 66.92± 0.42 60.07± 0.48 45.14± 0.15
1 →2, 4 →5 18.56M 90.86± 0.66 86.57± 0.24 84.61± 0.14 68.07± 0.55 60.11± 0.61 44.84± 0.26

0 →1 20.43M 91.74± 0.48 86.22± 0.23 83.32± 0.22 68.58± 0.41 61.05± 0.36 44.12± 0.20
1 →2 20.43M 91.65± 0.61 86.26± 0.24 85.84± 0.08 71.12± 0.06 63.85± 0.37 54.34± 0.44
2 →3 20.43M 92.89± 0.18 86.49± 0.06 88.89± 0.08 74.90± 0.25 68.03± 0.37 57.83± 0.07
3 →4 20.43M 93.10± 0.43 87.34± 0.03 89.73± 0.37 76.45± 0.17 70.04± 0.35 57.55± 0.14
4 →5 20.43M 92.43± 0.20 87.22± 0.10 90.11± 0.32 76.40± 0.42 69.97± 0.37 55.91± 0.10
5 →6 20.43M 93.57± 0.11 86.80± 0.13 90.17± 0.27 76.47± 0.35 70.69± 0.49 55.43± 0.38
6 →7 20.43M 92.13± 0.37 86.77± 0.02 87.73± 0.22 72.35± 0.31 66.73± 0.45 47.39± 0.45
7 →8 20.43M 93.20± 0.06 86.90± 0.30 88.58± 0.26 75.80± 0.29 69.28± 0.41 53.48± 0.24
8 →9 20.43M 92.76± 0.11 87.18± 0.17 89.57± 0.33 76.43± 0.50 71.07± 0.33 56.07± 0.77

9 →10 20.43M 92.39± 0.10 86.74± 0.18 89.86± 0.31 77.34± 0.04 71.70± 0.37 57.45± 0.29
10 →11 20.43M 90.92± 0.48 86.89± 0.12 90.98± 0.21 78.85± 0.38 72.29± 0.42 58.94± 0.22

original 22.06M 93.22± 0.18 86.99± 0.29 91.29± 0.06 79.27± 0.23 73.45± 0.38 63.02± 0.22

Table 13: ViT-B Image Classification Performance. Classification accuracy scores for ViT-B using multiple datasets,
and 3 seeds. The "Approx." column specifies the blocks used for approximation, where the first value represents the block
whose output is used to approximate the second block’s output, while the "Params." column shows the number of parameters
removed by the approximation compared to the original model.

Accuracy ↑
Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F

1 → 5 -25.99M 87.06± 0.53 84.33± 0.61 73.54± 0.57 51.67± 1.10 38.98± 0.72

2 → 5 -19.49M 94.20± 0.21 87.80± 0.24 87.10± 0.83 71.68± 0.50 61.19± 0.37

1 → 3 -13M 96.51± 0.42 88.72± 0.41 93.71± 0.13 83.05± 0.23 74.74± 0.29
3 → 5 -13M 95.59± 0.09 88.28± 0.20 93.11± 0.06 83.50± 0.17 74.35± 0.47
2 → 4 -13M 96.21± 0.33 89.21± 0.64 94.59± 0.32 85.13± 0.24 76.82± 0.41

8 → 10 -13M 96.54± 0.21 89.72 ± 0.52 95.05± 0.26 85.78± 0.37 79.62± 0.14
9 → 11 -13M 95.59± 0.52 89.49± 0.26 93.22± 0.56 82.23± 0.44 76.33± 0.10

3 → 4 -6.5M 96.86± 0.35 89.69± 1.09 96.18 ± 0.09 89.18 ± 0.06 82.50 ± 0.17
4 → 5 6.5M 96.55± 0.23 89.13± 0.50 95.39± 0.23 87.43± 0.15 80.30± 0.16
0 → 1 -6.5M 96.75± 0.29 88.97± 0.26 93.74± 0.15 84.49± 0.20 76.54± 0.29
1 → 2 -6.5M 96.88± 0.01 89.29± 0.24 95.63± 0.11 87.46± 0.20 80.64± 0.23
2 → 3 -6.5M 96.91 ± 0.17 89.69± 0.61 96.00± 0.18 88.38± 0.13 81.59± 0.35

- 86.39M 95.61± 0.22 89.64± 0.57 96.25± 0.17 89.52± 0.23 83.41± 0.20
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Table 14: ViT-L Image Classification Performance. Classification accuracy scores for ViT-L using multiple datasets,
and 3 seeds. The "Approx." column specifies the blocks used for approximation, where the first value represents the block
whose output is used to approximate the second block’s output, while the "Params." column shows the number of parameters
removed by the approximation compared to the original model.

Accuracy ↑
Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→12 -127.02M 87.87± 0.59 81.54± 0.07 60.79± 1.15 42.70± 0.52 30.12± 0.41 3.70± 0.17

0→4 -46.19M 97.09± 0.41 87.54± 0.79 89.94± 0.43 74.88± 0.59 65.79± 0.09 44.97± 0.10
1→5 -46.19M 83.51± 2.49 81.05± 0.51 77.57± 0.92 59.05± 2.30 47.15± 0.75 38.31± 0.13

2→5 -34.64M 85.40± 1.19 78.15± 1.00 78.60± 1.25 60.42± 1.72 46.59± 1.23 21.21± 0.39
7→10 -34.64M 97.91 ± 0.04 90.13 ± 0.67 97.17± 0.11 91.13± 0.36 84.97± 0.15 74.52± 0.19

0→2, 3→4 -34.64M 96.91± 0.29 88.88± 0.74 94.61± 0.11 84.16± 0.35 76.20± 0.28 67.98± 0.26

1→2, 3→4 -23.09M 97.22± 0.16 89.57± 0.70 97.06± 0.09 90.45± 0.08 84.53± 0.25 76.55± 0.15
1→3 -23.09M 97.18± 0.09 89.32± 0.54 96.64± 0.17 88.86± 0.07 82.67± 0.10 75.63± 0.18
2→4 -23.09M 97.32± 0.34 89.51± 0.90 97.26± 0.02 90.71± 0.17 84.44± 0.17 76.66± 0.21
3→5 -23.09M 87.04± 0.51 81.96± 0.65 83.09± 0.73 64.90± 2.29 50.10± 1.63 26.53± 0.42
5→7 -23.09M 95.86± 0.40 88.19± 0.51 78.17± 0.49 60.02± 0.45 40.53± 0.25 6.41± 0.21

0→1 -11.55M 96.83± 0.19 89.28± 0.95 96.94± 0.06 90.15± 0.35 84.15± 0.11 76.85± 0.03
1→2 -11.55M 96.98± 0.13 89.25± 0.54 97.17± 0.12 91.12± 0.19 85.45± 0.43 77.63± 0.25
2→3 -11.55M 97.20± 0.14 89.65± 0.61 97.42± 0.24 91.53± 0.22 86.07± 0.09 78.07± 0.03
3→4 -11.55M 97.20± 0.18 89.83± 0.63 97.51± 0.09 91.76± 0.30 86.17± 0.21 78.43 ± 0.08
4→5 -11.55M 94.16± 0.23 85.36± 0.18 83.66± 0.41 67.76± 1.74 54.60± 0.29 18.46± 0.60
5→6 -11.55M 95.82± 0.37 89.34± 0.56 82.35± 1.51 67.17± 1.13 50.65± 0.84 14.36± 0.07
6→7 -11.55M 97.20± 0.09 89.78± 0.36 97.58± 0.11 91.60± 0.06 85.96± 0.22 78.05± 0.36
7→8 -11.55M 97.43± 0.10 90.17± 0.44 97.58± 0.06 92.03 ± 0.11 86.13± 0.14 78.23± 0.10
8→9 -11.55M 97.14± 0.15 89.98± 0.77 97.72± 0.17 91.98± 0.36 86.46± 0.09 78.01± 0.22

9→10 -11.55M 97.20± 0.19 89.80± 0.94 97.63± 0.20 91.68± 0.23 86.13± 0.32 77.68± 0.06
10→11 -11.55M 97.06± 0.01 89.99± 0.60 97.80 ± 0.14 91.82± 0.28 86.62± 0.18 77.63± 0.22
11→12 -11.55M 97.04± 0.20 89.81± 0.84 97.58± 0.09 91.51± 0.23 86.05± 0.32 77.69± 0.31
12→13 -11.55M 96.98± 0.05 89.68± 0.86 97.53± 0.05 91.52± 0.39 85.70± 0.25 77.93± 0.28
13→14 -11.55M 96.96± 0.18 89.79± 1.04 97.43± 0.04 91.44± 0.09 85.99± 0.34 77.99± 0.40
14→15 -11.55M 97.04± 0.09 89.56± 0.58 97.38± 0.02 91.27± 0.37 85.76± 0.25 77.74± 0.37
15→16 -11.55M 97.11± 0.19 89.93± 0.76 97.35± 0.12 91.37± 0.21 86.12± 0.23 78.18± 0.60
16→17 -11.55M 96.98± 0.08 89.80± 0.83 97.55± 0.08 91.55± 0.13 86.28± 0.18 78.08± 0.06
17→18 -11.55M 97.26± 0.17 89.87± 0.68 97.44± 0.06 91.34± 0.11 85.98± 0.54 77.88± 0.08
18→19 -11.55M 97.00± 0.18 89.90± 0.63 97.70± 0.10 91.35± 0.26 85.83± 0.05 77.37± 0.14
19→20 -11.55M 97.28± 0.13 89.92± 0.57 97.54± 0.08 91.45± 0.45 86.27± 0.31 77.13± 0.35
20→21 -11.55M 97.12± 0.03 89.92± 0.67 97.67± 0.09 91.37± 0.27 86.62± 0.03 77.34± 0.08
21→22 -11.55M 96.79± 0.19 89.83± 1.49 97.65± 0.06 91.54± 0.32 86.70 ± 0.13 77.09± 0.14
22→23 -11.55M 97.03± 0.13 89.57± 1.18 97.32± 0.15 91.56± 0.31 86.55± 0.02 78.21± 0.08

original 304.35M 96.92± 0.11 89.79± 0.84 97.52± 0.08 91.68± 0.32 86.48± 0.12 78.37± 0.21
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6.3.7. TRANSFORMATION GENERALIZATION

In this section, we extend the analysis to evaluate the model’s ability to generalize transformations across datasets to different
approximation blocks and models (i.e., DiNO-S).

Table 15: ViT-S Generalization Results. Classification accuracies for approximating ViT-S blocks with a linear
transformation learned on one dataset and applied to others. Datasets are MNIST, CIFAR-10, CIFAR-100C and
CIFAR-100F. The "Approx." column specifies the blocks being approximated, where the first value represents the block
whose output is used to approximate the second block’s output, while the “Source” column names the dataset used to
compute the transformation.

Accuracy ↑
Encoder Approx. Source MNIST CIFAR-10 CIFAR-100C CIFAR-100F

V
i
T
-
S

2 → 3 MNIST 94.11 57.13 41.89 28.50
CIFAR-10 89.58 95.08 85.32 77.92
CIFAR-100 89.63 95.00 85.50 77.74

3 → 4 MNIST 93.52 10.36 8.97 3.09
CIFAR-10 88.02 95.18 86.14 78.52
CIFAR-100 88.21 94.82 85.92 78.09

4 → 5 MNIST 93.96 38.40 25.56 16.52
CIFAR-10 78.36 95.31 85.84 78.20
CIFAR-100 80.11 94.98 86.01 78.14

9 → 10 MNIST 89.73 74.41 59.78 44.40
CIFAR-10 82.28 92.39 71.63 57.17
CIFAR-100 54.12 85.60 77.37 61.81

1 → 3 MNIST 92.79 16.17 11.09 3.84
CIFAR-10 80.41 90.63 75.59 65.98
CIFAR-100 81.24 89.98 76.27 66.26

3 → 5 MNIST 88.22 15.17 8.52 2.03
CIFAR-10 61.68 93.57 80.24 71.76
CIFAR-100 64.18 92.77 80.56 72.43

2 → 4 MNIST 92.74 17.24 12.27 4.27
CIFAR-10 63.52 92.14 79.80 70.52
CIFAR-100 66.05 91.21 79.57 70.16

8 → 10 MNIST 86.77 36.61 30.79 15.10
CIFAR-10 24.29 80.81 48.73 31.74
CIFAR-100 38.89 59.12 64.07 43.20

9 → 11 MNIST 77.19 31.40 18.79 4.32
CIFAR-10 49.65 76.61 50.48 25.57
CIFAR-100 35.61 68.40 55.67 31.59

2 → 5 MNIST 81.11 13.09 6.74 2.24
CIFAR-10 37.16 88.70 67.99 57.24
CIFAR-100 39.60 86.75 70.00 58.90

7 → 10 MNIST 85.04 33.28 19.26 4.59
CIFAR-10 20.67 69.49 34.65 17.18
CIFAR-100 30.00 48.19 53.16 26.97

1 → 5 MNIST 69.44 10.36 5.38 1.56
CIFAR-10 39.49 76.98 48.11 36.38
CIFAR-100 36.94 72.48 51.03 38.75
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Table 16: DiNO-S Generalization Results. Classification accuracies for approximating DiNO-S blocks with a linear
transformation learned on one dataset and applied to others. Datasets are MNIST, CIFAR-10, CIFAR-100C and
CIFAR-100F. The "Approx." column specifies the blocks being approximated, where the first value represents the block
whose output is used to approximate the second block’s output, while the “Source” column names the dataset used to
compute the transformation.

Accuracy ↑
Encoder Approx. Source MNIST CIFAR-10 CIFAR-100C CIFAR-100F

D
i
N
O
-
S

2 → 3 MNIST 93.04 58.24 37.95 27.62
CIFAR-10 86.16 94.11 82.37 75.26
CIFAR-100 86.39 93.78 82.28 75.29

3 → 4 MNIST 92.33 62.78 38.18 27.52
CIFAR-10 84.70 94.37 81.93 74.69
CIFAR-100 83.72 94.10 82.02 74.59

4 → 5 MNIST 91.64 57.39 36.97 26.02
CIFAR-10 70.87 93.65 80.38 73.84
CIFAR-100 71.51 92.98 79.96 73.54

9 → 10 MNIST 83.39 38.85 20.20 13.10
CIFAR-10 45.69 88.70 61.71 50.46
CIFAR-100 60.57 76.58 76.77 61.29

1 → 3 MNIST 90.60 22.30 11.76 5.47
CIFAR-10 78.51 89.72 74.58 65.04
CIFAR-100 79.80 89.28 74.75 64.92

3 → 5 MNIST 87.54 24.55 11.93 6.67
CIFAR-10 63.66 87.17 66.16 58.36
CIFAR-100 64.26 84.40 66.43 58.51

2 → 4 MNIST 90.54 19.14 9.99 4.99
CIFAR-10 62.32 88.03 68.53 59.23
CIFAR-100 64.89 86.98 68.54 59.15

8 → 10 MNIST 80.88 22.27 10.30 6.25
CIFAR-10 25.67 85.07 48.44 35.42
CIFAR-100 29.81 67.51 67.59 47.97

9 → 11 MNIST 27.79 9.93 7.30 1.67
CIFAR-10 15.94 59.66 19.22 7.62
CIFAR-100 15.71 40.73 32.06 12.17

2 → 5 MNIST 82.67 10.77 5.85 2.85
CIFAR-10 49.78 73.83 46.89 38.80
CIFAR-100 48.24 67.62 46.85 38.36

7 → 10 MNIST 75.50 15.89 10.43 4.24
CIFAR-10 17.75 76.55 36.68 21.94
CIFAR-100 19.13 53.86 55.80 33.79

1 → 5 MNIST 68.07 11.29 6.29 1.74
CIFAR-10 49.25 56.93 31.06 22.86
CIFAR-100 47.81 47.83 30.78 21.78
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6.3.8. ANALYSIS OF MISCLASSIFICATIONS

In this section, we examine changes in per-class accuracy and misclassification patterns. As shown in Figure 12, models
behave differently at block approximations. DiNO-S remains remarkably stable across blocks and classes, with the only
degradation appearing for classes dog (when approximating blocks 10 or 11) and deer (for block 10 approximation). ViT-S
shows a similar drop for class dog on its final block. Instead, the most noticeable hit occurs for class cat when the earlier
blocks are approximated. For DEiT-S, several mid-to-late block approximations improve accuracy for various classes,
whereas the very first block causes a clear relative decline in nearly every class. These observations suggest strategies like
preferring late-block approximation for DEiT-S, or reserving extra samples for the linear transformation in order to recover
the accuracy of difficult classes for the model.
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Figure 12: Per-class accuracy delta on CIFAR-10 when a single block is approximated in ViT-S, DiNO-S and
DEiT-S. Cell values indicate the relative change in the accuracy with respect to the original model. Brighter (green) cells
indicate an accuracy gain for the class, while darker (blue) cells indicate an accuracy drop.

In order to further investigate how the predictions change while approximating blocks, we plot the difference in the
normalized confusion matrix before and after the approximation. In Figure 13, we show the delta confusion matrix for
DEiT-S on CIFAR-100C. Also, here we can see how approximating the very first block makes the model puzzling and
lose per-class accuracy (i.e., negative delta along the diagonal). On the other hand, approximating the last block acts as a
regularizer, resulting in an overall gain in the per-class accuracy and, as a consequence, fewer misclassifications (negative
deltas off-diagonal). This supports results shown in Figure 12 and Table 1.
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Figure 13: Normalized relative confusion matrix when single blocks are approximated for DEiT-S on CIFAR-100C.
Diagonal cells capture the per-class change in accuracy, whereas off-diagonal cells capture changes in misclassifications
between classes. Red (positive) values on the diagonal mean the approximation improves that class’s accuracy. Red
off-diagonal values mean more misclassifications. Conversely, blue (negative) off-diagonal values indicate fewer misclassifi-
cations, and blue values on the diagonal indicate a drop in per-class accuracy.
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Additionally, Figure 14 shows representative CIFAR-10 images that become misclassified after approximating a block of
ViT-S. The patterns we observe mirror the trends in Figures 12 and 13: when approximating earlier blocks, we observe
many images belonging to class cat to be misclassified. Instead, when approximating later blocks, we observe images
of the class dog to be misclassified. Together, these qualitative examples show that understanding these block-specific
vulnerabilities allows us to steer the approximation procedure, informing choices about which blocks to approximate based
on the observed impact on the final model’s class-wise performance.

horse→ deer cat→ dog cat→ bird horse→ cat bird→ frog

1→ 2

bird→ cat dog→ cat automobile→ truck dog→ cat cat→ dog

6→ 7

ship→ airplane frog→ cat bird→ cat dog→ cat truck→ airplane

10→ 11

Figure 14: Misclassified samples after approximating blocks of ViT-S. Images from CIFAR-10 whose label flips from
correct to incorrect when specific blocks are approximated. The title reports the true class followed by the wrong prediction.

6.4. Extended related work

Measuring similarities A range of metrics have been introduced to assess the similarity between latent spaces generated by
different NNs (Klabunde et al., 2023; Ballester et al., 2023). One established approach is Canonical Correlation Analysis
(CCA) (Hotelling, 1992), known for its invariance to linear transformations. Variants of CCA, such as Singular Value CCA
(SVCCA) (Raghu et al., 2017), aim to enhance robustness, while techniques like Projection Weighted CCA (PWCCA)
(Morcos et al., 2018) mitigate sensitivity to small perturbations. Another widely used metric, Centered Kernel Alignment
(CKA) (Kornblith et al., 2019), captures the similarity between latent spaces while ignoring orthogonal transformations.
However, recent work (Davari et al., 2022) highlights that this metric can be sensitive to shifts in the latent space. Additionally,
Barannikov et al. (2021) proposes a method to compare two data representations by measuring the multi-scale topological
dissimilarity, while Fumero et al. (2024) leverages the principles of spectral geometry to model and analyze the relationships
between distinct latent spaces.

Leveraging similarities Valeriani et al. (2024) examine the intrinsic dimensionality and neighbor compositions of rep-
resentations in transformer models. Kvinge et al. (2022) investigate how models process variations in data points across
layers, while (Nguyen et al., 2020) assess the impact of network depth and width on hidden representations. Additionally,
Crisostomi et al. (2023) study the conditions under which two latent spaces can be merged into a unified one. Moschella et al.
(2023) construct a unified space shared by different NNs, enabling zero-shot stitching of independently trained models across
different modalities (Norelli et al., 2023). More recently, Cannistraci et al. (2024) enable model stitching without explicit
assumptions about the transformation class connecting the latent manifold embeddings, or with only partial correspondence
between latent spaces (Cannistraci et al., 2023). Finally, Lähner & Moeller (2024); Maiorca et al. (2024) demonstrate that
representations learned by distinct NNs can be aligned using simple transformations.
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