

000 001 002 003 004 005 FASTER GRADIENT METHODS FOR HIGHLY-SMOOTH 006 STOCHASTIC BILEVEL OPTIMIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 This paper studies the complexity of finding an ϵ -stationary point for stochastic
032 bilevel optimization when the upper-level problem is nonconvex and the lower-
033 level problem is strongly convex. Recent work proposed the first-order method,
034 F²SA, achieving the $\tilde{\mathcal{O}}(\epsilon^{-6})$ upper complexity bound for first-order smooth prob-
035 lems. This is slower than the optimal $\Omega(\epsilon^{-4})$ complexity lower bound in its single-
036 level counterpart. In this work, we show that faster rates are achievable for higher-
037 order smooth problems. We first reformulate F²SA as approximating the hyper-
038 gradient with a forward difference. Based on this observation, we propose a class
039 of methods F²SA- p that uses p th-order finite difference for hyper-gradient ap-
040 proximation and improves the upper bound to $\tilde{\mathcal{O}}(p\epsilon^{-4-2/p})$ for p th-order smooth
041 problems. Finally, we demonstrate that the $\Omega(\epsilon^{-4})$ lower bound also holds for
042 stochastic bilevel problems when the high-order smoothness holds for the lower-
043 level variable, indicating that the upper bound of F²SA- p is nearly optimal in the
044 region $p = \Omega(\log \epsilon^{-1} / \log \log \epsilon^{-1})$.
045
046

1 INTRODUCTION

047 Many machine learning problems, such as meta-learning (Rajeswaran et al., 2019), hyper-parameter
048 tuning (Bao et al., 2021; Franceschi et al., 2018; Mackay et al., 2019), and adversarial training
049 (Goodfellow et al., 2020) can be abstracted as solving the following bilevel optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{d_x}} \varphi(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}^*(\mathbf{x})), \quad \mathbf{y}^*(\mathbf{x}) = \arg \min_{\mathbf{y} \in \mathbb{R}^{d_y}} g(\mathbf{x}, \mathbf{y}), \quad (1)$$

050 We call f and g the upper-level and lower-level functions, respectively, and call φ the *hyper-
051 objective*. In this paper, we consider the most common *nonconvex-strongly-convex* setting where
052 $f : \mathbb{R}^{d_x} \rightarrow \mathbb{R}$ is smooth and possibly nonconvex, and $g : \mathbb{R}^{d_y} \rightarrow \mathbb{R}$ is smooth jointly in (\mathbf{x}, \mathbf{y})
053 and strongly convex in \mathbf{y} . Under the lower-level strong convexity assumption, the implicit function
054 theorem indicates the following closed form of the hyper-gradient (Ghadimi & Wang, 2018):
055

$$\nabla \varphi(\mathbf{x}) = \nabla_x f(\mathbf{x}, \mathbf{y}^*(\mathbf{x})) - \nabla_{xy}^2 g(\mathbf{x}, \mathbf{y}^*(\mathbf{x})) [\nabla_{yy}^2 g(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))]^{-1} \nabla_y f(\mathbf{x}, \mathbf{y}^*(\mathbf{x})). \quad (2)$$

056 Following the works in nonconvex optimization (Carmon et al., 2020; 2021; Arjevani et al., 2023),
057 we consider the task of finding an ϵ -stationary point of φ , i.e., a point $\mathbf{x} \in \mathbb{R}^{d_x}$ such that
058 $\|\nabla \varphi(\mathbf{x})\| \leq \epsilon$. Motivated by many real machine learning tasks, we study the stochastic setting,
059 where the algorithms only have access to the stochastic derivative estimators of both f and g .
060

061 The first efficient algorithm BSA Ghadimi & Wang (2018) for solving the stochastic bilevel problem
062 leverages both stochastic gradient and Hessian-vector-product (HVP) oracles to find an ϵ -stationary
063 point of $\varphi(\mathbf{x})$. Subsequently, Ji et al. (2021) proposed stocBiO by incorporating multiple enhanced
064 designs to improve the complexity. Both BSA and stocBiO require the stochastic Hessian assumption
065 (5) on the lower-level function, which is stronger than the standard SGD assumption.
066

067 To avoid estimating HVP oracles, Kwon et al. (2023) proposed the first fully first-order method
068 F²SA that works under standard SGD assumptions on both f and g (Assumption 2.1). The main
069 idea is to solve the following penalty problem (Liu et al., 2022; 2023; Shen & Chen, 2023; Shen
070 et al., 2025b; Lu & Mei, 2024):
071

$$\min_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} f(\mathbf{x}, \mathbf{y}) + \lambda \left(g(\mathbf{x}, \mathbf{y}) - \min_{\mathbf{z} \in \mathbb{R}^{d_y}} g(\mathbf{x}, \mathbf{z}) \right), \quad (3)$$

054 where λ is taken to be sufficiently large such that $\lambda = \Omega(\epsilon^{-1})$. If we interpret λ as the Lagrangian
 055 multiplier, then Problem (3) can be viewed as the Lagrangian function of the constrained
 056 optimization $\min_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} f(\mathbf{x}, \mathbf{y}), \text{s.t. } g(\mathbf{x}, \mathbf{y}) \leq g(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))$. Thanks to Danskin's theorem, the
 057 gradient of the Problem (3) only involves gradient information. Therefore, F²SA does not require
 058 the stochastic Hessian assumptions (5). More importantly, by directly leveraging gradient oracles
 059 instead of more expensive HVP oracles, the F²SA is more efficient in practice (Shen et al., 2025a;
 060 Xiao & Chen, 2025; Jiang et al., 2025) and is also the only method that can be scaled to 32B sized
 061 large language model (LLM) training (Pan et al., 2024).

062 Kwon et al. (2023) proved that the F²SA method finds an ϵ -stationary point of $\varphi(\mathbf{x})$ with $\tilde{\mathcal{O}}(\epsilon^{-3})$
 063 first-order oracle calls in the deterministic case and $\tilde{\mathcal{O}}(\epsilon^{-7})$ stochastic first-order oracle (SFO) calls
 064 in the stochastic case. Recently, Chen et al. (2025b) showed the two-time-scale stepsize strategy
 065 improves the upper complexity bound of F²SA method to $\tilde{\mathcal{O}}(\epsilon^{-2})$ in the deterministic case, which
 066 is optimal up to logarithmic factors. However, the direct extension of their method in the stochastic
 067 case leads to the $\tilde{\mathcal{O}}(\epsilon^{-6})$ SFO complexity (Chen et al., 2025b; Kwon et al., 2024a), which still has
 068 a significant gap between the $\Omega(\epsilon^{-4})$ lower bound for SGD (Arjevani et al., 2023). It remains open
 069 whether optimal rates for stochastic bilevel problems can be achieved for fully first-order methods.
 070

071 In this work, we revisit F²SA and interpret it as using forward difference to approximate the hyper-
 072 gradient. Our novel interpretation in turn leads to straightforward algorithm extensions for the F²SA
 073 method. Observing that the forward difference used by F²SA only has a first-order error guarantee,
 074 a natural idea to improve the error guarantee is to use higher-order finite difference methods. For
 075 instance, we know that the central difference has an improved second-order error guarantee. Based
 076 on this fact, we can derive the F²SA-2 method that solves the following symmetric penalty problem:
 077

$$\min_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} \frac{1}{2} \left(f(\mathbf{x}, \mathbf{y}) + \lambda g(\mathbf{x}, \mathbf{y}) - \min_{\mathbf{z} \in \mathbb{R}^{d_y}} (-f(\mathbf{x}, \mathbf{z}) + \lambda g(\mathbf{x}, \mathbf{z})) \right). \quad (4)$$

078 **Compared with Eq. (3), this new penalty problem perturbs the lower-level variables \mathbf{y} and \mathbf{z} in the
 079 opposite direction to better cancel out the approximation errors to Problem (1).** A similar approach
 080 has recently been discovered by Chayti & Jaggi (2024) in the context of meta-learning, but they
 081 only show its empirical benefit without rigorous theoretical justifications. In this work, we show
 082 that F²SA-2 provably improves the SFO complexity of F²SA from $\tilde{\mathcal{O}}(\epsilon^{-6})$ to $\tilde{\mathcal{O}}(\epsilon^{-5})$ for second-
 083 order smooth problems. Moreover, our idea is generalizable for any p th-order smooth problems.
 084 It is known in numerical analysis there exists the p th-order central difference that uses p points
 085 to construct an estimator to the derivative of a unitary function with p th-order error guarantee, as
 086 recalled in Lemma 3.1. Motivated by this fact, we propose the F²SA- p algorithm and show that it
 087 enjoys the improved $\tilde{\mathcal{O}}(p\epsilon^{-4-2/p})$ SFO complexity, as formally stated in Theorem 3.1.
 088

089 To examine the tightness of our upper bounds, we further extend the $\Omega(\epsilon^{-4})$ lower bound for SGD
 090 (Arjevani et al., 2023) from single-level optimization to bilevel optimization. Note that existing
 091 constructions for bilevel lower bound (Dagréou et al., 2024; Kwon et al., 2024a) do not satisfy all
 092 our smoothness conditions in Definition 2.2. We demonstrate in Theorem 4.1 that a fully separable
 093 construction for upper- and lower-level variables can immediately yield a valid $\Omega(\epsilon^{-4})$ lower bound
 094 for the problem class we study, showing that F²SA- p is optimal up to logarithmic factors when
 095 $p = \Omega(\log \epsilon^{-1} / \log \log \epsilon^{-1})$ (see Remark 3.4). We summarize our main results, including both the
 096 lower and upper bounds, in Table 1 and discuss open problems in the following.
 097

098 **Open problems.** Our upper bounds improve known results for high-order smooth problems, but
 099 our result still has a gap between the lower bound for $p = \mathcal{O}(\log \epsilon^{-1} / \log \log \epsilon^{-1})$. Recently, Kwon
 100 et al. (2024a) obtained some preliminary results towards closing this gap for $p = 1$, where they
 101 showed an $\Omega(\epsilon^{-6})$ lower bound holds under a more adversarial oracle. But it is still open whether
 102 their lower bounds can be extended to standard stochastic oracles as they conjectured. Another open
 103 problem is the tightness of the condition number dependency shown in Table 1.

104 **Notations.** We use $\|\cdot\|$ to denote the Euclidean norm for vectors and the spectral norm for matrices
 105 and tensors. We use $\tilde{\mathcal{O}}(\cdot)$ and $\tilde{\Omega}(\cdot)$ to hide logarithmic factors in $\mathcal{O}(\cdot)$ and $\Omega(\cdot)$. We also use
 106 $h_1 \lesssim h_2$ to mean $h_1 = \mathcal{O}(h_2)$, $h_1 \gtrsim h_2$ to mean $h_1 = \Omega(h_2)$, and $h_1 \asymp h_2$ to mean that both
 107 $h_1 \lesssim h_2$ and $h_1 \gtrsim h_2$ hold. Additional notations for tensors are introduced in Appendix A.

Method	Smoothness	Reference	Complexity
F ² SA	1st-order	(Kwon et al., 2023)	$\tilde{\mathcal{O}}(\text{poly}(\kappa)\epsilon^{-7})$
F ² SA	1st-order	(Kwon et al., 2024a)	$\tilde{\mathcal{O}}(\text{poly}(\kappa)\epsilon^{-6})$
F ² SA	1st-order	(Chen et al., 2025b)	$\tilde{\mathcal{O}}(\kappa^{12}\epsilon^{-6})$
F ² SA- p	1st-order + Lower Bound	Theorem 3.1	$\tilde{\mathcal{O}}(p\kappa^{9+2/p}\epsilon^{-4-2/p})$
	p th-order in \mathbf{y}	Theorem 4.1	$\Omega(\epsilon^{-4})$

Table 1: The SFO complexity of different methods to find an ϵ -stationary point for p th-order smooth first-order bilevel problems with condition number κ under standard SGD assumptions.

2 PRELIMINARIES

The goal of bilevel optimization is to minimize the hyper-objective $\varphi(\mathbf{x})$, which is in general non-convex. Since finding a global minimizer of a general nonconvex function requires exponential complexity in the worst case (Nemirovskij & Yudin, 1983, § 1.6), we follow the literature (Carmon et al., 2020; 2021) to consider the task of finding an approximate stationary point.

Definition 2.1. *Let $\varphi : \mathbb{R}^{d_x} \rightarrow \mathbb{R}$ be the hyper-objective defined in Eq. (1). We say a random variable $\hat{\mathbf{x}} \in \mathbb{R}^{d_x}$ is an ϵ -hyper-stationary point if $\mathbb{E}\|\nabla\varphi(\hat{\mathbf{x}})\| \leq \epsilon$.*

Next, we introduce the assumptions used in this paper, which ensure the tractability of the above hyper-stationarity. Compared to (Kwon et al., 2023; Chen et al., 2025b), we additionally assume the high-order smoothness in lower-level variable \mathbf{y} to achieve further acceleration.

2.1 PROBLEM SETUP

First of all, we follow the standard assumptions on SGD (Arjevani et al., 2023) to assume that the stochastic gradient estimators satisfy the following assumption.

Assumption 2.1. *There exists stochastic gradient estimators $F(\mathbf{x}, \mathbf{y})$ and $G(\mathbf{x}, \mathbf{y})$ such that*

$$\mathbb{E}F(\mathbf{x}, \mathbf{y}; \xi) = \nabla f(\mathbf{x}, \mathbf{y}), \quad \mathbb{E}\|F(\mathbf{x}, \mathbf{y}) - \nabla f(\mathbf{x}, \mathbf{y})\|^2 \leq \sigma^2;$$

$$\mathbb{E}G(\mathbf{x}, \mathbf{y}; \zeta) = \nabla g(\mathbf{x}, \mathbf{y}), \quad \mathbb{E}\|G(\mathbf{x}, \mathbf{y}) - \nabla g(\mathbf{x}, \mathbf{y})\|^2 \leq \sigma^2,$$

where $\sigma > 0$ is the variance of the stochastic gradient estimators. We also partition $F = (F_x, F_y)$ and $G = (G_x, G_y)$ such that F_x, F_y, G_x, G_y are estimators to $\nabla_x f, \nabla_y f, \nabla_x g, \nabla_y g$, respectively.

Second, we assume that the hyper-objective $\varphi(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))$ is lower bounded. Otherwise, any algorithm requires infinite time to find a stationary point. Note that the implicit condition $\inf_{\mathbf{x} \in \mathbb{R}^{d_x}} \varphi(\mathbf{x}) > -\infty$ below can also be easily implied by a more explicit condition on the lower boundedness of upper-level function $\inf_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} f(\mathbf{x}, \mathbf{y}) > -\infty$.

Assumption 2.2. *The hyper-objective defined in Eq. (1) is lower bounded, and we have*

$$\varphi(\mathbf{x}_0) - \inf_{\mathbf{x} \in \mathbb{R}^{d_x}} \varphi(\mathbf{x}) \leq \Delta,$$

where $\Delta > 0$ is the initial suboptimality gap and we assume $\mathbf{x}_0 = \mathbf{0}$ without loss of generality.

Third, we assume the lower-level function $g(\mathbf{x}, \mathbf{y})$ is strongly convex in \mathbf{y} . It guarantees the uniqueness of $\mathbf{y}^*(\mathbf{x})$ and the tractability of the bilevel problem. Although not all the problems in applications satisfy the lower-level strong convexity assumption, it is impossible to derive dimension-free upper bounds when the lower-level problem is only convex (Chen et al., 2024, Theorem 3.2). Hence, we follow most existing works to consider strongly convex lower-level problems.

Assumption 2.3. *$g(\mathbf{x}, \mathbf{y})$ is μ -strongly convex in \mathbf{y} , i.e., for any $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^{d_y}$, we have*

$$g(\mathbf{x}, \mathbf{y}_2) \geq g(\mathbf{x}, \mathbf{y}_1) + \langle \nabla_y g(\mathbf{x}, \mathbf{y}_1), \mathbf{y}_2 - \mathbf{y}_1 \rangle + \frac{\mu}{2} \|\mathbf{y}_1 - \mathbf{y}_2\|^2,$$

where $\mu > 0$ is the strongly convex parameter.

162 Fourth, we require the following smoothness assumptions following (Ghadimi & Wang, 2018). According to Eq. (2), these conditions are necessary and sufficient to guarantee the Lipschitz continuity
 163 of $\nabla\varphi(\mathbf{x})$, which further ensure the tractability of an approximate stationary point of the nonconvex
 164 hyper-objective $\varphi(\mathbf{x})$ (Zhang et al., 2020; Kornowski & Shamir, 2022).

166 **Assumption 2.4.** *For the upper-lower function f and lower-level function g , we assume that*

- 168 1. $f(\mathbf{x}, \mathbf{y})$ is L_0 -Lipschitz in \mathbf{y} .
- 169 2. $\nabla f(\mathbf{x}, \mathbf{y})$ and $\nabla g(\mathbf{x}, \mathbf{y})$ are L_1 -Lipschitz jointly in (\mathbf{x}, \mathbf{y}) .
- 170 3. $\nabla_{xy}^2 g(\mathbf{x}, \mathbf{y})$ and $\nabla_{yy}^2 g(\mathbf{x}, \mathbf{y})$ are L_2 -Lipschitz jointly in (\mathbf{x}, \mathbf{y}) .

173 We refer to the problem class that jointly satisfies all the above Assumption 2.1, 2.2, 2.3 and 2.4 as
 174 first-order smooth bilevel problems, for which (Kwon et al., 2024a; Chen et al., 2025b) showed the
 175 F^2SA method achieves the $\tilde{O}(\epsilon^{-6})$ upper complexity bound. In this work, we show an improved
 176 bound under the following additional higher-order smoothness assumption on lower-level variable \mathbf{y} .

177 **Assumption 2.5** (High order smoothness in \mathbf{y}). *Given $p \in \mathbb{N}_+$, we assume that*

- 178 1. $\frac{\partial^q}{\partial \mathbf{y}^q} \nabla f(\mathbf{x}, \mathbf{y})$ is L_{q+1} -Lipschitz for all $q = 1, \dots, p-1$.
- 179 2. $\frac{\partial^{q+1}}{\partial \mathbf{y}^{q+1}} \nabla g(\mathbf{x}, \mathbf{y})$ is L_{q+2} -Lipschitz in \mathbf{y} for all $q = 1, \dots, p-1$.

182 We refer to problems jointly satisfying all the above assumptions as p th-order smooth bilevel problems, and also formally define their condition numbers as follows.

185 **Definition 2.2** (p th-order smooth bilevel problems). *Given $p \in \mathbb{N}_+$, $\Delta > 0$, $L_0, L_1, \dots, L_{p+1} > 0$, and $\mu \leq L_1$, we use $\mathcal{F}^{nc-sc}(L_0, \dots, L_{p+1}, \mu, \Delta)$ to denote the set of all bilevel instances satisfying Assumption 2.2, 2.3, 2.4 and 2.5. For this problem class, we define the largest smoothness constant $\bar{L} = \max_{0 \leq j \leq p} L_j$ and condition number $\kappa = \bar{L}/\mu$.*

189 All our above assumptions align with (Chen et al., 2025b) except for the additional Assumption 2.5.
 190 A classical example of a highly smooth function is the softmax function (Garg et al., 2021, Lemma
 191 2(3)). Therefore, many hyper-parameter tuning problems for logistic regression are provably highly
 192 smooth, such that our theory can be applied. We give two examples from (Pedregosa, 2016): the
 193 first one aims to learn the optimal weights of each sample in a corrupted training set, and the second
 194 one aims to learn the optimal regularizer of each parameter.

195 **Example 2.1** (Data hyper-cleaning). *Let $\mathbf{x} \in \mathbb{R}^n$ parameterize the per-sample weight of a training
 196 set with n samples via $\sigma(x_i) = \exp(x_i)/\sum_{i=1}^n \exp(x_i)$ and $\mathbf{y} \in \mathbb{R}^d$ be the parameters of a linear
 197 model. Let ℓ_{val} be the logistic loss of the linear model on the validation set and ℓ_{tr}^i be the logistic
 198 loss on the training sample i . The problem aims to solve*

$$\min_{\mathbf{x} \in \mathbb{R}^n} \ell_{\text{val}}(\mathbf{y}), \quad \text{s.t.} \quad \mathbf{y} \in \arg \min_{\mathbf{y} \in \mathbb{R}^d} \sum_{i=1}^n \sigma(x_i) \ell_{\text{tr}}^i(\mathbf{y}).$$

202 **Example 2.2** (Learn-to-regularize). *Let $\mathbf{x} \in \mathbb{R}^d$ parameterize the regularization matrix via $\mathbf{W}_{\mathbf{x}} =$
 203 $\text{diag}(\exp(\mathbf{x}))$, and $\mathbf{y} \in \mathbb{R}^d$ be the parameters of a linear model. Let ℓ_{val} and ℓ_{tr} be the logistic loss
 204 of the linear model on the validation set and training set, respectively. The problem aims to solve*

$$\min_{\mathbf{x} \in \mathbb{R}^d} \ell_{\text{val}}(\mathbf{y}), \quad \text{s.t.} \quad \mathbf{y} \in \arg \min_{\mathbf{y} \in \mathbb{R}^d} \ell_{\text{tr}}(\mathbf{y}) + \mathbf{y}^\top \mathbf{W}_{\mathbf{x}} \mathbf{y}.$$

2.2 COMPARISON TO PREVIOUS WORKS

210 Before we show our improved upper bound, we first give a detailed discussion on other assumptions
 211 made in related works.

213 **Stochastic Hessian assumption.** Ghadimi & Wang (2018); Ji et al. (2021) assumes the access to
 214 a stochastic Hessian estimator $\mathbf{H}(\mathbf{x}, \mathbf{y})$ such that

$$215 \mathbb{E} \mathbf{H}(\mathbf{x}, \mathbf{y}) = \nabla^2 g(\mathbf{x}, \mathbf{y}), \quad \mathbb{E} \|\mathbf{H}(\mathbf{x}, \mathbf{y}) - \nabla^2 g(\mathbf{x}, \mathbf{y})\| \leq \sigma^2. \quad (5)$$

According to (Arjevani et al., 2020, Observation 1 and 2), such an assumption is stronger than standard SGD assumptions and equivalent to the mean-squared-smoothness assumption (6) on the lower-level gradient estimator G under the mild condition of $\nabla G(\mathbf{x}, \mathbf{y}) = \mathbf{H}(\mathbf{x}, \mathbf{y})$. Under this assumption, in conjunction with Assumption 2.2, 2.3, and 2.4, Ghadimi & Wang (2018) proposed the BSA method that can find an ϵ stationary point of $\varphi(\mathbf{x})$ with $\tilde{\mathcal{O}}(\epsilon^{-6})$ SFO complexity and $\tilde{\mathcal{O}}(\epsilon^{-4})$ stochastic HVP complexity. Later, Ji et al. (2021) further improved the SFO complexity term to $\tilde{\mathcal{O}}(\epsilon^{-4})$. Compared to them, we consider the setting where the algorithms only have access to stochastic gradient estimators, and make no assumptions on the stochastic Hessians.

Mean-squared smoothness assumption. Besides Assumption 2.1, 2.2, 2.3, 2.4 and the stochastic Hessian assumption (5), Khanduri et al. (2021); Yang et al. (2021; 2023b) further assumes that the stochastic estimators to gradients and Hessians are mean-squared smooth:

$$\begin{aligned} \mathbb{E}\|F(\mathbf{x}, \mathbf{y}) - F(\mathbf{x}', \mathbf{y}')\|^2 &\leq \bar{L}_1^2\|(\mathbf{x}, \mathbf{y}) - (\mathbf{x}', \mathbf{y}')\|^2, \\ \mathbb{E}\|G(\mathbf{x}, \mathbf{y}) - G(\mathbf{x}', \mathbf{y}')\|^2 &\leq \bar{L}_1^2\|(\mathbf{x}, \mathbf{y}) - (\mathbf{x}', \mathbf{y}')\|^2, \\ \mathbb{E}\|\mathbf{H}(\mathbf{x}, \mathbf{y}) - \mathbf{H}(\mathbf{x}', \mathbf{y}')\|^2 &\leq \bar{L}_2^2\|(\mathbf{x}, \mathbf{y}) - (\mathbf{x}', \mathbf{y}')\|^2. \end{aligned} \quad (6)$$

Under this additional assumption, they proposed faster stochastic methods with upper complexity bound of $\tilde{\mathcal{O}}(\epsilon^{-3})$ via variance reduction (Fang et al., 2018; Cutkosky & Orabona, 2019). In this paper, we only consider the setting without mean-squared smoothness assumptions and study a different acceleration mechanism from variance reduction.

Jointly high-order smoothness assumption. Huang et al. (2025) introduced a second-order smoothness assumption similar to but stronger than Assumption 2.5 when $p = 2$. Specifically, they assumed the second-order smoothness jointly in (\mathbf{x}, \mathbf{y}) instead of \mathbf{y} only:

$$\begin{aligned} \nabla^2 f(\mathbf{x}, \mathbf{y}) &\text{ is } L_2\text{-Lipschitz jointly in } (\mathbf{x}, \mathbf{y}); \\ \nabla^3 g(\mathbf{x}, \mathbf{y}) &\text{ is } L_3\text{-Lipschitz jointly in } (\mathbf{x}, \mathbf{y}). \end{aligned} \quad (7)$$

The jointly second-order smoothness (7) ensures that the hyper-objective $\varphi(\mathbf{x})$ has Lipschitz continuous Hessians, which further allows the application of known techniques in minimizing second-order smooth objectives. Huang et al. (2025) applied the technique from (Jin et al., 2017; 2021; Xu et al., 2018; Allen-Zhu & Li, 2018) to show that an HVP-based method can find a second-order stationary point in $\tilde{\mathcal{O}}(\epsilon^{-2})$ complexity under the deterministic setting, and in $\tilde{\mathcal{O}}(\epsilon^{-4})$ under the stochastic Hessian assumption (5). Yang et al. (2023a) applied the technique from (Li & Lin, 2023) to accelerate the complexity HVP-based method to $\tilde{\mathcal{O}}(\epsilon^{-1.75})$ in the deterministic setting. Chen et al. (2025b) also proposed a fully first-order method to achieve the same $\tilde{\mathcal{O}}(\epsilon^{-1.75})$ complexity. Compared to these works, our work demonstrates a unique acceleration mechanism in stochastic bilevel optimization that only comes from the high-order smoothness in \mathbf{y} .

3 THE F²SA- p METHOD

To introduce our method, we first recall the prior F²SA method (Kwon et al., 2023) and establish their relationship between finite difference schemes, which further motivates us to design better algorithms by using better finite difference formulas.

3.1 HYPER-GRADIENT APPROXIMATION VIA FINITE DIFFERENCE

The core idea of F²SA (Kwon et al., 2023) is to solve the reformulated penalty problem (3) and use the gradient of the penalty function to approximate the true hyper-gradient. To make connections of F²SA to the finite difference method, let us introduce the extra notation g_ν as the perturbed lower-level problem with $\mathbf{y}_\nu^*(\mathbf{x})$ and $\ell_\nu(\mathbf{x})$ being its optimal solution and optimal value, respectively:

$$\begin{aligned} g_\nu(\mathbf{x}, \mathbf{y}) &:= \nu f(\mathbf{x}, \mathbf{y}) + g(\mathbf{x}, \mathbf{y}), \\ \mathbf{y}_\nu^*(\mathbf{x}) &:= \arg \min_{\mathbf{y} \in \mathbb{R}^{d_y}} g_\nu(\mathbf{x}, \mathbf{y}), \\ \ell_\nu(\mathbf{x}) &:= \min_{\mathbf{y} \in \mathbb{R}^{d_y}} g_\nu(\mathbf{x}, \mathbf{y}), \end{aligned}$$

270 Then we have $\frac{\partial}{\partial \nu} \ell_\nu(\mathbf{x})|_{\nu=0} = \lim_{\nu \rightarrow 0} \frac{\ell_\nu(\mathbf{x}) - \ell_0(\mathbf{x})}{\nu} = \lim_{\nu \rightarrow 0} f(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) + \frac{g(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) - g(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))}{\nu}$.
 271 In our notation, we can rewrite (Chen et al., 2025b, Lemma B.3) as $\frac{\partial}{\partial \nu} \ell_\nu(\mathbf{x})|_{\nu=0} = \varphi(\mathbf{x})$. Similarly,
 272 we can also rewrite (Kwon et al., 2023, Lemma 3.1) as

$$274 \quad \frac{\partial^2}{\partial \nu \partial \mathbf{x}} \ell_\nu(\mathbf{x})|_{\nu=0} = \frac{\partial^2}{\partial \mathbf{x} \partial \nu} \ell_\nu(\mathbf{x})|_{\nu=0} = \nabla \varphi(\mathbf{x}). \quad (8)$$

276 Let $\nu = 1/\lambda$ in Eq. (3). Then the fully first-order hyper-gradient estimator (Kwon et al., 2023; Chen
 277 et al., 2025b) is exactly using forward difference to approximate $\nabla \varphi(\mathbf{x})$, that is,

$$278 \quad \frac{\frac{\partial}{\partial \mathbf{x}} \ell_\nu(\mathbf{x}) - \frac{\partial}{\partial \mathbf{x}} \ell_0(\mathbf{x})}{\nu} \approx \frac{\partial^2}{\partial \nu \partial \mathbf{x}} \ell_\nu(\mathbf{x})|_{\nu=0} = \nabla \varphi(\mathbf{x}). \quad (9)$$

281 However, the forward difference is not the only way to approximate a derivative. Essentially, it
 282 falls into a general class of p th-order finite difference (Atkinson & Han, 2005) that can guarantee an
 283 $\mathcal{O}(\nu^p)$ approximation error. We restate this known result (with generalization to vector-valued functions)
 284 in the following lemma and provide a self-contained proof in Appendix B for completeness.

285 **Lemma 3.1.** *Assume the function $\psi : \mathbb{R} \rightarrow \mathbb{R}^d$ has C -Lipschitz continuous p th-order derivative.
 286 There exist coefficients $\{\alpha_j\}$ such that*

$$288 \quad \left\| \frac{1}{\nu} \sum_j \alpha_j \psi(j\nu) - \psi'(0) \right\| = \mathcal{O}(C\nu^p).$$

291 *If p is even, the indices run $j = -p/2, \dots, p/2$. If p is odd, they run $j = -(p-1)/2, \dots, (p+1)/2$.
 292 Furthermore, all the coefficients satisfy $|j\alpha_j| \leq 1$ for all $j \neq 0$ and $|\alpha_0| \leq \mathbb{I}[p \text{ is odd}]$.*

294 The explicit formulas for α_j can be found in Appendix B. When $p = 1$, we have $\alpha_0 = -1$, $\alpha_1 = 1$,
 295 and we obtain the forward difference estimator $\psi(\nu) - \psi(0)/\nu$; When $p = 2$ we have $\alpha_{-1} = -1/2$,
 296 $\alpha_1 = 1/2$ and we obtain the central difference estimator $(\psi(\nu) - \psi(-\nu))/(2\nu)$. Lemma 3.1
 297 tells us that in general we can always construct a finite difference estimator $\mathcal{O}(\nu^p)$ error with p points
 298 for even p or $p+1$ points for odd p under the given smoothness conditions. Inspired by Lemma 3.1
 299 and Eq. (8) that $\frac{\partial^2}{\partial \nu \partial \mathbf{x}} \ell_\nu(\mathbf{x})|_{\nu=0} = \nabla \varphi(\mathbf{x})$, we propose a fully first-order estimator via a linear
 300 combination of $\frac{\partial}{\partial \mathbf{x}} \ell_{j\nu}(\mathbf{x})$ to achieve $\mathcal{O}(\nu^p)$ approximation error to $\nabla \varphi(\mathbf{x})$ given that $\frac{\partial^{p+1}}{\partial \nu^p \partial \mathbf{x}} \ell_\nu(\mathbf{x})$
 301 is Lipschitz continuous in ν . It further leads to Algorithm 1 that will be formally introduced in the
 302 next subsection.

3.2 THE PROPOSED ALGORITHM

306 Due to space limitations, we only present Algorithm 1 designed for even p in the main text. The
 307 algorithm for odd p can be designed similarly, and we defer the concrete algorithm to Appendix D.

308 Algorithm 1 follows the double-loop structure of F²SA (Chen et al., 2025b; Kwon et al., 2024a) and
 309 changes the hyper-gradient estimator to the one introduced in the previous section. Now, we give a
 310 more detailed introduction to the procedures of the two loops of F²SA- p .

- 312 In the outer loop, the algorithm first samples a mini-batch with size S and uses Lemma 3.1
 313 to construct Φ_t via the linear combination of $\frac{\partial}{\partial \mathbf{x}} \ell_{j\nu}(\mathbf{x}_t)$ for $j = -p/2, \dots, p/2$ every
 314 iteration. After obtaining Φ_t as an approximation to $\nabla \varphi(\mathbf{x}_t)$, the algorithm then performs
 315 a normalized gradient descent step $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_x \Phi_t / \|\Phi_t\|$ with total T iterations.
- 316 In the inner loop, the algorithm returns an approximation to $\frac{\partial}{\partial \mathbf{x}} \ell_{j\nu}(\mathbf{x}_t)$ for all $j = -p/2, \dots, p/2$. Note that Danskin's theorem indicates $\frac{\partial}{\partial \mathbf{x}} \ell_{j\nu}(\mathbf{x}_t) = \frac{\partial}{\partial \mathbf{x}} g_{j\nu}(\mathbf{x}_t, \mathbf{y}_{j\nu}^*(\mathbf{x}_t))$.
 317 It suffices to approximate $\mathbf{y}_{j\nu}^*(\mathbf{x}_t)$ to sufficient accuracy, which is achieved by taking a
 318 K -step single-batch SGD subroutine with stepsize η_y on each function $g_{j\nu}(\mathbf{x}, \cdot)$.

320 **Remark 3.1** (Effect of normalized gradient step). *Compared to (Chen et al., 2025b; Kwon et al.,
 321 2023), the only modification we make to the outer loop is to change the gradient step to a normalized
 322 gradient step. The normalization can control the change of $\mathbf{y}_{j\nu}^*(\mathbf{x}_t)$ and make the analysis of inner
 323 loops easier. We believe that all our theoretical guarantees also hold for the standard gradient step
 via a more involved analysis.*

324 **Algorithm 1** F²SA- p ($\mathbf{x}_0, \mathbf{y}_0$), even p

325

326 1: $\mathbf{y}_0^j = \mathbf{y}_0, \forall j \in \mathbb{N}$

327 2: **for** $t = 0, 1, \dots, T - 1$

328 3: **parallel for** $j = -p/2, -p/2 + 1, \dots, p/2$

329 4: $\mathbf{y}_t^{j,0} = \mathbf{y}_t^j$

330 5: **for** $k = 0, 1, \dots, K - 1$

331 6: Sample random i.i.d indexes $\{(\xi_j^y, \zeta_j^y)\}$.

332 7: $\mathbf{y}_t^{j,k+1} = \mathbf{y}_t^{j,k} - \eta_y \left(j\nu F_y(\mathbf{x}_t, \mathbf{y}_t^{j,k}; \xi_j^y) + G_y(\mathbf{x}_t, \mathbf{y}_t^{j,k}; \zeta_j^y) \right)$

333 8: **end for**

334 9: $\mathbf{y}_{t+1}^j = \mathbf{y}_t^{j,K}$

335 10: **end parallel for**

336 11: Sample random i.i.d indexes $\{(\xi_i^x, \zeta_i^x)\}_{i=1}^S$.

337 12: Let $\{\alpha_j\}_{j=-p/2}^{p/2}$ be the p th-order finite difference coefficients defined in Lemma 3.1.

338 13: $\Phi_t = \frac{1}{S} \sum_{i=1}^S \sum_{j=-p/2}^{p/2} \alpha_j \left(jF_x(\mathbf{x}_t, \mathbf{y}_{t+1}^j; \xi_i^x) + \frac{G_x(\mathbf{x}_t, \mathbf{y}_{t+1}^j; \zeta_i^x)}{\nu} \right)$

339 14: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_x \Phi_t / \|\Phi_t\|$

340 15: **end for**

344

345 3.3 COMPLEXITY ANALYSIS

346

347 This section contains the complexity analysis of Algorithm 1. We first derive the following lemma
 348 from the high-dimensional Faà di Bruno formula (Licht, 2024).

349 **Lemma 3.2.** *Let $\nu \in (0, 1/(2\kappa)]$. For any instance in the p th-order smooth bilevel problem class
 350 $\mathcal{F}^{nc-sc}(L_0, \dots, L_{p+1}, \mu, \Delta)$ as Definition 2.2, $\frac{\partial^{p+1}}{\partial \nu^p \partial \mathbf{x}} \ell_\nu(\mathbf{x})$ is $\mathcal{O}(\kappa^{2p+1} \bar{L})$ -Lipschitz continuous in ν .*

351

352 Our result generalizes the prior result for $p = 1$ (Kwon et al., 2023) to any $p \in \mathbb{N}_+$ and also tightens
 353 the prior bounds for $p = 2$ (Chen et al., 2025b) as we remark in the following.

354 **Remark 3.2** (Tighter bounds for $p = 2$). *Note that the variables \mathbf{x} and ν play equal roles in our
 355 analysis. Therefore, our result in $p = 2$ essentially implies that $\frac{\partial^3}{\partial \nu \partial \mathbf{x}^2} \ell_\nu(\mathbf{x})$ is $\mathcal{O}(\kappa^5 \bar{L})$ -Lipschitz
 356 continuous in ν around zero, which tightens the $\mathcal{O}(\kappa^6 \bar{L})$ bound of Hessian convergence in (Chen
 357 et al., 2025b, Lemma 5.1a) and is of independent interest. The main insight is to avoid the direct cal-
 358 culation of $\nabla^2 \varphi(\mathbf{x}) = \frac{\partial^3}{\partial \nu \partial \mathbf{x}^2} \ell_\nu(\mathbf{x})|_{\nu=0}$ which involves third-order derivatives and makes the anal-
 359 ysis more complex, but instead always to analyze it through the limiting point $\lim_{\nu \rightarrow 0} \frac{\partial^3}{\partial \nu \partial \mathbf{x}^2} \ell_\nu(\mathbf{x})$.*

360

361 Recall Eq. (8) that $\frac{\partial^2}{\partial \nu \partial \mathbf{x}} \ell_\nu(\mathbf{x})|_{\nu=0} = \nabla \varphi(\mathbf{x})$. Then Lemma 3.2, in conjunction with Lemma 3.1,
 362 indicates that the p th-order finite difference used in F²SA- p guarantees an $\mathcal{O}(\nu^p)$ -approximation
 363 error to $\nabla \varphi(\mathbf{x})$, which always improves the $\mathcal{O}(\nu)$ -error guarantee of F²SA (Kwon et al., 2023; Chen
 364 et al., 2025b) for any $p \geq 2$. This improved error guarantee means that we can set $\nu = \mathcal{O}(\epsilon^{1/p})$
 365 to obtain an $\mathcal{O}(\epsilon)$ -accurate hyper-gradient estimator to $\nabla \varphi(\mathbf{x})$, which further leads to the following
 366 improved complexity of our algorithm.

367

368 **Theorem 3.1** (Main theorem). *For any instance in the p th-order smooth bilevel problem class
 369 $\mathcal{F}^{nc-sc}(L_0, \dots, L_{p+1}, \mu, \Delta)$ as per Definition 2.2, set the hyper-parameters as*

$$\begin{aligned} 370 \nu &\asymp \min \left\{ \frac{R}{\kappa}, \left(\frac{\epsilon}{\bar{L} \kappa^{2p+1}} \right)^{1/p} \right\}, \quad \eta_x \asymp \frac{\epsilon}{L_1 \kappa^3}, \quad \eta_y \asymp \frac{\nu^2 \epsilon^2}{L_1 \kappa \sigma^2}, \\ 371 S &\asymp \frac{\sigma^2}{\nu^2 \epsilon^2}, \quad K \asymp \frac{\kappa^2 \sigma^2}{\nu^2 \epsilon^2} \log \left(\frac{RL_1 \kappa}{\nu \epsilon} \right), \quad T \asymp \frac{\Delta}{\eta_x \epsilon}, \end{aligned} \tag{10}$$

374 where $R = \|\mathbf{y}_0 - \mathbf{y}^*(\mathbf{x}_0)\|$. Run Algorithm 1 if p is even or Algorithm 2 (in Appendix D) if p is odd.
 375 Then we can provably find an ϵ -stationary point of $\varphi(\mathbf{x})$ with the total SFO calls upper bounded by
 376

$$377 pT(S + K) = \mathcal{O} \left(\frac{p \Delta L_1 \bar{L}^{2/p} \sigma^2 \kappa^{9+2/p}}{\epsilon^{4+2/p}} \log \left(\frac{RL_1 \bar{L} \kappa}{\epsilon} \right) \right).$$

378 The above theorem shows that the $F^2\text{SA-}p$ method can achieve the $\tilde{\mathcal{O}}(p\kappa^{9+2/p}\epsilon^{-4-2/p}\log(\kappa/\epsilon))$
 379 SFO complexity for p th-order smooth bilevel problems. In the following, we give several remarks
 380 on the complexity in different regions of p .

381 **Remark 3.3** (First-order smooth region). *For $p = 1$, our upper bound becomes $\tilde{\mathcal{O}}(\kappa^{11}\epsilon^{-6})$, which
 382 improves the $\tilde{\mathcal{O}}(\kappa^{12}\epsilon^{-6})$ bound in (Chen et al., 2025b) by a factor of κ . The improvement comes
 383 from a tighter analysis in the lower-level SGD update and a careful parameter setting.*

384 **Remark 3.4** (Highly-smooth region). *For $p = \Omega(\log(\kappa/\epsilon)/\log\log(\kappa/\epsilon))$ in Definition 2.2, we can
 385 run $F^2\text{SA-}q$ with $q \asymp \log(\kappa/\epsilon)/\log\log(\kappa/\epsilon)$ and the $\mathcal{O}(q\kappa^9\epsilon^{-4}(\kappa/\epsilon)^{2/q}\log(\kappa/\epsilon))$ complexity in Theorem
 386 3.1 simplifies to $\mathcal{O}(\kappa^9\epsilon^{-4}\log^3(\kappa/\epsilon)/\log\log(\kappa/\epsilon)) = \tilde{\mathcal{O}}(\kappa^9\epsilon^{-4})$, which matches the best-known
 387 complexity for HVP-based methods (Ji et al., 2021) under stochastic Hessian assumption (5).*

388 In the upcoming section, we will derive an $\Omega(\epsilon^{-4})$ lower bound to prove that the $F^2\text{SA-}p$ is near-optimal
 389 in the above highly-smooth region if the condition number κ is a constant. We leave the
 390 study of optimal complexity for non-constant κ to future work.

391 **Comparison of results for odd p and even p .** Note that by Lemma 3.1 when p is odd, we need to
 392 use $p+1$ points to construct the estimator, which means the algorithm needs to solve $p+1$ lower-level
 393 problems in each iteration to achieve an $\mathcal{O}(\nu^p)$ error guarantee. In contrast, when p is even, p points
 394 are enough since the p th-order central difference estimator satisfies that $\alpha_0 = 0$. It suggests that even
 395 when p is odd, the algorithm designed for odd p may still be better. For instance, the $F^2\text{SA-}2$ may
 396 always be a better choice than $F^2\text{SA}$ since its benefits *almost come for free*: (1) it still only needs
 397 to solve 2 lower-level problems as the $F^2\text{SA}$ method, which means the per-iteration complexity
 398 remains the same. (2) Although the improved complexity of $F^2\text{SA-}2$ relies on the second-order
 399 smooth condition, without such a condition, its error guarantee in hyper-gradient estimation will
 400 only degenerate to a first-order one, which means it is at least as good as $F^2\text{SA}$.

4 AN $\Omega(\epsilon^{-4})$ LOWER BOUND

401 In this section, we prove an $\Omega(\epsilon^{-4})$ lower bound for stochastic bilevel optimization via a reduction
 402 to single-level optimization. Our lower bound holds for any randomized algorithms \mathbb{A} , which can be
 403 defined as a sequence of measurable mappings $\{\mathbb{A}_t\}_{t=1}^T$ that is defined recursively by

$$(x_{t+1}, y_{t+1}) = \mathbb{A}_t(r, F(x_0, y_0), G(x_0, y_0), \dots, F(x_t, y_t), G(x_t, y_t)), \quad t \in \mathbb{N}_+, \quad (11)$$

404 where r is a random seed drawn at the beginning to produce the queries, and F, G are the stochastic
 405 gradient estimators that satisfy Assumption 2.1. Without loss of generality, we assume that
 406 $(x_0, y_0) = (\mathbf{0}, \mathbf{0})$. Otherwise, we can prove the same lower bound by shifting the functions.

407 **The construction.** We construct a separable bilevel instance such that the upper-level function
 408 $f(x, y) \equiv f_U(x)$ and its stochastic gradient align with the hard instance in (Arjevani et al., 2023),
 409 while the lower-level function is the simple quadratic $g(x, y) \equiv g(y) = \mu y^2/2$ with deterministic
 410 gradients. We defer the concrete construction to Appendix E. For this separable bilevel instance,
 411 we can show that for any randomized algorithm defined in Eq. (11) that uses oracles (F_U, G) , the
 412 progress in x can be simulated by another randomized algorithm that only uses F_U , meaning that
 413 the single-level lower bound (Arjevani et al., 2023) also holds.

414 **Theorem 4.1** (Lower bound). *There exist numerical constants $c > 0$ such that for all $\Delta > 0$, $L_1, \dots, L_{p+1} > 0$ and $\epsilon \leq c\sqrt{L_1\Delta}$, there exists a distribution over the function class
 415 $\mathcal{F}^{nc-sc}(L_0, \dots, L_{p+1}, \mu, \Delta)$ and the stochastic gradient estimators satisfying Assumption 2.1, such
 416 that any randomized algorithm \mathbb{A} defined as Eq. (11) can not find an ϵ -stationary point of
 417 $\varphi(x) = f(x, y^*(x))$ in less than $\Omega(\Delta L_1 \sigma^2 \epsilon^{-4})$ SFO calls.*

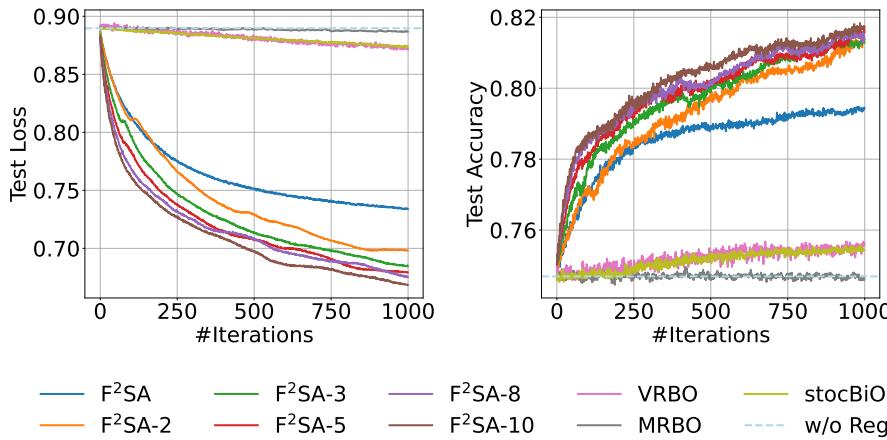
418 Below, we give a detailed discussion on the constructions in related works.

419 **Comparison to other bilevel lower bounds.** Dagréou et al. (2024) proved lower bounds for finite-
 420 sum bilevel optimization via a similar reduction to single-level optimization. However, the direct
 421 extension of their construction in the fully stochastic setting gives $f(x, y) = f_U(y)$ and $g(x, y) =$
 422 $(x - y)^2$, where the high-order derivatives of $f(x, y)$ not $\mathcal{O}(1)$ -Lipschitz in y and thus violates

432 our assumptions. Kwon et al. (2024a) also proved an $\Omega(\epsilon^{-4})$ lower bound for stochastic bilevel
 433 optimization. However, their construction $f(\mathbf{x}, y) = y$ and $g(\mathbf{x}, y) = (f_U(\mathbf{x}) - y)^2$ violate the
 434 first-order smoothness of $g(\mathbf{x}, y)$ in \mathbf{x} when y is far way from $f_U(\mathbf{x})$. In this work, we use a fully
 435 separable construction to avoid all the aforementioned issues in other works.

438 5 EXPERIMENTS

440 In this section, we conduct numerical experiments to verify our theory. Following (Grazzi et al.,
 441 2020; Ji et al., 2021), we consider the “learn-to-regularize” problem of logistic regression (Exam-
 442 ple 2.2) on the “20 Newsgroup” dataset, which provably satisfies the highly smooth assumption of
 443 any order. The dataset contains 18,000 samples, each sample consists of a feature vector in dimen-
 444 sional 130, 107 vector and a label that takes value in $\{1, \dots, 20\}$. **We compare our proposed method**
 445 **F²SA-*p*** with $p \in \{2, 3, 5, 8, 10\}$ with both the previous best fully first-order method F²SA (Kwon
 446 et al., 2023; Chen et al., 2025b) and other Hessian-vector-product-based methods stocBiO (Ji et al.,
 447 2021), MRBO and VRBO (Yang et al., 2021). We also include a baseline “w/o Reg” that means the
 448 training result of SGD without tuning any regularization. For all the algorithms, we search the other
 449 hyperparameters (including η_x, η_y, ν) in a logarithmic scale with base 10. We run the algorithms
 450 with $K = 10$ iterations in the inner loop, and $T = 1000$ iterations in the outer loop, and report the
 451 test loss/accuracy v.s. the number of outer-loop iterations t in Figure 1. **To demonstrate the potential**
 452 **of our methods on nonsmooth nonconvex problems, we also provide additional experiments on a**
 453 **5-layer multilayer perceptron (MLP) network with ReLU activation in Appendix F.**



470 Figure 1: Performances of different algorithms on Example 2.2.

474 6 CONCLUSIONS AND FUTURE WORKS

476 This paper proposes a class of fully first-order method F²SA-*p* that achieves the $\tilde{\mathcal{O}}(p\epsilon^{-4-2/p})$ SFO
 477 complexity for *p*th-order smooth bilevel problems. Our result generalized the best-known $\tilde{\mathcal{O}}(\epsilon^{-6})$
 478 result (Kwon et al., 2024a; Chen et al., 2025b) from $p = 1$ to any $p \in \mathbb{N}_+$. We also com-
 479plement our result with an $\Omega(\epsilon^{-4})$ lower bound to show that our method is near-optimal when
 480 $p = \Omega(\log \epsilon^{-1} / \log \log \epsilon^{-1})$. Nevertheless, a gap still exists when p is small, and how to fill it even
 481 for the basic setting $p = 1$ is an open problem. Another open problem is whether our theory can be
 482 extended our theory to structured nonconvex-nonconvex bilevel problems studied by many recent
 483 works (Kwon et al., 2024b; Chen et al., 2024; 2025a; Jiang et al., 2025; Xiao et al., 2023; Xiao
 484 & Chen, 2025). **In addition, it will also be interesting to further improve the convergence rate of**
 485 **our methods by combining them with variance-reduction (Fang et al., 2018; Cutkosky & Orabona,**
 486 **2019) or momentum techniques (Fang et al., 2019; Cutkosky & Mehta, 2020).**

486 REFERENCES
487

488 Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In *NeurIPS*,
489 2018.

490 Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Sridharan.
491 Second-order information in non-convex stochastic optimization: Power and limitations. In
492 *COLT*, 2020.

493 Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Woodworth.
494 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 199(1):165–
495 214, 2023.

496 Kendall Atkinson and Weimin Han. Finite difference method. *Theoretical Numerical Analysis: A
497 Functional Analysis Framework*, pp. 249–271, 2005.

498 Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
499 bilevel programming in hyperparameter optimization. In *NeurIPS*, 2021.

500 Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
501 points i. *Mathematical Programming*, 184(1):71–120, 2020.

502 Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
503 points ii: first-order methods. *Mathematical Programming*, 185(1):315–355, 2021.

504 El Mahdi Chayti and Martin Jaggi. A new first-order meta-learning algorithm with convergence
505 guarantees. *arXiv preprint arXiv:2409.03682*, 2024.

506 He Chen, Jiajin Li, and Anthony Man-cho So. Set smoothness unlocks clarke hyper-stationarity in
507 bilevel optimization. In *NeurIPS*, 2025a.

508 Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
509 Hardness results and improved analysis. In *COLT*, 2024.

510 Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel op-
511 timization with fully first-order oracles. *JMLR*, 2025b.

512 Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In *ICML*, 2020.

513 Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
514 In *NeurIPS*, 2019.

515 Mathieu Dagréou, Thomas Moreau, Samuel Vaïter, and Pierre Ablin. A lower bound and a near-
516 optimal algorithm for bilevel empirical risk minimization. In *AISTATS*, 2024.

517 Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
518 optimization via stochastic path-integrated differential estimator. In *NeurIPS*, 2018.

519 Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex SGD escaping from
520 saddle points. In *COLT*, 2019.

521 Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
522 programming for hyperparameter optimization and meta-learning. In *ICML*, 2018.

523 Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. Near-optimal lower bounds for
524 convex optimization for all orders of smoothness. In *NeurIPS*, 2021.

525 Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint
526 arXiv:1802.02246*, 2018.

527 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
528 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
529 ACM*, 63(11):139–144, 2020.

530 Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
531 plexity of hypergradient computation. In *ICML*, 2020.

540 Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle
 541 points in bilevel optimization. *JMLR*, 26(1):1–61, 2025.

542

543 Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
 544 design. In *ICML*, 2021.

545

546 Liuyuan Jiang, Quan Xiao, Lisha Chen, and Tianyi Chen. Beyond value functions: Single-loop
 547 bilevel optimization under flatness conditions. In *NeurIPS*, 2025.

548

549 Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
 550 saddle points efficiently. In *ICML*, 2017.

551

552 Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. On nonconvex
 553 optimization for machine learning: Gradients, stochasticity, and saddle points. *Journal of the
 554 ACM*, 68(2):1–29, 2021.

555

556 Ishtiaq Rasool Khan, Ryoji Ohba, and Noriyuki Hozumi. Mathematical proof of closed form ex-
 557 pressions for finite difference approximations based on taylor series. *Journal of Computational
 558 and Applied Mathematics*, 150(2):303–309, 2003.

559

560 Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
 561 A near-optimal algorithm for stochastic bilevel optimization via double-momentum. In *NeurIPS*,
 562 2021.

563

564 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. *SIAM review*, 51(3):
 565 455–500, 2009.

566

567 Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization. *JMLR*,
 568 pp. 1–44, 2022.

569

570 Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D. Nowak. A fully first-order method
 571 for stochastic bilevel optimization. In *ICML*, 2023.

572

573 Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order methods in
 574 stochastic bilevel optimization. In *ICML*, 2024a.

575

576 Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D. Nowak. On penalty methods for
 577 nonconvex bilevel optimization and first-order stochastic approximation. In *ICLR*, 2024b.

578

579 Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more polyloga-
 580 rithmic factor in the in the $\mathcal{O}(\epsilon^{-7/4})$ complexity. *JMLR*, 2023.

581

582 Martin W Licht. Higher-order chain rules for tensor fields, generalized bell polynomials, and esti-
 583 mates in orlicz-sobolev-slobodeckij and total variation spaces. *Journal of Mathematical Analysis
 584 and Applications*, 534(1):128005, 2024.

585

586 Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
 587 easy: A simple first-order approach. In *NeurIPS*, 2022.

588

589 Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based se-
 590 quential minimization for bi-level optimization. *TPAMI*, 45(12):15930–15948, 2023.

591

592 Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. *SIAM Journal
 593 on Optimization*, 34(2):1937–1969, 2024.

594

595 Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-strongly-
 596 concave minimax optimization. In *NeurIPS*, 2022.

597

598 Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
 599 networks: Bilevel optimization of hyperparameters using structured best-response functions. In
 600 *ICLR*, 2019.

601

602 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 603 efficiency in optimization. 1983.

594 Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. ScaleBiO: Scal-
 595 able bilevel optimization for LLM data reweighting. *arXiv preprint arXiv:2406.19976*, 2024.
 596

597 Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *ICML*, 2016.
 598

599 Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning with im-
 600 plicit gradients. In *NeurIPS*, volume 32, 2019.

601 Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *ICML*, 2023.
 602

603 Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning
 604 via bilevel data selection. In *ICLR*, 2025a.

605 Han Shen, Quan Xiao, and Tianyi Chen. On penalty-based bilevel gradient descent method. *Math-
 606 ematical Programming*, pp. 1–51, 2025b.
 607

608 Quan Xiao and Tianyi Chen. Unlocking global optimality in bilevel optimization: A pilot study. In
 609 *ICLR*, 2025.

610 Quan Xiao, Songtao Lu, and Tianyi Chen. An generalized alternating optimization method for
 611 bilevel problems under the polyak-łojasiewicz condition. In *NeurIPS*, 2023.
 612

613 Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
 614 points in almost linear time. In *NeurIPS*, 2018.

615 Haikuo Yang, Luo Luo, Chris Junchi Li, and Michael I Jordan. Accelerating inexact hypergradient
 616 descent for bilevel optimization. *arXiv preprint arXiv:2307.00126*, 2023a.
 617

618 Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. In
 619 *NeurIPS*, 2021.

620 Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving $\mathcal{O}(\epsilon^{-1.5})$ complexity in hessian/jacobian-free
 621 stochastic bilevel optimization. In *NeurIPS*, 2023b.
 622

623 Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
 624 finding stationary points of nonconvex nonsmooth functions. In *ICML*, 2020.
 625

626

A NOTATIONS FOR TENSORS

627 We follow the notation of tensors used by Kolda & Bader (2009). For two p -way tensors $\mathcal{X} \in$
 628 $\mathbb{R}^{n_1 \times n_2 \times \dots \times n_p}$ and $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_p}$, their inner product $z = \langle \mathcal{X}, \mathcal{Y} \rangle$ is defined as

$$629 \langle \mathcal{X}, \mathcal{Y} \rangle = \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \dots \sum_{i_p=1}^{n_p} \mathcal{X}_{i_1, i_2, \dots, i_p} \mathcal{Y}_{i_1, i_2, \dots, i_p}.$$

630 For two tensors $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_p}$ and $\mathcal{Y} \in \mathbb{R}^{m_1 \times m_2 \times \dots \times m_q}$, their outer product $\mathcal{Z} = \mathcal{X} \otimes \mathcal{Y}$ is a
 631 tensor $\mathcal{Z} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_p \times m_1 \times m_2 \times \dots \times m_q}$ whose elements are defined as

$$632 (\mathcal{X} \otimes \mathcal{Y})_{i_1, i_2, \dots, i_p, j_1, j_2, \dots, j_q} = \mathcal{X}_{i_1, i_2, \dots, i_p} \mathcal{Y}_{j_1, j_2, \dots, j_p}.$$

633 The operator norm of a tensor $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_p}$ is defined as

$$634 \|\mathcal{X}\| = \sup_{\|\mathbf{u}_i\|=1, i=1, \dots, p} \langle \mathcal{X}, \mathbf{u}_1 \otimes \mathbf{u}_2 \otimes \dots \otimes \mathbf{u}_p \rangle.$$

635 Equipped with the notion of norm, we say a mapping $\mathcal{T} : \mathbb{R} \rightarrow \mathbb{R}^{n_1 \times n_2 \times \dots \times n_p}$ is D -bounded if

$$636 \|\mathcal{T}(\mathbf{x})\| \leq D, \quad \forall \mathbf{x} \in \mathbb{R}.$$

637 We say \mathcal{T} is C -Lipschitz continuous if

$$638 \|\mathcal{T}(\mathbf{x}) - \mathcal{T}(\mathbf{y})\| \leq C \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}.$$

648 **B PROOF OF LEMMA 3.1**
649

650 *Proof.* If $\psi^{(p)}(\nu)$ is C -Lipschitz continuous in ν , then by Taylor's theorem we have
651

652
$$\psi(\nu) = \psi(0) + \sum_{k=1}^p \frac{(j\nu)^k}{k!} \psi^{(k)}(0) + \mathcal{O}(C\nu^{p+1}). \quad (12)$$

653
654

655 Now, we analyze the case when p is even or odd separately.
656

657 **If p is even.** The estimator we use is known as the p th-order central difference, whose coefficients
658 are known (Khan et al., 2003). Let $n = p/2$. We select coefficients $\{\alpha_j\}_{j=-n}^n$ such that
659

660
$$\alpha_j = -\alpha_{-j}, \quad \forall j = 0, 1, \dots, n.$$

661

662 Then, summing up Eq. (12) with coefficients α_j gives
663

664
$$\frac{1}{\nu} \sum_{j=-n}^{j=n} \alpha_j \psi(j\nu) = 2 \sum_{j=1}^n \alpha_j \underbrace{\sum_{k=1,3,\dots}^{n-1} \frac{j^k \nu^{k-1}}{k!} \psi^{(k)}(0)}_{(*)} + \mathcal{O}(C\nu^p).$$

665
666
667

668 To let term $(*)$ be equivalent to $\psi'(0)$, we let $\{\alpha_j\}_{j=1}^n$ satisfy the following equations:
669

670
$$2 \sum_{j=1}^n \alpha_j j^k = \mathbf{1}_{k=1}, \quad \forall k = 1, 3, \dots, n-1,$$

671
672

673 which is equivalent to let $\{j\alpha_j\}_{j=1}^n$ satisfy the following linear equation
674

675
$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1^2 & 2^2 & 3^2 & \cdots & n^2 \\ 1^4 & 2^4 & 3^4 & \cdots & n^4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1^{2(n-1)} & 2^{2(n-1)} & 3^{2(n-1)} & \cdots & n^{2(n-1)} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ 2\alpha_2 \\ 3\alpha_3 \\ \vdots \\ n\alpha_n \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

676
677
678
679
680

681 Now we solve this linear equation to determine the values of $\{\alpha_j\}_{j=1}^n$. Let \mathbf{A} be the coefficient
682 matrix of this linear equation, and let \mathbf{A}_j be the matrix such that the j th column of \mathbf{A} is replaced by
683 the standard unit vector $(1, 0, \dots, 0)^\top$. By Cramer's rule, we have
684

685
$$2j\alpha_j = \frac{\det(\mathbf{A}_j)}{\det(\mathbf{A})}, \quad j = 1, \dots, n.$$

686

687 By observation, we can find that both \mathbf{A} and \mathbf{A}_j are Vandermonde matrices. Therefore, we can
688 explicitly calculate both $\det(\mathbf{A})$ and $\det(\mathbf{A}_j)$ according to the determinant formula of Vandermonde
689 matrices, which leads to
690

691
$$2j\alpha_j = \frac{(-1)^{j-1} \cdot ((j-1)!)^2 \cdot (n!)^2 \cdot j! \cdot (2j)!}{(j!)^2 \cdot (j-1)! \cdot (n-j)! \cdot (2j-1)! \cdot (n+j)!} = \frac{2(-1)^{j-1} (n!)^2}{(n-j)! \cdot (n+j)!}.$$

692
693

694 Therefore, we have
695

696
$$\alpha_j = \frac{(-1)^{j-1} (n!)^2}{j \cdot (n-j)! \cdot (n+j)!},$$

697

698 from which it is clear that $|\alpha_j| \leq 1/j$.
699

700 **If p is odd.** Instead of using the known p th-order forward difference (Khan et al., 2003) for which
701 we find that the coefficients will be exponentially large in p , we motivate from the p th-order central
702 difference above to obtain a stable estimator by leveraging negative points. Let $n = (p+1)/2$.
703

We select coefficients $\{\alpha_j\}_{j=1-n}^n$ that satisfy the constraint $\sum_{j=1-n}^n \alpha_j = 0$. Then, summing up Eq. (12) with coefficients α_j gives

$$\frac{1}{\nu} \sum_{j=1-n}^{j=n} \alpha_j \psi(j\nu) = \underbrace{\sum_{j=1-n}^{j=n} \alpha_j \sum_{k=1}^p \frac{j^k \nu^{k-1}}{k!} \psi^{(k)}(0)}_{(*)} + \mathcal{O}(C\nu^p).$$

To let term $(*)$ be equivalent to $\psi'(0)$, we let $\{\alpha_j\}_{j=1-n}^n$ satisfy the following equations:

$$\sum_{j=1-n}^n \alpha_j j^k = \mathbf{1}_{k=1}, \quad \forall k = 1, 2, \dots, p,$$

which is equivalent to let $\{\hat{\alpha}_j\}_{j=(1-n), j \neq 0}^n$ satisfy the following linear equation

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\ 1-n & 2-n & 3-n & \cdots & -1 & 1 & \cdots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (1-n)^{2n+1} & (2-n)^{2n+1} & (3-n)^{2n+1} & \cdots & (-1)^{2n+1} & 1^{2n+1} & \cdots & n^{2n+1} \end{pmatrix} \begin{pmatrix} \hat{\alpha}_{1-n} \\ \hat{\alpha}_{2-n} \\ \vdots \\ \hat{\alpha}_n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

where we denote $\hat{\alpha}_j = j\alpha_j$ for $j = 1-n, \dots, -1$ and $1, \dots, n$. Now we solve this linear equation to determine the values of $\{\hat{\alpha}_j\}$. Let \mathbf{A} be the coefficient matrix of this linear equation, and let \mathbf{A}_j be the matrix such that the j th column of \mathbf{A} is replaced by the standard unit vector $(1, 0, \dots, 0)^\top$. By Cramer's rule, we have

$$\hat{\alpha}_j = \frac{\det(\mathbf{A}_j)}{\det(\mathbf{A})}, \quad j = 1, \dots, n.$$

Similar to the case of even p , both \mathbf{A} and \mathbf{A}_j are Vandermonde matrices. Therefore, we can explicitly calculate both $\det(\mathbf{A})$ and $\det(\mathbf{A}_j)$ according to the determinant formula of Vandermonde matrices. Then, for $j = 1, \dots, n$, we can obtain that

$$\alpha_j = \frac{\hat{\alpha}_j}{j} = \frac{(-1)^{j-1}(j-1)!(n-1)!n!j!}{j \cdot j!(j-1)!(n+j-1)!(n-j)!} = \frac{(-1)^{j-1}(n-1)!n!}{j(n+j-1)!(n-j)!}.$$

Similarly, for $j = 1, \dots, n-1$, we can obtain that

$$\alpha_{-j} = \frac{\hat{\alpha}_{-j}}{-j} = \frac{(-1)^j(n-1)!(j-1)!n!j!}{-j \cdot j!(n+j-1)!(j-1)!(n+j)!} = \frac{(-1)^j(n-1)!n!}{j(n-j-1)!(n+j)!}.$$

Therefore, it is easy to see that $|\alpha_j| \leq 1/j$ for $j = 1, \dots, n$, and $|\alpha_{-j}| \leq 1/j$ for $j = 1, \dots, n-1$. Finally, we calculate α_0 from the constraint $\sum_{j=1-n}^n \alpha_j = 0$, which leads to

$$\alpha_0 = - \underbrace{\sum_{j=1}^n \frac{(-1)^{j-1}(n-1)!n!}{j(n+j-1)!(n-j)!}}_{S_1} - \underbrace{\sum_{j=1}^{n-1} \frac{(-1)^j(n-1)!n!}{j(n-j-1)!(n+j)!}}_{S_2}. \quad (13)$$

We claim that $\alpha_0 = -1/n$ and hence $|\alpha_0| \leq 1$. We prove our claim by calculating the values of S_1 and S_2 to obtain α_0 . For S_1 , we have

$$S_1 = \sum_{j=1}^n (-1)^{j-1} \binom{n}{j} \frac{(n-1)!(j-1)!}{(n+j-1)!}.$$

The fraction on the right is the Beta function $B(j, n)$, which can be represented as the integral $B(j, n) = \int_0^1 x^{j-1} (1-x)^{n-1} dx$. Therefore,

$$\begin{aligned} S_1 &= \sum_{j=1}^n (-1)^{j-1} \binom{n}{j} \int_0^1 x^{j-1} (1-x)^{n-1} dx \\ &= \int_0^1 (1-x)^{n-1} \left(\sum_{j=1}^n (-1)^{j-1} \binom{n}{j} x^{j-1} \right) dx \\ &= \int_0^1 \frac{(1-x)^{n-1}}{x} \left(\sum_{j=1}^n (-1)^{j-1} \binom{n}{j} x^j \right) dx. \end{aligned}$$

756 Substituting the binomial expansion $(1-x)^n = 1 + \sum_{j=0}^n \binom{n}{j}(-x)^j$, we then have
 757

$$758 \quad 759 \quad 760 \quad S_1 = \int_0^1 \frac{(1-x)^{n-1}}{x} (1 - (1-x)^n) dx.$$

761 Let $y = 1 - x$. We then have

$$762 \quad 763 \quad 764 \quad S_1 = \int_0^1 \frac{y^{n-1}}{1-y} (1 - y^n) dy.$$

765 Substituting the geometric series sum $\frac{1-y^n}{1-y} = \sum_{k=0}^{n-1} y^k$, we then have
 766

$$767 \quad 768 \quad 769 \quad S_1 = \int_0^1 y^{n-1} \left(\sum_{k=0}^{n-1} y^k \right) dy = \int_0^1 \sum_{k=0}^{n-1} y^{n+k-1} dy = \sum_{k=0}^{n-1} \int_0^1 y^{n+k-1} dy = \sum_{k=0}^{n-1} \frac{1}{n+k}.$$

770 Following similar steps, we can also obtain that
 771

$$772 \quad 773 \quad 774 \quad S_2 = - \sum_{k=0}^{n-2} \frac{1}{n+k+1}.$$

775 Now, for $\alpha_0 = -S_1 - S_2$, the summation terms cancel out perfectly, which leads to $\alpha_0 = -1/n$.
 776 \square
 777

778 C PROOF OF LEMMA 3.2

781 The proof relies on the high-dimensional version of the Faà di Bruno formula. To formally state
 782 the result, we define the following notions. For a mapping $\mathcal{T} : \mathbb{R}^m \rightarrow \mathbb{R}^{n_1 \times \dots \times n_q}$, we define its
 783 k th-order directional derivative evaluated at $\mathbf{z} \in \mathbb{R}^m$ along the direction $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ as

$$784 \quad 785 \quad \nabla_{\mathbf{u}_1, \dots, \mathbf{u}_k}^k \mathcal{T}_{|\mathbf{z}} = \nabla^k \mathcal{T}_{|\mathbf{z}}(\mathbf{u}_1, \dots, \mathbf{u}_k).$$

786 We let the symmetric products of $\mathbf{u}_1, \dots, \mathbf{u}_k$ as

$$787 \quad 788 \quad 789 \quad \mathbf{u}_1 \vee \mathbf{u}_2 \vee \dots \vee \mathbf{u}_k = \frac{1}{k!} \sum_{\pi \in \text{Perm}(k)} \mathbf{u}_{\pi(1)} \otimes \mathbf{u}_{\pi(2)} \otimes \dots \otimes \mathbf{u}_{\pi(k)},$$

790 where $\text{Perm}(k)$ denotes the set of permutations of $\{1, 2, \dots, k\}$. Also, we define the set of all
 791 (unordered) partitions of a set A into k pairwise disjoint non-empty sets as
 792

$$793 \quad \mathcal{P}(A, k) = \{ \mathbf{P} = (P_1, \dots, P_k) \subseteq \mathcal{B}(A) \mid A = \bigcup_{j=1}^k P_j; \emptyset \notin \mathbf{P}; P_i \cap P_j = \emptyset, \forall i < j \},$$

794 where $\mathcal{B}(A)$ is the power set of A , *i.e.*, the set of all subsets of A . We also abbreviate $\mathcal{P}(\{1 : q\}, k)$
 795 as $\mathcal{P}(q, k)$. Using the above notions, we have the following result.
 796

797 **Lemma C.1** (Licht, 2024, Proposition 3.1)). *Let \mathcal{T}_1 and \mathcal{T}_2 be two mappings. If \mathcal{T}_1 and \mathcal{T}_2 are
 798 k -times differentiable at the point \mathbf{z} and $\mathcal{T}_1(\mathbf{z})$, respectively, then the composite mapping $\mathcal{T}_2 \circ \mathcal{T}_1$ is
 799 k -times differentiable at the point \mathbf{z} and we have*

$$800 \quad 801 \quad 802 \quad 803 \quad \nabla^q (\mathcal{T}_2 \circ \mathcal{T}_1)_{|\mathbf{z}}(\bigvee_{i=1}^q \mathbf{u}_i) = \sum_{\substack{1 \leq k \leq q, \\ \mathbf{P} \in \mathcal{P}(q, k)}} \nabla^k \mathcal{T}_2_{|\mathcal{T}_1(\mathbf{z})} \left(\nabla^{|P_1|} \mathcal{T}_1_{|\mathbf{z}}(\bigvee_{i \in P_1} \mathbf{u}_i), \dots, \nabla^{|P_k|} \mathcal{T}_1_{|\mathbf{z}}(\bigvee_{i \in P_k} \mathbf{u}_i) \right).$$

804 Recall Danskin's theorem that $\frac{\partial}{\partial \mathbf{x}} \ell_\nu(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x}))$. We can apply Lemma C.1 with $\mathcal{T}_1 =$
 805 $\mathbf{y}_\nu^*(\mathbf{x})$ and $\mathcal{T}_1 = \frac{\partial}{\partial \mathbf{x}} g_\nu(\mathbf{x}, \mathbf{y})$ to obtain that
 806

$$807 \quad 808 \quad 809 \quad \frac{\partial^{q+1}}{\partial \nu^q \partial \mathbf{x}} \ell_\nu(\mathbf{x}) = \sum_{\substack{1 \leq k \leq q, \\ \mathbf{P} \in \mathcal{P}(q, k)}} \frac{\partial^{k+1}}{\partial \mathbf{y}^k \partial \mathbf{x}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) \left(\frac{\partial^{|P_1|}}{\partial \nu^{|P_1|}} \mathbf{y}_\nu^*(\mathbf{x}), \dots, \frac{\partial^{|P_k|}}{\partial \nu^{|P_k|}} \mathbf{y}_\nu^*(\mathbf{x}) \right). \quad (14)$$

Symmetrically, using the first-order optimality condition $\frac{\partial}{\partial \mathbf{y}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) = 0$ and where the first identity uses the Lemma C.1 with $\mathcal{T}_1 = \mathbf{y}_\nu^*(\mathbf{x})$ and $\mathcal{T}_1 = \frac{\partial}{\partial \mathbf{y}} g_\nu(\mathbf{x}, \mathbf{y})$ yields that

$$0 = \sum_{\substack{1 \leq k \leq q, \\ \mathbf{P} \in \mathcal{P}(q, k)}} \frac{\partial^{k+1}}{\partial \mathbf{y}^{k+1}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) \left(\frac{\partial^{|\mathbf{P}_1|}}{\partial \nu^{|\mathbf{P}_1|}} \mathbf{y}_\nu^*(\mathbf{x}), \dots, \frac{\partial^{|\mathbf{P}_k|}}{\partial \nu^{|\mathbf{P}_k|}} \mathbf{y}_\nu^*(\mathbf{x}) \right). \quad (15)$$

Since $\mathcal{P}(q, 1)$ contains only one element, the above identity implies that

$$\begin{aligned} \frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x}) &= -(\nabla_{yy}^2 g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})))^{-1} \sum_{\substack{2 \leq k \leq q, \\ \mathbf{P} \in \mathcal{P}(q, k)}} \mathbf{w}_{k, \mathbf{P}}, \\ \text{where } \mathbf{w}_{k, \mathbf{P}} &= \frac{\partial^{k+1}}{\partial \mathbf{y}^{k+1}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})) \left(\frac{\partial^{|\mathbf{P}_1|}}{\partial \nu^{|\mathbf{P}_1|}} \mathbf{y}_\nu^*(\mathbf{x}), \dots, \frac{\partial^{|\mathbf{P}_k|}}{\partial \nu^{|\mathbf{P}_k|}} \mathbf{y}_\nu^*(\mathbf{x}) \right). \end{aligned} \quad (16)$$

Based on Eq. (16), we can prove by induction that $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1})$ -Lipschitz continuous in ν for all $q = 0, \dots, p$. The induction base for $q = 0, 1$ is already proved by Chen et al. (2025b).

Lemma C.2 (Chen et al. (2025b, Lemma B.2 and B.5)). *Let $\nu \in (0, 1/(2\kappa)]$. Under Assumption 2.3 and 2.4, $\mathbf{y}_\nu^*(\mathbf{x})$ and $\frac{\partial}{\partial \nu} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa)$ - and $\mathcal{O}(\kappa^3)$ -Lipschitz continuous in ν , respectively.*

Since Eq. (16) also involves $(\nabla_{yy}^2 g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})))^{-1}$, we also need the following lemma that gives its boundedness and Lipschitz continuity constants.

Lemma C.3 (Chen et al. (2025b, Lemma B.1 and Eq. 18)). *Let $\nu \in (0, 1/(2\kappa)]$. Under Assumption 2.3 and 2.4, $(\nabla_{yy}^2 g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})))^{-1}$ is $2/\mu$ -bounded and $\mathcal{O}(\kappa^2/\mu)$ -Lipschitz continuous in ν .*

In the remaining proofs, we will use Eq. (16) prove by induction that $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1})$ -Lipschitz continuous in ν , then we can easily use Eq. (14) to show that $\frac{\partial^{q+1}}{\partial \nu^q \partial \mathbf{x}} \ell_\nu(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1} \bar{L})$ -Lipschitz continuous in ν for all $q = 0, \dots, p$. Note that the computational graph of either $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x})$ or $\frac{\partial^{q+1}}{\partial \nu^q \partial \mathbf{x}} \ell_\nu(\mathbf{x})$ in Eq. (14) or (16) defines a tree, where the root is output, the leaves are inputs, and the other nodes are the intermediate results in the computation. We can analyze the Lipschitz continuities of all the nodes from bottom to top using the following lemma.

Lemma C.4 (Luo et al. (2022, Lemma 12)). *Let \mathcal{T}_1 and \mathcal{T}_2 be two tensor-to-tensor mappings. If \mathcal{T}_1 is D_1 -bounded and C_1 -Lipschitz continuous, \mathcal{T}_2 is D_2 -bounded and C_2 -Lipschitz continuous, then the product mapping $\mathcal{T}_1 \times \mathcal{T}_2$ is $D_1 D_2$ -bounded and $(C_1 D_2 + C_2 D_1)$ -Lipschitz continuous.*

Proof of Lemma 3.2. Now, we formally begin to prove by induction that $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1})$ -Lipschitz continuous in ν for all $q = 0, \dots, p$. Recall that the induction base follows Lemma C.2. In the following, we use the induction hypothesis that $\frac{\partial^k}{\partial \nu^k} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa^{2k+1})$ -Lipschitz continuous in ν for all $k = 0, \dots, q-1$ to prove that $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1})$ -Lipschitz continuous in ν . We know that $\frac{\partial^{k+1}}{\partial \mathbf{y}^{k+1}} g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x}))$ is $\mathcal{O}(\bar{L})$ -bounded and $\mathcal{O}(\kappa \bar{L})$ -Lipschitz continuous in ν . Therefore, we can use Lemma C.4 to conclude that each $\mathbf{w}_{k, \mathbf{P}}$ is $\mathcal{O}(\kappa^{\sum_{j=1}^k (2|\mathbf{P}_j|-1)} \bar{L}) = \mathcal{O}(\kappa^{2q-k} \bar{L})$ -bounded and $\mathcal{O}(\bar{L} \cdot \kappa^{2q-k+2} + \kappa \bar{L} \cdot \kappa^{2q-k}) = \mathcal{O}(\kappa^{2q-k+2} \bar{L})$ -Lipschitz continuous in ν . It further implies that the summation $\mathbf{w} := \sum_{2 \leq k \leq q, \mathbf{P} \in \mathcal{P}(q, k)} \mathbf{w}_{k, \mathbf{P}}$ is $\mathcal{O}(\kappa^{2q-2} \bar{L})$ -bounded and $\mathcal{O}(\kappa^{2q} \bar{L})$ -Lipschitz continuous in ν . Then, we can recall Lemma C.3 that $(\nabla_{yy}^2 g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})))^{-1}$ is $2/\mu$ -bounded and $\mathcal{O}(\kappa^2/\mu)$ -Lipschitz continuous in ν , and use Eq. (16) to finish the induction that $\frac{\partial^q}{\partial \nu^q} \mathbf{y}_\nu^*(\mathbf{x}) = -(\nabla_{yy}^2 g_\nu(\mathbf{x}, \mathbf{y}_\nu^*(\mathbf{x})))^{-1} \mathbf{w}$ is $\mathcal{O}(\kappa^{2q+1})$ -Lipschitz continuous in ν for all $q = 0, \dots, p$. Finally, by analogy with the similarity of Eq. (14) and (16), we can follow the same analysis to show that $\frac{\partial^{q+1}}{\partial \nu^q \partial \mathbf{x}} \ell_\nu(\mathbf{x})$ is $\mathcal{O}(\kappa^{2q+1} \bar{L})$ -Lipschitz continuous in ν for all $q = 0, \dots, p$. \square

D PROOF OF THEOREM 3.1

In the main text, we only present the algorithm when p is even. The algorithm when p is odd follows a similar design, which is presented in Algorithm 2 for completeness. Our algorithms consist of a double loop, where the outer loop performs normalized SGD (NSGD) and the inner loop performs SGD. Before we give the formal proof, we first recall the convergence result for (N)SGD.

864 **Algorithm 2** F²SA-*p* ($\mathbf{x}_0, \mathbf{y}_0$), odd *p*

865 1: $\mathbf{y}_0^j = \mathbf{y}_0, \forall j \in \mathbb{N}$

866 2: **for** $t = 0, 1, \dots, T - 1$

867 3: **parallel for** $j = -(p-1)/2, \dots, (p+1)/2$

868 4: $\mathbf{y}_t^{j,0} = \mathbf{y}_t^j$

869 5: **for** $k = 0, 1, \dots, K - 1$

870 6: Sample random i.i.d indexes $\{(\xi_j^y, \zeta_j^y)\}$.

871 7: $\mathbf{y}_t^{j,k+1} = \mathbf{y}_t^{j,k} - \eta_y \left(j\nu F_y(\mathbf{x}_t, \mathbf{y}_t^{j,k}; \xi_j^y) + G_y(\mathbf{x}_t, \mathbf{y}_t^{j,k}; \zeta_j^y) \right)$

872 8: **end for**

873 9: $\mathbf{y}_{t+1}^j = \mathbf{y}_t^{j,K}$

874 10: **end parallel for**

875 11: Sample random i.i.d indexes $\{(\xi_i^x, \zeta_i^x)\}_{i=1}^S$.

876 12: Let $\{\alpha_j\}_{j=-(p-1)/2}^{(p+1)/2}$ be the *p*th-order finite difference coefficients defined in Lemma 3.1.

877 13: $\Phi_t = \frac{1}{S} \sum_{i=1}^S \sum_{j=-(p-1)/2}^{(p+1)/2} \alpha_j \left(jF_x(\mathbf{x}_t, \mathbf{y}_{t+1}^j; \xi_i^x) + \frac{G_x(\mathbf{x}_t, \mathbf{y}_{t+1}^j; \zeta_i^x)}{\nu} \right)$

878 14: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_x \Phi_t / \|\Phi_t\|$

879 15: **end for**

880 888 **Lemma D.1** (Cutkosky & Mehta (2020, Lemma 2)). Consider the NSGD update $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta F_t / \|F_t\|$ to optimize a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ with *L*-Lipschitz continuous gradients. We have

881 889
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\mathbf{x}_t)\| \leq \frac{3(f(\mathbf{x}_0) - \inf_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}))}{\eta T} + \frac{3L\eta}{2} + \frac{8}{T} \sum_{t=0}^{T-1} \mathbb{E} \|F_t - \nabla f(\mathbf{x}_t)\|.$$

890 894 **Lemma D.2** (Kwon et al. (2024a, Lemma C.1)). Consider the SGD update $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta F_t$ to optimize a μ -strongly convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ with *L*-Lipschitz continuous gradients. Let $\mathbf{x}^* = \arg \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ be the unique minimizer to *f*. Suppose *F_t* is an unbiased estimator to $\nabla f(\mathbf{x}_t)$ with variance bounded by σ^2 . Setting $\eta < 2/(\mu + L)$, we have

895 898
$$\mathbb{E} \|\mathbf{x}_t - \mathbf{x}^*\|^2 \leq (1 - \mu\eta)^t \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + \frac{\eta\sigma^2}{\mu}.$$

900 901 The following two lemmas are also useful in the analysis.

902 903 **Lemma D.3** (Chen et al. (2025b, Lemma 4.1)). Under Assumption 2.3, and 2.4, the hyper-objective $\varphi(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))$ is differentiable and has $L_\varphi = \mathcal{O}(\bar{L}\kappa^3)$ -Lipschitz continuous gradients.

904 905 **Lemma D.4** (Chen et al. (2025b, Lemma B.6)). Let $\nu \in (-1/\kappa, 1/\kappa)$. Under Assumption 2.3, and 2.4, the optimal (perturbed) lower-level solution mapping $\mathbf{y}_\nu^*(\mathbf{x}) = \arg \min_{\mathbf{y} \in \mathbb{R}^{d_y}} \ell_\nu(\mathbf{x}, \mathbf{y})$ is 4κ -Lipschitz continuous in \mathbf{x} .

907 908 Now we are ready to prove Theorem 3.1.

909 910 *Proof of Theorem 3.1.* We separately consider the complexity for the outer loop and the inner loop.

912 913 **Outer Loop.** According to Lemma D.3, the hyper-objective $\varphi(\mathbf{x})$ has $L_\varphi = \mathcal{O}(\bar{L}\kappa^3)$ -Lipschitz continuous gradients. If we can guarantee the condition

914 915
$$\mathbb{E} \|\Phi_t - \nabla \varphi(\mathbf{x}_t)\| \leq \frac{\epsilon}{32}, \quad t = 0, \dots, T - 1, \tag{17}$$

916 917 then we can further set $\eta_x = \epsilon/6L_\varphi$ and apply Lemma D.1 to conclude that the algorithm can provably find an ϵ -stationary point of $\varphi(\mathbf{x})$ in $T = \lceil 6\Delta/\epsilon\eta_x \rceil = \mathcal{O}(\Delta L_1 \kappa^3 \epsilon^{-2})$ outer iterations.

918 **Inner Loop.** From the above analysis, the remaining goal is to show that the inner loop always
919 returns Φ_t satisfying Eq. (17), which requires $\mathbb{E}\|\Phi_t - \nabla\varphi(\mathbf{x}_t)\| = \mathcal{O}(\epsilon)$ for all $t = 0, \dots, T-1$.
920 Note that the setting of mini-batch size $S = \Omega(\sigma^2/\nu^2\epsilon^2)$ ensures that

$$\begin{cases} \mathbb{E} \left\| \Phi_t - \sum_{j=-p/2}^{p/2} \alpha_j \left(j \nabla_x f(\mathbf{x}_t, \mathbf{y}_{t+1}^j) + \frac{\nabla_x g(\mathbf{x}_t, \mathbf{y}_{t+1}^j)}{\nu} \right) \right\| = \mathcal{O}(\epsilon), & p \text{ is even}; \\ \mathbb{E} \left\| \Phi_t - \sum_{j=-(p-1)/2}^{(p+1)/2} \alpha_j \left(j \nabla_x f(\mathbf{x}_t, \mathbf{y}_{t+1}^j) + \frac{\nabla_x g(\mathbf{x}_t, \mathbf{y}_{t+1}^j)}{\nu} \right) \right\| = \mathcal{O}(\epsilon), & p \text{ is odd}. \end{cases}$$

928 By Lemma 3.2 and Lemma 3.1, setting $\nu = \mathcal{O}((\epsilon/\bar{L}\kappa^{2p+1})^{1/p})$ can ensure that

$$\begin{cases} \left\| \nabla\varphi(\mathbf{x}_t) - \sum_{j=-p/2}^{p/2} \alpha_j \left(j \nabla_x f(\mathbf{x}_t, \mathbf{y}_{j\nu}^*(\mathbf{x}_t)) + \frac{\nabla_x g(\mathbf{x}_t, \mathbf{y}_{j\nu}^*(\mathbf{x}_t))}{\nu} \right) \right\| = \mathcal{O}(\epsilon), & p \text{ is even}; \\ \left\| \nabla\varphi(\mathbf{x}_t) - \sum_{j=-(p-1)/2}^{(p+1)/2} \alpha_j \left(j \nabla_x f(\mathbf{x}_t, \mathbf{y}_{j\nu}^*(\mathbf{x}_t)) + \frac{\nabla_x g(\mathbf{x}_t, \mathbf{y}_{j\nu}^*(\mathbf{x}_t))}{\nu} \right) \right\| = \mathcal{O}(\epsilon), & p \text{ is odd}. \end{cases}$$

935 Therefore, a sufficient condition of $\mathbb{E}\|\Phi_t - \nabla\varphi(\mathbf{x}_t)\| = \mathcal{O}(\epsilon)$ is

$$\begin{cases} \|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| = \mathcal{O}(\nu\epsilon/L_1), & \forall j = -p/2, \dots, p/2, \\ \|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| = \mathcal{O}(\nu\epsilon/L_1), & \forall j = -(p-1)/2, \dots, (p+1)/2, \end{cases} \quad p \text{ is odd}. \quad (18)$$

939 Our next goal is to show that our parameter setting fulfills Eq. (18). Note that for $\nu = \mathcal{O}(1/\kappa)$, the
940 (perturbed) lower-level problem $g_{j\nu}(\mathbf{x}, \mathbf{y})$ is $\Omega(\mu)$ -strongly convex in \mathbf{y} and has $\mathcal{O}(L_1)$ -Lipschitz
941 continuous gradients jointly in (\mathbf{x}, \mathbf{y}) . Therefore, if we set $\eta_y \lesssim 1/L_1$, then we can apply Lemma
942 D.2 on the lower-level problem $g_{j\nu}(\mathbf{x}, \mathbf{y})$ to conclude that for ant j , we have

$$\mathbb{E}\|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\|^2 \leq (1 - \mu\eta_y)^K \|\mathbf{y}_t - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\|^2 + \mathcal{O}(\eta_y\sigma^2/\mu).$$

945 Comparing it with Eq. (18), we can set $\eta_y = \mathcal{O}(\nu^2\epsilon^2/L_1\kappa\sigma^2)$ to ensure that for ant j , we have

$$\mathbb{E}\|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| \leq (1 - \mu\eta_y)^K \|\mathbf{y}_t - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| + \mathcal{O}(\nu\epsilon/L_1).$$

948 Further, we can use Lemma D.4 and the triangle inequality to obtain that for ant j , we have

$$\mathbb{E}\|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| \leq (1 - \mu\eta_y)^K (\|\mathbf{y}_t - \mathbf{y}_{j\nu}^*(\mathbf{x}_{t-1})\| + 4\kappa\|\mathbf{x}_t - \mathbf{x}_{t-1}\|) + \mathcal{O}(\nu\epsilon/L_1). \quad (19)$$

951 The recursion (19) implies our setting of K can ensure that Eq. (18) holds for all $t = 0, \dots, T-1$.
952 We give an induction-based proof. To let the induction base holds for $t = 1$, it suffices to set
953 $K = \Omega(\log^{(RL_1/\nu\epsilon)}/\mu\eta_y) = \Omega(\log^{(RL_1/\nu\epsilon)\kappa^2\sigma^2/\nu^2\epsilon^2})$, where $\|\mathbf{y}_{j\nu}^*(\mathbf{x}_0) - \mathbf{y}^*(\mathbf{x}_0)\|^2 = \mathcal{O}(R)$ is due to
954 the setting of $\nu = \mathcal{O}(R/\kappa)$ and the fact that $\mathbf{y}_\nu^*(\mathbf{x})$ is κ -Lipschitz in ν by Lemma C.2. Next, assume
955 that we have already guaranteed Eq. (18) holds for iteration t , we prove that our setting of K implies
956 Eq. (18) holds for iteration $t+1$. Note that the NSGD update in \mathbf{x} means that $\|\mathbf{x}_t - \mathbf{x}_{t-1}\| = \eta_x =$
957 $\mathcal{O}(\epsilon/6L_1\kappa^3)$. Therefore, Eq. (19) in conjunction with the induction hypothesis indicates that

$$\mathbb{E}\|\mathbf{y}_{t+1}^j - \mathbf{y}_{j\nu}^*(\mathbf{x}_t)\| \lesssim (1 - \mu\eta_y)^K \left(\frac{\nu\epsilon}{L_1} + \frac{\epsilon}{L_1\kappa^2} \right) + \frac{\nu\epsilon}{L_1}.$$

960 Therefore, we know that to let Eq. (18) holds for iteration $t+1$, it suffices to let $K = \Omega(\log^{(1/\nu\kappa^2)}/\mu\eta_y) = \Omega(\log^{(1/\nu\kappa^2)\kappa^2\sigma^2/\nu^2\epsilon^2})$. This finishes the induction.

963 **Total Complexity.** According to the above analysis, we set $\nu \asymp (\epsilon/\bar{L}\kappa^{2p+1})^{1/p}$, $S \asymp \sigma^2/\nu^2\epsilon^2$,
964 $T \asymp \Delta L_1 \kappa^3 \epsilon^{-2}$, and $K \asymp \log^{(RL_1\kappa/\nu\epsilon)\kappa^2\sigma^2/\nu^2\epsilon^2}$ to ensure that the algorithm provably find an ϵ -
965 stationary point of $\varphi(\mathbf{x})$. Since $S \lesssim K$, the total complexity of the algorithm is

$$\begin{aligned} 967 \quad pT(S+K) &= \mathcal{O}(pTK) = \mathcal{O}\left(p \cdot \frac{\Delta L_1 \kappa^3}{\epsilon^2} \cdot \frac{\kappa^2 \sigma^2}{\nu^2 \epsilon^2} \log\left(\frac{RL_1 \kappa}{\nu \epsilon}\right)\right) \\ 968 \\ 969 \quad &= \mathcal{O}\left(\frac{p \Delta L_1 \bar{L}^{2/p} \sigma^2 \kappa^{9+2/p}}{\epsilon^{4+2/p}} \log\left(\frac{RL_1 \kappa}{\nu \epsilon}\right)\right). \end{aligned}$$

□

972 **E PROOF OF THEOREM 4.1**
 973

974 We prove our lower bound for stochastic nonconvex-strongly-convex bilevel optimization via a re-
 975 duction to the lower bound for stochastic single-level nonconvex optimization (Arjevani et al., 2023).
 976 To state their lower bound, we first need to introduce the function class, oracle class, algorithm class,
 977 and the complexity measures.

978 **Definition E.1.** *Given any $\Delta > 0$ and $L_1 > 0$, we use $\mathcal{F}^{\text{nc}}(L_1, \Delta)$ to denote the set of all smooth
 979 functions $f : \mathbb{R}^d \rightarrow \mathbb{R}$ that satisfies*

980

1. $f(\mathbf{0}) - \inf_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \leq \Delta$;
2. $\nabla f(\mathbf{x})$ is L_1 -Lipschitz continuous.

981 **Definition E.2.** *Given a function $\mathbb{R}^d \rightarrow \mathbb{R}$, we use $\mathbb{O}(\sigma^2)$ to denote the set of all stochastic first-
 982 order oracles that return an unbiased stochastic estimator to ∇f with variance bounded by σ^2 .*

983 **Definition E.3.** *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a differentiable function and $F : \mathbb{R}^d \rightarrow \mathbb{R}$ be the stochastic esti-
 984 mator to ∇f . A randomized first-order algorithm A consists of a distribution \mathcal{P}_r over a measurable
 985 set \mathcal{R} and a sequence of measurable mappings $\{A_t\}_{t \in \mathbb{N}}$ such that*

986
$$\mathbf{x}_{t+1} = A_t(r, F(\mathbf{x}_0), \dots, F(\mathbf{x}_t)), \quad t \in \mathbb{N}_+,$$

987 where $r \sim \mathcal{P}_r$ is drawn a single time at the beginning of the protocol. We let $\mathcal{A}_{\text{rand}}$ to denote the
 988 class of all the algorithms that follow the above protocol.

989 **Definition E.4.** *We define distributional complexity of $\mathcal{A}_{\text{rand}}$ to find an ϵ -stationary point of the
 990 functions in $\mathcal{F}^{\text{nc}}(L_1, \Delta)$ with oracle $\mathbb{O}(\sigma^2)$ as*

991
$$\text{Compl}_\epsilon(L_1, \Delta, \sigma^2) = \sup_{\mathcal{O} \in \mathbb{O}(\sigma^2)} \sup_{\mathcal{P}_f \in \mathcal{P}[\mathcal{F}(\Delta, f)]} \inf_{A \in \mathcal{A}_{\text{rand}}} \inf\{t \in \mathbb{N} \mid \mathbb{E}\|\nabla f(\mathbf{x}_t)\| \leq \epsilon\},$$

992 where the expectation is taken over the sampling of f from \mathcal{P}_f , the randomness in the oracle \mathcal{O} ,
 993 and the randomness in the algorithm A , $\{\mathbf{x}_t\}_{t \in \mathbb{N}}$ is the sequence generated by A running on f with
 994 oracle \mathcal{O} , and $\mathcal{P}[\mathcal{F}^{\text{nc}}(L_1, \Delta)]$ denotes the set of all distributions over $\mathcal{F}^{\text{nc}}(L_1, \Delta)$.

1000 All the above definitions are merely restatements of (Arjevani et al., 2023, Section 2). Although
 1001 Definition E.4 uses the definition of distributional complexity, by Yao’s minimax principle is also
 1002 a lower bound for the worst-case complexity. Now, we recall the construction in (Arjevani et al.,
 1003 2023) for proving the $\Omega(\epsilon^{-4})$ lower bound. Formally, we define the randomized function

1004
$$f_{\mathbf{U}}(\mathbf{x}) = \frac{L_1 \beta^2}{\bar{L}_1} f^{\text{nc}}(\rho(\mathbf{U}^\top \mathbf{x} / \beta)) + \frac{L_1 \lambda}{2\bar{L}_1} \|\mathbf{x}\|^2, \quad (20)$$

1005 where $\bar{L}_1 = 155$, $\beta = 4\bar{L}_1\epsilon/L_1$, $\rho : \mathbb{R}^T \rightarrow \mathbb{R}^T$ is $\rho(\mathbf{x}) = \mathbf{x}/\sqrt{1 + \|\mathbf{x}\|^2/R^2}$, $R = 230\sqrt{T}$,
 1006 $\lambda = 1/5$, and $f_T : \mathbb{R}^T \rightarrow \mathbb{R}$ is the nonconvex hard instance introduced by Carmon et al. (2020):

1007
$$f^{\text{nc}}(\mathbf{x}) := -\Psi(1)\Psi(x_1) + \sum_{i=2}^T [\Phi(-x_{i-1})\Phi(-x_i) - \Psi(x_{i-1})\Phi(x_i)].$$

1008 In the above, the component functions $\Psi, \Phi : \mathbb{R} \rightarrow \mathbb{R}$ are defined as

1009
$$\Psi(t) = \begin{cases} 0, & t \leq 1/2, \\ \exp(1 - 1/(2t-1)^2), & t < 1/2 \end{cases} \quad \text{and} \quad \Phi(t) = \sqrt{e} \int_{-\infty}^t \exp(-s^2/2) ds.$$

1010 For the hard instance in Eq. (20), Arjevani et al. (2023) further defined the stochastic gradient
 1011 estimator $F_{\mathbf{U}}$ as

1012
$$F_{\mathbf{U}}(\mathbf{x}) = \frac{L_1}{\bar{L}_1} (\beta(\nabla \rho(\mathbf{x}))^\top \mathbf{U} F_T(\mathbf{U}^\top \rho(\mathbf{x})) + \lambda \mathbf{x}). \quad (21)$$

1013 In the above, $F_T : \mathbb{R}^T \rightarrow \mathbb{R}^T$ is the stochastic gradient estimator of ∇f^{nc} defined by

1014
$$[F_T(\mathbf{x})]_i = \nabla_i f^{\text{nc}}(\mathbf{x}) \left(1 + \mathbf{1}_{i > \text{prog}_{1/4}(\mathbf{x})} (\xi/\gamma - 1) \right), \quad \xi \sim \text{Bernoulli}(\gamma),$$

1015 where $\text{prog}_\alpha(\mathbf{x}) = \max\{i \geq 0 \mid |x_i| > \alpha\}$ and $\gamma = \min\{(46\epsilon)^2/\sigma^2, 1\}$. For the above construc-
 1016 tion, Arjevani et al. (2023) showed the following lower bound.

1026 **Theorem E.1** ((Arjevani et al., 2023, Theorem 3)). *There exist numerical constants $c, c' > 0$ such*
 1027 *that for all $\Delta > 0$, $L_1 > 0$ and $\epsilon \leq c\sqrt{L_1\Delta}$, the construction of function $f_U : \mathbb{R}^d \rightarrow \mathbb{R}$ and*
 1028 *stochastic first-order oracle $F_U : \mathbb{R}^d \rightarrow \mathbb{R}$ in Eq. (20) and (21) together give a distribution over the*
 1029 *function class $\mathcal{F}^{nc}(L_1, \Delta)$ and a stochastic first-order oracle $\mathcal{O} \in \mathbb{O}(\sigma^2)$ such that*

$$1030 \quad 1031 \quad \text{Compl}_\epsilon(L_1, \Delta, \sigma^2) \geq c'\Delta L_1 \sigma^2 \epsilon^{-4}.$$

1032 *Proof of Theorem 4.1.* For any randomized algorithm \mathbb{A} defined as Eq. (11) running it on our hard
 1033 instance, we show that it can be simulated by another randomized algorithm running on the variable
 1034 \mathbf{x} such that Theorem E.1 can be applied. Since $G(y) = \mu y$ is a deterministic mapping we know that
 1035 any randomized algorithm \mathbb{A} induces a sequence of measurable mappings $\{\mathbb{A}'_t\}_{t \in \mathbb{N}}$ such that
 1036

$$1037 \quad (\mathbf{x}_t, y_t) = \mathbb{A}'_t(\xi, F(\mathbf{x}_0), \dots, F(\mathbf{x}_{t-1}), y_0, \dots, y_{t-1}).$$

1038 Expanding the recursion for y_t shows that the above equation induces another sequence of measurable
 1039 mappings $\{\mathbb{A}''_t\}_{t \in \mathbb{N}}$ such that
 1040

$$1041 \quad (\mathbf{x}_t, y_t) = \mathbb{A}''_t(\xi, F(\mathbf{x}_0), \dots, F(\mathbf{x}_{t-1})).$$

1042 Therefore, we can apply Theorem E.1 to complete the proof. \square
 1043

1044 F THE F²SA-2 ALGORITHM

1045 We present the realization of F²SA- p when $p = 2$ in Algorithm 3 to further compare its procedure
 1046 with the original F²SA algorithm. Let $\lambda = 1/\nu$. We can observe that F²SA (Kwon et al., 2023;
 1047 Chen et al., 2025b) solves the following *asymmetric* penalty problem
 1048

$$1049 \quad \min_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} f(\mathbf{x}, \mathbf{y}) + \lambda \left(g(\mathbf{x}, \mathbf{y}) - \min_{\mathbf{z} \in \mathbb{R}^{d_y}} g(\mathbf{x}, \mathbf{z}) \right),$$

1050 while F²SA-2 solved the following *symmetric* penalty problem:
 1051

$$1052 \quad \min_{\mathbf{x} \in \mathbb{R}^{d_x}, \mathbf{y} \in \mathbb{R}^{d_y}} \frac{1}{2} \left(f(\mathbf{x}, \mathbf{y}) + \lambda f(\mathbf{x}, \mathbf{y}) - \min_{\mathbf{z} \in \mathbb{R}^{d_y}} (-f(\mathbf{x}, \mathbf{z}) + \lambda g(\mathbf{x}, \mathbf{z})) \right).$$

1053 The latter is better since the symmetric form makes the first-order approximation error to $\nabla \varphi(\mathbf{x})$
 1054 perfectly cancel out and leave only the second-order error term. Therefore, in terms of the theoretical
 1055 guarantee by Theorem 3.1, the $\tilde{\mathcal{O}}(\epsilon^{-5})$ upper bound of F²SA-2 can improve the $\tilde{\mathcal{O}}(\epsilon^{-6})$ upper bound
 1056 of F²SA by a factor of ϵ^{-1} .
 1057

1058 **Algorithm 3** F²SA-2 ($\mathbf{x}_0, \mathbf{y}_0$)

```

1059 1:  $\mathbf{z}_0 = \mathbf{y}_0$ 
1060 2: for  $t = 0, 1, \dots, T - 1$ 
1061 3:    $\mathbf{y}_t^0 = \mathbf{y}_t$ ,  $\mathbf{z}_t^0 = \mathbf{z}_t$ 
1062 4:   for  $k = 0, 1, \dots, K - 1$ 
1063 5:     Sample random i.i.d indexes  $(\xi^y, \zeta^y)$  and  $(\xi^z, \zeta^z)$ .
1064 6:      $\mathbf{y}_t^{k+1} = \mathbf{y}_t^k - \eta_y (\nu F_y(\mathbf{x}_t, \mathbf{y}_t^k; \xi^y) + G_y(\mathbf{x}_t, \mathbf{y}_t^k; \zeta^y))$ 
1065 7:      $\mathbf{z}_t^{k+1} = \mathbf{z}_t^k - \eta_y (-\nu F_y(\mathbf{x}_t, \mathbf{z}_t^k; \xi^z) + G_y(\mathbf{x}_t, \mathbf{z}_t^k; \zeta^z))$ 
1066 8:   end for
1067 9:    $\mathbf{y}_{t+1} = \mathbf{y}_t^K$ ,  $\mathbf{z}_{t+1} = \mathbf{z}_t^K$ 
1068 10:  Sample random i.i.d indexes  $\{(\xi_i^x, \zeta_i^x)\}_{i=1}^S$ .
1069 11:   $\Phi_t = \frac{1}{2} \sum_{i=1}^S \left( F_x(\mathbf{x}_t, \mathbf{y}_{t+1}; \xi_i^x) + F_x(\mathbf{x}_t, \mathbf{z}_{t+1}; \xi_i^x) + \frac{G_x(\mathbf{x}_t, \mathbf{y}_{t+1}; \zeta_i^x) - G_x(\mathbf{x}_t, \mathbf{z}_{t+1}; \zeta_i^x)}{\nu} \right)$ 
1070 12:   $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_x \Phi_t / \|\Phi_t\|$ 
1071 13: end for

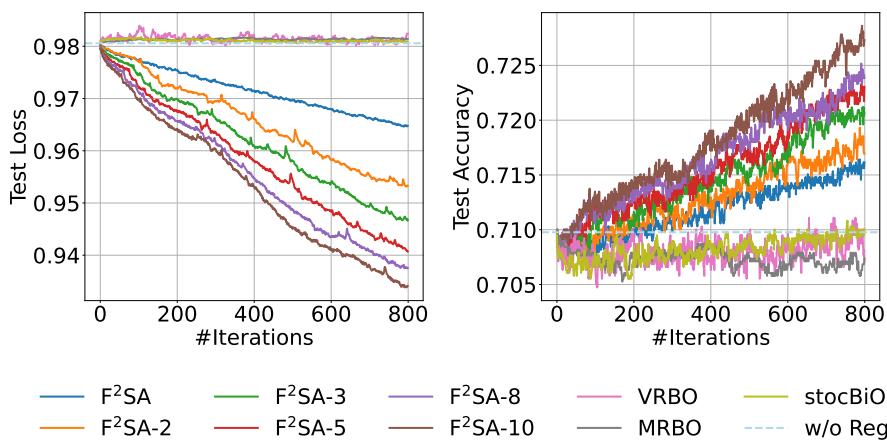
```

1080
1081
G ADDITIONAL EXPERIMENTS
1082

1083 This section provides additional experiments on finding the optimal per-parameter regularization of
 1084 a 5-layer MLP with ReLU activation and the hidden layer size of 500. Following the notation in
 1085 Example 2.2, we let $\mathbf{x} \in \mathbb{R}^d$ parameterize the regularization matrix via $\mathbf{W}_x = \text{diag}(\exp(\mathbf{x}))$. We
 1086 also let ℓ_{val} and ℓ_{tr} be the logistic loss of the network prediction on the validation set and training
 1087 set, respectively. The problem to solve has the same formulation as Example 2.2, as restated below:
 1088

$$\min_{\mathbf{x} \in \mathbb{R}^d} \ell_{\text{val}}(\mathbf{y}), \quad \text{s.t.} \quad \mathbf{y} \in \arg \min_{\mathbf{y} \in \mathbb{R}^d} \ell_{\text{tr}}(\mathbf{y}) + \mathbf{y}^\top \mathbf{W}_x \mathbf{y}. \quad (22)$$

1089 The difference between Example 2.2 is that now the problem is nonsmooth nonconvex due to the
 1090 use of the MLP model. We present the experiment results in Figure 2.
 1091



1107 Figure 2: Performances of different algorithms on Problem (22) with an MLP model.
 1108

1109
1110 **H USE OF LARGE LANGUAGE MODELS**
1111

1112 Large language models were used to help calculate the coefficient α_0 when p is odd in Lemma 3.1,
 1113 and to refine wording and correct grammatical errors in parts of the paper.
 1114

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133