
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTER GRADIENT METHODS FOR HIGHLY-SMOOTH
STOCHASTIC BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the complexity of finding an ϵ-stationary point for stochastic
bilevel optimization when the upper-level problem is nonconvex and the lower-
level problem is strongly convex. Recent work proposed the first-order method,
F2SA, achieving the Õ(ϵ−6) upper complexity bound for first-order smooth prob-
lems. This is slower than the optimal Ω(ϵ−4) complexity lower bound in its single-
level counterpart. In this work, we show that faster rates are achievable for higher-
order smooth problems. We first reformulate F2SA as approximating the hyper-
gradient with a forward difference. Based on this observation, we propose a class
of methods F2SA-p that uses pth-order finite difference for hyper-gradient ap-
proximation and improves the upper bound to Õ(pϵ−4−2/p) for pth-order smooth
problems. Finally, we demonstrate that the Ω(ϵ−4) lower bound also holds for
stochastic bilevel problems when the high-order smoothness holds for the lower-
level variable, indicating that the upper bound of F2SA-p is nearly optimal in the
region p = Ω(log ϵ−1/ log log ϵ−1).

1 INTRODUCTION

Many machine learning problems, such as meta-learning (Rajeswaran et al., 2019), hyper-parameter
tuning (Bao et al., 2021; Franceschi et al., 2018; Mackay et al., 2019), and adversarial training
(Goodfellow et al., 2020) can be abstracted as solving the following bilevel optimization problem:

min
x∈Rdx

φ(x) = f(x,y∗(x)), y∗(x) = arg min
y∈Rdy

g(x,y), (1)

We call f and g the upper-level and lower-level functions, respectively, and call φ the hyper-
objective. In this paper, we consider the most common nonconvex-strongly-convex setting where
f : Rdx → R is smooth and possibly nonconvex, and g : Rdy → R is smooth jointly in (x,y)
and strongly convex in y. Under the lower-level strong convexity assumption, the implicit function
theorem indicates the following closed form of the hyper-gradient (Ghadimi & Wang, 2018):

∇φ(x) = ∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x)). (2)

Following the works in nonconvex optimization (Carmon et al., 2020; 2021; Arjevani et al., 2023),
we consider the task of finding an ϵ-stationary point of φ, i.e., a point x ∈ Rdx such that
∥∇φ(x)∥ ≤ ϵ. Motivated by many real machine learning tasks, we study the stochastic setting,
where the algorithms only have access to the stochastic derivative estimators of both f and g.

The first efficient algorithm BSA Ghadimi & Wang (2018) for solving the stochastic bilevel problem
leverages both stochastic gradient and Hessian-vector-product (HVP) oracles to find an ϵ-stationary
point of φ(x). Subsequently, Ji et al. (2021) proposed stocBiO by incorporating multiple enhanced
designs to improve the complexity. Both BSA and stocBiO require the stochastic Hessian assump-
tion (5) on the lower-level function, which is stronger than the standard SGD assumption.

To avoid estimating HVP oracles, Kwon et al. (2023) proposed the first fully first-order method
F2SA that works under standard SGD assumptions on both f and g (Assumption 2.1). The main
idea is to solve the following penalty problem (Liu et al., 2022; 2023; Shen & Chen, 2023; Shen
et al., 2025b; Lu & Mei, 2024):

min
x∈Rdx ,y∈Rdy

f(x,y) + λ

(
g(x,y)− min

z∈Rdy
g(x, z)

)
, (3)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where λ is taken to be sufficiently large such that λ = Ω(ϵ−1). If we interpret λ as the Lagrangian
multiplier, then Problem (3) can be viewed as the Lagrangian function of the constrained opti-
mization minx∈Rdx ,y∈Rdy f(x,y), s.t. g(x,y) ≤ g(x,y∗(x)). Thanks to Danskin’s theorem, the
gradient of the Problem (3) only involves gradient information. Therefore, F2SA does not require
the stochastic Hessian assumptions (5). More importantly, by directly leveraging gradient oracles
instead of more expensive HVP oracles, the F2SA is more efficient in practice (Shen et al., 2025a;
Xiao & Chen, 2025; Jiang et al., 2025) and is also the only method that can be scaled to 32B sized
large language model (LLM) training (Pan et al., 2024).

Kwon et al. (2023) proved that the F2SA method finds an ϵ-stationary point of φ(x) with Õ(ϵ−3)

first-order oracle calls in the deterministic case and Õ(ϵ−7) stochastic first-order oracle (SFO) calls
in the stochastic case. Recently, Chen et al. (2025b) showed the two-time-scale stepsize strategy
improves the upper complexity bound of F2SA method to Õ(ϵ−2) in the deterministic case, which
is optimal up to logarithmic factors. However, the direct extension of their method in the stochastic
case leads to the Õ(ϵ−6) SFO complexity (Chen et al., 2025b; Kwon et al., 2024a) , which still has
a significant gap between the Ω(ϵ−4) lower bound for SGD (Arjevani et al., 2023). It remains open
whether optimal rates for stochastic bilevel problems can be achieved for fully first-order methods.

In this work, we revisit F2SA and interpret it as using forward difference to approximate the hyper-
gradient. Our novel interpretation in turn leads to straightforward algorithm extensions for the F2SA
method. Observing that the forward difference used by F2SA only has a first-order error guarantee,
a natural idea to improve the error guarantee is to use higher-order finite difference methods. For
instance, we know that the central difference has an improved second-order error guarantee. Based
on this fact, we can derive the F2SA-2 method that solves the following symmetric penalty problem:

min
x∈Rdx ,y∈Rdy

1

2

(
f(x,y) + λg(x,y)− min

z∈Rdy
(−f(x, z) + λg(x, z))

)
. (4)

Compared with Eq. (3), this new penalty problem perturbs the lower-level variables y and z in the
opposite direction to better cancel out the approximation errors to Problem (1). A similar approach
has recently been discovered by Chayti & Jaggi (2024) in the context of meta-learning, but they
only show its empirical benefit without rigorous theoretical justifications. In this work, we show
that F2SA-2 provably improves the SFO complexity of F2SA from Õ(ϵ−6) to Õ(ϵ−5) for second-
order smooth problems. Moreover, our idea is generalizable for any pth-order smooth problems.
It is known in numerical analysis there exists the pth-order central difference that uses p points
to construct an estimator to the derivative of a unitary function with pth-order error guarantee, as
recalled in Lemma 3.1. Motivated by this fact, we propose the F2SA-p algorithm and show that it
enjoys the improved Õ(pϵ−4−2/p) SFO complexity, as formally stated in Theorem 3.1.

To examine the tightness of our upper bounds, we further extend the Ω(ϵ−4) lower bound for SGD
(Arjevani et al., 2023) from single-level optimization to bilevel optimization. Note that existing
constructions for bilevel lower bound (Dagréou et al., 2024; Kwon et al., 2024a) do not satisfy all
our smoothness conditions in Definition 2.2. We demonstrate in Theorem 4.1 that a fully separable
construction for upper- and lower-level variables can immediately yield a valid Ω(ϵ−4) lower bound
for the problem class we study, showing that F2SA-p is optimal up to logarithmic factors when
p = Ω(log ϵ−1/ log log ϵ−1) (see Remark 3.4). We summarize our main results, including both the
lower and upper bounds, in Table 1 and discuss open problems in the following.

Open problems. Our upper bounds improve known results for high-order smooth problems, but
our result still has a gap between the lower bound for p = O(log ϵ−1/ log log ϵ−1). Recently, Kwon
et al. (2024a) obtained some preliminary results towards closing this gap for p = 1, where they
showed an Ω(ϵ−6) lower bound holds under a more adversarial oracle. But it is still open whether
their lower bounds can be extended to standard stochastic oracles as they conjectured. Another open
problem is the tightness of the condition number dependency shown in Table 1.

Notations. We use ∥ · ∥ to denote the Euclidean norm for vectors and the spectral norm for matrices
and tensors. We use Õ(·) and Ω̃(·) to hide logarithmic factors in O(·) and Ω(·). We also use
h1 ≲ h2 to mean h1 = O(h2), h1 ≳ h2 to mean h1 = Ω(h2), and h1 ≍ h2 to mean that both
h1 ≲ h2 and h1 ≳ h2 hold. Additional notations for tensors are introduced in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Method Smoothness Reference Complexity

F2SA 1st-order (Kwon et al., 2023) Õ(poly(κ)ϵ−7)

F2SA 1st-order (Kwon et al., 2024a) Õ(poly(κ)ϵ−6)

F2SA 1st-order (Chen et al., 2025b) Õ(κ12ϵ−6)

F2SA-p 1st-order Theorem 3.1 Õ(pκ9+2/pϵ−4−2/p)
+

Lower Bound pth-order in y Theorem 4.1 Ω(ϵ−4)

Table 1: The SFO complexity of different methods to find an ϵ-stationary point for pth-order smooth
first-order bilevel problems with condition number κ under standard SGD assumptions.

2 PRELIMINARIES

The goal of bilevel optimization is to minimize the hyper-objective φ(x), which is in general non-
convex. Since finding a global minimizer of a general nonconvex function requires exponential
complexity in the worst case (Nemirovskij & Yudin, 1983, § 1.6), we follow the literature (Carmon
et al., 2020; 2021) to consider the task of finding an approximate stationary point.
Definition 2.1. Let φ : Rdx → R be the hyper-objective defined in Eq. (1). We say a random
variable x̂ ∈ Rdx is an ϵ-hyper-stationary point if E∥∇φ(x̂)∥ ≤ ϵ.

Next, we introduce the assumptions used in this paper, which ensure the tractability of the above
hyper-stationarity. Compared to (Kwon et al., 2023; Chen et al., 2025b), we additionally assume the
high-order smoothness in lower-level variable y to achieve further acceleration.

2.1 PROBLEM SETUP

First of all, we follow the standard assumptions on SGD (Arjevani et al., 2023) to assume that the
stochastic gradient estimators satisfy the following assumption.
Assumption 2.1. There exists stochastic gradient estimators F (x,y) and G(x,y) such that

EF (x,y; ξ) = ∇f(x,y), E∥F (x,y)−∇f(x,y)∥2 ≤ σ2;

EG(x,y; ζ) = ∇g(x,y), E∥G(x,y)−∇g(x,y)∥2 ≤ σ2,

where σ > 0 is the variance of the stochastic gradient estimators. We also partition F = (Fx, Fy)
and G = (Gx, Gy) such that Fx, Fy, Gx, Gy are estimators to ∇xf,∇yf,∇xg,∇yg, respectively.

Second, we assume that the hyper-objective φ(x) = f(x,y∗(x)) is lower bounded. Otherwise,
any algorithm requires infinite time to find a stationary point. Note that the implicit condition
infx∈Rdx φ(x) > −∞ below can also be easily implied by a more explicit condition on the lower
boundedness of upper-level function infx∈Rdx ,y∈Rdy f(x,y) > −∞.

Assumption 2.2. The hyper-objective defined in Eq. (1) is lower bounded, and we have

φ(x0)− inf
x∈Rdx

φ(x) ≤ ∆,

where ∆ > 0 is the initial suboptimality gap and we assume x0 = 0 without loss of generality.

Third, we assume the lower-level function g(x,y) is strongly convex in y. It guarantees the unique-
ness of y∗(x) and the tractability of the bilevel problem. Although not all the problems in applica-
tions satisfy the lower-level strong convexity assumption, it is impossible to derive dimension-free
upper bounds when the lower-level problem is only convex (Chen et al., 2024, Theorem 3.2). Hence,
we follow most existing works to consider strongly convex lower-level problems.
Assumption 2.3. g(x,y) is µ-strongly convex in y, i.e., for any y1,y2 ∈ Rdy , we have

g(x,y2) ≥ g(x,y1) + ⟨∇yg(x,y1),y2 − y1⟩+
µ

2
∥y1 − y2∥2,

where µ > 0 is the strongly convex parameter.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Fourth, we require the following smoothness assumptions following (Ghadimi & Wang, 2018). Ac-
cording to Eq. (2), these conditions are necessary and sufficient to guarantee the Lipschitz continuity
of ∇φ(x), which further ensure the tractability of an approximate stationary point of the nonconvex
hyper-objective φ(x) (Zhang et al., 2020; Kornowski & Shamir, 2022).
Assumption 2.4. For the upper-lower function f and lower-level function g, we assume that

1. f(x,y) is L0-Lipschitz in y.

2. ∇f(x,y) and ∇g(x,y) are L1-Lipschitz jointly in (x,y).

3. ∇2
xyg(x,y) and ∇2

yyg(x,y) are L2-Lipschitz jointly in (x,y).

We refer to the problem class that jointly satisfies all the above Assumption 2.1, 2.2, 2.3 and 2.4 as
first-order smooth bilevel problems, for which (Kwon et al., 2024a; Chen et al., 2025b) showed the
F2SA method achieves the Õ(ϵ−6) upper complexity bound. In this work, we show an improved
bound under the following additional higher-order smoothness assumption on lower-level variable y.
Assumption 2.5 (High order smoothness in y). Given p ∈ N+, we assume that

1. ∂q

∂yq ∇f(x,y) is Lq+1-Lipschitz for all q = 1, · · · , p− 1.

2. ∂q+1

∂yq+1∇g(x,y) is Lq+2-Lipschitz in y for all q = 1, · · · , p− 1.

We refer to problems jointly satisfying all the above assumptions as pth-order smooth bilevel prob-
lems, and also formally define their condition numbers as follows.
Definition 2.2 (pth-order smooth bilevel problems). Given p ∈ N+, ∆ > 0, L0, L1, · · · , Lp+1 > 0,
and µ ≤ L1, we use Fnc-sc(L0, · · · , Lp+1, µ,∆) to denote the set of all bilevel instances satisfying
Assumption 2.2, 2.3, 2.4 and 2.5. For this problem class, we define the largest smoothness constant
L̄ = max0≤j≤p Lj and condition number κ = L̄/µ.

All our above assumptions align with (Chen et al., 2025b) except for the additional Assumption 2.5.
A classical example of a highly smooth function is the softmax function (Garg et al., 2021, Lemma
2(3)). Therefore, many hyper-parameter tuning problems for logistic regression are provably highly
smooth, such that our theory can be applied. We give two examples from (Pedregosa, 2016): the
first one aims to learn the optimal weights of each sample in a corrupted training set, and the second
one aims to learn the optimal regularizer of each parameter.
Example 2.1 (Data hyper-cleaning). Let x ∈ Rn parameterize the per-sample weight of a training
set with n samples via σ(xi) = exp(xi)/

∑n
i=1 exp(xi) and y ∈ Rd be the parameters of a linear

model. Let ℓval be the logistic loss of the linear model on the validation set and ℓitr be the logistic
loss on the training sample i. The problem aims to solve

min
x∈Rn

ℓval(y), s.t. y ∈ arg min
y∈Rd

n∑
i=1

σ(xi)ℓ
i
tr(y).

Example 2.2 (Learn-to-regularize). Let x ∈ Rd parameterize the regularization matrix via Wx =
diag(exp(x)), and y ∈ Rd be the parameters of a linear model. Let ℓval and ℓtr be the logistic loss
of the linear model on the validation set and training set, respectively. The problem aims to solve

min
x∈Rd

ℓval(y), s.t. y ∈ arg min
y∈Rd

ℓtr(y) + y⊤Wxy.

2.2 COMPARISON TO PREVIOUS WORKS

Before we show our improved upper bound, we first give a detailed discussion on other assumptions
made in related works.

Stochastic Hessian assumption. Ghadimi & Wang (2018); Ji et al. (2021) assumes the access to
a stochastic Hessian estimator H(x,y) such that

EH(x,y) = ∇2g(x,y), E∥H(x,y)−∇2g(x,y)∥ ≤ σ2. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

According to (Arjevani et al., 2020, Observation 1 and 2), such an assumption is stronger than
standard SGD assumptions and equivalent to the mean-squared-smoothness assumption (6) on the
lower-level gradient estimator G under the mild condition of ∇G(x,y) = H(x,y). Under this
assumption, in conjunction with Assumption 2.2, 2.3, and 2.4, Ghadimi & Wang (2018) proposed
the BSA method that can find an ϵ stationary point of φ(x) with Õ(ϵ−6) SFO complexity and
Õ(ϵ−4) stochastic HVP complexity. Later, Ji et al. (2021) further improved the SFO complexity
term to Õ(ϵ−4). Compared to them, we consider the setting where the algorithms only have access
to stochastic gradient estimators, and make no assumptions on the stochastic Hessians.

Mean-squared smoothness assumption. Besides Assumption 2.1, 2.2, 2.3, 2.4 and the stochastic
Hessian assumption (5), Khanduri et al. (2021); Yang et al. (2021; 2023b) further assumes that the
stochastic estimators to gradients and Hessians are mean-squared smooth:

E∥F (x,y)− F (x′,y′)∥2 ≤ L̄2
1∥(x,y)− (x′,y′)∥2,

E∥G(x,y)−G(x′,y′)∥2 ≤ L̄2
1∥(x,y)− (x′,y′)∥2,

E∥H(x,y)−H(x′,y′)∥2 ≤ L̄2
2∥(x,y)− (x′,y′)∥2.

(6)

Under this additional assumption, they proposed faster stochastic methods with upper complexity
bound of Õ(ϵ−3) via variance reduction (Fang et al., 2018; Cutkosky & Orabona, 2019). In this
paper, we only consider the setting without mean-squared smoothness assumptions and study a
different acceleration mechanism from variance reduction.

Jointly high-order smoothness assumption. Huang et al. (2025) introduced a second-order
smoothness assumption similar to but stronger than Assumption 2.5 when p = 2. Specifically, they
assumed the second-order smoothness jointly in (x,y) instead of y only:

∇2f(x,y) is L2-Lipschitz jointly in (x,y);

∇3g(x,y) is L3-Lipschitz jointly in (x,y).
(7)

The jointly second-order smoothness (7) ensures that the hyper-objective φ(x) has Lipschitz con-
tinuous Hessians, which further allows the application of known techniques in minimizing second-
order smooth objectives. Huang et al. (2025) applied the technique from (Jin et al., 2017; 2021;
Xu et al., 2018; Allen-Zhu & Li, 2018) to show that an HVP-based method can find a second-order
stationary point in Õ(ϵ−2) complexity under the deterministic setting, and in Õ(ϵ−4) under the
stochastic Hessian assumption (5). Yang et al. (2023a) applied the technique from (Li & Lin, 2023)
to accelerate the complexity HVP-based method to Õ(ϵ−1.75) in the deterministic setting. Chen
et al. (2025b) also proposed a fully first-order method to achieve the same Õ(ϵ−1.75) complexity.
Compared to these works, our work demonstrates a unique acceleration mechanism in stochastic
bilevel optimization that only comes from the high-order smoothness in y.

3 THE F2SA-p METHOD

To introduce our method, we first recall the prior F2SA method (Kwon et al., 2023) and establish
their relationship between finite difference schemes, which further motivates us to design better
algorithms by using better finite difference formulas.

3.1 HYPER-GRADIENT APPROXIMATION VIA FINITE DIFFERENCE

The core idea of F2SA (Kwon et al., 2023) is to solve the reformulated penalty problem (3) and use
the gradient of the penalty function to approximate the true hyper-gradient. To make connections of
F2SA to the finite difference method, let us introduce the extra notation gν as the perturbed lower-
lever problem with y∗

ν(x) and ℓν(x) being its optimal solution and optimal value, respectively:

gν(x,y) := νf(x,y) + g(x,y),

y∗
ν(x) := arg min

y∈Rdy
gν(x,y),

ℓν(x) := min
y∈Rdy

gν(x,y),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Then we have ∂
∂ν ℓν(x)|ν=0 = limν→0

ℓν(x)−ℓ0(x))
ν = limν→0 f(x,y

∗
ν(x))+

g(x,y∗
ν(x))−g(x,y∗(x))

ν .
In our notation, we can rewrite (Chen et al., 2025b, Lemma B.3) as ∂

∂ν ℓν(x)|ν=0 = φ(x). Similarly,
we can also rewrite (Kwon et al., 2023, Lemma 3.1) as

∂2

∂ν∂x
ℓν(x)|ν=0 =

∂2

∂x∂ν
ℓν(x)|ν=0 = ∇φ(x). (8)

Let ν = 1/λ in Eq. (3). Then the fully first-order hyper-gradient estimator (Kwon et al., 2023; Chen
et al., 2025b) is exactly using forward difference to approximate ∇φ(x), that is,

∂
∂xℓν(x)−

∂
∂xℓ0(x)

ν
≈ ∂2

∂ν∂x
ℓν(x)|ν=0 = ∇φ(x). (9)

However, the forward difference is not the only way to approximate a derivative. Essentially, it
falls into a general class of pth-order finite difference (Atkinson & Han, 2005) that can guarantee an
O(νp) approximation error. We restate this known result (with generalization to vector-valued func-
tions) in the following lemma and provide a self-contained proof in Appendix B for completeness.

Lemma 3.1. Assume the function ψ : R → Rd has C-Lipschitz continuous pth-order derivative.
There exist coefficients {αj} such that∥∥∥∥∥∥1ν

∑
j

αjψ(jν)− ψ′(0)

∥∥∥∥∥∥ = O(Cνp).

If p is even, the indices run j = −p/2, · · · , p/2. If p is odd, they run j = −(p−1)/2, · · · , (p+1)/2.
Furthermore, all the coefficients satisfy |jαj | ≤ 1 for all j ̸= 0 and |α0| ≤ I[p is odd].

The explicit formulas for αj can be found in Appendix B. When p = 1, we have α0 = −1, α1 = 1,
and we obtain the forward difference estimator ψ(ν) − ψ(0)/ν; When p = 2 we have α−1 =
−1/2, α1 = 1/2 and we obtain the central difference estimator (ψ(ν)− ψ(−ν))/(2ν). Lemma 3.1
tells us that in general we can always construct a finite difference estimator O(νp) error with p points
for even p or p+ 1 points for odd p under the given smoothness conditions. Inspired by Lemma 3.1
and Eq. (8) that ∂2

∂ν∂xℓν(x)|ν=0 = ∇φ(x), we propose a fully first-order estimator via a linear
combination of ∂

∂xℓjν(x) to achieve O(νp) approximation error to ∇φ(x) given that ∂p+1

∂νp∂xℓν(x)
is Lipschitz continuous in ν. It further leads to Algorithm 1 that will be formally introduced in the
next subsection.

3.2 THE PROPOSED ALGORITHM

Due to space limitations, we only present Algorithm 1 designed for even p in the main text. The
algorithm for odd p can be designed similarly, and we defer the concrete algorithm to Appendix D.

Algorithm 1 follows the double-loop structure of F2SA (Chen et al., 2025b; Kwon et al., 2024a) and
changes the hyper-gradient estimator to the one introduced in the previous section. Now, we give a
more detailed introduction to the procedures of the two loops of F2SA-p.

1. In the outer loop, the algorithm first samples a mini-batch with size S and uses Lemma 3.1
to construct Φt via the linear combination of ∂

∂xℓjν(xt) for j = −p/2, · · · , p/2 every
iteration. After obtaining Φt as an approximation to ∇φ(xt), the algorithm then performs
a normalized gradient descent step xt+1 = xt − ηxΦt/∥Φt∥ with total T iterations.

2. In the inner loop, the algorithm returns an approximation to ∂
∂xℓjν(xt) for all j =

−p/2, · · · , p/2. Note that Danskin’s theorem indicates ∂
∂xℓjν(xt) =

∂
∂xgjν(xt,y

∗
jν(xt)).

It suffices to approximate y∗
jν(xt) to sufficient accuracy, which is achieved by taking a

K-step single-batch SGD subroutine with stepsize ηy on each function gjν(x, ·).
Remark 3.1 (Effect of normalized gradient step). Compared to (Chen et al., 2025b; Kwon et al.,
2023), the only modification we make to the outer loop is to change the gradient step to a normalized
gradient step. The normalization can control the change of y∗

jν(xt) and make the analysis of inner
loops easier. We believe that all our theoretical guarantees also hold for the standard gradient step
via a more involved analysis.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 F2SA-p (x0,y0), even p

1: yj
0 = y0, ∀j ∈ N

2: for t = 0, 1, · · · , T − 1
3: parallel for j = −p/2,−p/2 + 1, · · · , p/2
4: yj,0

t = yj
t

5: for k = 0, 1, · · · ,K − 1
6: Sample random i.i.d indexes {(ξyj , ζ

y
j)}.

7: yj,k+1
t = yj,k

t − ηy

(
jνFy(xt,y

j,k
t ; ξyj) +Gy(xt,y

j,k
t ; ζyj)

)
8: end for
9: yj

t+1 = yj,K
t

10: end parallel for
11: Sample random i.i.d indexes {(ξxi , ζxi)}Si=1.

12: Let {αj}p/2j=−p/2 be the pth-order finite difference coefficients defined in Lemma 3.1.

13: Φt =
1
S

∑S
i=1

∑p/2
j=−p/2 αj

(
jFx(xt,y

j
t+1; ξ

x
i) +

Gx(xt,y
j
t+1; ζ

x
i)

ν

)
14: xt+1 = xt − ηxΦt/∥Φt∥
15: end for

3.3 COMPLEXITY ANALYSIS

This section contains the complexity analysis of Algorithm 1. We first derive the following lemma
from the high-dimensional Faà di Bruno formula (Licht, 2024).
Lemma 3.2. Let ν ∈ (0, 1/(2κ)]. For any instance in the pth-order smooth bilevel problem class
Fnc-sc(L0, · · · , Lp+1, µ,∆) as Definition 2.2, ∂p+1

∂νp∂xℓν(x) is O(κ2p+1L̄)-Lipschitz continuous in ν.

Our result generalizes the prior result for p = 1 (Kwon et al., 2023) to any p ∈ N+ and also tightens
the prior bounds for p = 2 (Chen et al., 2025b) as we remark in the following.
Remark 3.2 (Tighter bounds for p = 2). Note that the variables x and ν play equal roles in our
analysis. Therefore, our result in p = 2 essentially implies that ∂3

∂ν∂x2 ℓν(x) is O(κ5L̄)-Lipschitz
continuous in ν around zero, which tightens the O(κ6L̄) bound of Hessian convergence in (Chen
et al., 2025b, Lemma 5.1a) and is of independent interest. The main insight is to avoid the direct cal-
culation of ∇2φ(x) = ∂3

∂ν∂x2 ℓν(x)|ν=0 which involves third-order derivatives and makes the anal-
ysis more complex, but instead always to analyze it through the limiting point limν→0

∂3

∂ν∂x2 ℓν(x).

Recall Eq. (8) that ∂2

∂ν∂xℓν(x)|ν=0 = ∇φ(x). Then Lemma 3.2, in conjunction with Lemma 3.1,
indicates that the pth-order finite difference used in F2SA-p guarantees an O(νp)-approximation
error to ∇φ(x), which always improves the O(ν)-error guarantee of F2SA (Kwon et al., 2023; Chen
et al., 2025b) for any p ≥ 2. This improved error guarantee means that we can set ν = O(ϵ1/p)
to obtain an O(ϵ)-accurate hyper-gradient estimator to ∇φ(x), which further leads to the following
improved complexity of our algorithm.
Theorem 3.1 (Main theorem). For any instance in the pth-order smooth bilevel problem class
Fnc-sc(L0, · · · , Lp+1, µ,∆) as per Definition 2.2, set the hyper-parameters as

ν ≍ min

{
R

κ
,
(ϵ

L̄κ2p+1

)1/p}
, ηx ≍ ϵ

L1κ3
, ηy ≍ ν2ϵ2

L1κσ2
,

S ≍ σ2

ν2ϵ2
, K ≍ κ2σ2

ν2ϵ2
log

(
RL1κ

νϵ

)
, T ≍ ∆

ηxϵ
,

(10)

where R = ∥y0 −y∗(x0)∥. Run Algorithm 1 if p is even or Algorithm 2 (in Appendix D) if p is odd.
Then we can provably find an ϵ-stationary point of φ(x) with the total SFO calls upper bounded by

pT (S +K) = O
(
p∆L1L̄

2/pσ2κ9+2/p

ϵ4+2/p
log

(
RL1L̄κ

ϵ

))
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The above theorem shows that the F2SA-p method can achieve the Õ(pκ9+2/pϵ−4−2/p log(κ/ϵ))
SFO complexity for pth-order smooth bilevel problems. In the following, we give several remarks
on the complexity in different regions of p.

Remark 3.3 (First-order smooth region). For p = 1, our upper bound becomes Õ(κ11ϵ−6), which
improves the Õ(κ12ϵ−6) bound in (Chen et al., 2025b) by a factor of κ. The improvement comes
from a tighter analysis in the lower-level SGD update and a careful parameter setting.

Remark 3.4 (Highly-smooth region). For p = Ω(log(κ/ϵ)/ log log(κ/ϵ)) in Definition 2.2, we can
run F2SA-q with q ≍ log(κ/ϵ)/ log log(κ/ϵ) and the O(qκ9ϵ−4(κ/ϵ)2/q log(κ/ϵ)) complexity in Theo-
rem 3.1 simplifies to O(κ9ϵ−4 log3(κ/ϵ)/ log log(κ/ϵ)) = Õ(κ9ϵ−4), which matches the best-known
complexity for HVP-based methods (Ji et al., 2021) under stochastic Hessian assumption (5).

In the upcoming section, we will derive an Ω(ϵ−4) lower bound to prove that the F2SA-p is near-
optimal in the above highly-smooth region if the condition number κ is a constant. We leave the
study of optimal complexity for non-constant κ to future work.

Comparison of results for odd p and even p. Note that by Lemma 3.1 when p is odd, we need to
use p+1 points to construct the estimator, which means the algorithm needs to solve p+1 lower-level
problems in each iteration to achieve an O(νp) error guarantee. In contrast, when p is even, p points
are enough since the pth-order central difference estimator satisfies that α0 = 0. It suggests that even
when p is odd, the algorithm designed for odd p may still be better. For instance, the F2SA-2 may
always be a better choice than F2SA since its benefits almost come for free: (1) it still only needs
to solve 2 lower-level problems as the F2SA method, which means the per-iteration complexity
remains the same. (2) Although the improved complexity of F2SA-2 relies on the second-order
smooth condition, without such a condition, its error guarantee in hyper-gradient estimation will
only degenerate to a first-order one, which means it is at least as good as F2SA.

4 AN Ω(ϵ−4) LOWER BOUND

In this section, we prove an Ω(ϵ−4) lower bound for stochastic bilevel optimization via a reduction
to single-level optimization. Our lower bound holds for any randomized algorithms A, which can be
defined as a sequence of measurable mappings {At}Tt=1 that is defined recursively by

(xt+1,yt+1) = At (r, F (x0,y0), G(x0,y0)), · · · , F (xt,yt), G(xt,yt))) , t ∈ N+, (11)

where r is a random seed drawn at the beginning to produce the queries, and F,G are the stochas-
tic gradient estimators that satisfy Assumption 2.1. Without loss of generality, we assume that
(x0,y0) = (0,0). Otherwise, we can prove the same lower bound by shifting the functions.

The construction. We construct a separable bilevel instance such that the upper-level function
f(x,y) ≡ fU (x) and its stochastic gradient align with the hard instance in (Arjevani et al., 2023),
while the lower-level function is the simple quadratic g(x, y) ≡ g(y) = µy2/2 with deterministic
gradients. We defer the concrete construction to Appendix E. For this separable bilevel instance,
we can show that for any randomized algorithm defined in Eq. (11) that uses oracles (FU , G), the
progress in x can be simulated by another randomized algorithm that only uses FU , meaning that
the single-level lower bound (Arjevani et al., 2023) also holds.
Theorem 4.1 (Lower bound). There exist numerical constants c > 0 such that for all ∆ >
0, L1, · · · , Lp+1 > 0 and ϵ ≤ c

√
L1∆, there exists a distribution over the function class

Fnc-sc(L0, · · · , Lp+1, µ,∆) and the stochastic gradient estimators satisfying Assumption 2.1, such
that any randomized algorithm A defined as Eq. (11) can not find an ϵ-stationary point of
φ(x) = f(x,y∗(x)) in less than Ω(∆L1σ

2ϵ−4) SFO calls.

Below, we give a detailed discussion on the constructions in related works.

Comparison to other bilevel lower bounds. Dagréou et al. (2024) proved lower bounds for finite-
sum bilevel optimization via a similar reduction to single-level optimization. However, the direct
extension of their construction in the fully stochastic setting gives f(x,y) = fU (y) and g(x,y) =
(x − y)2, where the high-order derivatives of f(x,y) not O(1)-Lipschitz in y and thus violates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

our assumptions. Kwon et al. (2024a) also proved an Ω(ϵ−4) lower bound for stochastic bilevel
optimization. However, their construction f(x, y) = y and g(x, y) = (fU (x) − y)2 violate the
first-order smoothness of g(x, y) in x when y is far way from fU (x). In this work, we use a fully
separable construction to avoid all the aforementioned issues in other works.

5 EXPERIMENTS

In this section, we conduct numerical experiments to verify our theory. Following (Grazzi et al.,
2020; Ji et al., 2021), we consider the “learn-to-regularize” problem of logistic regression (Exam-
ple 2.2) on the “20 Newsgroup” dataset, which provably satisfies the highly smooth assumption of
any order. The dataset contains 18,000 samples, each sample consists of a feature vector in dimen-
sional 130, 107 vector and a label that takes value in {1, · · · , 20}. We compare our proposed method
F2SA-p with p ∈ {2, 3, 5, 8, 10} with both the previous best fully first-order method F2SA (Kwon
et al., 2023; Chen et al., 2025b) and other Hessian-vector-product-based methods stocBiO (Ji et al.,
2021), MRBO and VRBO (Yang et al., 2021). We also include a baseline “w/o Reg” that means the
training result of SGD without tuning any regularization. For all the algorithms, we search the other
hyperparameters (including ηx, ηy, ν) in a logarithmic scale with base 10. We run the algorithms
with K = 10 iterations in the inner loop, and T = 1000 iterations in the outer loop, and report the
test loss/accuracy v.s. the number of outer-loop iterations t in Figure 1. To demonstrate the potential
of our methods on nonsmooth nonconvex problems, we also provide additional experiments on a
5-layer multilayer perceptron (MLP) network with ReLU activation in Appendix F.

0 250 500 750 1000
#Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

 L
os

s

0 250 500 750 1000
#Iterations

0.76

0.78

0.80

0.82

Te
st

 A
cc

ur
ac

y

F2SA
F2SA-2

F2SA-3
F2SA-5

F2SA-8
F2SA-10

VRBO
MRBO

stocBiO
w/o Reg

Figure 1: Performances of different algorithms on Example 2.2.

6 CONCLUSIONS AND FUTURE WORKS

This paper proposes a class of fully first-order method F2SA-p that achieves the Õ(pϵ−4−2/p) SFO
complexity for pth-order smooth bilevel problems. Our result generalized the best-known Õ(ϵ−6)
result (Kwon et al., 2024a; Chen et al., 2025b) from p = 1 to any p ∈ N+. We also com-
plement our result with an Ω(ϵ−4) lower bound to show that our method is near-optimal when
p = Ω(log ϵ−1/ log log ϵ−1). Nevertheless, a gap still exists when p is small, and how to fill it even
for the basic setting p = 1 is an open problem. Another open problem is whether our theory can be
extended our theory to structured nonconvex-nonconvex bilevel problems studied by many recent
works (Kwon et al., 2024b; Chen et al., 2024; 2025a; Jiang et al., 2025; Xiao et al., 2023; Xiao
& Chen, 2025). In addition, it will also be interesting to further improve the convergence rate of
our methods by combining them with variance-reduction (Fang et al., 2018; Cutkosky & Orabona,
2019) or momentum techniques (Fang et al., 2019; Cutkosky & Mehta, 2020).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In NeurIPS,
2018.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Sridha-
ran. Second-order information in non-convex stochastic optimization: Power and limitations. In
COLT, 2020.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Kendall Atkinson and Weimin Han. Finite difference method. Theoretical Numerical Analysis: A
Functional Analysis Framework, pp. 249–271, 2005.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. In NeurIPS, 2021.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points ii: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

El Mahdi Chayti and Martin Jaggi. A new first-order meta-learning algorithm with convergence
guarantees. arXiv preprint arXiv:2409.03682, 2024.

He Chen, Jiajin Li, and Anthony Man-cho So. Set smoothness unlocks clarke hyper-stationarity in
bilevel optimization. In NeurIPS, 2025a.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
Hardness results and improved analysis. In COLT, 2024.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel op-
timization with fully first-order oracles. JMLR, 2025b.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In ICML, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
In NeurIPS, 2019.

Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, and Pierre Ablin. A lower bound and a near-
optimal algorithm for bilevel empirical risk minimization. In AISTATS, 2024.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. In NeurIPS, 2018.

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex SGD escaping from
saddle points. In COLT, 2019.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In ICML, 2018.

Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. Near-optimal lower bounds for
convex optimization for all orders of smoothness. In NeurIPS, 2021.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In ICML, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle
points in bilevel optimization. JMLR, 26(1):1–61, 2025.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In ICML, 2021.

Liuyuan Jiang, Quan Xiao, Lisha Chen, and Tianyi Chen. Beyond value functions: Single-loop
bilevel optimization under flatness conditions. In NeurIPS, 2025.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In ICML, 2017.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM, 68(2):1–29, 2021.

Ishtiaq Rasool Khan, Ryoji Ohba, and Noriyuki Hozumi. Mathematical proof of closed form ex-
pressions for finite difference approximations based on taylor series. Journal of Computational
and Applied Mathematics, 150(2):303–309, 2003.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A near-optimal algorithm for stochastic bilevel optimization via double-momentum. In NeurIPS,
2021.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization. JMLR,
pp. 1–44, 2022.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D. Nowak. A fully first-order method
for stochastic bilevel optimization. In ICML, 2023.

Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order methods in
stochastic bilevel optimization. In ICML, 2024a.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D. Nowak. On penalty methods for
nonconvex bilevel optimization and first-order stochastic approximation. In ICLR, 2024b.

Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more polyloga-
rithmic factor in the in the O(ϵ−7/4) complexity. JMLR, 2023.

Martin W Licht. Higher-order chain rules for tensor fields, generalized bell polynomials, and esti-
mates in orlicz-sobolev-slobodeckij and total variation spaces. Journal of Mathematical Analysis
and Applications, 534(1):128005, 2024.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. In NeurIPS, 2022.

Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based se-
quential minimization for bi-level optimization. TPAMI, 45(12):15930–15948, 2023.

Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM Journal
on Optimization, 34(2):1937–1969, 2024.

Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-strongly-
concave minimax optimization. In NeurIPS, 2022.

Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. In
ICLR, 2019.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. ScaleBiO: Scal-
able bilevel optimization for LLM data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In ICML, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. In NeurIPS, volume 32, 2019.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In ICML, 2023.

Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning
via bilevel data selection. In ICLR, 2025a.

Han Shen, Quan Xiao, and Tianyi Chen. On penalty-based bilevel gradient descent method. Math-
ematical Programming, pp. 1–51, 2025b.

Quan Xiao and Tianyi Chen. Unlocking global optimality in bilevel optimization: A pilot study. In
ICLR, 2025.

Quan Xiao, Songtao Lu, and Tianyi Chen. An generalized alternating optimization method for
bilevel problems under the polyak-łojasiewicz condition. In NeurIPS, 2023.

Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In NeurIPS, 2018.

Haikuo Yang, Luo Luo, Chris Junchi Li, and Michael I Jordan. Accelerating inexact hypergradient
descent for bilevel optimization. arXiv preprint arXiv:2307.00126, 2023a.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. In
NeurIPS, 2021.

Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving O(ϵ−1.5) complexity in hessian/jacobian-free
stochastic bilevel optimization. In NeurIPS, 2023b.

Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
finding stationary points of nonconvex nonsmooth functions. In ICML, 2020.

A NOTATIONS FOR TENSORS

We follow the notation of tensors used by Kolda & Bader (2009). For two p-way tensors X ∈
Rn1×n2×···×np and Y ∈ Rn1×n2×···×np , their inner product z = ⟨X ,Y⟩ is defined as

⟨X ,Y⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
np∑

iq=1

Xi1,i2,··· ,ipYi1,i2,··· ,ip .

For two tensors X ∈ Rn1×n2×···np and Y ∈ Rm1×m2···×mq , their outer product Z = X ⊗ Y is a
tensor Z ∈ Rn1×n2×···×np×m1×m2×···×mq whose elements are defined as

(X ⊗ Y)i1,i2,··· ,ip,j1,j2,··· ,jq = Xi1,i2,··· ,ipYi1,i2,··· ,ip .

The operator norm of a tensor X ∈ Rn1×n2×···×np is defined as

∥X∥ = sup
∥ui∥=1,i=1,··· ,p

⟨X ,u1 ⊗ u2 ⊗ · · · ⊗ up⟩.

Equipped with the notion of norm, we say a mapping T : R → Rn1×n2×···×np is D-bounded if

∥T (x)∥ ≤ D, ∀x ∈ R.

We say T is C-Lipschitz continuous if

∥T (x)− T (y)∥ ≤ C∥x− y∥, ∀x,y ∈ R.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B PROOF OF LEMMA 3.1

Proof. If ψ(p)(ν) is C-Lipschitz continuous in ν, then by Taylor’s theorem we have

ψ(ν) = ψ(0) +

p∑
k=1

(jν)k

k!
ψ(k)(0) +O

(
Cνp+1

)
. (12)

Now, we analyze the case when p is even or odd separately.

If p is even. The estimator we use is known as the pth-order central difference, whose coefficients
are known (Khan et al., 2003). Let n = p/2. We select coefficients {αj}nj=−n such that

αj = −α−j , ∀j = 0, 1, · · · , n.

Then, summing up Eq. (12) with coefficients αj gives

1

ν

j=n∑
j=−n

αjψ(jν) = 2

n∑
j=1

αj

n−1∑
k=1,3,···

jkνk−1

k!
ψ(k)(0)︸ ︷︷ ︸

(∗)

+O (Cνp) .

To let term (*) be equivalent to ψ′(0), we let {αj}nj=1 satisfy the following equations:

2

n∑
j=1

αjj
k = 1k=1, ∀k = 1, 3, · · · , n− 1,

which is equivalent to let {jαj}nj=1 satisfy the following linear equation
1 1 1 · · · 1
12 22 32 · · · n2

14 24 34 · · · n4

...
...

...
. . .

...
12(n−1) 22(n−1) 32(n−1) · · · n2(n−1)



α1

2α2

3α3

...
nαn

 =


1/2
0
0
...
0

 .

Now we solve this linear equation to determine the values of {αj}nj=1. Let A be the coefficient
matrix of this linear equation, and let Aj be the matrix such that the jth column of A is replaced by
the standard unit vector (1, 0, · · · , 0)⊤. By Cramer’s rule, we have

2jαj =
det(Aj)

det(A)
, j = 1, · · · , n.

By observation, we can find that both A and Aj are Vandermonde matrices. Therefore, we can
explicitly calculate both det(A) and det(Aj) according to the determinant formula of Vandermonde
matrices, which leads to

2jαj =
(−1)j−1 · ((j − 1)!)2 · (n!)2 · j! · (2j)!

(j!)2 · (j − 1)! · (n− j)! · (2j − 1)! · (n+ j)!
=

2(−1)j−1(n!)2

(n− j)! · (n+ j)!
.

Therefore, we have

αj =
(−1)j−1(n!)2

j · (n− j)! · (n+ j)!
,

from which it is clear that |αj | ≤ 1/j.

If p is odd. Instead of using the known pth-order forward difference (Khan et al., 2003) for which
we find that the coefficients will be exponentially large in p, we motivate from the pth-order central
difference above to obtain a stable estimator by leveraging negative points. Let n = (p + 1)/2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We select coefficients {αj}nj=1−n that satisfy the constraint
∑n

j=1−n αj = 0. Then, summing up
Eq. (12) with coefficients αj gives

1

ν

j=n∑
j=1−n

αjψ(jν) =

j=n∑
j=1−n

αj

p∑
k=1

jkνk−1

k!
ψ(k)(0)︸ ︷︷ ︸

(∗)

+O (Cνp) .

To let term (*) be equivalent to ψ′(0), we let {αj}nj=1−n satisfy the following equations:
n∑

j=1−n

αjj
k = 1k=1, ∀k = 1, 2, · · · , p,

which is equivalent to let {α̂j}nj=(1−n),j ̸=0 satisfy the following linear equation
1 1 1 · · · 1 1 · · · 1

1− n 2− n 3− n · · · −1 1 · · · n
...

...
...

. . .
...

...
. . .

...
(1− n)2n+1 (2− n)2n+1 (3− n)2n+1 · · · (−1)2n+1 12n+1 · · · n2n+1



α̂1−n

α̂2−n

...
α̂n

 =


1
0
...
0

 ,

where we denote α̂j = jαj for j = 1−n, · · · ,−1 and 1, · · · , n. Now we solve this linear equation
to determine the values of {α̂j}. Let A be the coefficient matrix of this linear equation, and let Aj

be the matrix such that the jth column of A is replaced by the standard unit vector (1, 0, · · · , 0)⊤.
By Cramer’s rule, we have

α̂j =
det(Aj)

det(A)
, j = 1, · · · , n.

Similar to the case of even p, both A and Aj are Vandermonde matrices. Therefore, we can ex-
plicitly calculate both det(A) and det(Aj) according to the determinant formula of Vandermonde
matrices. Then, for j = 1, · · · , n, we can obtain that

αj =
α̂j

j
=

(−1)j−1(j − 1)!(n− 1)!n!j!

j · j!(j − 1)!(n+ j − 1)!(n− j)!
=

(−1)j−1(n− 1)!n!

j(n+ j − 1)!(n− j)!
.

Similarly, for j = 1, · · · , n− 1, we can obtain that

α−j =
α̂−j

−j
=

(−1)j(n− 1)!(j − 1)!n!j!

j · j!(n+ j − 1)!(j − 1)!(n+ j)!
=

(−1)j(n− 1)!n!

j(n− j − 1)!(n+ j)!
.

Therefore, it is easy to see that |αj | ≤ 1/j for j = 1, · · · , n, and |α−j | ≤ 1/j for j = 1, · · · , n− 1.
Finally, we calculate α0 from the constraint

∑n
j=1−n αj = 0, which leads to

α0 = −
n∑

j=1

(−1)j−1(n− 1)!n!

j(n+ j − 1)!(n− j)!︸ ︷︷ ︸
S1

−
n−1∑
j=1

(−1)j(n− 1)!n!

j(n− j − 1)!(n+ j)!︸ ︷︷ ︸
S2

. (13)

We claim that α0 = −1/n and hence |α0| ≤ 1. We prove our claim by calculating the values of S1

and S2 to obtain α0. For S1, we have

S1 =

n∑
j=1

(−1)j−1

(
n

j

)
(n− 1)!(j − 1)!

(n+ j − 1)!
.

The fraction on the right is the Beta function B(j, n), which can be represented as the integral
B(j, n) =

∫ 1

0
xj−1(1− x)n−1dx. Therefore,

S1 =

n∑
j=1

(−1)j−1

(
n

j

)∫ 1

0

xj−1(1− x)n−1dx

=

∫ 1

0

(1− x)n−1

 n∑
j=1

(−1)j−1

(
n

j

)
xj−1

dx

=

∫ 1

0

(1− x)n−1

x

 n∑
j=1

(−1)j−1

(
n

j

)
xj

 dx.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Substituting the binomial expansion (1− x)n = 1 +
∑n

j=0

(
n
j

)
(−x)j , we then have

S1 =

∫ 1

0

(1− x)n−1

x
(1− (1− x)n) dx.

Let y = 1− x. We then have

S1 =

∫ 1

0

yn−1

1− y
(1− yn)dy.

Substituting the geometric series sum 1−yn

1−y =
∑n−1

k=0 y
k, we then have

S1 =

∫ 1

0

yn−1

(
n−1∑
k=0

yk

)
dy =

∫ 1

0

n−1∑
k=0

yn+k−1dy =

n−1∑
k=0

∫ 1

0

yn+k−1dy =

n−1∑
k=0

1

n+ k
.

Following similar steps, we can also obtain that

S2 = −
n−2∑
k=0

1

n+ k + 1
.

Now, for α0 = −S1 − S2, the summation terms cancel out perfectly, which leads to α0 = −1/n.

C PROOF OF LEMMA 3.2

The proof relies on the high-dimensional version of the Faà di Bruno formula. To formally state
the result, we define the following notions. For a mapping T : Rm → Rn1×···×nq , we define its
kth-order directional derivative evaluated at z ∈ Rm along the direction (u1, · · · ,uk) as

∇k
u1,··· ,uk

T|z = ∇kT|z(u1, · · · ,uk).

We let the symmetric products of u1, · · · ,uk as

u1 ∨ u2 ∨ · · · ∨ uk =
1

k!

∑
π∈Perm(k)

uπ(1) ⊗ uπ(2) ⊗ · · · ⊗ uπ(k),

where Perm(k) denotes the set of permutations of {1, 2, · · · , k}. Also, we define the set of all
(unordered) partitions of a set A into k pairwise disjoint non-empty sets as

P(A, k) =
{
P = (P1, · · · , Pk) ⊆ B(A) | A = ∪k

j=1Pj ; ∅ /∈ P ; Pi ∩ Pj = ∅,∀i < j
}
,

where B(A) is the power set of A, i.e., the set of all subsets of A. We also abbreviate P({1 : q}, k)
as P(q, k). Using the above notions, we have the following result.

Lemma C.1 ((Licht, 2024, Proposition 3.1)). Let T1 and T2 be two mappings. If T1 and T2 are
k-times differentiable at the point z and T1(z), respectively, then the composite mapping T2 ◦ T1 is
k-times differentiable at the point z and we have

∇q(T2 ◦ T1)|z(∨q
i=1ui) =

∑
1≤k≤q,

P∈P(q,k)

∇kT2|T1(z)

(
∇|P1|T1|z(∨i∈P1

ui), · · · ∇|Pk|T1|z(∨i∈Pk
ui)
)
.

Recall Danskin’s theorem that ∂
∂xℓν(x) =

∂
∂xgν(x,y

∗
ν(x)). We can apply Lemma C.1 with T1 =

y∗
ν(x) and T1 = ∂

∂xgν(x,y) to obtain that

∂q+1

∂νq∂x
ℓν(x) =

∑
1≤k≤q,

P∈P(q,k)

∂k+1

∂yk∂x
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
. (14)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Symmetrically, using the first-order optimality condition ∂
∂y gν(x,y

∗
ν(x)) = 0 and where the first

identity uses the Lemma C.1 with T1 = y∗
ν(x) and T1 = ∂

∂y gν(x,y) yields that

0 =
∑

1≤k≤q,
P∈P(q,k)

∂k+1

∂yk+1
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
. (15)

Since P(q, 1) contains only one element, the above identity implies that
∂q

∂νq
y∗
ν(x) = −

(
∇2

yygν(x,y
∗
ν(x))

)−1 ∑
2≤k≤q,

P∈P(q,k)

wk,P ,

where wk,P =
∂k+1

∂yk+1
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
.

(16)

Based on Eq. (16), we can prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-Lipschitz continuous in

ν for all q = 0, · · · , p. The induction base for q = 0, 1 is already proved by Chen et al. (2025b).
Lemma C.2 (Chen et al. (2025b, Lemma B.2 and B.5)). Let ν ∈ (0, 1/(2κ)]. Under Assumption
2.3 and 2.4, y∗

ν(x) and ∂
∂νy

∗
ν(x) is O(κ)- and O(κ3)-Lipschitz continuous in ν, respectively.

Since Eq. (16) also involves (∇2
yygν(x,y

∗
ν(x)))

−1, we also need the following lemma that gives its
boundedness and Lipschitz continuity constants.
Lemma C.3 (Chen et al. (2025b, Lemma B.1 and Eq. 18)). Let ν ∈ (0, 1/(2κ)]. Under Assumption
2.3 and 2.4, (∇yygν(x,y

∗
ν(x)))

−1 is 2/µ-bounded and O(κ2/µ)-Lipschitz continuous in ν.

In the remaining proofs, we will use Eq. (16) prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-

Lipschitz continuous in ν, then we can easily use Eq. (14) to show that ∂q+1

∂νq∂xℓν(x) is O(κ2q+1L̄)-
Lipschitz continuous in ν for all q = 0, · · · , p. Note that the computational graph of either
∂q

∂νq y
∗
ν(x)) or ∂q+1

∂νq∂xℓν(x) in Eq. (14) or (16) defines a tree, where the root is output, the leaves
are inputs, and the other nodes are the intermediate results in the computation. We can analyze the
Lipschitz continuities of all the nodes from bottom to top using the following lemma.
Lemma C.4 (Luo et al. (2022, Lemma 12)). Let T1 and T2 be two tensor-to-tensor mappings. If T1
is D1-bounded and C1-Lipschitz continuous, T2 is D2-bounded and C2-Lipschitz continuous, then
the product mapping T1 × T2 is D1D2-bounded and (C1D2 + C2D1)-Lipschitz continuous.

Proof of Lemma 3.2. Now, we formally begin to prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-

Lipschitz continuous in ν for all q = 0, · · · , p. Recall that the induction base follows Lemma C.2.
In the following, we use the induction hypothesis that ∂k

∂νk y
∗
ν(x)) is O(κ2k+1)-Lipschitz continuous

in ν for all k = 0, · · · , q − 1 to prove that ∂q

∂νq y
∗
ν(x)) is O(κ2q+1)-Lipschitz continuous in ν. We

know that ∂k+1

∂yk+1 gν(x,y
∗
ν(x)) is O(L̄)-bounded and O(κL̄)-Lipschitz continuous in ν. Therefore,

we can use Lemma C.4 to conclude that each wk,P is O(κ
∑k

j=1(2|Pj |−1)L̄) = O(κ2q−kL̄)-bounded
and O(L̄ · κ2q−k+2 + κL̄ · κ2q−k) = O(κ2q−k+2L̄)-Lipschitz continuous in ν. It further implies
that the summation w :=

∑
2≤k≤q,P∈P(q,k) wk,P is O(κ2q−2L̄)-bounded and O(κ2qL̄)-Lipschitz

continuous in ν. Then, we can recall Lemma C.3 that (∇yygν(x,y
∗
ν(x)))

−1 is 2/µ-bounded and
O(κ2/µ)-Lipschitz continuous in ν, and use Eq. (16) to finish the induction that ∂q

∂νq y
∗
ν(x) =

−
(
∇2

yygν(x,y
∗
ν(x))

)−1
w is O(κ2q+1)-Lipschitz continuous in ν for all q = 0, · · · , p. Finally,

by analogy with the similarity of Eq. (14) and (16), we can follow the same analysis to show that
∂q+1

∂νq∂xℓν(x) is O(κ2q+1L̄)-Lipschitz continuous in ν for all = 0, · · · , p.

D PROOF OF THEOREM 3.1

In the main text, we only present the algorithm when p is even. The algorithm when p is odd follows
a similar design, which is presented in Algorithm 2 for completeness. Our algorithms consist of a
double loop, where the outer loop performs normalized SGD (NSGD) and the inner loop performs
SGD. Before we give the formal proof, we first recall the convergence result for (N)SGD.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 F2SA-p (x0,y0), odd p

1: yj
0 = y0, ∀j ∈ N

2: for t = 0, 1, · · · , T − 1

3: parallel for j = −(p− 1)/2, · · · , (p+ 1)/2

4: yj,0
t = yj

t

5: for k = 0, 1, · · · ,K − 1

6: Sample random i.i.d indexes {(ξyj , ζ
y
j)}.

7: yj,k+1
t = yj,k

t − ηy

(
jνFy(xt,y

j,k
t ; ξyj) +Gy(xt,y

j,k
t ; ζyj)

)
8: end for
9: yj

t+1 = yj,K
t

10: end parallel for
11: Sample random i.i.d indexes {(ξxi , ζxi)}Si=1.

12: Let {αj}(p+1)/2
j=−(p−1)/2 be the pth-order finite difference coefficients defined in Lemma 3.1.

13: Φt =
1
S

∑S
i=1

∑(p+1)/2
j=−(p−1)/2 αj

(
jFx(xt,y

j
t+1; ξ

x
i) +

Gx(xt,y
j
t+1; ζ

x
i)

ν

)
14: xt+1 = xt − ηxΦt/∥Φt∥
15: end for

Lemma D.1 (Cutkosky & Mehta (2020, Lemma 2)). Consider the NSGD update xt+1 = xt −
ηFt/∥Ft∥ to optimize a function f : Rd → R with L-Lipschitz continuous gradients. We have

1

T

T−1∑
t=0

E∥∇f(xt))∥ ≤ 3(f(x0)− infx∈Rd f(x))

ηT
+

3Lη

2
+

8

T

T−1∑
t=0

E∥Ft −∇f(xt)∥.

Lemma D.2 (Kwon et al. (2024a, Lemma C.1)). Consider the SGD update xt+1 = xt − ηFt to
optimize a µ-strongly convex function f : Rd → R with L-Lipschitz continuous gradients. Let
x∗ = argminx∈Rd f(x) be the unique minimizer to f . Suppose Ft is an unbiased estimator to
∇f(xt) with variance bounded by σ2. Setting η < 2/(µ+ L), we have

E∥xt − x∗∥2 ≤ (1− µη)t∥x0 − x∗∥2 + ησ2

µ
.

The following two lemmas are also useful in the analysis.

Lemma D.3 (Chen et al. (2025b, Lemma 4.1)). Under Assumption 2.3, and 2.4, the hyper-objective
φ(x) = f(x,y∗(x)) is differentiable and has Lφ = O(L̄κ3)-Lipschitz continuous gradients.

Lemma D.4 (Chen et al. (2025b, Lemma B.6)). Let ν ∈ (−1/κ, 1/κ). Under Assumption 2.3,
and 2.4, the optimal (perturbed) lower-level solution mapping y∗

ν(x) = argminy∈Rdy ℓv(x,y) is
4κ-Lipschitz continuous in x.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We separately consider the complexity for the outer loop and the inner loop.

Outer Loop. According to Lemma D.3, the hyper-objective φ(x) has Lφ = O(L̄κ3)-Lipschitz
continuous gradients. If we can guarantee the condition

E∥Φt −∇φ(xt)∥ ≤ ϵ

32
, t = 0, · · · , T − 1, (17)

then we can further set ηx = ϵ/6Lφ and apply Lemma D.1 to conclude that the algorithm can provably
find an ϵ-stationary point of φ(x) in T = ⌈6∆/ϵηx⌉ = O(∆L1κ

3ϵ−2) outer iterations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Inner Loop. From the above analysis, the remaining goal is to show that the inner loop always
returns Φt satisfying Eq. (17), which requires E∥Φt −∇φ(xt)∥ = O(ϵ) for all t = 0, · · · , T − 1.
Note that the setting of mini-batch size S = Ω

(
σ2
/ν2ϵ2

)
ensures that

E

∥∥∥∥∥Φt −
∑p/2

j=−p/2 αj

(
j∇xf(xt,y

j
t+1) +

∇xg(xt,y
j
t+1)

ν

)∥∥∥∥∥ = O(ϵ), p is even;

E

∥∥∥∥∥Φt −
∑(p+1)/2

j=−(p−1)/2 αj

(
j∇xf(xt,y

j
t+1) +

∇xg(xt,y
j
t+1)

ν

)∥∥∥∥∥ = O(ϵ), p is odd.

By Lemma 3.2 and Lemma 3.1, setting ν = O((ϵ/L̄κ2p+1)1/p) can ensure that
∥∥∥∥∇φ(xt)−

∑p/2
j=−p/2 αj

(
j∇xf(xt,y

∗
jν(xt)) +

∇xg(xt,y
∗
jν(xt))

ν

)∥∥∥∥ = O(ϵ), p is even;

∥∥∥∥∇φ(xt)−
∑(p+1)/2

j=−(p−1)/2 αj

(
j∇xf(xt,y

∗
jν(xt)) +

∇xg(xt,y
∗
jν(xt))

ν

)∥∥∥∥ = O(ϵ), p is odd.

Therefore, a sufficient condition of E∥Φt −∇φ(xt)∥ = O(ϵ) is{
∥yj

t+1 − y∗
jν(xt)∥ = O(νϵ/L1), ∀j = −p/2, · · · , p/2, p is even;

∥yj
t+1 − y∗

jν(xt)∥ = O(νϵ/L1), ∀j = −(p− 1)/2, · · · , (p+ 1)/2, p is odd.
(18)

Our next goal is to show that our parameter setting fulfills Eq. (18). Note that for ν = O(1/κ), the
(perturbed) lower-level problem gjν(x,y) is Ω(µ)-strongly convex in y and has O(L1)-Lipschitz
continuous gradients jointly in (x,y). Therefore, if we set ηy ≲ 1/L1, then we can apply Lemma
D.2 on the lower-level problem gjν(x,y) to conclude that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥2 ≤ (1− µηy)

K∥yt − y∗
jν(xt)∥2 +O(ηyσ

2/µ).

Comparing it with Eq. (18), we can set ηy = O(ν
2ϵ2/L1κσ

2) to ensure that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥ ≤ (1− µηy)

K∥yt − y∗
jν(xt)∥+O(νϵ/L1).

Further, we can use Lemma D.4 and the triangle inequality to obtain that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥ ≤ (1− µηy)

K(∥yt − y∗
jν(xt−1)∥+ 4κ∥xt − xt−1∥) +O(νϵ/L1). (19)

The recursion (19) implies our setting of K can ensure that Eq. (18) holds for all t = 0, · · · , T − 1.
We give an induction-based proof. To let the induction base holds for t = 1, it suffices to set
K = Ω(log(RL1/νϵ)/µηy) = Ω(log(RL1/νϵ)κ2σ2

/ν2ϵ2), where ∥y∗
jν(x0) − y∗(x0)∥2 = O(R) is due to

the setting of ν = O(R/κ) and the fact that y∗
ν(x) is κ-Lipschitz in ν by Lemma C.2. Next, assume

that we have already guaranteed Eq. (18) holds for iteration t, we prove that our setting ofK implies
Eq. (18) holds for iteration t+1. Note that the NSGD update in x means that ∥xt −xt−1∥ = ηx =
O(ϵ/6L1κ

3). Therefore, Eq. (19) in conjunction with the induction hypothesis indicates that

E∥yt+1 − y∗
jν(xt)∥ ≲ (1− µηy)

K

(
νϵ

L1
+

ϵ

L1κ2

)
+
νϵ

L1
.

Therefore, we know that to let Eq. (18) holds for iteration t + 1, it suffices to let K =
Ω(log(1/νκ2)/µηy) = Ω(log(1/νκ2)κ2σ2

/ν2ϵ2). This finishes the induction.

Total Complexity. According to the above analysis, we set ν ≍ (ϵ/L̄κ2p+1)1/p, S ≍ σ2
/ν2ϵ2,

T ≍ ∆L1κ
3ϵ−2, and K ≍ log(RL1κ/νϵ)κ2σ2

/ν2ϵ2 to ensure that the algorithm provably find an ϵ-
stationary point of φ(x). Since S ≲ K, the total complexity of the algorithm is

pT (S +K) = O(pTK) = O
(
p · ∆L1κ

3

ϵ2
· κ

2σ2

ν2ϵ2
log

(
RL1κ

νϵ

))
= O

(
p∆L1L̄

2/pσ2κ9+2/p

ϵ4+2/p
log

(
RL1κ

νϵ

))
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E PROOF OF THEOREM 4.1

We prove our lower bound for stochastic nonconvex-strongly-convex bilevel optimization via a re-
duction to the lower bound for stochastic single-level nonconvex optimization (Arjevani et al., 2023).
To state their lower bound, we first need to introduce the function class, oracle class, algorithm class,
and the complexity measures.
Definition E.1. Given any ∆ > 0 and L1 > 0, we use Fnc(L1,∆) to denote the set of all smooth
functions f : Rd → R that satisfies

1. f(0)− infx∈Rd f(x) ≤ ∆;

2. ∇f(x) is L1-Lipschitz continuous.
Definition E.2. Given a function Rd → R, we use O(σ2) to denote the set of all stochastic first-
order oracles that return an unbiased stochastic estimator to ∇f with variance bounded by σ2.
Definition E.3. Let f : Rd → R be a differentiable function and F : Rd → R be the stochastic esti-
mator to ∇f . A randomized first-order algorithm A consists of a distribution Pr over a measurable
set R and a sequence of measurable mappings {At}t∈N such that

xt+1 = At(r, F (x0), · · · , F (xt)), t ∈ N+,

where r ∼ Pr is drawn a single time at the beginning of the protocol. We let Arand to denote the
class of all the algorithms that follow the above protocol.
Definition E.4. We define distributional complexity of Arand to find an ϵ-stationary point of the
functions in Fnc(L1,∆) with oracle O(σ2) as

Complϵ(L1,∆, σ
2) = sup

O∈O(σ2)

sup
Pf∈P[F(∆,f)]

inf
A∈Arand

inf{t ∈ N | E∥∇f(xt)∥ ≤ ϵ},

where the expectation is taken over the sampling of f from Pf , the randomness in the oracle O,
and the randomness in the algorithm A, {xt}t∈N is the sequence generated by A running on f with
oracle O, and P[Fnc(L1,∆)] denotes the set of all distributions over Fnc(L1,∆).

All the above definitions are merely restatements of (Arjevani et al., 2023, Section 2). Although
Definition E.4 uses the definition of distributional complexity, by Yao’s minimax principle is also
a lower bound for the worst-case complexity. Now, we recall the construction in (Arjevani et al.,
2023) for proving the Ω(ϵ−4) lower bound. Formally, we define the randomized function

fU (x) =
L1β

2

L̄1
fnc(ρ(U⊤x/β)) +

L1λ

2L̄1
∥x∥2, (20)

where L̄1 = 155, β = 4L̄1ϵ/L1, ρ : RT → RT is ρ(x) = x
/√

1 + ∥x∥2/R2, R = 230
√
T ,

λ = 1/5, and fT : RT → R is the nonconvex hard instance introduced by Carmon et al. (2020):

fnc(x) := −Ψ(1)Ψ(x1) +

T∑
i=2

[Φ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)].

In the above, the component functions Ψ,Φ : R → R are defined as

Ψ(t) =

{
0, t ≤ 1/2,

exp(1− 1/(2t− 1)2), t < 1/2
and Φ(t) =

√
e

∫ t

−∞
exp(−t2/2)dt.

For the hard instance in Eq. (20), Arjevani et al. (2023) further defined the stochastic gradient
estimator FU as

FU (x) =
L1

L̄1

(
β(∇ρ(x))⊤UFT (U

⊤ρ(x)) + λx
)
. (21)

In the above, FT : RT → RT is the stochastic gradient estimator of ∇fnc defined by

[FT (x)]i = ∇if
nc(x)

(
1 + 1i>prog1/4(x)

(ξ/γ − 1)
)
, ξ ∼ Bernoulli(γ),

where progα(x) = max{i ≥ 0 | |xi| > α} and γ = min{(46ϵ)2/σ2, 1}. For the above construc-
tion, Arjevani et al. (2023) showed the following lower bound.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem E.1 ((Arjevani et al., 2023, Theorem 3)). There exist numerical constants c, c′ > 0 such
that for all ∆ > 0, L1 > 0 and ϵ ≤ c

√
L1∆, the construction of function fU : Rd → R and

stochastic first-order oracle FU : Rd → R in Eq. (20) and (21) together give a distribution over the
function class Fnc(L1,∆) and a stochastic first-order oracle O ∈ O(σ2) such that

Complϵ(L1,∆, σ
2) ≥ c′∆L1σ

2ϵ−4.

Proof of Theorem 4.1. For any randomized algorithm A defined as Eq. (11) running it on our hard
instance, we show that it can be simulated by another randomized algorithm running on the variable
x such that Theorem E.1 can be applied. Since G(y) = µy is a deterministic mapping we know that
any randomized algorithm A induces a sequence of measurable mappings {A′

t}t∈N such that

(xt, yt) = A′
t(ξ, F (x0), · · · , F (xt−1), y0, · · · , yt−1).

Expanding the recursion for yt shows that the above equation induces another sequence of measur-
able mappings {A′′

t }t∈N such that

(xt, yt) = A′′
t (ξ, F (x0), · · · , F (xt−1)).

Therefore, we can apply Theorem E.1 to complete the proof.

F THE F2SA-2 ALGORITHM

We present the realization of F2SA-p when p = 2 in Algorithm 3 to further compare its procedure
with the original F2SA algorithm. Let λ = 1/ν. We can observe that F2SA (Kwon et al., 2023;
Chen et al., 2025b) solves the following asymmetric penalty problem

min
x∈Rdx ,y∈Rdy

f(x,y) + λ

(
g(x,y)− min

z∈Rdy
g(x, z)

)
,

while F2SA-2 solved the following symmetric penalty problem:

min
x∈Rdx ,y∈Rdy

1

2

(
f(x,y) + λf(x,y)− min

z∈Rdy
(−f(x, z) + λg(x, z)))

)
.

The latter is better since the symmetric form makes the first-order approximation error to ∇φ(x)
perfectly cancel out and leave only the second-order error term. Therefore, in terms of the theoretical
guarantee by Theorem 3.1, the Õ(ϵ−5) upper bound of F2SA-2 can improve the Õ(ϵ−6) upper bound
of F2SA by a factor of ϵ−1.

Algorithm 3 F2SA-2 (x0,y0)

1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: y0
t = yt, z

0
t = zt

4: for k = 0, 1, · · · ,K − 1

5: Sample random i.i.d indexes (ξy, ζy) and (ξz, ζz).

6: yk+1
t = yk

t − ηy
(
νFy(xt,y

k
t ; ξ

y) +Gy(xt,y
k
t ; ζ

y)
)

7: zk+1
t = zk

t − ηy
(
−νFy(xt, z

t
t ; ξ

z) +Gy(xt, z
k
t ; ζ

z)
)

8: end for
9: yt+1 = yK

t , zt+1 = zK
t

10: Sample random i.i.d indexes {(ξxi , ζxi)}Si=1.

11: Φt =
1

2

∑S
i=1

(
Fx(xt,yt+1; ξ

x
i) + Fx(xt,zt+1; ξ

x
i) +

Gx(xt,yt+1; ζ
x
i)−Gx(xt,zt+1; ζ

x
i)

ν

)
12: xt+1 = xt − ηxΦt/∥Φt∥
13: end for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENTS

This section provides additional experiments on finding the optimal per-parameter regularization of
a 5-layer MLP with ReLU activation and the hidden layer size of 500. Following the notation in
Example 2.2, we let x ∈ Rd parameterize the regularization matrix via Wx = diag(exp(x)). We
also let ℓval and ℓtr be the logistic loss of the network prediction on the validation set and training
set, respectively. The problem to solve has the same formulation as Example 2.2, as restated below:

min
x∈Rd

ℓval(y), s.t. y ∈ arg min
y∈Rd

ℓtr(y) + y⊤Wxy. (22)

The difference between Example 2.2 is that now the problem is nonsmooth nonconvex due to the
use of the MLP model. We present the experiment results in Figure 2.

0 200 400 600 800
#Iterations

0.94

0.95

0.96

0.97

0.98

Te
st

 L
os

s

0 200 400 600 800
#Iterations

0.705

0.710

0.715

0.720

0.725

Te
st

 A
cc

ur
ac

y

F2SA
F2SA-2

F2SA-3
F2SA-5

F2SA-8
F2SA-10

VRBO
MRBO

stocBiO
w/o Reg

Figure 2: Performances of different algorithms on Problem (22) with an MLP model.

H USE OF LARGE LANGUAGE MODELS

Large language models were used to help calculate the coefficient α0 when p is odd in Lemma 3.1,
and to refine wording and correct grammatical errors in parts of the paper.

21

	Introduction
	Preliminaries
	Problem Setup
	Comparison to Previous Works

	The F2SA-p Method
	Hyper-Gradient Approximation via Finite Difference
	The Proposed Algorithm
	Complexity Analysis

	An (-4) Lower Bound
	Experiments
	Conclusions and Future Works
	Notations for Tensors
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	The F2SA-2 Algorithm
	Additional Experiments
	Use of Large Language Models

