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ABSTRACT

This paper studies the complexity of finding an ϵ-stationary point for stochastic
bilevel optimization when the upper-level problem is nonconvex and the lower-
level problem is strongly convex. Recent work proposed the first-order method,
F2SA, achieving the Õ(ϵ−6) upper complexity bound for first-order smooth prob-
lems. This is slower than the optimal Ω(ϵ−4) complexity lower bound in its single-
level counterpart. In this work, we show that faster rates are achievable for higher-
order smooth problems. We first reformulate F2SA as approximating the hyper-
gradient with a forward difference. Based on this observation, we propose a class
of methods F2SA-p that uses pth-order finite difference for hyper-gradient ap-
proximation and improves the upper bound to Õ(pϵ−4−2/p) for pth-order smooth
problems. Finally, we demonstrate that the Ω(ϵ−4) lower bound also holds for
stochastic bilevel problems when the high-order smoothness holds for the lower-
level variable, indicating that the upper bound of F2SA-p is nearly optimal in the
region p = Ω(log ϵ−1/ log log ϵ−1).

1 INTRODUCTION

Many machine learning problems, such as meta-learning (Rajeswaran et al., 2019), hyper-parameter
tuning (Bao et al., 2021; Franceschi et al., 2018; Mackay et al., 2019), and adversarial training
(Goodfellow et al., 2020) can be abstracted as solving the following bilevel optimization problem:

min
x∈Rdx

φ(x) = f(x,y∗(x)), y∗(x) = arg min
y∈Rdy

g(x,y), (1)

We call f and g the upper-level and lower-level functions, respectively, and call φ the hyper-
objective. In this paper, we consider the most common nonconvex-strongly-convex setting where
f : Rdx → R is smooth and possibly nonconvex, and g : Rdy → R is smooth jointly in (x,y)
and strongly convex in y. Under the lower-level strong convexity assumption, the implicit function
theorem indicates the following closed form of the hyper-gradient (Ghadimi & Wang, 2018):

∇φ(x) = ∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x)). (2)

Following the works in nonconvex optimization (Carmon et al., 2020; 2021; Arjevani et al., 2023),
we consider the task of finding an ϵ-stationary point of φ, i.e., a point x ∈ Rdx such that
∥∇φ(x)∥ ≤ ϵ. Motivated by many real machine learning tasks, we study the stochastic setting,
where the algorithms only have access to the stochastic derivative estimators of both f and g.

The first efficient algorithm BSA Ghadimi & Wang (2018) for solving the stochastic bilevel problem
leverages both stochastic gradient and Hessian-vector-product (HVP) oracles to find an ϵ-stationary
point of φ(x). Subsequently, Ji et al. (2021) proposed stocBiO by incorporating multiple enhanced
designs to improve the complexity. Both BSA and stocBiO require the stochastic Hessian assump-
tion (5) on the lower-level function, which is stronger than the standard SGD assumption.

To avoid estimating HVP oracles, Kwon et al. (2023) proposed the first fully first-order method
F2SA that works under standard SGD assumptions on both f and g (Assumption 2.1). The main
idea is to solve the following penalty problem (Liu et al., 2022; 2023; Shen & Chen, 2023; Shen
et al., 2025b; Lu & Mei, 2024):

min
x∈Rdx ,y∈Rdy

f(x,y) + λ

(
g(x,y)− min

z∈Rdy
g(x, z)

)
, (3)
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where λ is taken to be sufficiently large such that λ = Ω(ϵ−1). If we interpret λ as the Lagrangian
multiplier, then Problem (3) can be viewed as the Lagrangian function of the constrained opti-
mization minx∈Rdx ,y∈Rdy f(x,y), s.t. g(x,y) ≤ g(x,y∗(x)). Thanks to Danskin’s theorem, the
gradient of the Problem (3) only involves gradient information. Therefore, F2SA does not require
the stochastic Hessian assumptions (5). More importantly, by directly leveraging gradient oracles
instead of more expensive HVP oracles, the F2SA is more efficient in practice (Shen et al., 2025a;
Xiao & Chen, 2025; Jiang et al., 2025) and is also the only method that can be scaled to 32B sized
large language model (LLM) training (Pan et al., 2024).

Kwon et al. (2023) proved that the F2SA method finds an ϵ-stationary point of φ(x) with Õ(ϵ−3)

first-order oracle calls in the deterministic case and Õ(ϵ−7) stochastic first-order oracle (SFO) calls
in the stochastic case. Recently, Chen et al. (2025b) showed the two-time-scale stepsize strategy
improves the upper complexity bound of F2SA method to Õ(ϵ−2) in the deterministic case, which
is optimal up to logarithmic factors. However, the direct extension of their method in the stochastic
case leads to the Õ(ϵ−6) SFO complexity (Chen et al., 2025b; Kwon et al., 2024a) , which still has
a significant gap between the Ω(ϵ−4) lower bound for SGD (Arjevani et al., 2023). It remains open
whether optimal rates for stochastic bilevel problems can be achieved for fully first-order methods.

In this work, we revisit F2SA and interpret it as using forward difference to approximate the hyper-
gradient. Our novel interpretation in turn leads to straightforward algorithm extensions for the F2SA
method. Observing that the forward difference used by F2SA only has a first-order error guarantee,
a natural idea to improve the error guarantee is to use higher-order finite difference methods. For
instance, we know that the central difference has an improved second-order error guarantee. Based
on this fact, we can derive the F2SA-2 method that solves the following symmetric penalty problem:

min
x∈Rdx ,y∈Rdy

1

2

(
f(x,y) + λg(x,y)− min

z∈Rdy
(−f(x, z) + λg(x, z))

)
. (4)

Compared with Eq. (3), this new penalty problem perturbs the lower-level variables y and z in the
opposite direction to better cancel out the approximation errors to Problem (1). A similar approach
has recently been discovered by Chayti & Jaggi (2024) in the context of meta-learning, but they
only show its empirical benefit without rigorous theoretical justifications. In this work, we show
that F2SA-2 provably improves the SFO complexity of F2SA from Õ(ϵ−6) to Õ(ϵ−5) for second-
order smooth problems. Moreover, our idea is generalizable for any pth-order smooth problems.
It is known in numerical analysis there exists the pth-order central difference that uses p points
to construct an estimator to the derivative of a unitary function with pth-order error guarantee, as
recalled in Lemma 3.1. Motivated by this fact, we propose the F2SA-p algorithm and show that it
enjoys the improved Õ(pϵ−4−2/p) SFO complexity, as formally stated in Theorem 3.1.

To examine the tightness of our upper bounds, we further extend the Ω(ϵ−4) lower bound for SGD
(Arjevani et al., 2023) from single-level optimization to bilevel optimization. Note that existing
constructions for bilevel lower bound (Dagréou et al., 2024; Kwon et al., 2024a) do not satisfy all
our smoothness conditions in Definition 2.2. We demonstrate in Theorem 4.1 that a fully separable
construction for upper- and lower-level variables can immediately yield a valid Ω(ϵ−4) lower bound
for the problem class we study, showing that F2SA-p is optimal up to logarithmic factors when
p = Ω(log ϵ−1/ log log ϵ−1) (see Remark 3.4). We summarize our main results, including both the
lower and upper bounds, in Table 1 and discuss open problems in the following.

Open problems. Our upper bounds improve known results for high-order smooth problems, but
our result still has a gap between the lower bound for p = O(log ϵ−1/ log log ϵ−1). Recently, Kwon
et al. (2024a) obtained some preliminary results towards closing this gap for p = 1, where they
showed an Ω(ϵ−6) lower bound holds under a more adversarial oracle. But it is still open whether
their lower bounds can be extended to standard stochastic oracles as they conjectured. Another open
problem is the tightness of the condition number dependency shown in Table 1.

Notations. We use ∥ · ∥ to denote the Euclidean norm for vectors and the spectral norm for matrices
and tensors. We use Õ( · ) and Ω̃( · ) to hide logarithmic factors in O( · ) and Ω( · ). We also use
h1 ≲ h2 to mean h1 = O(h2), h1 ≳ h2 to mean h1 = Ω(h2), and h1 ≍ h2 to mean that both
h1 ≲ h2 and h1 ≳ h2 hold. Additional notations for tensors are introduced in Appendix A.
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Method Smoothness Reference Complexity

F2SA 1st-order (Kwon et al., 2023) Õ(poly(κ)ϵ−7)

F2SA 1st-order (Kwon et al., 2024a) Õ(poly(κ)ϵ−6)

F2SA 1st-order (Chen et al., 2025b) Õ(κ12ϵ−6)

F2SA-p 1st-order Theorem 3.1 Õ(pκ9+2/pϵ−4−2/p)
+

Lower Bound pth-order in y Theorem 4.1 Ω(ϵ−4)

Table 1: The SFO complexity of different methods to find an ϵ-stationary point for pth-order smooth
first-order bilevel problems with condition number κ under standard SGD assumptions.

2 PRELIMINARIES

The goal of bilevel optimization is to minimize the hyper-objective φ(x), which is in general non-
convex. Since finding a global minimizer of a general nonconvex function requires exponential
complexity in the worst case (Nemirovskij & Yudin, 1983, § 1.6), we follow the literature (Carmon
et al., 2020; 2021) to consider the task of finding an approximate stationary point.
Definition 2.1. Let φ : Rdx → R be the hyper-objective defined in Eq. (1). We say a random
variable x̂ ∈ Rdx is an ϵ-hyper-stationary point if E∥∇φ(x̂)∥ ≤ ϵ.

Next, we introduce the assumptions used in this paper, which ensure the tractability of the above
hyper-stationarity. Compared to (Kwon et al., 2023; Chen et al., 2025b), we additionally assume the
high-order smoothness in lower-level variable y to achieve further acceleration.

2.1 PROBLEM SETUP

First of all, we follow the standard assumptions on SGD (Arjevani et al., 2023) to assume that the
stochastic gradient estimators satisfy the following assumption.
Assumption 2.1. There exists stochastic gradient estimators F (x,y) and G(x,y) such that

EF (x,y; ξ) = ∇f(x,y), E∥F (x,y)−∇f(x,y)∥2 ≤ σ2;

EG(x,y; ζ) = ∇g(x,y), E∥G(x,y)−∇g(x,y)∥2 ≤ σ2,

where σ > 0 is the variance of the stochastic gradient estimators. We also partition F = (Fx, Fy)
and G = (Gx, Gy) such that Fx, Fy, Gx, Gy are estimators to ∇xf,∇yf,∇xg,∇yg, respectively.

Second, we assume that the hyper-objective φ(x) = f(x,y∗(x)) is lower bounded. Otherwise,
any algorithm requires infinite time to find a stationary point. Note that the implicit condition
infx∈Rdx φ(x) > −∞ below can also be easily implied by a more explicit condition on the lower
boundedness of upper-level function infx∈Rdx ,y∈Rdy f(x,y) > −∞.

Assumption 2.2. The hyper-objective defined in Eq. (1) is lower bounded, and we have

φ(x0)− inf
x∈Rdx

φ(x) ≤ ∆,

where ∆ > 0 is the initial suboptimality gap and we assume x0 = 0 without loss of generality.

Third, we assume the lower-level function g(x,y) is strongly convex in y. It guarantees the unique-
ness of y∗(x) and the tractability of the bilevel problem. Although not all the problems in applica-
tions satisfy the lower-level strong convexity assumption, it is impossible to derive dimension-free
upper bounds when the lower-level problem is only convex (Chen et al., 2024, Theorem 3.2). Hence,
we follow most existing works to consider strongly convex lower-level problems.
Assumption 2.3. g(x,y) is µ-strongly convex in y, i.e., for any y1,y2 ∈ Rdy , we have

g(x,y2) ≥ g(x,y1) + ⟨∇yg(x,y1),y2 − y1⟩+
µ

2
∥y1 − y2∥2,

where µ > 0 is the strongly convex parameter.

3
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Fourth, we require the following smoothness assumptions following (Ghadimi & Wang, 2018). Ac-
cording to Eq. (2), these conditions are necessary and sufficient to guarantee the Lipschitz continuity
of ∇φ(x), which further ensure the tractability of an approximate stationary point of the nonconvex
hyper-objective φ(x) (Zhang et al., 2020; Kornowski & Shamir, 2022).
Assumption 2.4. For the upper-lower function f and lower-level function g, we assume that

1. f(x,y) is L0-Lipschitz in y.

2. ∇f(x,y) and ∇g(x,y) are L1-Lipschitz jointly in (x,y).

3. ∇2
xyg(x,y) and ∇2

yyg(x,y) are L2-Lipschitz jointly in (x,y).

We refer to the problem class that jointly satisfies all the above Assumption 2.1, 2.2, 2.3 and 2.4 as
first-order smooth bilevel problems, for which (Kwon et al., 2024a; Chen et al., 2025b) showed the
F2SA method achieves the Õ(ϵ−6) upper complexity bound. In this work, we show an improved
bound under the following additional higher-order smoothness assumption on lower-level variable y.
Assumption 2.5 (High order smoothness in y). Given p ∈ N+, we assume that

1. ∂q

∂yq ∇f(x,y) is Lq+1-Lipschitz for all q = 1, · · · , p− 1.

2. ∂q+1

∂yq+1∇g(x,y) is Lq+2-Lipschitz in y for all q = 1, · · · , p− 1.

We refer to problems jointly satisfying all the above assumptions as pth-order smooth bilevel prob-
lems, and also formally define their condition numbers as follows.
Definition 2.2 (pth-order smooth bilevel problems). Given p ∈ N+, ∆ > 0, L0, L1, · · · , Lp+1 > 0,
and µ ≤ L1, we use Fnc-sc(L0, · · · , Lp+1, µ,∆) to denote the set of all bilevel instances satisfying
Assumption 2.2, 2.3, 2.4 and 2.5. For this problem class, we define the largest smoothness constant
L̄ = max0≤j≤p Lj and condition number κ = L̄/µ.

All our above assumptions align with (Chen et al., 2025b) except for the additional Assumption 2.5.
A classical example of a highly smooth function is the softmax function (Garg et al., 2021, Lemma
2(3)). Therefore, many hyper-parameter tuning problems for logistic regression are provably highly
smooth, such that our theory can be applied. We give two examples from (Pedregosa, 2016): the
first one aims to learn the optimal weights of each sample in a corrupted training set, and the second
one aims to learn the optimal regularizer of each parameter.
Example 2.1 (Data hyper-cleaning). Let x ∈ Rn parameterize the per-sample weight of a training
set with n samples via σ(xi) = exp(xi)/

∑n
i=1 exp(xi) and y ∈ Rd be the parameters of a linear

model. Let ℓval be the logistic loss of the linear model on the validation set and ℓitr be the logistic
loss on the training sample i. The problem aims to solve

min
x∈Rn

ℓval(y), s.t. y ∈ arg min
y∈Rd

n∑
i=1

σ(xi)ℓ
i
tr(y).

Example 2.2 (Learn-to-regularize). Let x ∈ Rd parameterize the regularization matrix via Wx =
diag(exp(x)), and y ∈ Rd be the parameters of a linear model. Let ℓval and ℓtr be the logistic loss
of the linear model on the validation set and training set, respectively. The problem aims to solve

min
x∈Rd

ℓval(y), s.t. y ∈ arg min
y∈Rd

ℓtr(y) + y⊤Wxy.

2.2 COMPARISON TO PREVIOUS WORKS

Before we show our improved upper bound, we first give a detailed discussion on other assumptions
made in related works.

Stochastic Hessian assumption. Ghadimi & Wang (2018); Ji et al. (2021) assumes the access to
a stochastic Hessian estimator H(x,y) such that

EH(x,y) = ∇2g(x,y), E∥H(x,y)−∇2g(x,y)∥ ≤ σ2. (5)
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According to (Arjevani et al., 2020, Observation 1 and 2), such an assumption is stronger than
standard SGD assumptions and equivalent to the mean-squared-smoothness assumption (6) on the
lower-level gradient estimator G under the mild condition of ∇G(x,y) = H(x,y). Under this
assumption, in conjunction with Assumption 2.2, 2.3, and 2.4, Ghadimi & Wang (2018) proposed
the BSA method that can find an ϵ stationary point of φ(x) with Õ(ϵ−6) SFO complexity and
Õ(ϵ−4) stochastic HVP complexity. Later, Ji et al. (2021) further improved the SFO complexity
term to Õ(ϵ−4). Compared to them, we consider the setting where the algorithms only have access
to stochastic gradient estimators, and make no assumptions on the stochastic Hessians.

Mean-squared smoothness assumption. Besides Assumption 2.1, 2.2, 2.3, 2.4 and the stochastic
Hessian assumption (5), Khanduri et al. (2021); Yang et al. (2021; 2023b) further assumes that the
stochastic estimators to gradients and Hessians are mean-squared smooth:

E∥F (x,y)− F (x′,y′)∥2 ≤ L̄2
1∥(x,y)− (x′,y′)∥2,

E∥G(x,y)−G(x′,y′)∥2 ≤ L̄2
1∥(x,y)− (x′,y′)∥2,

E∥H(x,y)−H(x′,y′)∥2 ≤ L̄2
2∥(x,y)− (x′,y′)∥2.

(6)

Under this additional assumption, they proposed faster stochastic methods with upper complexity
bound of Õ(ϵ−3) via variance reduction (Fang et al., 2018; Cutkosky & Orabona, 2019). In this
paper, we only consider the setting without mean-squared smoothness assumptions and study a
different acceleration mechanism from variance reduction.

Jointly high-order smoothness assumption. Huang et al. (2025) introduced a second-order
smoothness assumption similar to but stronger than Assumption 2.5 when p = 2. Specifically, they
assumed the second-order smoothness jointly in (x,y) instead of y only:

∇2f(x,y) is L2-Lipschitz jointly in (x,y);

∇3g(x,y) is L3-Lipschitz jointly in (x,y).
(7)

The jointly second-order smoothness (7) ensures that the hyper-objective φ(x) has Lipschitz con-
tinuous Hessians, which further allows the application of known techniques in minimizing second-
order smooth objectives. Huang et al. (2025) applied the technique from (Jin et al., 2017; 2021;
Xu et al., 2018; Allen-Zhu & Li, 2018) to show that an HVP-based method can find a second-order
stationary point in Õ(ϵ−2) complexity under the deterministic setting, and in Õ(ϵ−4) under the
stochastic Hessian assumption (5). Yang et al. (2023a) applied the technique from (Li & Lin, 2023)
to accelerate the complexity HVP-based method to Õ(ϵ−1.75) in the deterministic setting. Chen
et al. (2025b) also proposed a fully first-order method to achieve the same Õ(ϵ−1.75) complexity.
Compared to these works, our work demonstrates a unique acceleration mechanism in stochastic
bilevel optimization that only comes from the high-order smoothness in y.

3 THE F2SA-p METHOD

To introduce our method, we first recall the prior F2SA method (Kwon et al., 2023) and establish
their relationship between finite difference schemes, which further motivates us to design better
algorithms by using better finite difference formulas.

3.1 HYPER-GRADIENT APPROXIMATION VIA FINITE DIFFERENCE

The core idea of F2SA (Kwon et al., 2023) is to solve the reformulated penalty problem (3) and use
the gradient of the penalty function to approximate the true hyper-gradient. To make connections of
F2SA to the finite difference method, let us introduce the extra notation gν as the perturbed lower-
lever problem with y∗

ν(x) and ℓν(x) being its optimal solution and optimal value, respectively:

gν(x,y) := νf(x,y) + g(x,y),

y∗
ν(x) := arg min

y∈Rdy
gν(x,y),

ℓν(x) := min
y∈Rdy

gν(x,y),

5
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Then we have ∂
∂ν ℓν(x)|ν=0 = limν→0

ℓν(x)−ℓ0(x))
ν = limν→0 f(x,y

∗
ν(x))+

g(x,y∗
ν(x))−g(x,y∗(x))

ν .
In our notation, we can rewrite (Chen et al., 2025b, Lemma B.3) as ∂

∂ν ℓν(x)|ν=0 = φ(x). Similarly,
we can also rewrite (Kwon et al., 2023, Lemma 3.1) as

∂2

∂ν∂x
ℓν(x)|ν=0 =

∂2

∂x∂ν
ℓν(x)|ν=0 = ∇φ(x). (8)

Let ν = 1/λ in Eq. (3). Then the fully first-order hyper-gradient estimator (Kwon et al., 2023; Chen
et al., 2025b) is exactly using forward difference to approximate ∇φ(x), that is,

∂
∂xℓν(x)−

∂
∂xℓ0(x)

ν
≈ ∂2

∂ν∂x
ℓν(x)|ν=0 = ∇φ(x). (9)

However, the forward difference is not the only way to approximate a derivative. Essentially, it
falls into a general class of pth-order finite difference (Atkinson & Han, 2005) that can guarantee an
O(νp) approximation error. We restate this known result (with generalization to vector-valued func-
tions) in the following lemma and provide a self-contained proof in Appendix B for completeness.

Lemma 3.1. Assume the function ψ : R → Rd has C-Lipschitz continuous pth-order derivative.
There exist coefficients {αj} such that∥∥∥∥∥∥1ν

∑
j

αjψ(jν)− ψ′(0)

∥∥∥∥∥∥ = O(Cνp).

If p is even, the indices run j = −p/2, · · · , p/2. If p is odd, they run j = −(p−1)/2, · · · , (p+1)/2.
Furthermore, all the coefficients satisfy |jαj | ≤ 1 for all j ̸= 0 and |α0| ≤ I[p is odd].

The explicit formulas for αj can be found in Appendix B. When p = 1, we have α0 = −1, α1 = 1,
and we obtain the forward difference estimator ψ(ν) − ψ(0)/ν; When p = 2 we have α−1 =
−1/2, α1 = 1/2 and we obtain the central difference estimator (ψ(ν)− ψ(−ν))/(2ν). Lemma 3.1
tells us that in general we can always construct a finite difference estimator O(νp) error with p points
for even p or p+ 1 points for odd p under the given smoothness conditions. Inspired by Lemma 3.1
and Eq. (8) that ∂2

∂ν∂xℓν(x)|ν=0 = ∇φ(x), we propose a fully first-order estimator via a linear
combination of ∂

∂xℓjν(x) to achieve O(νp) approximation error to ∇φ(x) given that ∂p+1

∂νp∂xℓν(x)
is Lipschitz continuous in ν. It further leads to Algorithm 1 that will be formally introduced in the
next subsection.

3.2 THE PROPOSED ALGORITHM

Due to space limitations, we only present Algorithm 1 designed for even p in the main text. The
algorithm for odd p can be designed similarly, and we defer the concrete algorithm to Appendix D.

Algorithm 1 follows the double-loop structure of F2SA (Chen et al., 2025b; Kwon et al., 2024a) and
changes the hyper-gradient estimator to the one introduced in the previous section. Now, we give a
more detailed introduction to the procedures of the two loops of F2SA-p.

1. In the outer loop, the algorithm first samples a mini-batch with size S and uses Lemma 3.1
to construct Φt via the linear combination of ∂

∂xℓjν(xt) for j = −p/2, · · · , p/2 every
iteration. After obtaining Φt as an approximation to ∇φ(xt), the algorithm then performs
a normalized gradient descent step xt+1 = xt − ηxΦt/∥Φt∥ with total T iterations.

2. In the inner loop, the algorithm returns an approximation to ∂
∂xℓjν(xt) for all j =

−p/2, · · · , p/2. Note that Danskin’s theorem indicates ∂
∂xℓjν(xt) =

∂
∂xgjν(xt,y

∗
jν(xt)).

It suffices to approximate y∗
jν(xt) to sufficient accuracy, which is achieved by taking a

K-step single-batch SGD subroutine with stepsize ηy on each function gjν(x, · ).
Remark 3.1 (Effect of normalized gradient step). Compared to (Chen et al., 2025b; Kwon et al.,
2023), the only modification we make to the outer loop is to change the gradient step to a normalized
gradient step. The normalization can control the change of y∗

jν(xt) and make the analysis of inner
loops easier. We believe that all our theoretical guarantees also hold for the standard gradient step
via a more involved analysis.
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Algorithm 1 F2SA-p (x0,y0), even p

1: yj
0 = y0, ∀j ∈ N

2: for t = 0, 1, · · · , T − 1
3: parallel for j = −p/2,−p/2 + 1, · · · , p/2
4: yj,0

t = yj
t

5: for k = 0, 1, · · · ,K − 1
6: Sample random i.i.d indexes {(ξyj , ζ

y
j )}.

7: yj,k+1
t = yj,k

t − ηy

(
jνFy(xt,y

j,k
t ; ξyj ) +Gy(xt,y

j,k
t ; ζyj )

)
8: end for
9: yj

t+1 = yj,K
t

10: end parallel for
11: Sample random i.i.d indexes {(ξxi , ζxi )}Si=1.

12: Let {αj}p/2j=−p/2 be the pth-order finite difference coefficients defined in Lemma 3.1.

13: Φt =
1
S

∑S
i=1

∑p/2
j=−p/2 αj

(
jFx(xt,y

j
t+1; ξ

x
i ) +

Gx(xt,y
j
t+1; ζ

x
i )

ν

)
14: xt+1 = xt − ηxΦt/∥Φt∥
15: end for

3.3 COMPLEXITY ANALYSIS

This section contains the complexity analysis of Algorithm 1. We first derive the following lemma
from the high-dimensional Faà di Bruno formula (Licht, 2024).
Lemma 3.2. Let ν ∈ (0, 1/(2κ)]. For any instance in the pth-order smooth bilevel problem class
Fnc-sc(L0, · · · , Lp+1, µ,∆) as Definition 2.2, ∂p+1

∂νp∂xℓν(x) is O(κ2p+1L̄)-Lipschitz continuous in ν.

Our result generalizes the prior result for p = 1 (Kwon et al., 2023) to any p ∈ N+ and also tightens
the prior bounds for p = 2 (Chen et al., 2025b) as we remark in the following.
Remark 3.2 (Tighter bounds for p = 2). Note that the variables x and ν play equal roles in our
analysis. Therefore, our result in p = 2 essentially implies that ∂3

∂ν∂x2 ℓν(x) is O(κ5L̄)-Lipschitz
continuous in ν around zero, which tightens the O(κ6L̄) bound of Hessian convergence in (Chen
et al., 2025b, Lemma 5.1a) and is of independent interest. The main insight is to avoid the direct cal-
culation of ∇2φ(x) = ∂3

∂ν∂x2 ℓν(x)|ν=0 which involves third-order derivatives and makes the anal-
ysis more complex, but instead always to analyze it through the limiting point limν→0

∂3

∂ν∂x2 ℓν(x).

Recall Eq. (8) that ∂2

∂ν∂xℓν(x)|ν=0 = ∇φ(x). Then Lemma 3.2, in conjunction with Lemma 3.1,
indicates that the pth-order finite difference used in F2SA-p guarantees an O(νp)-approximation
error to ∇φ(x), which always improves the O(ν)-error guarantee of F2SA (Kwon et al., 2023; Chen
et al., 2025b) for any p ≥ 2. This improved error guarantee means that we can set ν = O(ϵ1/p)
to obtain an O(ϵ)-accurate hyper-gradient estimator to ∇φ(x), which further leads to the following
improved complexity of our algorithm.
Theorem 3.1 (Main theorem). For any instance in the pth-order smooth bilevel problem class
Fnc-sc(L0, · · · , Lp+1, µ,∆) as per Definition 2.2, set the hyper-parameters as

ν ≍ min

{
R

κ
,
( ϵ

L̄κ2p+1

)1/p}
, ηx ≍ ϵ

L1κ3
, ηy ≍ ν2ϵ2

L1κσ2
,

S ≍ σ2

ν2ϵ2
, K ≍ κ2σ2

ν2ϵ2
log

(
RL1κ

νϵ

)
, T ≍ ∆

ηxϵ
,

(10)

where R = ∥y0 −y∗(x0)∥. Run Algorithm 1 if p is even or Algorithm 2 (in Appendix D) if p is odd.
Then we can provably find an ϵ-stationary point of φ(x) with the total SFO calls upper bounded by

pT (S +K) = O
(
p∆L1L̄

2/pσ2κ9+2/p

ϵ4+2/p
log

(
RL1L̄κ

ϵ

))
.
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The above theorem shows that the F2SA-p method can achieve the Õ(pκ9+2/pϵ−4−2/p log(κ/ϵ))
SFO complexity for pth-order smooth bilevel problems. In the following, we give several remarks
on the complexity in different regions of p.

Remark 3.3 (First-order smooth region). For p = 1, our upper bound becomes Õ(κ11ϵ−6), which
improves the Õ(κ12ϵ−6) bound in (Chen et al., 2025b) by a factor of κ. The improvement comes
from a tighter analysis in the lower-level SGD update and a careful parameter setting.

Remark 3.4 (Highly-smooth region). For p = Ω(log(κ/ϵ)/ log log(κ/ϵ)) in Definition 2.2, we can
run F2SA-q with q ≍ log(κ/ϵ)/ log log(κ/ϵ) and the O(qκ9ϵ−4(κ/ϵ)2/q log(κ/ϵ)) complexity in Theo-
rem 3.1 simplifies to O(κ9ϵ−4 log3(κ/ϵ)/ log log(κ/ϵ)) = Õ(κ9ϵ−4), which matches the best-known
complexity for HVP-based methods (Ji et al., 2021) under stochastic Hessian assumption (5).

In the upcoming section, we will derive an Ω(ϵ−4) lower bound to prove that the F2SA-p is near-
optimal in the above highly-smooth region if the condition number κ is a constant. We leave the
study of optimal complexity for non-constant κ to future work.

Comparison of results for odd p and even p. Note that by Lemma 3.1 when p is odd, we need to
use p+1 points to construct the estimator, which means the algorithm needs to solve p+1 lower-level
problems in each iteration to achieve an O(νp) error guarantee. In contrast, when p is even, p points
are enough since the pth-order central difference estimator satisfies that α0 = 0. It suggests that even
when p is odd, the algorithm designed for odd p may still be better. For instance, the F2SA-2 may
always be a better choice than F2SA since its benefits almost come for free: (1) it still only needs
to solve 2 lower-level problems as the F2SA method, which means the per-iteration complexity
remains the same. (2) Although the improved complexity of F2SA-2 relies on the second-order
smooth condition, without such a condition, its error guarantee in hyper-gradient estimation will
only degenerate to a first-order one, which means it is at least as good as F2SA.

4 AN Ω(ϵ−4) LOWER BOUND

In this section, we prove an Ω(ϵ−4) lower bound for stochastic bilevel optimization via a reduction
to single-level optimization. Our lower bound holds for any randomized algorithms A, which can be
defined as a sequence of measurable mappings {At}Tt=1 that is defined recursively by

(xt+1,yt+1) = At (r, F (x0,y0), G(x0,y0)), · · · , F (xt,yt), G(xt,yt))) , t ∈ N+, (11)

where r is a random seed drawn at the beginning to produce the queries, and F,G are the stochas-
tic gradient estimators that satisfy Assumption 2.1. Without loss of generality, we assume that
(x0,y0) = (0,0). Otherwise, we can prove the same lower bound by shifting the functions.

The construction. We construct a separable bilevel instance such that the upper-level function
f(x,y) ≡ fU (x) and its stochastic gradient align with the hard instance in (Arjevani et al., 2023),
while the lower-level function is the simple quadratic g(x, y) ≡ g(y) = µy2/2 with deterministic
gradients. We defer the concrete construction to Appendix E. For this separable bilevel instance,
we can show that for any randomized algorithm defined in Eq. (11) that uses oracles (FU , G), the
progress in x can be simulated by another randomized algorithm that only uses FU , meaning that
the single-level lower bound (Arjevani et al., 2023) also holds.
Theorem 4.1 (Lower bound). There exist numerical constants c > 0 such that for all ∆ >
0, L1, · · · , Lp+1 > 0 and ϵ ≤ c

√
L1∆, there exists a distribution over the function class

Fnc-sc(L0, · · · , Lp+1, µ,∆) and the stochastic gradient estimators satisfying Assumption 2.1, such
that any randomized algorithm A defined as Eq. (11) can not find an ϵ-stationary point of
φ(x) = f(x,y∗(x)) in less than Ω(∆L1σ

2ϵ−4) SFO calls.

Below, we give a detailed discussion on the constructions in related works.

Comparison to other bilevel lower bounds. Dagréou et al. (2024) proved lower bounds for finite-
sum bilevel optimization via a similar reduction to single-level optimization. However, the direct
extension of their construction in the fully stochastic setting gives f(x,y) = fU (y) and g(x,y) =
(x − y)2, where the high-order derivatives of f(x,y) not O(1)-Lipschitz in y and thus violates

8
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our assumptions. Kwon et al. (2024a) also proved an Ω(ϵ−4) lower bound for stochastic bilevel
optimization. However, their construction f(x, y) = y and g(x, y) = (fU (x) − y)2 violate the
first-order smoothness of g(x, y) in x when y is far way from fU (x). In this work, we use a fully
separable construction to avoid all the aforementioned issues in other works.

5 EXPERIMENTS

In this section, we conduct numerical experiments to verify our theory. Following (Grazzi et al.,
2020; Ji et al., 2021), we consider the “learn-to-regularize” problem of logistic regression (Exam-
ple 2.2) on the “20 Newsgroup” dataset, which provably satisfies the highly smooth assumption of
any order. The dataset contains 18,000 samples, each sample consists of a feature vector in dimen-
sional 130, 107 vector and a label that takes value in {1, · · · , 20}. We compare our proposed method
F2SA-p with p ∈ {2, 3, 5, 8, 10} with both the previous best fully first-order method F2SA (Kwon
et al., 2023; Chen et al., 2025b) and other Hessian-vector-product-based methods stocBiO (Ji et al.,
2021), MRBO and VRBO (Yang et al., 2021). We also include a baseline “w/o Reg” that means the
training result of SGD without tuning any regularization. For all the algorithms, we search the other
hyperparameters (including ηx, ηy, ν) in a logarithmic scale with base 10. We run the algorithms
with K = 10 iterations in the inner loop, and T = 1000 iterations in the outer loop, and report the
test loss/accuracy v.s. the number of outer-loop iterations t in Figure 1. To demonstrate the potential
of our methods on nonsmooth nonconvex problems, we also provide additional experiments on a
5-layer multilayer perceptron (MLP) network with ReLU activation in Appendix F.
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Figure 1: Performances of different algorithms on Example 2.2.

6 CONCLUSIONS AND FUTURE WORKS

This paper proposes a class of fully first-order method F2SA-p that achieves the Õ(pϵ−4−2/p) SFO
complexity for pth-order smooth bilevel problems. Our result generalized the best-known Õ(ϵ−6)
result (Kwon et al., 2024a; Chen et al., 2025b) from p = 1 to any p ∈ N+. We also com-
plement our result with an Ω(ϵ−4) lower bound to show that our method is near-optimal when
p = Ω(log ϵ−1/ log log ϵ−1). Nevertheless, a gap still exists when p is small, and how to fill it even
for the basic setting p = 1 is an open problem. Another open problem is whether our theory can be
extended our theory to structured nonconvex-nonconvex bilevel problems studied by many recent
works (Kwon et al., 2024b; Chen et al., 2024; 2025a; Jiang et al., 2025; Xiao et al., 2023; Xiao
& Chen, 2025). In addition, it will also be interesting to further improve the convergence rate of
our methods by combining them with variance-reduction (Fang et al., 2018; Cutkosky & Orabona,
2019) or momentum techniques (Fang et al., 2019; Cutkosky & Mehta, 2020).
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A NOTATIONS FOR TENSORS

We follow the notation of tensors used by Kolda & Bader (2009). For two p-way tensors X ∈
Rn1×n2×···×np and Y ∈ Rn1×n2×···×np , their inner product z = ⟨X ,Y⟩ is defined as

⟨X ,Y⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
np∑

iq=1

Xi1,i2,··· ,ipYi1,i2,··· ,ip .

For two tensors X ∈ Rn1×n2×···np and Y ∈ Rm1×m2···×mq , their outer product Z = X ⊗ Y is a
tensor Z ∈ Rn1×n2×···×np×m1×m2×···×mq whose elements are defined as

(X ⊗ Y)i1,i2,··· ,ip,j1,j2,··· ,jq = Xi1,i2,··· ,ipYi1,i2,··· ,ip .

The operator norm of a tensor X ∈ Rn1×n2×···×np is defined as

∥X∥ = sup
∥ui∥=1,i=1,··· ,p

⟨X ,u1 ⊗ u2 ⊗ · · · ⊗ up⟩.

Equipped with the notion of norm, we say a mapping T : R → Rn1×n2×···×np is D-bounded if

∥T (x)∥ ≤ D, ∀x ∈ R.

We say T is C-Lipschitz continuous if

∥T (x)− T (y)∥ ≤ C∥x− y∥, ∀x,y ∈ R.
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B PROOF OF LEMMA 3.1

Proof. If ψ(p)(ν) is C-Lipschitz continuous in ν, then by Taylor’s theorem we have

ψ(ν) = ψ(0) +

p∑
k=1

(jν)k

k!
ψ(k)(0) +O

(
Cνp+1

)
. (12)

Now, we analyze the case when p is even or odd separately.

If p is even. The estimator we use is known as the pth-order central difference, whose coefficients
are known (Khan et al., 2003). Let n = p/2. We select coefficients {αj}nj=−n such that

αj = −α−j , ∀j = 0, 1, · · · , n.

Then, summing up Eq. (12) with coefficients αj gives

1

ν

j=n∑
j=−n

αjψ(jν) = 2

n∑
j=1

αj

n−1∑
k=1,3,···

jkνk−1

k!
ψ(k)(0)︸ ︷︷ ︸

(∗)

+O (Cνp) .

To let term (*) be equivalent to ψ′(0), we let {αj}nj=1 satisfy the following equations:

2

n∑
j=1

αjj
k = 1k=1, ∀k = 1, 3, · · · , n− 1,

which is equivalent to let {jαj}nj=1 satisfy the following linear equation
1 1 1 · · · 1
12 22 32 · · · n2

14 24 34 · · · n4

...
...

...
. . .

...
12(n−1) 22(n−1) 32(n−1) · · · n2(n−1)



α1

2α2

3α3

...
nαn

 =


1/2
0
0
...
0

 .

Now we solve this linear equation to determine the values of {αj}nj=1. Let A be the coefficient
matrix of this linear equation, and let Aj be the matrix such that the jth column of A is replaced by
the standard unit vector (1, 0, · · · , 0)⊤. By Cramer’s rule, we have

2jαj =
det(Aj)

det(A)
, j = 1, · · · , n.

By observation, we can find that both A and Aj are Vandermonde matrices. Therefore, we can
explicitly calculate both det(A) and det(Aj) according to the determinant formula of Vandermonde
matrices, which leads to

2jαj =
(−1)j−1 · ((j − 1)!)2 · (n!)2 · j! · (2j)!

(j!)2 · (j − 1)! · (n− j)! · (2j − 1)! · (n+ j)!
=

2(−1)j−1(n!)2

(n− j)! · (n+ j)!
.

Therefore, we have

αj =
(−1)j−1(n!)2

j · (n− j)! · (n+ j)!
,

from which it is clear that |αj | ≤ 1/j.

If p is odd. Instead of using the known pth-order forward difference (Khan et al., 2003) for which
we find that the coefficients will be exponentially large in p, we motivate from the pth-order central
difference above to obtain a stable estimator by leveraging negative points. Let n = (p + 1)/2.
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We select coefficients {αj}nj=1−n that satisfy the constraint
∑n

j=1−n αj = 0. Then, summing up
Eq. (12) with coefficients αj gives

1

ν

j=n∑
j=1−n

αjψ(jν) =

j=n∑
j=1−n

αj

p∑
k=1

jkνk−1

k!
ψ(k)(0)︸ ︷︷ ︸

(∗)

+O (Cνp) .

To let term (*) be equivalent to ψ′(0), we let {αj}nj=1−n satisfy the following equations:
n∑

j=1−n

αjj
k = 1k=1, ∀k = 1, 2, · · · , p,

which is equivalent to let {α̂j}nj=(1−n),j ̸=0 satisfy the following linear equation
1 1 1 · · · 1 1 · · · 1

1− n 2− n 3− n · · · −1 1 · · · n
...

...
...

. . .
...

...
. . .

...
(1− n)2n+1 (2− n)2n+1 (3− n)2n+1 · · · (−1)2n+1 12n+1 · · · n2n+1



α̂1−n

α̂2−n

...
α̂n

 =


1
0
...
0

 ,

where we denote α̂j = jαj for j = 1−n, · · · ,−1 and 1, · · · , n. Now we solve this linear equation
to determine the values of {α̂j}. Let A be the coefficient matrix of this linear equation, and let Aj

be the matrix such that the jth column of A is replaced by the standard unit vector (1, 0, · · · , 0)⊤.
By Cramer’s rule, we have

α̂j =
det(Aj)

det(A)
, j = 1, · · · , n.

Similar to the case of even p, both A and Aj are Vandermonde matrices. Therefore, we can ex-
plicitly calculate both det(A) and det(Aj) according to the determinant formula of Vandermonde
matrices. Then, for j = 1, · · · , n, we can obtain that

αj =
α̂j

j
=

(−1)j−1(j − 1)!(n− 1)!n!j!

j · j!(j − 1)!(n+ j − 1)!(n− j)!
=

(−1)j−1(n− 1)!n!

j(n+ j − 1)!(n− j)!
.

Similarly, for j = 1, · · · , n− 1, we can obtain that

α−j =
α̂−j

−j
=

(−1)j(n− 1)!(j − 1)!n!j!

j · j!(n+ j − 1)!(j − 1)!(n+ j)!
=

(−1)j(n− 1)!n!

j(n− j − 1)!(n+ j)!
.

Therefore, it is easy to see that |αj | ≤ 1/j for j = 1, · · · , n, and |α−j | ≤ 1/j for j = 1, · · · , n− 1.
Finally, we calculate α0 from the constraint

∑n
j=1−n αj = 0, which leads to

α0 = −
n∑

j=1

(−1)j−1(n− 1)!n!

j(n+ j − 1)!(n− j)!︸ ︷︷ ︸
S1

−
n−1∑
j=1

(−1)j(n− 1)!n!

j(n− j − 1)!(n+ j)!︸ ︷︷ ︸
S2

. (13)

We claim that α0 = −1/n and hence |α0| ≤ 1. We prove our claim by calculating the values of S1

and S2 to obtain α0. For S1, we have

S1 =

n∑
j=1

(−1)j−1

(
n

j

)
(n− 1)!(j − 1)!

(n+ j − 1)!
.

The fraction on the right is the Beta function B(j, n), which can be represented as the integral
B(j, n) =

∫ 1

0
xj−1(1− x)n−1dx. Therefore,

S1 =

n∑
j=1

(−1)j−1

(
n

j

)∫ 1

0

xj−1(1− x)n−1dx

=

∫ 1

0

(1− x)n−1

 n∑
j=1

(−1)j−1

(
n

j

)
xj−1

dx

=

∫ 1

0

(1− x)n−1

x

 n∑
j=1

(−1)j−1

(
n

j

)
xj

 dx.
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Substituting the binomial expansion (1− x)n = 1 +
∑n

j=0

(
n
j

)
(−x)j , we then have

S1 =

∫ 1

0

(1− x)n−1

x
(1− (1− x)n) dx.

Let y = 1− x. We then have

S1 =

∫ 1

0

yn−1

1− y
(1− yn)dy.

Substituting the geometric series sum 1−yn

1−y =
∑n−1

k=0 y
k, we then have

S1 =

∫ 1

0

yn−1

(
n−1∑
k=0

yk

)
dy =

∫ 1

0

n−1∑
k=0

yn+k−1dy =

n−1∑
k=0

∫ 1

0

yn+k−1dy =

n−1∑
k=0

1

n+ k
.

Following similar steps, we can also obtain that

S2 = −
n−2∑
k=0

1

n+ k + 1
.

Now, for α0 = −S1 − S2, the summation terms cancel out perfectly, which leads to α0 = −1/n.

C PROOF OF LEMMA 3.2

The proof relies on the high-dimensional version of the Faà di Bruno formula. To formally state
the result, we define the following notions. For a mapping T : Rm → Rn1×···×nq , we define its
kth-order directional derivative evaluated at z ∈ Rm along the direction (u1, · · · ,uk) as

∇k
u1,··· ,uk

T|z = ∇kT|z(u1, · · · ,uk).

We let the symmetric products of u1, · · · ,uk as

u1 ∨ u2 ∨ · · · ∨ uk =
1

k!

∑
π∈Perm(k)

uπ(1) ⊗ uπ(2) ⊗ · · · ⊗ uπ(k),

where Perm(k) denotes the set of permutations of {1, 2, · · · , k}. Also, we define the set of all
(unordered) partitions of a set A into k pairwise disjoint non-empty sets as

P(A, k) =
{
P = (P1, · · · , Pk) ⊆ B(A) | A = ∪k

j=1Pj ; ∅ /∈ P ; Pi ∩ Pj = ∅,∀i < j
}
,

where B(A) is the power set of A, i.e., the set of all subsets of A. We also abbreviate P({1 : q}, k)
as P(q, k). Using the above notions, we have the following result.

Lemma C.1 ((Licht, 2024, Proposition 3.1)). Let T1 and T2 be two mappings. If T1 and T2 are
k-times differentiable at the point z and T1(z), respectively, then the composite mapping T2 ◦ T1 is
k-times differentiable at the point z and we have

∇q(T2 ◦ T1)|z(∨q
i=1ui) =

∑
1≤k≤q,

P∈P(q,k)

∇kT2|T1(z)

(
∇|P1|T1|z(∨i∈P1

ui), · · · ∇|Pk|T1|z(∨i∈Pk
ui)
)
.

Recall Danskin’s theorem that ∂
∂xℓν(x) =

∂
∂xgν(x,y

∗
ν(x)). We can apply Lemma C.1 with T1 =

y∗
ν(x) and T1 = ∂

∂xgν(x,y) to obtain that

∂q+1

∂νq∂x
ℓν(x) =

∑
1≤k≤q,

P∈P(q,k)

∂k+1

∂yk∂x
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
. (14)
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Symmetrically, using the first-order optimality condition ∂
∂y gν(x,y

∗
ν(x)) = 0 and where the first

identity uses the Lemma C.1 with T1 = y∗
ν(x) and T1 = ∂

∂y gν(x,y) yields that

0 =
∑

1≤k≤q,
P∈P(q,k)

∂k+1

∂yk+1
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
. (15)

Since P(q, 1) contains only one element, the above identity implies that
∂q

∂νq
y∗
ν(x) = −

(
∇2

yygν(x,y
∗
ν(x))

)−1 ∑
2≤k≤q,

P∈P(q,k)

wk,P ,

where wk,P =
∂k+1

∂yk+1
gν(x,y

∗
ν(x))

(
∂|P1|

∂ν|P1|
y∗
ν(x), · · · ,

∂|Pk|

∂ν|Pk|
y∗
ν(x)

)
.

(16)

Based on Eq. (16), we can prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-Lipschitz continuous in

ν for all q = 0, · · · , p. The induction base for q = 0, 1 is already proved by Chen et al. (2025b).
Lemma C.2 (Chen et al. (2025b, Lemma B.2 and B.5)). Let ν ∈ (0, 1/(2κ)]. Under Assumption
2.3 and 2.4, y∗

ν(x) and ∂
∂νy

∗
ν(x) is O(κ)- and O(κ3)-Lipschitz continuous in ν, respectively.

Since Eq. (16) also involves (∇2
yygν(x,y

∗
ν(x)))

−1, we also need the following lemma that gives its
boundedness and Lipschitz continuity constants.
Lemma C.3 (Chen et al. (2025b, Lemma B.1 and Eq. 18)). Let ν ∈ (0, 1/(2κ)]. Under Assumption
2.3 and 2.4, (∇yygν(x,y

∗
ν(x)))

−1 is 2/µ-bounded and O(κ2/µ)-Lipschitz continuous in ν.

In the remaining proofs, we will use Eq. (16) prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-

Lipschitz continuous in ν, then we can easily use Eq. (14) to show that ∂q+1

∂νq∂xℓν(x) is O(κ2q+1L̄)-
Lipschitz continuous in ν for all q = 0, · · · , p. Note that the computational graph of either
∂q

∂νq y
∗
ν(x)) or ∂q+1

∂νq∂xℓν(x) in Eq. (14) or (16) defines a tree, where the root is output, the leaves
are inputs, and the other nodes are the intermediate results in the computation. We can analyze the
Lipschitz continuities of all the nodes from bottom to top using the following lemma.
Lemma C.4 (Luo et al. (2022, Lemma 12)). Let T1 and T2 be two tensor-to-tensor mappings. If T1
is D1-bounded and C1-Lipschitz continuous, T2 is D2-bounded and C2-Lipschitz continuous, then
the product mapping T1 × T2 is D1D2-bounded and (C1D2 + C2D1)-Lipschitz continuous.

Proof of Lemma 3.2. Now, we formally begin to prove by induction that ∂q

∂νq y
∗
ν(x) is O(κ2q+1)-

Lipschitz continuous in ν for all q = 0, · · · , p. Recall that the induction base follows Lemma C.2.
In the following, we use the induction hypothesis that ∂k

∂νk y
∗
ν(x)) is O(κ2k+1)-Lipschitz continuous

in ν for all k = 0, · · · , q − 1 to prove that ∂q

∂νq y
∗
ν(x)) is O(κ2q+1)-Lipschitz continuous in ν. We

know that ∂k+1

∂yk+1 gν(x,y
∗
ν(x)) is O(L̄)-bounded and O(κL̄)-Lipschitz continuous in ν. Therefore,

we can use Lemma C.4 to conclude that each wk,P is O(κ
∑k

j=1(2|Pj |−1)L̄) = O(κ2q−kL̄)-bounded
and O(L̄ · κ2q−k+2 + κL̄ · κ2q−k) = O(κ2q−k+2L̄)-Lipschitz continuous in ν. It further implies
that the summation w :=

∑
2≤k≤q,P∈P(q,k) wk,P is O(κ2q−2L̄)-bounded and O(κ2qL̄)-Lipschitz

continuous in ν. Then, we can recall Lemma C.3 that (∇yygν(x,y
∗
ν(x)))

−1 is 2/µ-bounded and
O(κ2/µ)-Lipschitz continuous in ν, and use Eq. (16) to finish the induction that ∂q

∂νq y
∗
ν(x) =

−
(
∇2

yygν(x,y
∗
ν(x))

)−1
w is O(κ2q+1)-Lipschitz continuous in ν for all q = 0, · · · , p. Finally,

by analogy with the similarity of Eq. (14) and (16), we can follow the same analysis to show that
∂q+1

∂νq∂xℓν(x) is O(κ2q+1L̄)-Lipschitz continuous in ν for all = 0, · · · , p.

D PROOF OF THEOREM 3.1

In the main text, we only present the algorithm when p is even. The algorithm when p is odd follows
a similar design, which is presented in Algorithm 2 for completeness. Our algorithms consist of a
double loop, where the outer loop performs normalized SGD (NSGD) and the inner loop performs
SGD. Before we give the formal proof, we first recall the convergence result for (N)SGD.
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Algorithm 2 F2SA-p (x0,y0), odd p

1: yj
0 = y0, ∀j ∈ N

2: for t = 0, 1, · · · , T − 1

3: parallel for j = −(p− 1)/2, · · · , (p+ 1)/2

4: yj,0
t = yj

t

5: for k = 0, 1, · · · ,K − 1

6: Sample random i.i.d indexes {(ξyj , ζ
y
j )}.

7: yj,k+1
t = yj,k

t − ηy

(
jνFy(xt,y

j,k
t ; ξyj ) +Gy(xt,y

j,k
t ; ζyj )

)
8: end for
9: yj

t+1 = yj,K
t

10: end parallel for
11: Sample random i.i.d indexes {(ξxi , ζxi )}Si=1.

12: Let {αj}(p+1)/2
j=−(p−1)/2 be the pth-order finite difference coefficients defined in Lemma 3.1.

13: Φt =
1
S

∑S
i=1

∑(p+1)/2
j=−(p−1)/2 αj

(
jFx(xt,y

j
t+1; ξ

x
i ) +

Gx(xt,y
j
t+1; ζ

x
i )

ν

)
14: xt+1 = xt − ηxΦt/∥Φt∥
15: end for

Lemma D.1 (Cutkosky & Mehta (2020, Lemma 2)). Consider the NSGD update xt+1 = xt −
ηFt/∥Ft∥ to optimize a function f : Rd → R with L-Lipschitz continuous gradients. We have

1

T

T−1∑
t=0

E∥∇f(xt))∥ ≤ 3(f(x0)− infx∈Rd f(x))

ηT
+

3Lη

2
+

8

T

T−1∑
t=0

E∥Ft −∇f(xt)∥.

Lemma D.2 (Kwon et al. (2024a, Lemma C.1)). Consider the SGD update xt+1 = xt − ηFt to
optimize a µ-strongly convex function f : Rd → R with L-Lipschitz continuous gradients. Let
x∗ = argminx∈Rd f(x) be the unique minimizer to f . Suppose Ft is an unbiased estimator to
∇f(xt) with variance bounded by σ2. Setting η < 2/(µ+ L), we have

E∥xt − x∗∥2 ≤ (1− µη)t∥x0 − x∗∥2 + ησ2

µ
.

The following two lemmas are also useful in the analysis.

Lemma D.3 (Chen et al. (2025b, Lemma 4.1)). Under Assumption 2.3, and 2.4, the hyper-objective
φ(x) = f(x,y∗(x)) is differentiable and has Lφ = O(L̄κ3)-Lipschitz continuous gradients.

Lemma D.4 (Chen et al. (2025b, Lemma B.6)). Let ν ∈ (−1/κ, 1/κ). Under Assumption 2.3,
and 2.4, the optimal (perturbed) lower-level solution mapping y∗

ν(x) = argminy∈Rdy ℓv(x,y) is
4κ-Lipschitz continuous in x.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We separately consider the complexity for the outer loop and the inner loop.

Outer Loop. According to Lemma D.3, the hyper-objective φ(x) has Lφ = O(L̄κ3)-Lipschitz
continuous gradients. If we can guarantee the condition

E∥Φt −∇φ(xt)∥ ≤ ϵ

32
, t = 0, · · · , T − 1, (17)

then we can further set ηx = ϵ/6Lφ and apply Lemma D.1 to conclude that the algorithm can provably
find an ϵ-stationary point of φ(x) in T = ⌈6∆/ϵηx⌉ = O(∆L1κ

3ϵ−2) outer iterations.
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Inner Loop. From the above analysis, the remaining goal is to show that the inner loop always
returns Φt satisfying Eq. (17), which requires E∥Φt −∇φ(xt)∥ = O(ϵ) for all t = 0, · · · , T − 1.
Note that the setting of mini-batch size S = Ω

(
σ2
/ν2ϵ2

)
ensures that

E

∥∥∥∥∥Φt −
∑p/2

j=−p/2 αj

(
j∇xf(xt,y

j
t+1) +

∇xg(xt,y
j
t+1)

ν

)∥∥∥∥∥ = O(ϵ), p is even;

E

∥∥∥∥∥Φt −
∑(p+1)/2

j=−(p−1)/2 αj

(
j∇xf(xt,y

j
t+1) +

∇xg(xt,y
j
t+1)

ν

)∥∥∥∥∥ = O(ϵ), p is odd.

By Lemma 3.2 and Lemma 3.1, setting ν = O((ϵ/L̄κ2p+1)1/p) can ensure that
∥∥∥∥∇φ(xt)−

∑p/2
j=−p/2 αj

(
j∇xf(xt,y

∗
jν(xt)) +

∇xg(xt,y
∗
jν(xt))

ν

)∥∥∥∥ = O(ϵ), p is even;

∥∥∥∥∇φ(xt)−
∑(p+1)/2

j=−(p−1)/2 αj

(
j∇xf(xt,y

∗
jν(xt)) +

∇xg(xt,y
∗
jν(xt))

ν

)∥∥∥∥ = O(ϵ), p is odd.

Therefore, a sufficient condition of E∥Φt −∇φ(xt)∥ = O(ϵ) is{
∥yj

t+1 − y∗
jν(xt)∥ = O(νϵ/L1), ∀j = −p/2, · · · , p/2, p is even;

∥yj
t+1 − y∗

jν(xt)∥ = O(νϵ/L1), ∀j = −(p− 1)/2, · · · , (p+ 1)/2, p is odd.
(18)

Our next goal is to show that our parameter setting fulfills Eq. (18). Note that for ν = O(1/κ), the
(perturbed) lower-level problem gjν(x,y) is Ω(µ)-strongly convex in y and has O(L1)-Lipschitz
continuous gradients jointly in (x,y). Therefore, if we set ηy ≲ 1/L1, then we can apply Lemma
D.2 on the lower-level problem gjν(x,y) to conclude that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥2 ≤ (1− µηy)

K∥yt − y∗
jν(xt)∥2 +O(ηyσ

2/µ).

Comparing it with Eq. (18), we can set ηy = O(ν
2ϵ2/L1κσ

2) to ensure that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥ ≤ (1− µηy)

K∥yt − y∗
jν(xt)∥+O(νϵ/L1).

Further, we can use Lemma D.4 and the triangle inequality to obtain that for ant j, we have

E∥yt+1 − y∗
jν(xt)∥ ≤ (1− µηy)

K(∥yt − y∗
jν(xt−1)∥+ 4κ∥xt − xt−1∥) +O(νϵ/L1). (19)

The recursion (19) implies our setting of K can ensure that Eq. (18) holds for all t = 0, · · · , T − 1.
We give an induction-based proof. To let the induction base holds for t = 1, it suffices to set
K = Ω(log(RL1/νϵ)/µηy) = Ω(log(RL1/νϵ)κ2σ2

/ν2ϵ2), where ∥y∗
jν(x0) − y∗(x0)∥2 = O(R) is due to

the setting of ν = O(R/κ) and the fact that y∗
ν(x) is κ-Lipschitz in ν by Lemma C.2. Next, assume

that we have already guaranteed Eq. (18) holds for iteration t, we prove that our setting ofK implies
Eq. (18) holds for iteration t+1. Note that the NSGD update in x means that ∥xt −xt−1∥ = ηx =
O(ϵ/6L1κ

3). Therefore, Eq. (19) in conjunction with the induction hypothesis indicates that

E∥yt+1 − y∗
jν(xt)∥ ≲ (1− µηy)

K

(
νϵ

L1
+

ϵ

L1κ2

)
+
νϵ

L1
.

Therefore, we know that to let Eq. (18) holds for iteration t + 1, it suffices to let K =
Ω(log(1/νκ2)/µηy) = Ω(log(1/νκ2)κ2σ2

/ν2ϵ2). This finishes the induction.

Total Complexity. According to the above analysis, we set ν ≍ (ϵ/L̄κ2p+1)1/p, S ≍ σ2
/ν2ϵ2,

T ≍ ∆L1κ
3ϵ−2, and K ≍ log(RL1κ/νϵ)κ2σ2

/ν2ϵ2 to ensure that the algorithm provably find an ϵ-
stationary point of φ(x). Since S ≲ K, the total complexity of the algorithm is

pT (S +K) = O(pTK) = O
(
p · ∆L1κ

3

ϵ2
· κ

2σ2

ν2ϵ2
log

(
RL1κ

νϵ

))
= O

(
p∆L1L̄

2/pσ2κ9+2/p

ϵ4+2/p
log

(
RL1κ

νϵ

))
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E PROOF OF THEOREM 4.1

We prove our lower bound for stochastic nonconvex-strongly-convex bilevel optimization via a re-
duction to the lower bound for stochastic single-level nonconvex optimization (Arjevani et al., 2023).
To state their lower bound, we first need to introduce the function class, oracle class, algorithm class,
and the complexity measures.
Definition E.1. Given any ∆ > 0 and L1 > 0, we use Fnc(L1,∆) to denote the set of all smooth
functions f : Rd → R that satisfies

1. f(0)− infx∈Rd f(x) ≤ ∆;

2. ∇f(x) is L1-Lipschitz continuous.
Definition E.2. Given a function Rd → R, we use O(σ2) to denote the set of all stochastic first-
order oracles that return an unbiased stochastic estimator to ∇f with variance bounded by σ2.
Definition E.3. Let f : Rd → R be a differentiable function and F : Rd → R be the stochastic esti-
mator to ∇f . A randomized first-order algorithm A consists of a distribution Pr over a measurable
set R and a sequence of measurable mappings {At}t∈N such that

xt+1 = At(r, F (x0), · · · , F (xt)), t ∈ N+,

where r ∼ Pr is drawn a single time at the beginning of the protocol. We let Arand to denote the
class of all the algorithms that follow the above protocol.
Definition E.4. We define distributional complexity of Arand to find an ϵ-stationary point of the
functions in Fnc(L1,∆) with oracle O(σ2) as

Complϵ(L1,∆, σ
2) = sup

O∈O(σ2)

sup
Pf∈P[F(∆,f)]

inf
A∈Arand

inf{t ∈ N | E∥∇f(xt)∥ ≤ ϵ},

where the expectation is taken over the sampling of f from Pf , the randomness in the oracle O,
and the randomness in the algorithm A, {xt}t∈N is the sequence generated by A running on f with
oracle O, and P[Fnc(L1,∆)] denotes the set of all distributions over Fnc(L1,∆).

All the above definitions are merely restatements of (Arjevani et al., 2023, Section 2). Although
Definition E.4 uses the definition of distributional complexity, by Yao’s minimax principle is also
a lower bound for the worst-case complexity. Now, we recall the construction in (Arjevani et al.,
2023) for proving the Ω(ϵ−4) lower bound. Formally, we define the randomized function

fU (x) =
L1β

2

L̄1
fnc(ρ(U⊤x/β)) +

L1λ

2L̄1
∥x∥2, (20)

where L̄1 = 155, β = 4L̄1ϵ/L1, ρ : RT → RT is ρ(x) = x
/√

1 + ∥x∥2/R2, R = 230
√
T ,

λ = 1/5, and fT : RT → R is the nonconvex hard instance introduced by Carmon et al. (2020):

fnc(x) := −Ψ(1)Ψ(x1) +

T∑
i=2

[Φ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)].

In the above, the component functions Ψ,Φ : R → R are defined as

Ψ(t) =

{
0, t ≤ 1/2,

exp(1− 1/(2t− 1)2), t < 1/2
and Φ(t) =

√
e

∫ t

−∞
exp(−t2/2)dt.

For the hard instance in Eq. (20), Arjevani et al. (2023) further defined the stochastic gradient
estimator FU as

FU (x) =
L1

L̄1

(
β(∇ρ(x))⊤UFT (U

⊤ρ(x)) + λx
)
. (21)

In the above, FT : RT → RT is the stochastic gradient estimator of ∇fnc defined by

[FT (x)]i = ∇if
nc(x)

(
1 + 1i>prog1/4(x)

(ξ/γ − 1)
)
, ξ ∼ Bernoulli(γ),

where progα(x) = max{i ≥ 0 | |xi| > α} and γ = min{(46ϵ)2/σ2, 1}. For the above construc-
tion, Arjevani et al. (2023) showed the following lower bound.
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Theorem E.1 ((Arjevani et al., 2023, Theorem 3)). There exist numerical constants c, c′ > 0 such
that for all ∆ > 0, L1 > 0 and ϵ ≤ c

√
L1∆, the construction of function fU : Rd → R and

stochastic first-order oracle FU : Rd → R in Eq. (20) and (21) together give a distribution over the
function class Fnc(L1,∆) and a stochastic first-order oracle O ∈ O(σ2) such that

Complϵ(L1,∆, σ
2) ≥ c′∆L1σ

2ϵ−4.

Proof of Theorem 4.1. For any randomized algorithm A defined as Eq. (11) running it on our hard
instance, we show that it can be simulated by another randomized algorithm running on the variable
x such that Theorem E.1 can be applied. Since G(y) = µy is a deterministic mapping we know that
any randomized algorithm A induces a sequence of measurable mappings {A′

t}t∈N such that

(xt, yt) = A′
t(ξ, F (x0), · · · , F (xt−1), y0, · · · , yt−1).

Expanding the recursion for yt shows that the above equation induces another sequence of measur-
able mappings {A′′

t }t∈N such that

(xt, yt) = A′′
t (ξ, F (x0), · · · , F (xt−1)).

Therefore, we can apply Theorem E.1 to complete the proof.

F THE F2SA-2 ALGORITHM

We present the realization of F2SA-p when p = 2 in Algorithm 3 to further compare its procedure
with the original F2SA algorithm. Let λ = 1/ν. We can observe that F2SA (Kwon et al., 2023;
Chen et al., 2025b) solves the following asymmetric penalty problem

min
x∈Rdx ,y∈Rdy

f(x,y) + λ

(
g(x,y)− min

z∈Rdy
g(x, z)

)
,

while F2SA-2 solved the following symmetric penalty problem:

min
x∈Rdx ,y∈Rdy

1

2

(
f(x,y) + λf(x,y)− min

z∈Rdy
(−f(x, z) + λg(x, z)))

)
.

The latter is better since the symmetric form makes the first-order approximation error to ∇φ(x)
perfectly cancel out and leave only the second-order error term. Therefore, in terms of the theoretical
guarantee by Theorem 3.1, the Õ(ϵ−5) upper bound of F2SA-2 can improve the Õ(ϵ−6) upper bound
of F2SA by a factor of ϵ−1.

Algorithm 3 F2SA-2 (x0,y0)

1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: y0
t = yt, z

0
t = zt

4: for k = 0, 1, · · · ,K − 1

5: Sample random i.i.d indexes (ξy, ζy) and (ξz, ζz).

6: yk+1
t = yk

t − ηy
(
νFy(xt,y

k
t ; ξ

y) +Gy(xt,y
k
t ; ζ

y)
)

7: zk+1
t = zk

t − ηy
(
−νFy(xt, z

t
t ; ξ

z) +Gy(xt, z
k
t ; ζ

z)
)

8: end for
9: yt+1 = yK

t , zt+1 = zK
t

10: Sample random i.i.d indexes {(ξxi , ζxi )}Si=1.

11: Φt =
1

2

∑S
i=1

(
Fx(xt,yt+1; ξ

x
i ) + Fx(xt,zt+1; ξ

x
i ) +

Gx(xt,yt+1; ζ
x
i )−Gx(xt,zt+1; ζ

x
i )

ν

)
12: xt+1 = xt − ηxΦt/∥Φt∥
13: end for
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G ADDITIONAL EXPERIMENTS

This section provides additional experiments on finding the optimal per-parameter regularization of
a 5-layer MLP with ReLU activation and the hidden layer size of 500. Following the notation in
Example 2.2, we let x ∈ Rd parameterize the regularization matrix via Wx = diag(exp(x)). We
also let ℓval and ℓtr be the logistic loss of the network prediction on the validation set and training
set, respectively. The problem to solve has the same formulation as Example 2.2, as restated below:

min
x∈Rd

ℓval(y), s.t. y ∈ arg min
y∈Rd

ℓtr(y) + y⊤Wxy. (22)

The difference between Example 2.2 is that now the problem is nonsmooth nonconvex due to the
use of the MLP model. We present the experiment results in Figure 2.
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Figure 2: Performances of different algorithms on Problem (22) with an MLP model.

H USE OF LARGE LANGUAGE MODELS

Large language models were used to help calculate the coefficient α0 when p is odd in Lemma 3.1,
and to refine wording and correct grammatical errors in parts of the paper.
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