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Abstract

A significant challenge faced by models trained
via standard Empirical Risk Minimization (ERM)
is that they might learn features of the input X
which help it predict label Y in the training set
which shouldn’t matter, i.e. associations which
might not hold in test data. Causality lends it-
self very well to separate such spurious correla-
tions from genuine, causal, ones. In this paper,
we present a simple causal model for data and
a method using which we can train a classifier
to predict a category Y from an input X, while
being invariant to a variable Z which is spuriously
associated with Y. Notably, this method is just a
slightly modified ERM problem without any ex-
plicit regularization. We empirically demonstrate
that our method does better than regular ERM on
standard metrics on benchmark datasets.

1. Introduction

Neural networks are usually trained via Empirical Risk Min-
imization (ERM), where we want to find model parameters
which minimize a loss function £ on a training dataset. A
key challenge here is that this optimization problem gives
the model an incentive to learn any and all associations in
the training set which reduce the loss. This is not always de-
sirable in practice. Suppose that we wish to classify product
reviews as positive or negative. It might be that the positive
reviews in the training set are disproportionately of one type
of product — say books. This gives the model the incentive
to learn the association between books and positive reviews,
even though this association is not meaningful in predicting
the sentiment of previously unseen reviews.

These are known as spurious associations, and they are
present because an additional variable Z is correlated with
Y and can be “seen” in X. Causality offers a useful frame-
work to think about this problem. In particular, we want to
think of potential outcomes (Rubin, 2005) which represent
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counterfactual distributions of X when Z takes on different
values. Let X (z) denote the potential outcome of X when
Z = z. The idea behind invariant learning is that we want
our predictor to only look at the sentiment Y and not the
product category Z. In other words, we want the model to
make the same prediction for all potential outcomes X (z).
This can be formalized as counterfactual invariance (Veitch
et al., 2021): A predictor F' is said to be counterfactually in-
variant to Z if for all z, 2/, we have F(X (z)) = F(X(2')).

This leads us to the question of how to learn counterfactually
invariant predictors in practice. Modelling the causal rela-
tionship between X, Y, and Z often allows us to develop
methods to do this. In this paper, we present one such case
where the causal model is plausible in many important appli-
cations. We first explain the causal setting we’re interested
in and then describe a simple method to learn counterfac-
tually invariant predictors in this setting. The beauty of
this method is that it does not depend on solving a harder
optimization problem than regular ERM, but just does ERM
in a slightly modified setting. We demonstrate successful
empirical performance and conclude with a discussion on
avenues for future research.

2. Methodology
2.1. Causal Structure of Data

Figure 1. Causal structure of the data for the proposed method. The
dotted line between Y and Z represents a spurious association.

The proposed method only works when the data has a spe-
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cific causal structure. This is shown as a causal graph in
Figure 1. This is the setting of an anti-causal problem,
where we have a label Y which causes the predictor X.
Many standard text and image classification problems are
anti-causal. For example, in sentiment analysis, the text X
is written to explain the sentiment Y, so an intervention on
Y will alter the text, but an intervention on the text will not
alter Y. The same holds for standard image classification
problems, such as classifying whether an image is of a cat
or a dog. We also have an additional variable Z which is
spuriously correlated with Y, as indicated by the dotted line
between them. We assume that the predictor X decomposes
in a certain way, i.e. there is a part of X (which we call
X 1) which is only affected by Y and a part of X (which
we call Xy 1) which is only affected by Z. An important
implication is that the effects of Y and Z on X are “sepa-
rable” in the sense that interventions on Y and Z will alter
disjoint parts of the predictor X. This is commonly known
as a purely spurious association between Y and Z (Veitch
et al., 2021), since in such a case Z is merely a distraction
and does not offer any information which might be useful
in predicting Y on new data.

2.2. Method

We further restrict ourselves to classification problems, and
— for ease of exposition — to binary classification problems.
We also assume that Z is discrete. Thus, we are in a set-
ting where we have a binary random variable Y, a discrete
random variable Z, and a random variable X . Given that
the data follows the structure in Figure 1, we are interested
in learning P(Y = 1| Xz ). Our main claim, under this
setting, is as follows. Suppose X is supported on Sx and Z
is supported on S. Let G be a function on Sx x Sz and
F be a function on Sx. Further suppose that we have the
following relationship:

G(X,Z) = (1)
F(X)P(Z)Y =1)
FX)P(ZIY =1)+ (1 - F(X))P(Z|Y =0)
Then, if we train a neural network to learn G from X and
Z as inputs, Y as labels, and using cross-entropy loss, then

the learned function F willbe F(X) = P(Y =1 | X 1),
exactly what we are interested in.

The result above is an implication of the fact that if
we use binary labels Y and want to predict them us-
ing a function G(X,Z), then PY = 1|X,2Z) =
argming £(G(X, Z),Y) when £ is the population cross-
entropy loss function. Further note that from Figure 1,

PY=1|X,2)= )

P(Z|Y =1) )
Yo P(Y =y | Xz0)P(Z]Y =y)

y=0

P(Y=1XZ¢)<

Algorithm 1 Training Procedure

Input: Training dataset Dy,;, with observations of the form
(24, i, 2:), a neural network F' which takes X as an input
and outputs in (0, 1), and the empirical cross-entropy loss
function ¢

1. For all y in the support of Y and z in the support of Z,
compute P(Z = z | Y = y) as its MLE in Dy,

2. Compute F'(x;) from the neural network

3. Modify this output to obtain G(z;, z;) as a function of
F(x;) and the probabilities as in (1)

4. Compute loss as £(G(x;, 2;), yi)-

where we simply use Bayes’ rule and the fact that Y L
Xy | Z (which follows from d-separation). We see a clear
connection between (1) and (2): if G(X,Z) = P(Y =
1| X,Z),then F(X)=P(Y =1| Xz1).

This result suggests a simple algorithm for training a clas-
sifier to learn P(Y = 1| Xz.). The naive way to train
a classifier is to learn a function F'(X) by ERM with the
cross-entropy loss function. But in this case we obtain
FX)=PY =1|X)=P(Y =1|Xz.,Xy1), which
depends on Xy -1, which is not desirable due to the spurious
correlation between Y and Z. If we make a simple modifi-
cation to this procedure and instead perform ERM on the
right-hand-side of (1), then (2) implies that the learned func-
tion will be F(X) = P(Y = 1| Xz.). Note that when
Z is discrete, the probabilities P(Z = z | Y = y) can be
computed offline for all z € Sz and y € Sy, provided that
our training dataset is large enough. Algorithm 1 clearly
outlines this procedure.

3. Experiments

In our experiments, we look at synthetic and natural datasets
where Y and Z are spuriously correlated. We are mainly
concerned with two metrics:

1. Subgroup accuracy: If the model learns through spu-
rious correlations, then we would expect it to perform
poorly on some subgroups of the data. For example,
if Y and Z are both binary and Y and Z are highly
(positively) correlated, then we would expect a stan-
dard ERM model to do poorly on the (Y = 1,Z = 0)
and (Y = 0,Z = 1) subgroups. The standard set by
(Koh et al., 2021) is to look at worst subgroup accu-
racy. Counterfactually invariant prediction should have
a higher worst subgroup accuracy than standard ERM.

2. Conditional independence: If a predictor F' is coun-
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terfactually invariant to Z, then we should have
F(X) L Z|Y (Veitch et al., 2021). To measure this,
we will be looking at the correlation between F'(X)
and Z within every Y subgroup. For a counterfactu-
ally invariant predictor F', these correlations should be
lower than those for regular ERM.

In the following experiments, we empirically demonstrate
that the method outlined in Section 2 increases worst sub-
group accuracy and decreases correlations within Y sub-
group compared to an ERM baseline.

3.1. Synthetic Text Data

We are interested in comparing the predictions the model
makes for the potential outcome X (z) for different values
of z. The challenge in doing this on a real dataset is that
counterfactuals are not observed, so we first look at look at
a text classification example where we synthetically perturb
X in different ways based on Z to observe all potential
outcomes X (z).

Data: We used data from the Amazon product reviews
repository published by (Ni et al., 2019). We used product
reviews under the ‘Appliances’ category and binarized rat-
ings so that 1 star and 2 star ratings were one class and 4 star
and 5 star ratings were the other class (3 star ratings were
omitted). We balanced the classes so that we had 18000
product reviews in each class. Next, we synthetically gener-
ated a variable Z, which was correlated with the rating, as
follows:

1. For every observation, we drew Z; so that Z;|Y; =
0 ~ Bernoulli(0.9) and Z;|Y; = 1 ~ Bernoulli(0.1).

2. If Z; = 1, we perturbed X; (review text) so that every
“and” token in the review became “andxxxx” and every
“the” token became “thexxxx”. If Z; = 0, we did the
same thing with “yyyy” suffixes.

Here, the correlation between Z and Y is purely spurious,
and the text X can clearly be decomposed into Xy (the
“xxxx”/“yyyy” suffixes) and X ;. (everything else).

Importantly, we used two test sets for evaluation. The first
test set was randomly held out from the data generated as
above. The second test set modified the first to change all Z;
to 1—Z; and perturn X; accordingly (“xxxx” became “yyyy”
and vice versa). In this way, we observed the potential
outcomes X (0) and X (1) for all reviews.

Model architecture and training: We use a pre-trained
DistilBERT model (Sanh et al., 2019) with a classification
head which output class probabilities. We fine-tune the
model with the AdamW optimizer (Loshchilov & Hutter,
2017), learning rate 1 x 10~ and weight decay 0.01, for

5 epochs. This is done for two models: the baseline (naive
ERM) and the proposed model (ERM with modified output).
To limit the signal available to the models and nudge them
to learn the shortcut, we only use the first 20 tokens of each
review text for training. The batch size is 16.

Results: In addition to subgroup accuracies and correlations,
we compute a flip rate for both methods — the proportion of
text examples for which the model made different predic-
tions on the two test sets. Thus, we would expect a more
counterfactually invariant predictor to have a lower flip rate.
In Table 1, we see that our method outperforms ERM on all
metrics. On Flip 1, the worst subgroup accuracy increases
from 73.5% to 83.2%. On Flip 2, it increases from 75.5%
to 83.6%. The correlations between F'(X) and Z for both
values of Y and in both test datasets, and the flip rate is
(more than) halved.

Method ERM Model
Orientation Flipl | Flip2 | Flip1 | Flip2
Y=02=0 0.735 | 0.950 | 0.855 | 0.945
Y=1,Z=0 0.948 | 0.817 | 0.912 | 0.836
Y=0,7Z=1 0.947 | 0.755 | 0.933 | 0.853
Y=1,7Z=1 0.852 | 0.959 | 0.832 | 0.888
[Corr(f(X),Z)|(Y =0)] | 0.191 | 0.250 | 0.059 | 0.105
|Corr(f(X),Z)|[(Y =1)| | 0.240 | 0.222 | 0.082 | 0.076

flip rate 0.163 0.078

Table 1. Results of the experiment with the synthetic dataset.
‘ERM’ refers to the training with regular ERM, ‘Model’ refers
to our proposed method. ‘Flip 1’ and ‘Flip 2’ correspond to the
two test sets described previously. The first block of the table
shows subgroup accuracies and the worst subgroup accuracies are
in bold. The second block shows within-Y" group correlations
between f(X) and Z, and the third gives the flip rate for both
methods.

3.2. Amazon Product Reviews

We now extend the previous experiment to a related natu-
ral setting. We use Amazon product review data from the
WILDS repository (Koh et al., 2021). In particular, our task
to predict whether a product review is for a book or for
another product. The training data has been subsampled so
that book reviews tend to be negative, while reviews of other
products tend to be positive and we want to be invariant to
this.

Data: We subsample the dataset so that we have 10000
product reviews for books (Y = 1) and 10000 reviews for
other products (Y = 0). For product reviews of books,
we subsample the data so that 7500 of these reviews are
negative (Z = 0) and 2500 are positive (Z = 1). On the
other hand, for Y = 0, we subsample so that Z = 0 in 2500
examples and Z = 1 in 7500 examples.

Model architecture and training: As in the synthetic exam-
ple, we fine-tune a DistilBERT model with a classification
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head for 5 epochs. For optimization we use the AdamW
optimizer with learning rate 1 x 10~° and weight decay
0.01. The batch size is 16 and the input sequence maximum
length is 300.

Results: See table 2 for results. ERM and our model both
perform poorly positive reviews of books, but our model
brings up the accuracy from 49.1% to 58.7%. Our model
also does significantly better on negative reviews of other
products while retaining good accuracy on the other two
subgroups. The conditional correlations are low and similar
for both models — our model has a slightly higher correlation
between F'(X) and Z when Y = 0 than ERM (though both
correlations are below 0.1), and a slightly lower correlation
whenY = 1.

Method ERM | Model

Y =0,Z=0 0.785 | 0.846
Y=1,72=0 0.939 | 0.857
Y=02=1 0.890 | 0.857
Y=1,Z=1 0.491 | 0.587
[Corr(f(X), Z)[(Y = 0)[ | 0.026 | 0.040
|Corr(f(X), Z)|(Y = 1)| | 0.191 | 0.120

Table 2. Results of the Amazon experiment. Same format as Table
1.

3.3. Waterbirds

We next move to image classification. For this experiment,
we use the Waterbirds dataset (Sagawa et al., 2019; Koh
et al., 2021). The task is to classify images of birds as
either land birds or water birds. The type of bird Y is
spuriously correlated with the background in the image Z,
i.e. land birds tend to appear with land backgrounds and
water birds with water backgrounds. Our goal is to train a
classifier which can accurately classify birds without relying
on background information.

Data: The training dataset consists of a total of 4795 images,
out of which 3498 are land birds with a land background
(Y = 0,Z = 0), 184 are land birds with a water back-
ground (Y = 0,Z = 1), 56 are water birds with a land
background (Y = 1, Z = 0), and 1057 are water birds with
a water background (Y = 1,7 = 1).

Model architecture and training: We fine-tune a ResNet-
50 model (He et al., 2016) with a classification head. We
disable batch normalization and train both the baseline and
the proposed model 50 epochs with the Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 3 x 10>, This
learning rate was chosen after line search from 3 x 1074, 1 x
1075,2 x 107°,3 x 107, and 1 x 1076.

Results: Results of the Waterbirds experiment are given
in Table 3. We see that our proposed method improves the
worst subgroup accuracy from 63.4% to 74.3% on the water

bird + land background subgroup. It performs marginally
better on the land bird + water background category, and
marginally worse on the land bird + land background and
water bird + water background categories, as expected. We
also see greater independence between f(X) and Z for
both values of Y as the correlations decrease significantly
compared to the baseline ERM model.

Method ERM | Model
Y=02Z=0 0.994 | 0.988
Y=1,72=0 0.634 | 0.743
Y =07=1 0.848 | 0.867
Y=1,7Z=1 0.930 | 0.919

[Corr(f(X), Z)[(Y = 0)[ | 0.724 | 0.536

|Corr(f(X), Z)|(Y = 1)| | 0.567 | 0.365

Table 3. Results of the Waterbirds experiment. Same format as
Table 1.

4. Discussion

In this preliminary work, we have presented a frequently
encountered causal setting and a method which achieves
strong performance on standard invariant prediction tasks in
this setting. This method does not add an explicit regularizer
to the optimization problem and merely solves a slightly
modified ERM problem. To conclude, we briefly comment
on possible directions for future research:

1. More complex datasets: So far, we have only looked
at examples with low-dimensional Z. The value
of methods like ours comes in when Z is high-
dimensional, such as in the Civil Comments and full
Amazon datasets from the WILDS repository (Koh
et al., 2021). We would like to see this method succeed
on such examples as well.

2. Calibration: It is well known that neural networks
which output probabilities can be poorly calibrated
(Guo et al., 2017; Desai & Durrett, 2020). Our method
only works if the output we get during training time
is a reasonable estimate of P(Y = 1| X, Z). Thus, it
will be worthwile to explore methods and architectures
for better calibration since this has so far not been our
main concern.

3. Domain shift: We would like models to perform well
across different domains, i.e. not learn domain idiosyn-
crasies. If Z captures this domain specific association,
and we assume that the causal relationship between
X,Y, and Z does not change across domains, we can
extend our method to this setting.
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