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ABSTRACT

Understanding the evolution of 3D scenes is important for effective autonomous
driving. While conventional methods model the scene development with the motion
of individual instances, world models emerge as a generative framework to describe
the general scene dynamics. However, most existing methods adopt an autoregres-
sive framework to perform next-token prediction, which suffer from inefficiency
to model long-term temporal evolutions. To address this, we propose a diffusion-
based 4D occupancy generation model, OccSora, to simulate the development of
the 3D world for autonomous driving. We employ a 4D scene tokenizer to obtain
compact discrete spatial-temporal representations for 4D occupancy input and
achieve high-quality reconstruction for long-sequence occupancy videos. We then
learn a diffusion transformer on the spatial-temporal representations and generate
4D occupancy conditioned on a trajectory prompt. We conduct extensive experi-
ments on the widely used nuScenes dataset with Occ3D occupancy annotations.
OccSora can generate 16s videos with authentic 3D layout and temporal consis-
tency, demonstrating its ability to understand the spatial and temporal distributions
of driving scenes. With trajectory-aware 4D generation, OccSora has the potential
to serve as a world simulator for the decision-making of autonomous driving.

1 INTRODUCTION

As a critical application of artificial intelligence technology, autonomous driving has garnered
widespread attention and research in recent years (Hu et al., 2023b; Fu et al., 2024; Yang et al.,
2023a). Establishing the relationship between perception (Liu et al., 2023c; Chang et al., 2023;
Chen et al., 2023; Mao et al., 2023), prediction, and planning (Mozaffari et al., 2020; Huang et al.,
2023b; Jia et al., 2023; Wang et al., 2024b) in autonomous driving is crucial for a comprehensive
understanding of the field.

Conventional autonomous driving models (Hu et al., 2023b) rely on the motion of the ego vehicle
instances to model the development of scenes, unable to develop a profound understanding of scene
perception and vehicle motion control comparable to human understanding. The emergence and
establishment of world models (Ha and Schmidhuber, 2018) offer new possibilities for a deeper
understanding of the comprehensive relationship between autonomous driving scenes and vehicle
motion. Based on strong image pretrained models, image-based world models (Hu et al., 2023a;
Wang et al., 2023b) are able to generate high-quality driving-scene images with conditions of 3D
bounding boxes. OccWorld (Zheng et al., 2023) further learns a world model in the 3D occupancy
space, which can be better leveraged for 3D reasoning for autonomous driving. However, most
existing methods adopt an autoregressive framework to model the dynamics (e.g., image tokens,
bounding boxes, occupancy) of a 3D scene, and thus cannot efficiently produce long-term sequences.

To address this, we propose a 4D world model OccSora to directly generate spatial-temporal repre-
sentations with diffusion models as shown in Figure 1, motivated by OpenAI’s 2D video generation
model Sora (Brooks et al., 2024). To accurately understand and represent 4D scenes, we design 4D
scene discretization to capture the dynamic characteristics of scenes and propose a diffusion-based
world model to achieve controllable scene generation in accordance with physical laws. Specifically,
in the 4D occupancy scene tokenizer, we focus on extracting and compressing real 4D scenes to
establish an understanding of the world model environment. In the diffusion-based world model, we
employ multidimensional diffusion techniques to propagate accurate spatiotemporal 4D information
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Figure 1: Comparisons with existing methods. It can comprehend the intricate relationship between
scenes and trajectories and generate long-term, physically consistent 4D occupancy.

and realize trajectory-controllable scene generation by incorporating real ego car trajectories as
supervision, thereby achieving a deeper understanding between autonomous driving scenes and
vehicle motion control. Through training and testing, OccSora can generate autonomous driving 4D
occupancy scenes that adhere to physical logic and achieve controllable scene generation based on
different trajectories. The proposed autonomous driving 4D world model opens up new possibilities
for understanding dynamic scene changes in autonomous driving and the physical world.

2 RELATED WORK

3D Occupancy Prediction. 3D occupancy focuses on partitioning space into voxels and assigning
specific semantic types to each voxel. It is considered a crucial means of representing real-world
scenes, following 3D object detection (Mao et al., 2023; Ma et al., 2023; Yu et al., 2024) and Bird’s
Eye View (BEV) perception (Yang et al., 2023b; Zhao et al., 2024; Wang et al., 2023a; Zhang et al.,
2022), for autonomous driving perception tasks. Early research on this task primarily focused on
semantically classifying discrete points from LiDAR (Zhou et al., 2021; Singh et al., 2020; Liu et al.,
2023a). In fact, due to the camera containing semantic information far exceeding that of LiDAR and
their low cost. Thus, utilizing images for depth estimation or employing end-to-end methods for
3D scene perception research is currently the mainstream approach (Huang et al., 2023a; Li et al.,
2023; Wei et al., 2023). Considering the advantageous of multi-sensor systems, some studies research
multi-modal fusion for 3D occupancy prediction (Wang et al., 2023c; Zhang and Ding, 2024).

In addition to utilizing typical sensor devices for 3D occupancy prediction, some studies focus on
other tasks involving occupancy. For instance, OccWorld (Zheng et al., 2023) proposes a spatiotempo-
ral generative transformer to predict subsequent scene tokens and the vehicle token, thereby predicting
future occupancy and vehicle trajectory. On the other hand, GenOcc (Wang et al., 2024a) utilizes
generative models to accomplish occupancy prediction. DriveWorld (Min et al., 2024) introduces
a world-model-based framework for learning in autonomous driving from 2D images and videos,
addressing tasks such as 3D object detection, online map creation, and occupancy prediction. Al-
though progress has been made in 3D occupancy prediction and continuous 4D prediction, the scope
of these studies remains limited. They usually use autoregressive models in conjunction with scene
information from preceding frames to carry out subsequent occupancy tasks, thereby necessitating
prior scene or 3D bounding box inputs. Besides, the performance drop over time is significant in
both 4D occupancy forecasting and motion planning, demonstrating the struggle of autoregressive
models for generation in the autonomous driving field. This is because the complexity of capturing
the spatial and temporal information of vehicle movements and scenes is greater than that of language
text. Consequently, they lack a genuine understanding of the fundamental relationships between
scene and motion, and they do not constitute world models conditioned on actions.

Generative Model. Generative models have garnered widespread attention recently due to their pow-
erful capabilities. By learning the probability distribution of data, generative models can train models
capable of generating new samples. From the emergence of Generative Adversarial Networks (GAN)
(Goodfellow et al., 2020) to the recent advent of diffusion models like Variational Autoencoders
(VAE) (Van Den Oord et al., 2017), the tasks of generative models have gradually expanded from
initial image generation tasks to in-depth studies on videos (Yan et al., 2021). Tasks such as image
generation based on the DIT model (Peebles and Xie, 2023) delve into and utilize their generative
capabilities. The Sora video generation model (Brooks et al., 2024) further demonstrates the ability
to produce high-quality videos with realistic transitions between frames in continuous scenes.

Similarly, in the field of autonomous driving, controllable image generation can provide various
driving scenarios to serve perception, planning, control, and decision-making tasks. For instance,
MagicDriver (Gao et al., 2023) generates videos depicting various weather scenarios by learning
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Figure 2: The pipeline of OccSora. The 4D occupancy scene tokenizer achieves compression and
restoration of real information. The compressed information and vehicle trajectories are simultane-
ously used as inputs for the diffusion-based world model, generating trajectory-controllable tokens
that are decoded into 4D occupancy.

from videos of autonomous driving vehicles and incorporating labels such as object detection boxes
and maps. DriveDreamer (Wang et al., 2023b) proposes a world model that is entirely derived from
real-world driving scenes, enabling a deep understanding of structured traffic constraints and thereby
achieving precise and controllable video generation. However, for autonomous driving scenarios,
obtaining the 3D occupancy of scenes is more important compared to 2D information (Zhang et al.,
2023b; Mescheder et al., 2019; Sima et al., 2023). Some studies (Lee et al., 2024; Liu et al., 2023b)
propose a three-dimensional diffusion model suitable for generating outdoor real scenes, which, by
utilizing diffusion methods, accomplishes scalable seamless scene generation tasks. While some
previous studies have generated 2D static images and extended them to the temporal dimension
through autoregression, and others have achieved static generation of 3D occupancy scenes, both
the 2D images generated based on 3D object bounding boxes and the static large-scale scenes are
difficult to directly apply to autonomous driving tasks (Wang et al., 2024b; Zheng et al., 2024). In
contrast, our proposed OccSora establishes a dynamic 4D occupancy world model that adapts to
scene changes with vehicle trajectories, without the need for any prior object detection boxes or scene
information, representing the first generative 4D occupancy world model for autonomous driving.

3 OCCSORA

3.1 WORLD MODEL FOR AUTONOMOUS DRIVING

Considering that 4D occupancy can comprehensively capture the structural, semantic, and temporal
information of a 3D scene and effectively facilitate weak supervision or self-supervised learning,
it can be applied to visual, LiDAR, or multimodal tasks. Based on these principles, we represent
the world model χ as 4D occupancy R. Figure 2 illustrates the overall framework of OccSora.
We constructed a 4D occupancy scene tokenizer (Van Den Oord et al., 2017) to compress real 4D
occupancy Ri ∈ RB×D×H×W×T in both the temporal T and spatial D×H ×W dimensions, capturing
the relationships and evolution patterns in 4D autonomous driving scenes. This results in compressed
high-level tokens Rm ∈ RB×c×h×w×t and reconstructed 4D occupancy data Ro ∈ RB×D×H×W×T . We
designed a diffusion-based world model that uses trajectory information Rr ∈RB×T×2 as control units,
training them along with the compressed tokens Rm to generate high-dimensional scene representation
tokens To ∈RB×c×h×w×t . These are then decoded by the 4D occupancy scene tokenizer into physically
consistent and dynamically controllable Ro.

3.2 4D OCCUPANCY SCENE TOKENIZER

The goal of 4D occupancy prediction is to determine the semantic type at specific locations over
time. We discretize and encode the real 4D occupancy scene Ri into an intermediate latent space Rm
to obtain a true representation of the 4D occupancy scene, as shown in Figure 3. The formula is as
follows: Rm = ζtoken

{
τen (Ri)

}
. Here, ζtoken represents the encoded codebook, and τen denotes the

designed 3D encoder network and category embedding. This 3D occupancy representation divides the
3D space around the vehicle into voxels rT = N ∈ RH×W×D, where each voxel position is assigned a
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Figure 3: The structure of the 4D occupancy scene tokenizer. The proposed method encodes and
compresses 4D scenes to extract high-dimensional features, which are then decoded to retrieve the
spatiotemporal physical characteristics of the scenes.

type label Tl , indicating whether it is occupied and the semantics of the object occupying it. Unlike
traditional methods, we incorporate and compress temporal information within the same scene,
reshaping the tensor to Ri. This approach allows for unified learning of both spatial and temporal
evolution patterns and the physical relationships of real scenes, compared to previous autoregressive
methods. After passing through the τen 3D encoder network with category embedding and the ζtoken
encoded codebook, the tensor is transformed into Rm representing the potential spaces. This reshaping
ensures a comprehensive representation of the temporal dynamics of 4D occupancy.

Category embedding and Tokenizer. To accurately capture the spatial information of the original
parameters, we first perform an embedding operation on the input Ri. For each category in Ri, we
assign a learnable category embedding b ∈ Rc′ , which serves to label the categories of continuous
3D occupancy scenes with dimensions RB×D×T×H×W×c. The positional information is embedded as
tokens representing the categories, resulting in dimensions RB×D×c×T×H×W . These embeddings are
then concatenated along the feature dimension. To enable subsequent 3D encoding with dimensional
compression, Ri is further reshaped into R′

i ∈ RB×(Dc′)×T×H×W .

3D Video Encoder. To effectively learn discrete latent tokens, we further performed downsampling
on the embedded positional information of the 4D occupancy R′

i to extract high-dimensional features.
The designed encoder architecture comprises a series of 3D downsampling convolutional layers,
which perform 3D downsampling in both the time dimension (T) and spatial dimensions (H × W),
increasing the fusion dimension to D× c′. We initially downscaled the input R′

i three times to obtain
R′′

i ∈ RB×(8×Dc′)× T
8 ×

H
8 ×W

8 , and introduced dropout layers after the feedforward and attention block
layers for regularization. Considering the relationships between consecutive frames, we introduced
cross-channel attention after downsampling, segmenting R′′

i along the 8×Dc′ dimension and then
performing cross-channel attention between the segmented parts. This operation enhanced the
model’s ability to capture relationships between features along different axes, and subsequently
reshaped them back to the original shape to obtain the output tensor Rm.

Coodbook and Loss Design. To achieve a more condensed representation, we simultaneously learn
a codebook ζtoken ∈ RNc×D containing Nc codes. Each code b ∈ Rc′ in the codebook encodes a
high-level concept of the scene, such as whether the corresponding position is occupied by a car.

ζtoken represents the encoded codebook. We quantize each spatial feature R̂(i j)
m in R̂m by mapping it to

the nearest code N(R̂(i j)
m ,B):

R(i j)
m = N(R̂(i j)

m ,ζtoken) = min
b∈ζtoken

||R̂(i j)
m −b||2, (1)

where || · ||2 represents the L2 norm. Subsequently, we integrate the quantized features R̂(i j)
m to obtain

the final scene representation Rm.

3D Video Decoder. To reconstruct Ro from the learned scene representation Rm, we design a decoder
consisting of 3D deconvolution layers. In contrast to the encoder, the decoder architecture includes
cross-channel attention, residual blocks, and a series of 3D convolutions, enabling upsampling
in both temporal and spatial dimensions. This gradual upsampling process transforms Rm to its

4
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Figure 4: The structure of the diffusion-based world model. The model involves utilizing the
optimal codebook obtained from training the 4D occupancy scene tokenizer to convert 4D occupancy
into a sequence of tokens. These tokens, along with the ego vehicle trajectory and random noise, are
then combined as input for denoising training to acquire the generated token.

original occupancy resolution Ro. The decoder then splits the result along the channel dimension
to reconstruct the temporal dimension, yielding occupancy values for each voxel. During training,
we accomplished the training of the encoder, decoder parameters, and the encoding codebook. The
designed network enables us to simultaneously encode the input 4D occupancy information and
compress it into multiple tokens, thereby learning the physical correlations of world models under
spatiotemporal fusion. Additionally, we restore the information during the decoding process.

3.3 DIFFUSION-BASED WORLD MODEL

Inspired by the diffusion method (Peebles and Xie, 2022), we use scene tokens Rm containing
spatiotemporal information features as inputs for the generative model. Additionally, we conduct
denoising training and trajectory-controllable generation tasks under the control of vehicle trajectories
Rr, as shown in Figure 4.

Token embedding. To efficiently and accurately utilize the transformer (Vaswani et al., 2017), we
flatten the input data tokens Rm into Rre. Simultaneously, considering the significance of positional
information for spatiotemporal compression, we perform positional embedding on the input. We
design the following function, which utilizes sin and cos functions to encode positional indices:

R(emb)
re = embd

i +Rre,Rre ∈ RB×c×(hwt). (2)

It operates on two main parameters: C, representing the embedding output dimensionality of each
position, and i = hwt, representing the number of tokens enumerating the positions to be encoded.
The resulting output follows a matrix structure of dimensions C× i, and emb constructs the positional
embedding representation using sin and cos functions. These embeddings encapsulate the positional
attributes of the tokens, enhancing the model’s understanding of positions within the input. We
add the positional encoding emb to the input Rre, yielding R(emb)

re , which represents the tokens after
positional encoding.

Trajectory conditioning embedding. The transformation relationship between scenes and trajecto-
ries is a crucial aspect of autonomous driving. Generating diverse 4D occupancy scenes that align
with control trajectories is essential. Therefore, we use the ego vehicle trajectory Tr as input to
generate controllable 4D occupancy. Firstly, the ego vehicle trajectory Tr ∈ RB×t×2 is used as one of
the control inputs, where t denotes the continuous time dimension, and the third dimension represents
the vehicle positions along the x and y axes of the absolute coordinate system. To achieve trajectory
embedding and encoding, we reshape the vehicle trajectory to Tr ∈ RB×(t×2) and learn and encode it
as follows:

g = ν (td)+δ (Tr) ,δ (Tr) ∈ RB×c×(hwt),ν ∈ RB×c×(hwt), (3)

where ν ∈ RB×c×(hwt) represents the waypoint time step embedding, and δ denotes the Multilayer
Perceptron (MLP) network that extracts trajectory information. g is then embedded into the input
sequence of the diffusion transformer and processed together with the token information R(emb)

re .
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Diffusion Transformer. We developed a diffusion-based world model to learn from and generate
within the latent space Rm, while integrating trajectory labels Tr and denoising time steps νd as control
conditions. In the model diffusion learning process, we constructed a forward noise process that
gradually introduces noise to the latent space Rm: q

(
Rg

re|Rre
)
= N

(
Rg

re;
√

σgRre,
(
1−σg

)
I
)
, where

the constant g represents the embedding of trajectories and time steps. Utilizing the reparameterization
trick, we can sample: Rg

re =
√

σgRre +
√

1−σgεg, where εg ∼ N (0, I). The 4D occupancy diffusion
model is trained to learn the reverse propagation process. To invert the forward process corruption:

pθ

(
Rg−1

re |Rg
re

)
= N

(
µθ

(
Rg

re
)
,Σθ

(
Rg

re
))

, (4)

where neural networks predict the statistical properties of p. By reparameterizing as a noise prediction
network, the model can be trained using the simple mean squared error between the predicted noise
R̂g

re and the sampled gaussian noise Rg
re: Lsimple(θ) =

1
2 (R̂

g
re −Rg

re)
2. However, to train the diffusion

model with learned reverse process covariance, the full KL divergence term needs to be optimized.
We follow diffusion models approach (Dhariwal and Nichol, 2021): train first with Lsimple(θ), then
with the full L. Once p is trained, new token can be sampled by initializing Rg

re ∼N(0, I) and sampling
Rg−1

re ∼ p(Rg−1
re |Rg

re) using the reparameterization trick.

Overall, tokens Rm processed in the initial stage as Rre are passed to a series of transformer blocks for
further refinement. These blocks effectively capture the relationships between trajectory information
and tokens. Regarding noisy image input processing, the diffusion transformer employs specific
attention mechanisms and loss functions to minimize the impact of noise on model performance,
ensuring robust operation in noisy environments. To incorporate trajectory labels Tr and denoising
time steps νd as additional control conditions, we feed them as supplementary inputs alongside token
embeddings into the transformer blocks. This enables the model to dynamically adjust its processing
based on these conditions, thereby better adapting to various trajectory control requirements. In the
end, the trained diffusion-based world model successfully transforms pure noise and trajectory labels
Tr into To ∈ RB×c×h×w×t , which are eventually decoded into Ro through the 3D decoder.

4 EXPERIMENTS

As the first 4D occupancy world model in the field of autonomous driving, OccSora offers a deeper
understanding of the relationship between autonomous driving scenes and vehicle trajectories without
requiring any input of 3D bounding boxes, maps, or historical information. It can construct a long-
time sequence world model that adheres to physical laws. We have conducted a series of quantitative
experiments and visualizations to illustrate this.

4.1 IMPLEMENTATION DETAILS

Our experiments are conducted on the widely used nuScenes-Occupancy dataset (Caesar et al.,
2020), which is currently one of the most mainstream and standard datasets, supporting many well-
known research studies (Hu et al., 2023b; Wang et al., 2023c). For the OccSora-Base network, we
applied three rounds of compression to 32 consecutive frames and increased its channel dimension
to 128. Subsequently, we conducted further comparative and ablation experiments under different
components and trajectory scenarios. We trained using the AdamW optimizer with an initial learning
rate set to 1×10−5 and a weight decay of 0.01. Using 8 NVIDIA GeForce A100 GPUs, we set a
batch size of 2 per GPU. For the training of the 4D occupancy scene tokenizer, we needed about
42GB of memory per GPU to train for 150 epochs, which took 50.6 hours. For the diffusion-based
world model, we needed about 47GB of memory per GPU to train for 1,200,000 steps, which took
108 hours. We used the Fréchet distance between the spatial-temporal latent representations, referred
to as FOD, as the evaluation metric for the generation.

4.2 4D OCCUPANCY RECONSTRUCTION

The compression and reconstruction of 4D occupancy are essential for learning the latent spatiotempo-
ral correlations and features necessary for image generation. Unlike traditional models for video and
image processing, OccSora operates one dimension higher than occupancy maps for single frames
and two dimensions higher than images. Therefore, achieving efficient compression and accurate
reconstruction is paramount. Figure 5 depicts the ground truth and reconstruction of the occupancy.
We also conducted a quantitative analysis of 4D occupancy reconstruction. OccSora outperforms
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Figure 5: Visualization of reconstruction of the 4D occupancy scene tokenizer. OccSora outper-
forms OccWorld under the same compression conditions, whether at a high compression ratio of
512x or a low compression ratio of 16x.
Table 1: The quantitative analysis of 4D occupancy reconstruction. We compressed OccSora and
OccWorld at a 16x compression ratio (input dimensions: 200x200x6, output dimensions: 50x50x6)
and at a 512x compression ratio (input dimensions: 200x200x32, output dimensions: 25x25x4). In
terms of both the high compression ratio of 512x and the low compression ratio of 16x, the quantitative
results of OccSora outperform those of OccWorld under the same compression conditions.
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OccWorld 16 62.2 65.7 45.0 72.2 69.6 68.2 69.4 44.4 70.7 74.8 67.6 54.1 65.4 82.7 78.4 69.7 66.4 52.8 43.7
OccSora 16 71.9 69.0 47.7 73.5 62.8 79.6 72.2 50.1 73.7 78.9 41.7 63.8 73.8 84.4 83.6 77.3 75.6 54.1 48.5
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Base
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Figure 6: The visualization of the gradual generation of accurate scenes sequence as the model
undergoes iterative training.
the existing method (OccWorld (Zheng et al., 2023)) by a large margin under both high and low
compression rates. This is because OccSora further considers temporal interactions for 4D occupancy
reconstruction, which is important in the autonomous driving scenario, as shown in Table 1.

4.3 4D OCCUPANCY GENERATION

In the diffusion-based world model for the 4D occupancy generation task, we used tokens generated
by the OccSora model, trained with 32 frames, as input for our generation experiments. In Figure
6, we present the visual results of across training iterations, from 10,000 to 1,200,000 steps. These
visual results indicate that as the number of training iterations increases, the accuracy of the OccSora
model continuously improves, demonstrating the generation of coherent scenes.

Trajectory Video Generation. OccSora has the capability to generate various dynamic scenes based
on different input trajectories, thus learning the relationship between ego vehicle trajectories and
scene evolution in autonomous driving. As shown in Figure 7, we input different vehicle trajectory
motion patterns into the model, demonstrating the 4D occupancy for go straight, turning right, and
motionless. We conducted experiments at different scales for generating trajectories, revealing that
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Figure 7: 4D occupancy generation under different input trajectories. From top to bottom, there is
go straight, turning right, and motionless, with each scene generation corresponding to the trajectory,
ensuring logical coherence and continuity.
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Figure 8: Generating diverse continuous scenes under trajectory control. The generated scenes
exhibit diversity while maintaining the stability of the original trajectory control.

Table 2: Results of ablative evaluation on different components. We quantitatively evaluated the
impact of different compression rates, components, and channel dimensions on the reconstruction
and generation results through controlled variables.

Input Size Token Size Channel Class way. embed. Trajectory IoU mIoU FOD

32x200x200 128x4x25x25 8 ✓ ✓ ✓ 37.03 27.42 8.34
32x200x200 128x4x25x25 8 ✓ ✗ ✓ 37.03 27.42 87.26
32x200x200 128x4x25x25 8 ✓ ✓ ✗ 37.03 27.42 17.48
32x200x200 128x4x25x25 4 ✓ ✓ ✓ 29.67 23.21 34.24
32x200x200 128x8x50x50 8 ✓ ✓ ✓ 32.91 24.4 72.32
12x200x200 64x3x50x50 8 ✓ ✓ ✓ 26.73 14.12 187.78
12x200x200 64x3x25x25 8 ✓ ✓ ✓ 22.423 9.274 270.23
12x200x200 32x3x25x25 8 ✓ ✓ ✓ 13.595 3.847 465.18

the FOD score is lowest for stationary scenes and higher for curved scene, indicating the complexity
of continuously modeling curved motion scenes and the simplicity of modeling stationary scenes.

Scene Video Generation. Diversity in scenes is crucial under reasonable trajectory control. We
tested the reconstruction of 4D occupancy scenes for different scenarios under three trajectories to
verify the generalization performance of generating scenes under controllable trajectories. In Figure
8, the left and right parts respectively demonstrate the capability to generate different scenes under
the same trajectory. In the reconstructed scenes, surrounding trees and road environments exhibit
random variations while still maintaining the logic of the original trajectory, showcasing the model’s
ability to maintain robustness in generating scenes corresponding to the original trajectory amidst its
generalization across different scenarios.

4.4 ABLATION AND ANALYSIS

Analysis of the Tokenizer and Embeddings. We conducted an ablation of the proposed components
including different compression scales, the number of class tokenizer discretizations, waypoint embed-
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10 % 30 % 50 % 70 % 90 % 100 %

Go Straight
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Go Straight

100 Step

Motionless

100 Step

Figure 9: The denoising ratios under different trajectories or denoising steps. Denoising steps
and trajectories have a minor impact on the quality of generation, while denoising ratios have a
significant effect.

Table 3: The quantitative analysis of different scales regarding denoising steps and denoising
rates. Denoising steps have a relatively minor impact on the model, whereas denoising rates and
model scales significantly affect the quality of the generated outputs.

Step Input Size Token Size FOD
10% 30% 50% 70% 90% 100%

10 32x200x200 128x4x25x25 49863 34927 17630 339 42 9.1
100 32x200x200 128x4x25x25 53297 29521 19471 1084 72 10.08
1000 32x200x200 128x4x25x25 32171 10284 5924 591 17 8.94

10 12x200x200 64x3x50x50 71293 54625 5644 7416 742 431
100 12x200x200 64x3x50x50 81274 53431 45346 3161 456 446
1000 12x200x200 64x3x50x50 43631 33415 17431 4366 379 353

dings, and vehicle trajectory embeddings, as shown in Table 2. When the number of class tokenizer
discretizations was reduced from 8 to 4, the reconstruction accuracy dropped by approximately 18%.
The FOD score also declined after removing the waypoint embeddings. Without position embeddings,
the generated scenes lacked motion control and displayed almost linear movement patterns influenced
by the data distribution. Additionally, at lower compression ratios, although the reconstruction per-
formance was better compared to higher compression ratios, the lack of higher-dimensional feature
correlations prevented the generation of effective scenes.
Analysis of the Generation Steps. The total number of denoising steps and the denoising rate can
affect the generation quality to some extent. As shown in Figure 9, as the denoising rate increases,
the generated scenes become progressively clearer. According to the quantitative results in Table 3,
increasing the total number of denoising steps can improve generation accuracy to a certain extent.
However, the generation quality is much more significantly influenced by the model’s token size and
the number of channels than by the total number of denoising steps.

Analysis of the 4D occupancy Reconstruction. To understand the effectiveness of temporal
modeling, we further conduct ablation experiments on OccSora with different compression strategies.
We analyze the effect of different compression ratios. We observe that the reconstruction performance
generally improves as the compression ratio decreases. This is reasonable since a lower compression
rate results in less information loss yet poses more challenges (e.g., taking up more memory)
for generation. We therefore select the largest compression rate (512) for long occupancy video
generation, as shown in Table 4. This unified temporal compression effectively captures the dynamic
changes of various elements, improving long-sequence modeling capabilities compared to progressive
autoregressive methods.

Analysis of the 4D occupancy prediction. We compared and quantitatively evaluated our proposed
OccSora model against other models. We follow existing methods to employ a history of 2 seconds
to predict occupancy for the upcoming 3 seconds. We compare OccSora with existing methods
including 4D OCC (Khurana et al., 2023), Copilot4D (Zhang et al., 2023a), and OccWorld (Zheng
et al., 2023) and report mIoU and IoU at different time stamps in the Table 5. We also provide
visualizations in Figure 10. We observe major improvements of our OccSora over existing methods,
demonstrating the superiority of spatial-temporal 4D occupancy modeling and diffusion-based future
generation.
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Table 4: The quantitative analysis of 4D occupancy reconstruction of different compression
ratios. We conducted an ablation study on the reconstruction performance of OccSora under different
compression ratios, gradually increasing from a lower compression ratio (16x) to a higher ratio (512x).
The quantitative results show that as the compression ratio increases, the reconstruction performance
gradually decreases.
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OccSora 16 71.9 69.0 47.7 73.5 62.8 79.6 72.2 50.1 73.7 78.9 41.7 63.8 73.8 84.4 83.6 77.3 75.6 54.1 48.5
OccSora 32 65.6 69.4 57.6 72.4 75.4 71.1 70.5 53.1 76.0 79.2 78.8 59.9 68.6 84.6 81.2 73.0 69.5 56.1 48.8
OccSora 64 54.5 39.6 26.4 34.8 0.0 57.9 50.0 41.5 18.7 35.0 8.1 27.9 51.6 69.7 63.2 59.1 53.1 27.0 33.2
OccSora 128 45.8 29.9 15.7 23.9 0.0 47.0 39.1 34.0 0.0 15.3 0.4 24.0 43.3 47.2 46.7 45.7 41.4 19.6 28.5
OccSora 256 40.9 27.1 22.9 29.8 0.0 50.5 44.1 38.4 0.0 17.2 0.1 19.6 47.4 42.0 42.7 51.5 47.0 24.9 30.8
OccSora 512 37.0 27.4 11.7 22.6 0.0 34.6 29.0 16.6 8.7 11.5 3.5 20.1 29.0 61.3 38.7 36.5 31.1 12.0 18.4

Table 5: The comparison of OccSora with other models focuses on occupancy prediction using
historical occupancy as a condition for future generations. Following existing methods. We set
the compression ratio to match the OccWorld configuration (processing each frame separately and
compressing from 200x200 to 50x50) and employ a 2-second history to predict occupancy for the
following 3 seconds. Quantitative results show that OccSora outperforms other models.

Method Input mIoU (%) IoU (%)
0s 1s 2s 3s Avg. 0s 1s 2s 3s Avg.

4D OCC 4D-Occ 66.38 15.66 11.85 8.78 12.10 62.29 26.79 20.88 17.93 21.87
Copilot4D 4D-Occ 66.38 20.32 13.56 9.34 14.41 62.29 29.45 22.57 18.28 23.43
OccWorld 4D-Occ 66.38 25.78 15.14 10.51 17.14 62.29 34.63 25.07 20.18 26.63
OccSora 4D-Occ 66.97 32.77 22.04 14.40 23.07 68.78 41.39 33.68 29.97 35.01

OccSora

Scene 1

OccSora

Scene 2

OccSora

Scene 3

T=0.5s T=1s T=1.5s T=2s

T=0.5s

T=0.5s

T=1s

T=1s

T=1.5s

T=1.5s

T=2s

T=2s

T=3s

T=3s

T=3s

Figure 10: Prediction results of OccSora by using past frames as conditions. We follow existing
methods to employ a history of 2 seconds to predict occupancy for the upcoming 3 seconds.

5 CONCLUSION AND LIMITATIONS

In this paper, we have introduced a framework for generating 4D occupancy to simulate 3D world
development in autonomous driving. Using a 4D scene tokenizer, we obtain compact representations
for input and achieve high-quality reconstruction for long-sequence occupancy videos. Then, we learn
a diffusion transformer on the spatiotemporal representations and generate 4D occupancy conditioned
on a trajectory prompt. Through experiments on the nuScenes dataset, we demonstrate accurate scene
evolution. In the future, we will investigate more refined 4D occupancy world models and explore
the possibilities of end-to-end autonomous driving under closed-loop data environments.

Limitations. The advantage of a 4D occupancy world model lies in its ability to establish an
understanding of the relationship between scenes and motion. However, due to limitations in the
granularity of voxel data within the dataset, constructing more finely detailed 4D scenes is not feasible.
Moreover, using the real-world occupancy of the first frame to explore long-term 4D occupancy
prediction tasks with controllable trajectories is an important direction for future research.
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8 APPENDIX

8.1 TRAINING DETAILS

In Table 6, we provide detailed information about each step of our OccSora-Base model. The bolded
sections indicate the dimensions of the model’s intermediate outputs at the 4D occupancy scene
tokenizer stage and the inputs and generated outputs of the diffusion-based world model. Similarly,
for OccSora-Small and OccSora-Tiny, we also present the model’s input and compression sizes, as
shown in Table 7. Additionally, the reconstruction accuracy at each frame is also displayed in Table
8.

Table 6: Basic structure of the OccSora-Base network. The OccSora-Base network illustrates the
design and dimensional changes of critical steps in two stages. The bolded sections indicate the flow
of tokens from the intermediate 4D occupancy scene tokenizer stage into the diffusion-based world
model, and the output of the diffusion-based world model feeding back into the 4D occupancy scene
tokenizer stage.

Model Step Input dimension Layer Output dimension

OccSora-Base First Step 32x200x200x16 Class Embedding 32x200x200x16x8
OccSora-Base First Step (16x8)x32x200x200 3D Encoder Down Sample 1 256x100x100x16
OccSora-Base First Step 256x100x100x16 3D Encoder Down Sample 2 256x50x50x8
OccSora-Base First Step 256x50x50x8 3D Encoder Down Sample 3 512x25x25x4
OccSora-Base First Step 512x25x25x4 3D Encoder Attention 256x25x25x4
OccSora-Base First Step 256x25x25x4 3D Encoder Attention 128x25x25x4
OccSora-Base First Step 128x25x25x4 3D Decoder Up Sample 1 256x50x50x8
OccSora-Base First Step 256x50x50x8 3D Decoder Up Sample 2 256x100x100x16
OccSora-Base First Step 256x100x100x16 3D Decoder Up Sample 3 128x200x200x32
OccSora-Base First Step 128x200x200x32 Reshape Out 32x200x200x16x8
OccSora-Base Second Step 128x25x25x4 Reshape 128x2500
OccSora-Base Second Step 128x2500 Pos Embedding 128x2500
OccSora-Base Second Step-Other 32x2 MLP 128x2500
OccSora-Base Second Step-Other Time Embedding 128x2500
OccSora-Base Second Step-Fuse 128x2500 Fuse 128x2500
OccSora-Base Second Step 128x2500 DiT(FN-Attention) 128x2500
OccSora-Base Second Step 128x2500 Reshape 128x25x25x4

Table 7: Three different SoraOcc network structures and their compression dimensions. In
OccSora-base, we present the model with the best performance, featuring 32 frames and 128 layers
of channels. On the other hand, OccSora-Small and OccSora-Tiny showcase models with 12 frames
and channel sizes of 64 and 32 layers, respectively.

Method Step Original size Token size Reshape size

OccSora-Base First Step 32x200x200 128x4x25x25 -
OccSora-Small First Step 12x200x200 64x3x25x25 -
OccSora-Tiny First Step 12x200x200 32x3x25x25 -
OccSora-Base Second Step - 128x4x25x25 128x2500
OccSora-Small Second Step - 64x3x25x25 128x1875
OccSora-Tiny Second Step - 32x3x25x25 128x1875

Table 8: The scene reconstruction capabilities of OccSora models across various frames. We
demonstrate the accuracy of three OccSora models in reconstruction tasks across different frames.

Method Metric Original size Token size Type 0S 1S 2S 3S 4S 5S 6S 7S 8S 9S

OccSora-Base IoU 12x200x200 64x3x25x25 3D 32.9 37.0 37.4 35.4 36.0 37.4 37.8 35.9 36.1 37.3
OccSora-Small IoU 32x200x200 128x4x25x25 3D 22.4 26.1 27.8 28.7 29.3 28.8 27.0 25.8 26.2 27.5
OccSora-Tiny IoU 12x200x200 32x3x25x25 3D 13.5 14.8 15.8 16.6 17.4 18.0 18.1 18.3 18.4 18.5

OccSora-Base mIoU 12x200x200 64x3x25x25 3D 23.0 27.4 27.3 25.3 25.8 27.7 27.2 25.4 25.6 27.4
OccSora-Small mIoU 32x200x200 128x4x25x25 3D 9.2 11.2 13.3 14.4 15.2 14.2 12.4 11.4 11.6 12.3
OccSora-Tiny mIoU 12x200x200 32x3x25x25 3D 3.8 4.3 4.7 5.1 5.4 5.6 5.6 5.6 5.6 5.6
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T=16s (32 Frame)

FID=8.358

T=20s (40 Frame)

FID=8.472

Figure 11: Visualizations of generating longer sequences(20seconds). Scenes with a full duration
of 20 seconds were selected for training to demonstrate the model’s ability to generate extended 4D
occupancy. The model produces consistent high-quality scenes with a comparable FOD score.

Table 9: Performance of OccSora on the Occ3D-Waymo. We tested the proposed algorithm on
the Occ3D-Waymo, where (CRLO) represents the categories of curb, road, lane marker, and other
ground.
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OccSora-waymo 16 71.2 65.6 79.8 70.4 57.0 69.2 57.1 58.2 55.4 61.4 65.7 83.6 52.1 47.3 86.6 79.1 78.9 49.2
OccSora-waymo 512 71.2 65.6 79.8 70.4 57.0 69.2 57.1 58.1 55.2 61.4 65.4 83.6 52.1 47.8 86.5 79.1 78.9 49.2

T0 T1 T2 T3 T4 T5

Ground Truth

Reconstruction

16

T0 T1 T2 T3 T4 T5

Reconstruction

512

T0 T1 T2 T3 T4 T5

Figure 12: Figure shows the visualization results of our model’s predictions on the Occ3D-
Waymo. From top to bottom, the rows represent the ground truth, predictions under 16x compression,
and predictions under 512x compression, all conducted under the same experimental conditions as
OccSora.

8.2 GENERATING LONGER SEQUENCES

Our framework can readily generalize to longer sequences by modifying the input size of the 4D
occupancy scene tokenizer. We selected 16 seconds due to the limitations of the nuScenes data.
We have selected scenes with the full length of 20 seconds for training to demonstrate our model’s
ability to generate longer 4D occupancy, as shown in Figure 11. We see that our model still generates
consistent scenes with high quality and comparable FOD. We will test our model on longer sequences
like 40 seconds with newly released data.
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Table 10: Prediction comparison between the autoregressive and diffusion-based methods. It can
be observed that the autoregressive method experiences an increase in inference time as the number
of frames grows, while the generative model maintains consistent inference time due to its parallel
processing capability. This highlights the temporal efficiency advantage of OccSora, particularly for
long-sequence generation tasks.

Model 1 Frame 8 Frames 16 Frames 32 Frames
OccWorld 27 ms 220 ms 431 ms 855 ms
OccSora 49 ms 52 ms 51 ms 57 ms

Table 11: The experimental settings and their corresponding mIoU values are summarized. It
shows how the input size, model size, and mIoU change with the number of frames under a fixed
compression ratio and sampling iterations.

Frame Sampling Compression Input Model mIoU
Iterations Ratio Size Size (%)

1 50 64 200x200x1 25x25x1 33.96
8 50 64 200x200x8 25x25x8 19.71

16 50 64 200x200x16 25x25x16 13.68
32 50 64 200x200x32 25x25x32 8.42

8.3 GENERALIZATION ACROSS OCC3D-WAYMOS

To analyze the differences in model performance across different datasets, we conducted training
and testing on the Occ3D-Waymo (Tian et al., 2024), with visualization results shown in Figure 12.
The quantitative results in Table 9 demonstrate the model’s high accuracy on the Occ3D-Waymo,
showcasing its robustness and adaptability.

8.4 TEMPORAL-SPATIAL EFFICIENCY ANALYSIS

OccSora operates as a diffusion-based generative framework and OccWorld functions as an au-
toregressive approach; the two exhibit substantial differences in generation efficiency. OccWorld
generates data sequentially for each timestep, resulting in a total generation time of TAR = T · tAR
with a time complexity of O(T ), implying that generation time increases linearly with the sequence
length T . In contrast, OccSora generates the entire sequence in parallel through denoising steps,
with a total generation time of TGM = N · tGM and a time complexity of O(1). Here, the number of
denoising steps N is typically much smaller than T . As a result, when T ≫ N, OccSora demonstrates
significantly higher temporal efficiency than OccWorld, especially in tasks requiring long-sequence
generation. Quantitative analyses are provided in Table 10. Additionally, considering that the test time
varies depending on the experimental setup, we provide detailed explanations of the experimental
configurations in Table 11. This includes the number of sampling iterations, compression ratio, input
dimensions, model dimensions, and evaluation metrics.

8.5 PREDICTION COMPARISON WITH OCCWORLD

We present a visual comparison of OccSora and OccWorld on the prediction task, as shown in Figure
13. From top to bottom, the figure displays the ground truth followed by the prediction results of the
two models.

8.6 DIVERSE DATA BALANCING

We separated the straight-driving and turning trajectories in the NuScenes dataset (Caesar et al.,
2020)and balanced the data volumes between the two categories. The visualization 14 demonstrate
that using the balanced dataset leads to improved performance in predicting steering trajectories.
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OccSora

OccWorld

Ground Truth

OccSora

OccWorld

Ground Truth

OccSora

OccWorld

Ground Truth

Figure 13: Provides a visual comparison between OccSora and OccWorld on the prediction
task. From top to bottom, show the ground truth and the prediction results of the two models. The
visualization highlights the differences in the predictive capabilities of each method under the same
experimental conditions.

T0 T1 T2 T3 T4 T5

OccSora 

Before data balance

T6

T0 T1 T2 T3 T4 T5

OccSora 

After data balance

T6

Figure 14: The difference in generation quality before and after balancing the dataset. The
improved quality of the generated trajectories demonstrates the effectiveness of the balanced dataset
in enhancing model performance.

8.7 QUANTIZERS ABLATION STUDY

To explore the relationship between quantizers, a codebook in the tokenizer, and the continuous
compression model, we conducted an ablation study. In the VAE experiments, we removed the VQ
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T0 T1 T2 T3 T4 T5

Ground Truth

Reconstruction

OccWorld

Ratio=512

Reconstruction

OccSora

Ratio=512

Reconstruction

OccSora with 

VAE

Ratio=512

Figure 15: The visualization results of the VAE experiment after removing the VQ and codebook.
The image demonstrates the effectiveness of the approach in reconstructing 4D Occupancy, with
visual comparisons showing its performance.

Table 12: The table presents the quantitative results of the VAE experiment, highlighting the
performance of the approach in reconstructing 4D Occupancy. The numerical values indicate the
accuracy and effectiveness of the method under the experimental conditions.
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OccWorld 512 22.4 8.2 2.0 12.1 0.0 4.4 3.9 0.3 0.0 0.5 1.2 0.3 2.2 48.8 19.3 20.2 17.6 4.0 4.3
OccSora 512 37.0 27.4 11.7 22.6 0.0 34.6 29.0 16.6 8.7 11.5 3.5 20.1 29.0 61.3 38.7 36.5 31.1 12.0 18.4
OccSora-VAE 512 43.8 31.7 15.7 37.2 13.4 46.4 37.4 23.9 26.8 20.9 6.4 27.3 37.1 69.0 46.9 45.2 41.0 21.3 23.9

and codebook, and performed experiments under the same conditions. The visualization results are
shown in Figure 15, and the quantitative results are presented in Table 12. The results demonstrate
that both approaches effectively reconstruct 4D Occupancy.

8.8 OCCSORA MODEL VISUALIZATION

To provide results for longer time series, we comprehensively present the generated scenes under
different ego vehicle trajectory controls, namely Go Straight, Turning Right, Motionless, and Ac-
celerate, as depicted in Figure 17. Additionally, we also showcase the equivalent control methods
under different scenes in Figure 16. Furthermore, dynamic demonstrations are available in the
accompanying video.
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Generation the Long 4D Occupancy of OccSora (Scene 2)

Go Straight 

Turning Right

Motionless

Accelerate

Figure 16: The generalization ability to generate different scenes under fixed ego vehicle
trajectories. From top to bottom, we respectively showcase the capabilities of generating different
scenes under the four vehicle trajectories: Go Straight, Turning Right, Motionless, and Accelerate.
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Generation the Long 4D Occupancy of OccSora (Scene 1)

Go Straight 

Turning Right

Motionless

Accelerate

Figure 17: The ability to generate long time-series 4D occupancy under different trajectory
controls. From top to bottom, we present long-term continuous scenes generated under four types of
ego vehicle trajectories: Go Straight, Turning Right, Motionless, and Accelerate.
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