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Abstract
Symbolic music is represented in two dis-001
tinct forms: two-dimensional, visually intuitive002
score images, and one-dimensional, standard-003
ized text annotation sequences. While large004
language models have shown extraordinary po-005
tential in music, current research has primarily006
focused on unimodal symbol sequence text. Ex-007
isting general-domain visual language models008
still lack the ability of music notation under-009
standing. Recognizing this gap, we propose010
NOTA, the first large-scale comprehensive mul-011
timodal music notation dataset. It consists of012
1,019,237 records, from 3 regions of the world,013
and contains 3 tasks. Based on the dataset,014
we trained NotaGPT, a music notation visual015
large language model. Specifically, we involve016
a pre-alignment training phase for cross-modal017
alignment between the musical notes depicted018
in music score images and their textual repre-019
sentation in ABC notation. Subsequent training020
phases focus on foundational music informa-021
tion extraction, followed by training on music022
score notation analysis. Experimental results023
demonstrate that our NotaGPT-7B achieves sig-024
nificant improvement on music understanding,025
showcasing the effectiveness of NOTA and the026
training pipeline.027

1 Introduction028

Music is expressed primarily in two forms: au-029

ditory music and symbolic music. Symbolic mu-030

sic can be represented in two-dimensional space031

through scores that display notes, rhythms, and032

dynamics, thereby guiding performers on how to033

play the music. It can also be expressed through034

lines of text sequences, effectively linearizing the035

complexity of music for ease of computer process-036

ing and programmatic manipulation. The evolu-037

tion of Natural Language Processing (NLP) and038

multimodal interactions has provided valuable in-039

sights into the understanding and generation of040

music. With the advent of universal dialogue Mul-041

timodal Large Language Models (MLLMs) such042

as GPT-4(OpenAI, 2023), specialized models de- 043

signed for various professional domains (Dey et al., 044

2024; Baez and Saggion, 2023), including music 045

(e.g., MU-LLaMA (Liu et al., 2024)), have be- 046

gun to proliferate. However, these works have 047

only focused on the single modality of text, and 048

in order to interact with multiple modalities, some 049

MLLMs have been recently introduced. Neverthe- 050

less, these MLLM models mainly focus on the task 051

of multimodal information extraction in the general 052

domain, and rarely involve multimodal informa- 053

tion extraction in the music domain, let alone the 054

more advanced task of music notation understand- 055

ing. Most existing datasets focus on specific sym- 056

bols or audio (like ABC notation (Allwright, 2003), 057

MIDI (Ryu et al., 2024), WAV (Sturm, 2013), and 058

lyrics (Çano and Morisio, 2017)) and do not em- 059

phasize the visual modality, limiting their ability to 060

enable MLLMs to comprehensively understand mu- 061

sic notation, which is significantly important and 062

has the largest data volume. Visual representations 063

such as score images, which serve as a tangible 064

record of music, provide an intuitive understand- 065

ing and are crucial for professional music study. 066

These images not only encapsulate the entirety of 067

the score’s information but also visually delineate 068

its intricate structures. 069

To address the above limitations, we introduce 070

NOTA, the first and largest comprehensive dataset 071

designed to train and evaluate multimodal models 072

in music notation understanding. Spanning three 073

distinct global regions, NOTA encompasses over 074

1 million records of music scores. And it is struc- 075

tured around 3 pivotal tasks: music information 076

extraction, cross-modal alignment test, and mu- 077

sic notation analysis. These tasks cover various 078

aspects of music, including music theory, compo- 079

sition, genres, musical ontological elements, and 080

humanistic connotations. Our dataset is divided 081

into two main parts: the training dataset and the 082

test dataset. On the one hand, it provides train- 083
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Train Dataset

Alignment 28,125

Information Extraction
T (Tune Title) 161,633

K (Key) 161,633
L (Unit Note Length) 161,633

M (Meter) 161,633
C (Composer) 161,633
ABC notation 161,636

Analysis
Score Structure 150
Musical Style 300

Test Dataset

Region 9,150

Information Extraction
T (Tune Title) 1,851

K (Key) 1,851
L (Unit Note Length) 1,851

M (Meter) 1,851
C (Composer) 1,851
ABC notation 1,851

Analysis
Score Structure 300
Musical Style 400

Figure 1: Data distribution of NOTA dataset.

ing materials for researchers in the community to084

train their own multimodal music models. On the085

other hand, it enables the evaluation of existing086

multimodal models’ ability to understand music.087

Based on this dataset, we trained a 7B model,088

NotaGPT, capable of understanding music notation089

across multiple modalities, including visual modal-090

ities. This training process comprises a pre-training091

phase focused on cross-modal alignment between092

the visual symbols in the music scores and their093

textual symbolic counterparts. This is followed by094

more specialized training phases that aim at foun-095

dational music information extraction, and music096

notation analysis.097

Utilizing NOTA, we conducted comprehensive098

experiments on 17 mainstream multimodal large099

language models. Specifically, we input music100

score images and background information about101

the pieces, asking them to output basic informa-102

tion such as note lengths and key signatures or to103

perform analyses of the musical style and rhythm.104

Even the best-performing model, Gemini, achieved105

a music score information extraction rate of only106

33.34%. In contrast, our 7B model, trained on our107

dataset, achieved 67.84%. The experimental results108

demonstrate the limitations in model performance109

caused by the lack of multimodal music datasets110

and highlight the effectiveness of our NOTA dataset111

and our training pipeline.112

Our contribution can be summarized as follows:113

We introduced NOTA, the first and largest com-114

prehensive multimodal music notation understand-115

ing dataset. This dataset encompasses 1,019,237116

records from 3 distinct global regions and is ded-117

icated to 3 tasks, addressing the resource limita-118

tion available for multimodal music notation under-119

standing.120

2 Related Work 121

2.1 Multimodal Benchmark 122

In the fields of NLP and multimodal interactions, 123

traditional evaluation metrics predominantly focus 124

on assessing specific capabilities of a model within 125

singular task types(Goyal et al., 2017). For exam- 126

ple, the GLUE (General Language Understanding 127

Evaluation) (Sarlin et al., 2020) benchmark is a col- 128

lection of diverse natural language understanding 129

tasks designed to evaluate and advance the per- 130

formance of models on a wide range of language 131

comprehension challenges. These criteria either 132

provide more dimensions of assessment (Guha 133

et al., 2024; Sun et al., 2024)and advanced capa- 134

bilities or employ sophisticated evaluation mecha- 135

nisms (Wang et al., 2023; Valmeekam et al., 2024). 136

For instance, the C-Eval (Huang et al., 2024b) 137

benchmark addresses the gap in Chinese language 138

data. 139

The evolution of evaluation benchmarks in NLP 140

and multimodal fields has consequently influ- 141

enced the benchmarks used in music evaluation. 142

Presently, music evaluation metrics generally con- 143

centrate on distinct musical capabilities, such as 144

music generation (Agostinelli et al., 2023; Mele- 145

chovsky et al., 2023) and music information re- 146

trieval (Kong et al., 2020; Zhao and Guo, 2021). 147

Some initiatives, such as ChatMusician (Yuan et al., 148

2024), attempt to unify tasks in music generation 149

and comprehension, yet suffer from limited data 150

volumes. Despite the rapid development of mul- 151

timodal generative models, there is still a lack of 152

data and benchmarks that can effectively evaluate 153

the models’ capabilities in understanding visual 154

modality of music score images. 155
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Figure 2: The figure shows the three-phase training process for NotaGPT-7B.

2.2 Generative Models for Music156

Understanding and Generation157

With the advent of generative dialogue LLMs such158

as ChatGPT(OpenAI, 2022), alongside a series of159

universal dialogue MLLMs, specialized models de-160

signed for various professional domains (Li et al.,161

2024; Sun et al., 2022), including music (e.g., MU-162

LLaMA (Liu et al., 2024)), have begun to prolif-163

erate. As these MLLMs continue to evolve, music164

understanding capabilities have also been enhanced.165

For instance, current models like MusicAgent (Yu166

et al., 2023) and MusicLM (Agostinelli et al., 2023)167

have made remarkable progress in music compre-168

hension and generation abilities.169

Generative models for music understanding and170

generation can be broadly categorized into two171

modalities: audio music (Huang et al.; Copet et al.,172

2024) and symbolic music (Tian et al., 2024; Lu173

et al., 2023). The former predominantly incorpo-174

rates audio modalities into large language mod-175

els (Huang et al., 2024a) or employs diffusion mod-176

els (e.g., JEN-1 (Li et al., 2023) and MeLoDy (Lam177

et al., 2024)) to process the audio components of178

music; the latter typically converts symbolic mu-179

sic information into sequences for integration into180

large language models (Yuan et al., 2024; Geerlings181

and Merono-Penuela, 2020).182

The efficacy of these models hinges on pre-183

cise instruction fine-tuning and cross-modal align-184

ment (Geerlings and Merono-Penuela, 2020), utiliz-185

ing specific musical datasets. Nevertheless, current186

generative music LLMs lack the ability to under-187

stand images of music scores in the visual modality.188

2.3 Multimodal information extraction189

Multimodal information extraction first searches190

for alignment in the two modalities connects them191

together, and then performs information extraction.192

It can be divided into two main categories: visual 193

entity extraction and visual event extraction. In 194

MORE (He et al., 2023), the objective is to pre- 195

dict relations between objects and entities based on 196

both textual and image inputs. Visual event extrac- 197

tion can be further divided into situation recogni- 198

tion (Yatskar et al., 2016) and grounded situation 199

recognition (Pratt et al., 2020). With the develop- 200

ment of MLLMs, information extraction datasets 201

for different tasks have also evolved (Wan et al., 202

2021; Yuan et al., 2023). However, there is still a 203

lack of multimodal information extraction models 204

and datasets specifically for the music domain. 205

3 NOTA Dataset 206

Our dataset is collected around three tasks: mul- 207

timodal information extraction, multimodal align- 208

ment, and music notation analysis. We choose to 209

use ABC notation to represent music scores. ABC 210

notation encodes music into two parts: header and 211

body. The first header is the reference number and 212

the other headers are title T, time signature M, de- 213

fault note length L, key K, etc. The body mainly 214

includes notes, bar lines, and so on. 215

Multimodal Music Information Extraction In 216

this task, we collect a total of 1,185,761 data en- 217

tries. Multimodal information extraction is divided 218

into 6 subtasks: extracting ABC notation from cor- 219

responding images, and extracting specific infor- 220

mation from the ABC notation, including T (tune 221

title), K (key), L (unit note length), M (meter), and 222

C (composer). We obtained 193,484 data entries 223

from the ABC notation website, the vast major- 224

ity of which are directly downloaded, and a small 225

portion are scraped. After data cleaning, we only 226

keep the ABC files that could generate the correct 227

music score (we remove the original ABC file’s 228

comments, lyrics, and sequence numbers (X:)). We 229
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<ImageHere>The image represents a piecemusic score. 
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reserved in terms of dynamics. Starting from the 
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Figure 3: The left side of the figure shows an example of the information extraction task on the training dataset. The
right side on the figure shows an example of music analysis for the test dataset.

then transform ABC files into MusicXML files and230

use MuseScore4 to generate music score images231

from the MusicXML files. Afterward, we divide232

each data entry into 6 data entries corresponding to233

6 subtasks, resulting in 1,160,904 data entries.234

In order to test whether MLLMs have a special235

tendency towards certain regions, we additionally236

collect nearly 4000.krn files from the internet, sub-237

sequently use the humdrum toolkit to convert them238

into ABC files, then filter and convert them into239

MusicXML files, generate music score from Mu-240

sicXML files, and finally divide them into 6 ex-241

traction subtasks, obtaining a total of 24857 data242

entries with three regional labels: <China>, <Eu-243

rope>, and <America>.244

Each data sample includes the ABC notation245

information to extract, the corresponding music246

score images, the prompt used for extracting, and247

the gold answer. Data examples are in Figure 3.248

Cross-modal Alignment In this task, we obtain249

29,116 data entries. We highlight portions of the250

music score images, expecting that MLLMs can251

understand and extract the corresponding ABC no-252

tation content. Each music score image has 2 to253

4 highlighted sections. For a music score image254

Xv and its associated content Xc, we sample a255

question Xq, which asks to extract the specific con-256

tent of the image. With (Xv, Xc, Xq), we create a257

single-round instruction-following example:258

Human : < ImageHere > Xq Xv < STOP >259

Assistant : Xc < STOP > (1)260

Music Analysis This task includes analysis of261

score structure and musical styles. In terms of262

score structure analysis, it involves systematic anal- 263

ysis of various musical elements such as structure, 264

melody, harmony, tonality, rhythm, tempo, dynam- 265

ics, texture, etc. We integrate authoritative works 266

on domestic and international music notation anal- 267

ysis. We obtain 250 questions on score structure 268

analysis and 600 questions on musical style nota- 269

tion analysis. These questions cover the analysis of 270

classic works from different countries (Germany, 271

France, Italy, the UK, the United States, and so on) 272

and different historical periods (from the Baroque 273

period to the 20th century), involving various mu- 274

sical genres such as sonatas, symphonies, waltzes, 275

and operas. Each data entry contains title, com- 276

poser, the corresponding image, a description, and 277

an analysis or structural breakdown. 278

Our dataset is divided into a train dataset and a 279

test dataset. The train dataset has 998,976 samples, 280

and the test dataset has 20,961 samples. More 281

details are provided in Figure 1. 282

4 NotaGPT Training 283

We apply Mistral-7B (Jiang et al., 2023) as the base 284

large language model and CLIP (Radford et al., 285

2021) as the vision encoder. Using the same net- 286

work architecture as LLaVA (Liu et al., 2023a,b), 287

the text model and the visual coder are connected 288

through a linear projection layer. The model is first 289

pre-trained with generalized domain multimodal 290

datasets, which enables the model to understand im- 291

ages. Our music understanding training is mainly 292

in three stages: phonogram-image notation-text 293

alignment, music information extraction, and mu- 294

sic comprehension, as shown in Figure 2. 295
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Cross-modal Alignment At this stage, the pri-296

mary goal is to achieve feature alignment between297

the musical notes depicted in music scores images298

and their textual representation in abc notation. Ex-299

isting large vision models inherently lack this capa-300

bility, as their pre-training does not include content301

specifically aligned with this requirement. There-302

fore, we have undertaken training modifications to303

enhance our model’s performance. Specifically, we304

utilized the dataset introduced in section 3 to train305

the model. We have frozen the visual encoder and306

the language model components, focusing solely307

on training the two-layer MLP vision-language con-308

nector. This approach has enabled pre-alignment309

and endowed the model with the capability to rec-310

ognize musical notes accurately.311

Music Information Extraction Next, train the312

model to recognize the basic structure of music313

compositions and to extract relevant musical knowl-314

edge from images. Utilizing the training dataset315

described in section 3, we conducted fine-tuning of316

the entire model parameters while freezing the vi-317

sual encoder component and training the remaining318

parts. Through this phase of training, the model’s319

capability to extract musical information has sig-320

nificantly improved. It is now able to recognize321

fundamental elements of music scores such as beat322

types, note lengths, and key signatures from music323

score images.324

Music Notation Analysis In the final phase, we325

further fine-tuned the model using supervised fine-326

tuning, thereby enhancing its capability to under-327

stand and generate music. This phase involved328

using the section 3 data to train the pre-trained pro-329

jectors and the language model with full parameter330

adjustments. Post-training, the model has devel-331

oped the ability to critically analyze music scores332

provided by users and perform complex tasks such333

as continuing a musical melody based on the pre-334

ceding tune.335

5 Experiments336

5.1 Experiment Setup337

Baselines We comprehensively assess 17338

MLLMs, including API-based models and open-339

source models. The API-based models contain340

GPT-4V (GPT-4Vision-preview) (OpenAI, 2023),341

and Gemini model released by Google (Team342

et al., 2023). The open-source models contain343

LLaVA (Liu et al., 2023a,b) series, VisualGLM (Du344

Model Levenshtein Distance

# Generative MLLM
VisualGLM-6B 643.72
CogAgent-Chat 730.65
DeepSeek-VL-1.3B-Chat 316.85
DeepSeek-VL-7B-Chat 308.27
InstructBLIP-Vicuna-7B 355.60
Yi-VL-6B 561.47
Yi-VL-34B 522.07
LLaVA-v1.5-7B 667.08
LLaVA-v1.5-13B 147.47
LLaVA-v1.6-Vicuna-7B 807.75
LLaVA-v1.6-Vicuna-13B 918.94
LLaVA-v1.6-34B 770.58
Qwen-VL 439.82
Qwen-VL-Chat 625.16

#Generative MLLM with api-token
Gemini-pro-vision 354.30
GPT-4V 655.45

# Our Models
NotaGPT-7B 59.47

Table 1: Music cross-modal alignment evaluation.
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Figure 4: Extraction capabilities comparing between
Gemini and NotaGPT-7B.

et al., 2022), Qwen-VL (Bai et al., 2023) series, 345

InternLM (Dong et al., 2024), InstructBLIP (Dai 346

et al., 2024), and Yi-VL (Young et al., 2024) series. 347

348

Training Details For pre-training, we utilized 349

the alignment section 3 data conducting training 10 350

epoch with a learning rate of 2e-4. For supervised 351

fine-tune training, we employed the train data in 352

section 3, training 3 epochs with a learning rate 353

of 2e-5 and a batch size of 32. All experiments 354

are conducted on 8×80GB NVIDIA A100 SXM 355

GPUs. 356

Evaluation Details The temperature parameter 357

was set to 0 to ensure deterministic output. For 358

each model, we performed 3 separate evaluations 359

using the GPT-4 API. The final score is determined 360

by averaging the results from these 3 assessments. 361
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Model Author Title K L M Avg
CogAgent-Chat-hf 15.98 75.43 9.94 2.36 21.11 24.97
Cogvlm-Chat-hf 10.31 65.77 7.02 0.22 20.63 20.79
VisualGLM-6B 0.05 5.32 32.78 0.00 29.27 11.24

DeepSeek-VL-1.3B-Chat 15.98 0.11 4.75 0.00 22.84 8.74
DeepSeek-VL-7B-Chat 30.89 0.11 10.04 11.72 28.46 16.24
InstructBLIP-Vicuna-7B 0.43 5.67 7.67 0.00 1.84 3.12

Yi-VL-6B 46.27 17.82 10.37 9.13 5.02 17.72
Yi-VL-34B 60.85 0.22 13.55 14.36 11.18 20.03

LLaVA-v1.5-7B 54.81 25.16 11.56 11.50 28.54 26.31
LLaVA-v1.5-13B 6.86 34.23 4.7 0.59 28.22 14.92

LLaVA-v1.6-Vicuna-7B 38.88 59.56 6.97 1.94 23.95 26.26
LLaVA-v1.6-Vicuna-13B 11.99 60.69 7.99 0.92 7.84 17.89

LLaVA-v1.6-34B 15.66 62.31 11.18 1.46 28.22 23.76
MiniCPM-Llama3-V2_5 27.59 77.70 11.56 9.72 23.65 25.04

Qwen-VL 78.24 11.72 17.82 14.74 17.12 27.93
Qwen-VL-Chat 72.08 0.38 13.44 14.36 16.25 23.30

Gemini-pro-vision 51.83 69.03 15.08 13.02 21.87 33.34
GPT-4V 82.24 77.95 11.02 1.35 27.54 33.33

NotaGPT-7B 75.00 15.44 80.45 85.26 83.08 67.84

Table 2: Evaluation results of music information extraction task from the training dataset.

5.2 Evaluation Metrics362

Closed-set tasks. (1) Such as multimodal music363

information extraction, performance is assessed364

using the weighted extraction rate. They are ques-365

tions with definitive answers such as music titles366

and note lengths. Given a response sequence R367

and an answer sequence A across a dataset of n368

queries, the overall success of the extractions can369

be defined as:370

Extraction Rate =

n∑
i=1

δ ([Ai ⊆ Ri], 1) (2)371

where δ(x, y) is the Kronecker delta function,372

which equals 1 if x = y and 0 otherwise. The373

condition [Ai ⊆ Ri] evaluates to 1 if the answer374

sequence Ai is contained within the response se-375

quence Ri, and 0 otherwise.376

(2) Regarding the task of converting images to377

abc notation text, we utilize the Levenshtein Dis-378

tance (Yujian and Bo, 2007) as evaluation metric. It379

refers to the minimum number of single-character380

operations required to transform model responses381

into answer sequence. Let D be a matrix of size382

(|R| + 1) × (|A| + 1), where D[i][j] denotes the383

minimum edit distance between the first i char-384

acters of R and the first j characters of A. The385

subsequent values of D are computed using the386

recurrence relation:387

D[i][j] = min

 D[i− 1][j] + 1 (delet)
D[i][j − 1] + 1 (insert)
D[i− 1][j − 1] + cost (substitute)

(3)388

where cost is 0 if the characters R[i − 1] and389

A[j − 1] are the same, and 1 otherwise.390

Open-set tasks. For notation analysis tasks with 391

open-ended answers, we used 2 type assessment: 392

(1)Calculating using metrics. Our metrics are 393

divided into two categories: semantic similar- 394

ity and word matching. For semantic similar- 395

ity, we use LSA, which measures the seman- 396

tic similarity of text by computing the cosine 397

similarity between vectors. For word matching, 398

we use ROUGE-1, ROUGE-L, and METEOR, 399

which respectively calculate the number of unigram 400

matches, longest common subsequence matches, 401

and synonym matches. 402

(2)Scoring using LLM as an evaluator. As ex- 403

isting studies (Zheng et al., 2023) demonstrated, 404

strong LLMs can be good evaluators. We com- 405

pare the analysis generated by NotaGPT-7B with 406

the analysis generated by other models, and have 407

GPT-4 (text model) evaluate the analysis from both 408

models. The evaluation considers both the music 409

itself and the music’s background. The evalua- 410

tion of the music itself includes aspects such as 411

musical language (melody, tonality, rhythm, musi- 412

cal terminology, etc.), technique application, and 413

composition style. The evaluation of the music’s 414

background includes considerations of the social, 415

historical, and cultural context, including the com- 416

poser’s milieu, the background of the composition, 417

and the ideology of the creation. 418

6 Results 419

Our experiment revolves around proving the effec- 420

tiveness of NOTA in promoting music understand- 421

6



Model LSA ROUGE-1 ROUGE-L METEOR Avg

InternVL-Chat-v1.5 14.96 19.71 13.32 19.68 16.92
InternVL-14B-224px 3.28 5.30 4.63 4.18 4.35

VisualGLM-6B 10.36 21.61 13.21 18.19 15.84
DeepSeek-VL-7B-base 9.92 16.43 11.60 13.81 12.94

InstructBLIP-Flan-T5-xl 9.38 20.91 15.28 14.57 15.04
InstructBLIP-Flan-T5-xxl 7.64 17.55 12.32 14.96 13.12
InstructBLIP-Vicuna-7B 8.28 22.23 14.93 16.74 15.55
InstructBLIP-Vicuna-13B 8.37 20.29 14.18 14.17 14.25
MiniCPM-Llama3-V2_5 16.26 20.72 13.36 20.83 17.79

Yi-VL-6B 11.77 18.66 13.04 15.84 14.83
Yi-VL-34B 12.47 19.44 13.20 17.18 15.57
Qwen-VL 9.58 15.21 10.37 12.56 11.93

Qwen-VL-Chat 9.66 16.80 11.37 14.42 13.06

Gemini-pro-vision 15.88 22.21 15.09 20.31 18.37
GPT-4V 14.03 18.49 11.36 19.94 15.96
GPT4o 15.92 18.27 11.35 20.26 16.45

NotaGPT-7B 12.46 22.63 15.53 18.34 17.24

Table 3: Comparisons of analysis and form Evaluation (%). Part 1: Open-source models; Part 2: API-based models.

ing. In order to enable the model to ultimately422

achieve music understanding, we have broken423

down the experiment into three sub-experiments:424

multimodal information extraction, score image425

recognition, and music analysis. Multimodal infor-426

mation extraction only extracts the basic elements427

from the score image, such as author information,428

title, T, K, L, M and C. Score image recognition429

builds upon the basic element extraction, further430

extracting the music score in ABC notation form.431

Music analysis then, based on the extracted mu-432

sic score, conducts understanding and analysis, in-433

cluding score structure analysis and musical style434

analysis.435

6.1 Music Information Extraction Evaluation436

General comparison The evaluation results are437

presented in Table 2. We report the average extrac-438

tion rate, with 23.53% of the models showing an439

effective precision lower than 10%. Additionally,440

58.82% of the models have an accuracy approxi-441

mately between 10% to 30% , and only 17.64%442

of the models achieve an accuracy exceeding 30%.443

Overall, NotaGPT-7B demonstrated the best perfor-444

mance among all the models evaluated, achieving445

an extracte rate of 67.84. These findings highlight446

the challenges of the NOTA test dataset.447

Comparative analysis Figure 4 illustrates the448

comparative performance of NotaGPT-7B and449

Gemini in several subcategories of an information450

extraction task. NotaGPT-7B significantly outper-451

forms Gemini in the tasks of Author, K, L, and452

M, demonstrating the effectiveness of the training453

data. NotaGPT-7B does not perform very well on 454

the title extraction task, and after analyzing it, we 455

found that it is because it mistakenly extracts author 456

information as title information. 457

After training with the NOTA dataset, models of 458

size 7B achieved substantial improvements in the 459

categories K, L, and M, where performance was 460

originally poor. These enhancements allowed them 461

to surpass models of the same size and even those 462

of larger sizes. 463

6.2 Music Cross-modal Alignment Evaluation 464

Table 1 presents the evaluation results. Overall, 465

while high precision in music information extrac- 466

tion benefits cross-modal tasks, the relationship 467

isn’t simply linear. NotaGPT-7B consistently per- 468

forms well, showcasing its strength in both extract- 469

ing and aligning musical information. In contrast, 470

while GPT-4V and Gemini-pro-vision score simi- 471

larly in extraction tasks (around 33.34), they differ 472

greatly in alignment accuracy, with Levenshtein 473

distances of 655.45 and 354.30, respectively, sug- 474

gesting that factors like model structure and opti- 475

mization strategies also influence performance. 476

6.3 Music Score Analysis Evaluation 477

Metric evaluation Since the model’s analysis 478

and the standard answer cannot be completely iden- 479

tical, we evaluate the strength of the model’s analy- 480

sis capability of the recognized music score from 481

the aspects of semantic similarity and word match- 482

ing. 483

From the results in Table 3, in terms of the LSA 484

metric, the performance of NotaGPT-7B is stronger 485
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Model A Type Musical styles Score Structures C-RateA win Tie B win A win Tie B win

InstructBLIP-Flan-T5-xxl w/ Info. 5.00 33.50 61.50 1.34 33.56 65.10 96.56
w/o Info. 5.50 39.00 55.50 1.34 26.84 71.81 96.27

InstructBLIP-Vicuna-7B w/ Info. 1.00 25.00 74.00 2.68 32.89 64.43 98.28
w/o Info. 1.50 36.00 62.50 2.01 28.86 69.12 98.28

InstructBLIP-Vicuna-13B w/ Info. 1.00 26.50 72.50 1.34 30.87 67.79 98.85
w/o Info. 2.00 35.00 63.00 0.13 23.48 75.17 98.28

InternVL-Chat-v1.5 w/ Info. 57.00 33.50 9.50 48.32 44.29 7.38 46.70
w/o Info. 35.00 49.00 16.00 26.84 55.70 17.44 68.48

Qwen-VL w/ Info. 24.50 45.00 30.50 16.11 39.60 44.30 79.08
w/o Info. 0.50 33.50 66.00 0.67 19.46 79.87 99.43

VisualGLM-6B w/ Info. 36.50 46.50 17.00 32.21 56.38 11.41 65.33
w/o Info. 14.00 46.50 39.50 11.40 40.93 47.65 34.67

Yi-VL-6B w/ Info. 36.00 40.50 23.50 30.20 49.66 20.14 66.47
w/o Info. 94.00 3.50 2.50 13.42 38.92 47.65 40.40

GPT-4V w/ Info. 69.50 25.00 5.50 55.70 33.56 10.74 36.39
w/o Info. 52.00 34.00 14.00 32.88 49.66 17.44 56.16

Table 4: Results of models generating music analysis, evaluated by GPT-4 (text model). Info. means music
background information, A win means in GPT-4’s view, model A’s response is better than model B’s as evaluated by
GPT-4; tie means the responses are equal; B win means model B’s response is better. C-Rate means comparable rate
between model B and model A.

0 10 20 30 40 50 60 70 80 90 100
Percentage

GPT-4V

Yi-VL-6B

VisualGLM-6B

Qwen-VL

InternVL-Chat-v1.5

InstructBLIP-Vicuna-13B

InstructBLIP-Vicuna-7B

InstructBLIP-Flan-T5-xxl

52.00% 34.00% 14.00%

94.00%

14.00% 46.50% 39.50%

33.50% 66.00%

35.00% 49.00% 16.00%

35.00% 63.00%

36.00% 62.50%

39.00% 55.50%

Different models V.S. NotaGPT-7B
A win
Tie
B win

Figure 5: Visualization of evaluation results (w/o Info.)
of all other models compared with our proposed No-
taGPT model under GPT-4V.

than most models, including some models with486

larger parameter sizes than 7B, only second to a few487

open-source models with larger parameter sizes, as488

well as API-based models. In the metric of word489

matching , NotaGPT-7B achieves SOTA perfor-490

mance on 2/3 of the metrics.491

NotaGPT-7B does not achieve the best perfor-492

mance on the LSA metric, on the one hand be-493

cause the parameter size of NotaGPT-7B is only494

7B, much smaller than the 25.5B of InternVL and495

the 34B of Yi-VL, which limits its capability; on496

the other hand, the base model of NotaGPT-7B497

does not use an instruction-tuned model like the498

Mistral-7B-Instruct series.499

The results demonstrate the effectiveness of500

the NOTA test dataset, allowing the parameter-501

limited model NotaGPT-7B, after pre-training on 502

the NOTA train dataset, to outperform models that 503

have not been trained on the NOTA dataset in mul- 504

timodal information extraction. 505

Analysis comparison Table 4 contains the com- 506

parison between analyses of different models, and 507

all the model B are NotaGPT-7B. Based on the re- 508

sults, the appreciation generated by NotaGPT-7B 509

is better or on par with 75% of the models. In com- 510

parison with most models, NotaGPT-7B’s win rate 511

is higher in the absence of music background infor- 512

mation than with music background information. 513

This performance can be attributed to NotaGPT- 514

7B’s training on a small set of music analysis data 515

samples, which has endowed it with the capability 516

to generally analyze musical scores and styles. It 517

performs commendably even in prompts that lack 518

background knowledge of the music piece. 519

7 Conclusion 520

In this study, we introduce NOTA, a large-scale 521

music understanding dataset encompassing 3 tasks 522

with over 1.1 million data entries. Based on 523

the NOTA train dataset, we trained NotaGPT-7B, 524

which demonstrates robust music notation under- 525

standing capability. We further assess 17 multi- 526

modal models’ capabilities in music understanding. 527

The results show the constraints that are caused by 528

the lack of multimodal music datasets, emphasizing 529

the significance of the NOTA dataset. 530
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Limitations531

Although NOTA makes substantial advancement in532

developing effective music understanding datasets,533

we are aware of typical limitations in MLLMs, in-534

cluding hallucinations and shallow reasoning. Our535

future efforts will focus on improving the fidelity536

and dependability of these models.537
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A Appendix 803

A.1 Social Impact 804

The Nota-Eval dataset contains music from multi- 805

ple regions and diverse cultural backgrounds. Not 806

understanding the cultural context of the music 807

may lead to misinterpretation of the music data, 808

such as misreading the meaning and emotional ex- 809

pression of the music, as well as misjudging the 810

characteristics and styles of the music. 811

A.2 Region-Level Evaluation 812

Table 5 presents the overall information extrac- 813

tion results for five information extraction tasks 814

across 3 different regions using various models on 815

our NOTA dataset. The experimental results indi- 816

cate that the GPT-4V model significantly outper- 817

forms other models in music information extraction 818

across different regions. For the five information 819

extraction tasks in the regions of China and Europe, 820

different models showed better performance com- 821

pared to the America region. Additionally, there 822

are noticeable differences in the information ex- 823

traction capabilities of different models across the 824

three regions. This suggests that different models 825

have distinct preferences for understanding music 826

from different regions, which may be related to the 827

distribution of training data in these multimodal 828

models. 829

A.3 Detailed Evaluation Metrics for Open-Set 830

Tasks 831

Latent Semantic Analysis (LSA) is a technique 832

in natural language processing and information re- 833

trieval that analyzes relationships between a set of 834

documents and the terms they contain by produc- 835

ing a set of concepts related to the documents and 836

terms. LSA assumes that words that are close in 837

meaning will appear in similar pieces of text. The 838

core idea involves constructing a term-document 839
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Model China America Europe Avg
InternVL-14B-224px 0.00 0.00 0.15 0.05
InternVL-Chat-V1.5 0.48 5.56 1.81 2.61

VisualGLM-6B 8.66 2.53 10.36 6.64
DeepSeek-VL-1.3B-base 7.51 0.64 8.09 5.03
DeepSeek-VL-7B-base 4.08 0.32 1.94 2.31

InstructBLIP-Flan-T5-xl 0.46 0.17 2.46 0.69
InstructBLIP-Flan-T5-xxl 1.03 0.00 5.24 1.36
InstructBLIP-Vicuna-7B 3.57 0.47 5.89 2.80
InstructBLIP-Vicuna-13B 1.08 0.12 2.65 0.98

Yi-VL-6B 0.14 0.03 0.19 0.11
Yi-VL-34B 0.14 0.12 0.32 0.16

MiniCPM-Llama3-V2_5 6.79 5.97 11.39 7.26
Qwen-VL 2.35 1.31 1.88 1.88

Qwen-VL-Chat 0.26 0.47 0.13 0.32
GPT-4V 16.19 12.31 11.27 13.90

Table 5: Comparisons with SoTA for region-level Evaluation
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Figure 7: Music analysis figure.

matrix, which is then decomposed using singular840

value decomposition (SVD). The semantic similar-841

ity between texts is often measured using the cosine842

similarity between their vector representations. Let843

A be the term-document matrix, then LSA involves844

the following computation:845

A ≈ UkΣkV
T
k846

where:847

• Uk represents the first k columns of U ,848

• Σk is the top k × k submatrix of Σ,849

• V T
k is the first k rows of V T .850

ROUGE-1 is a metric used to evaluate automatic851

summarization and machine translation software,852

focusing specifically on the overlap of unigrams853

(single words) between the system-generated sum-854

mary or translation and a set of reference sum-855

maries. The ROUGE-1 score is calculated by count-856

ing the number of unigrams in the generated text857

that match the unigrams in the reference text and 858

then normalizing this number by the total num- 859

ber of unigrams in the reference text, providing a 860

measure of recall. ROUGE-N is a metric for evalu- 861

ating text summarization and machine translation 862

quality by measuring the overlap of N-grams be- 863

tween system-generated summaries and reference 864

summaries. Specifically, ROUGE-1 is a variant 865

of ROUGE-N where N equals 1, meaning it calcu- 866

lates the overlap using unigrams (individual words). 867

ROUGE-1 focuses on assessing the recall of sin- 868

gle words, providing a basic measure of content 869

overlap and is widely used due to its simplicity and 870

effectiveness in capturing essential content accu- 871

racy. ROUGE-N can be represented as: 872

Rouge-N =

∑
S∈ReferenceSummaries

∑
gramn∈S Countmatch(gramn)∑

S∈ReferenceSummaries
∑

gramn∈S Count(gramn)
873

ROUGE-L measures the longest common sub- 874

sequence (LCS) between a system-generated sum- 875

mary or translation and a set of reference texts. It 876

12



is particularly useful for evaluating the fluency and877

the order of the text in summaries and translations.878

The LCS does not require consecutive matches but879

is a sequence where each word is in the same order880

in both texts. The score is computed by dividing881

the length of the LCS by the total length of the ref-882

erence sequence, providing insights into the overall883

text structure retention.It can be represented as:884

Rlcs =
LCS(X,Y )

m
885

886

Plcs =
LCS(X,Y )

n
887

888

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
889

METEOR, or the Metric for Evaluation of890

Translation with Explicit ORdering, is a metric891

for evaluating machine translation output by align-892

ing it to one or more reference translations. Unlike893

other metrics, METEOR accounts for exact word894

matches, synonymy, and stemming. It calculates895

scores based on the harmonic mean of precision896

and recall, weighted towards recall. The inclusion897

of synonyms and stemming allows METEOR to898

perform a more nuanced assessment of language899

use than simple exact matching. The METEOR900

score is calculated as follows:901

METEOR = Fmean × (1− Penalty)902

where:903

Fmean =
10 · P ·R
R+ 9 · P

904

905

Penalty = 0.5×
(

number of chunks
number of unigrams in candidate translation

)3
906

In these equations:907

• P is the precision,908

• R is the recall,909

• Chunks are contiguous sequences of words910

that are in the same order in both the candidate911

and the reference but are possibly interspersed912

with non-matching words.913
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