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Abstract

Symbolic music is represented in two dis-
tinct forms: two-dimensional, visually intuitive
score images, and one-dimensional, standard-
ized text annotation sequences. While large
language models have shown extraordinary po-
tential in music, current research has primarily
focused on unimodal symbol sequence text. Ex-
isting general-domain visual language models
still lack the ability of music notation under-
standing. Recognizing this gap, we propose
NOTA, the first large-scale comprehensive mul-
timodal music notation dataset. It consists of
1,019,237 records, from 3 regions of the world,
and contains 3 tasks. Based on the dataset,
we trained NotaGPT, a music notation visual
large language model. Specifically, we involve
a pre-alignment training phase for cross-modal
alignment between the musical notes depicted
in music score images and their textual repre-
sentation in ABC notation. Subsequent training
phases focus on foundational music informa-
tion extraction, followed by training on music
score notation analysis. Experimental results
demonstrate that our NotaGPT-7B achieves sig-
nificant improvement on music understanding,
showcasing the effectiveness of NOTA and the
training pipeline.

1 Introduction

Music is expressed primarily in two forms: au-
ditory music and symbolic music. Symbolic mu-
sic can be represented in two-dimensional space
through scores that display notes, rhythms, and
dynamics, thereby guiding performers on how to
play the music. It can also be expressed through
lines of text sequences, effectively linearizing the
complexity of music for ease of computer process-
ing and programmatic manipulation. The evolu-
tion of Natural Language Processing (NLP) and
multimodal interactions has provided valuable in-
sights into the understanding and generation of
music. With the advent of universal dialogue Mul-
timodal Large Language Models (MLLMs) such

as GPT-4(OpenAl, 2023), specialized models de-
signed for various professional domains (Dey et al.,
2024; Baez and Saggion, 2023), including music
(e.g., MU-LLaMA (Liu et al., 2024)), have be-
gun to proliferate. However, these works have
only focused on the single modality of text, and
in order to interact with multiple modalities, some
MLLMs have been recently introduced. Neverthe-
less, these MLLM models mainly focus on the task
of multimodal information extraction in the general
domain, and rarely involve multimodal informa-
tion extraction in the music domain, let alone the
more advanced task of music notation understand-
ing. Most existing datasets focus on specific sym-
bols or audio (like ABC notation (Allwright, 2003),
MIDI (Ryu et al., 2024), WAV (Sturm, 2013), and
lyrics (Cano and Morisio, 2017)) and do not em-
phasize the visual modality, limiting their ability to
enable MLLMs to comprehensively understand mu-
sic notation, which is significantly important and
has the largest data volume. Visual representations
such as score images, which serve as a tangible
record of music, provide an intuitive understand-
ing and are crucial for professional music study.
These images not only encapsulate the entirety of
the score’s information but also visually delineate
its intricate structures.

To address the above limitations, we introduce
NOTA, the first and largest comprehensive dataset
designed to train and evaluate multimodal models
in music notation understanding. Spanning three
distinct global regions, NOTA encompasses over
1 million records of music scores. And it is struc-
tured around 3 pivotal tasks: music information
extraction, cross-modal alignment test, and mu-
sic notation analysis. These tasks cover various
aspects of music, including music theory, compo-
sition, genres, musical ontological elements, and
humanistic connotations. Our dataset is divided
into two main parts: the training dataset and the
test dataset. On the one hand, it provides train-
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Figure 1: Data distribution of NOTA dataset.
ing materials for researchers in the community to 2 Related Work
train their own multimodal music models. On the
other hand, it enables the evaluation of existing
multimodal models’ ability to understand music. 2.1 Multimodal Benchmark

Based on this dataset, we trained a 7B model,
NotaGPT, capable of understanding music notation
across multiple modalities, including visual modal-
ities. This training process comprises a pre-training
phase focused on cross-modal alignment between
the visual symbols in the music scores and their
textual symbolic counterparts. This is followed by
more specialized training phases that aim at foun-
dational music information extraction, and music
notation analysis.

Utilizing NOTA, we conducted comprehensive
experiments on 17 mainstream multimodal large
language models. Specifically, we input music
score images and background information about
the pieces, asking them to output basic informa-
tion such as note lengths and key signatures or to
perform analyses of the musical style and rhythm.
Even the best-performing model, Gemini, achieved
a music score information extraction rate of only
33.34%. In contrast, our 7B model, trained on our
dataset, achieved 67.84%. The experimental results
demonstrate the limitations in model performance
caused by the lack of multimodal music datasets
and highlight the effectiveness of our NOTA dataset
and our training pipeline.

Our contribution can be summarized as follows:
We introduced NOTA, the first and largest com-
prehensive multimodal music notation understand-
ing dataset. This dataset encompasses 1,019,237
records from 3 distinct global regions and is ded-
icated to 3 tasks, addressing the resource limita-
tion available for multimodal music notation under-
standing.

In the fields of NLP and multimodal interactions,
traditional evaluation metrics predominantly focus
on assessing specific capabilities of a model within
singular task types(Goyal et al., 2017). For exam-
ple, the GLUE (General Language Understanding
Evaluation) (Sarlin et al., 2020) benchmark is a col-
lection of diverse natural language understanding
tasks designed to evaluate and advance the per-
formance of models on a wide range of language
comprehension challenges. These criteria either
provide more dimensions of assessment (Guha
et al., 2024; Sun et al., 2024)and advanced capa-
bilities or employ sophisticated evaluation mecha-
nisms (Wang et al., 2023; Valmeekam et al., 2024).
For instance, the C-Eval (Huang et al., 2024b)
benchmark addresses the gap in Chinese language
data.

The evolution of evaluation benchmarks in NLP
and multimodal fields has consequently influ-
enced the benchmarks used in music evaluation.
Presently, music evaluation metrics generally con-
centrate on distinct musical capabilities, such as
music generation (Agostinelli et al., 2023; Mele-
chovsky et al., 2023) and music information re-
trieval (Kong et al., 2020; Zhao and Guo, 2021).
Some initiatives, such as ChatMusician (Yuan et al.,
2024), attempt to unify tasks in music generation
and comprehension, yet suffer from limited data
volumes. Despite the rapid development of mul-
timodal generative models, there is still a lack of
data and benchmarks that can effectively evaluate
the models’ capabilities in understanding visual
modality of music score images.
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Figure 2: The figure shows the three-phase training process for NotaGPT-7B.

2.2 Generative Models for Music
Understanding and Generation

With the advent of generative dialogue LLMs such
as ChatGPT(OpenAl, 2022), alongside a series of
universal dialogue MLLMs, specialized models de-
signed for various professional domains (Li et al.,
2024; Sun et al., 2022), including music (e.g., MU-
LLaMA (Liu et al., 2024)), have begun to prolif-
erate. As these MLLMs continue to evolve, music
understanding capabilities have also been enhanced.
For instance, current models like MusicAgent (Yu
etal., 2023) and MusicLM (Agostinelli et al., 2023)
have made remarkable progress in music compre-
hension and generation abilities.

Generative models for music understanding and
generation can be broadly categorized into two
modalities: audio music (Huang et al.; Copet et al.,
2024) and symbolic music (Tian et al., 2024; Lu
et al., 2023). The former predominantly incorpo-
rates audio modalities into large language mod-
els (Huang et al., 2024a) or employs diffusion mod-
els (e.g., JEN-1 (Li et al., 2023) and MeLoDy (Lam
et al., 2024)) to process the audio components of
music; the latter typically converts symbolic mu-
sic information into sequences for integration into
large language models (Yuan et al., 2024; Geerlings
and Merono-Penuela, 2020).

The efficacy of these models hinges on pre-
cise instruction fine-tuning and cross-modal align-
ment (Geerlings and Merono-Penuela, 2020), utiliz-
ing specific musical datasets. Nevertheless, current
generative music LLMs lack the ability to under-
stand images of music scores in the visual modality.

2.3 Multimodal information extraction

Multimodal information extraction first searches
for alignment in the two modalities connects them
together, and then performs information extraction.

It can be divided into two main categories: visual
entity extraction and visual event extraction. In
MORE (He et al., 2023), the objective is to pre-
dict relations between objects and entities based on
both textual and image inputs. Visual event extrac-
tion can be further divided into situation recogni-
tion (Yatskar et al., 2016) and grounded situation
recognition (Pratt et al., 2020). With the develop-
ment of MLLMs, information extraction datasets
for different tasks have also evolved (Wan et al.,
2021; Yuan et al., 2023). However, there is still a
lack of multimodal information extraction models
and datasets specifically for the music domain.

3 NOTA Dataset

Our dataset is collected around three tasks: mul-
timodal information extraction, multimodal align-
ment, and music notation analysis. We choose to
use ABC notation to represent music scores. ABC
notation encodes music into two parts: header and
body. The first header is the reference number and
the other headers are title T, time signature M, de-
fault note length L, key K, etc. The body mainly
includes notes, bar lines, and so on.

Multimodal Music Information Extraction In
this task, we collect a total of 1,185,761 data en-
tries. Multimodal information extraction is divided
into 6 subtasks: extracting ABC notation from cor-
responding images, and extracting specific infor-
mation from the ABC notation, including T (tune
title), K (key), L (unit note length), M (meter), and
C (composer). We obtained 193,484 data entries
from the ABC notation website, the vast major-
ity of which are directly downloaded, and a small
portion are scraped. After data cleaning, we only
keep the ABC files that could generate the correct
music score (we remove the original ABC file’s
comments, lyrics, and sequence numbers (X:)). We
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then transform ABC files into MusicXML files and
use MuseScore4 to generate music score images
from the MusicXML files. Afterward, we divide
each data entry into 6 data entries corresponding to
6 subtasks, resulting in 1,160,904 data entries.

In order to test whether MLLMs have a special
tendency towards certain regions, we additionally
collect nearly 4000.krn files from the internet, sub-
sequently use the humdrum toolkit to convert them
into ABC files, then filter and convert them into
MusicXML files, generate music score from Mu-
sicXML files, and finally divide them into 6 ex-
traction subtasks, obtaining a total of 24857 data
entries with three regional labels: <China>, <Eu-
rope>, and <America>.

Each data sample includes the ABC notation
information to extract, the corresponding music
score images, the prompt used for extracting, and
the gold answer. Data examples are in Figure 3.

Cross-modal Alignment In this task, we obtain
29,116 data entries. We highlight portions of the
music score images, expecting that MLLMs can
understand and extract the corresponding ABC no-
tation content. Each music score image has 2 to
4 highlighted sections. For a music score image
X, and its associated content X,., we sample a
question X, which asks to extract the specific con-
tent of the image. With (X, X., X,), we create a
single-round instruction-following example:

Human : < ImageHere > X, X, < STOP >

Assistant : X, < STOP > (1)

Music Analysis This task includes analysis of
score structure and musical styles. In terms of

score structure analysis, it involves systematic anal-
ysis of various musical elements such as structure,
melody, harmony, tonality, thythm, tempo, dynam-
ics, texture, etc. We integrate authoritative works
on domestic and international music notation anal-
ysis. We obtain 250 questions on score structure
analysis and 600 questions on musical style nota-
tion analysis. These questions cover the analysis of
classic works from different countries (Germany,
France, Italy, the UK, the United States, and so on)
and different historical periods (from the Baroque
period to the 20th century), involving various mu-
sical genres such as sonatas, symphonies, waltzes,
and operas. Each data entry contains title, com-
poser, the corresponding image, a description, and
an analysis or structural breakdown.

Our dataset is divided into a train dataset and a
test dataset. The train dataset has 998,976 samples,
and the test dataset has 20,961 samples. More
details are provided in Figure 1.

4 NotaGPT Training

We apply Mistral-7B (Jiang et al., 2023) as the base
large language model and CLIP (Radford et al.,
2021) as the vision encoder. Using the same net-
work architecture as LLaVA (Liu et al., 2023a,b),
the text model and the visual coder are connected
through a linear projection layer. The model is first
pre-trained with generalized domain multimodal
datasets, which enables the model to understand im-
ages. Our music understanding training is mainly
in three stages: phonogram-image notation-text
alignment, music information extraction, and mu-
sic comprehension, as shown in Figure 2.



Cross-modal Alignment At this stage, the pri-
mary goal is to achieve feature alignment between
the musical notes depicted in music scores images
and their textual representation in abc notation. Ex-
isting large vision models inherently lack this capa-
bility, as their pre-training does not include content
specifically aligned with this requirement. There-
fore, we have undertaken training modifications to
enhance our model’s performance. Specifically, we
utilized the dataset introduced in section 3 to train
the model. We have frozen the visual encoder and
the language model components, focusing solely
on training the two-layer MLP vision-language con-
nector. This approach has enabled pre-alignment
and endowed the model with the capability to rec-
ognize musical notes accurately.

Music Information Extraction Next, train the
model to recognize the basic structure of music
compositions and to extract relevant musical knowl-
edge from images. Utilizing the training dataset
described in section 3, we conducted fine-tuning of
the entire model parameters while freezing the vi-
sual encoder component and training the remaining
parts. Through this phase of training, the model’s
capability to extract musical information has sig-
nificantly improved. It is now able to recognize
fundamental elements of music scores such as beat
types, note lengths, and key signatures from music
score images.

Music Notation Analysis In the final phase, we
further fine-tuned the model using supervised fine-
tuning, thereby enhancing its capability to under-
stand and generate music. This phase involved
using the section 3 data to train the pre-trained pro-
jectors and the language model with full parameter
adjustments. Post-training, the model has devel-
oped the ability to critically analyze music scores
provided by users and perform complex tasks such
as continuing a musical melody based on the pre-
ceding tune.

5 Experiments

5.1 Experiment Setup

Baselines We comprehensively assess 17
MLLMs, including API-based models and open-
source models. The API-based models contain
GPT-4V (GPT-4Vision-preview) (OpenAl, 2023),
and Gemini model released by Google (Team
et al., 2023). The open-source models contain
LLaVA (Liu et al., 2023a,b) series, VisualGLM (Du

Model Levenshtein Distance
# Generative MLLM
Visual GLM-6B 643.72
CogAgent-Chat 730.65
DeepSeek-VL-1.3B-Chat 316.85
DeepSeek-VL-7B-Chat 308.27
InstructBLIP-Vicuna-7B 355.60
Yi-VL-6B 561.47
Yi-VL-34B 522.07
LLaVA-v1.5-7B 667.08
LLaVA-v1.5-13B 147.47
LLaVA-v1.6-Vicuna-7B 807.75
LLaVA-v1.6-Vicuna-13B 918.94
LLaVA-v1.6-34B 770.58
Qwen-VL 439.82
Qwen-VL-Chat 625.16

#Generative MLLM with api-token

Gemini-pro-vision 354.30

GPT-4V 655.45
# Our Models

NotaGPT-7B 59.47

Table 1: Music cross-modal alignment evaluation.
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Figure 4: Extraction capabilities comparing between
Gemini and NotaGPT-7B.

et al., 2022), Qwen-VL (Bai et al., 2023) series,
InternLM (Dong et al., 2024), InstructBLIP (Dai
et al., 2024), and Yi-VL (Young et al., 2024) series.

Training Details For pre-training, we utilized
the alignment section 3 data conducting training 10
epoch with a learning rate of 2e-4. For supervised
fine-tune training, we employed the train data in
section 3, training 3 epochs with a learning rate
of 2e-5 and a batch size of 32. All experiments
are conducted on 8x80GB NVIDIA A100 SXM
GPUs.

Evaluation Details The temperature parameter
was set to O to ensure deterministic output. For
each model, we performed 3 separate evaluations
using the GPT-4 API. The final score is determined
by averaging the results from these 3 assessments.



Model | Author  Title K L M | Avg
CogAgent-Chat-hf 1598 7543 994 236 21.11 | 2497
Cogvlm-Chat-hf 10.31 6577 7.02 022  20.63 | 20.79
Visual GLM-6B 0.05 532 3278 0.00 2927 | 11.24
DeepSeek-VL-1.3B-Chat | 15.98 0.11 4.75 0.00 2284 | 8.74
DeepSeek-VL-7B-Chat 30.89 0.11 10.04 11.72 28.46 | 16.24
InstructBLIP-Vicuna-7B 0.43 567 7.67  0.00 1.84 | 3.12
Yi-VL-6B 46.27 17.82 1037 9.13 5.02 | 17.72
Yi-VL-34B 60.85 022 1355 1436 11.18 | 20.03
LLaVA-v1.5-7B 5481 25.16 11.56 11.50 28.54 | 26.31
LLaVA-v1.5-13B 6.86 3423 47 059 2822 | 1492
LLaVA-v1.6-Vicuna-7B 38.88 59.56 6.97 1.94 2395 | 26.26
LLaVA-v1.6-Vicuna-13B 1199 6069 799 092 7.84 | 17.89
LLaVA-v1.6-34B 1566 6231 11.18 146 2822 | 23.76
MiniCPM-Llama3-V2_5 2759 7770 1156 972 23.65 | 25.04
Qwen-VL 7824 1172 17.82 1474 17.12 | 27.93
Qwen-VL-Chat 72.08 038 1344 1436 16.25 | 23.30
Gemini-pro-vision 51.83 69.03 15.08 13.02 21.87 | 33.34
GPT-4V 8224 7795 11.02 135 27.54 | 33.33
NotaGPT-7B 75.00 1544 8045 8526 83.08 | 67.84

Table 2: Evaluation results of music information extraction task from the training dataset.

5.2 Evaluation Metrics

Closed-set tasks. (1) Such as multimodal music
information extraction, performance is assessed
using the weighted extraction rate. They are ques-
tions with definitive answers such as music titles
and note lengths. Given a response sequence I
and an answer sequence A across a dataset of n
queries, the overall success of the extractions can

be defined as: .
Extraction Rate = Z 0 ([A; C Ri],1) 2)

=1
where d(x,y) is the Kronecker delta function,
which equals 1 if x = y and O otherwise. The
condition [A; C R;] evaluates to 1 if the answer
sequence A; is contained within the response se-

quence R;, and 0 otherwise.

(2) Regarding the task of converting images to
abc notation text, we utilize the Levenshtein Dis-
tance (Yujian and Bo, 2007) as evaluation metric. It
refers to the minimum number of single-character
operations required to transform model responses
into answer sequence. Let D be a matrix of size
(IR] + 1) x (JA] + 1), where D[i][j] denotes the
minimum edit distance between the first 7 char-
acters of R and the first j characters of A. The
subsequent values of D are computed using the
recurrence relation:

Dli—1][j]+1 (delet)
D[i][j] =min{ D[][j —1]+1 (insert)
D[i —1][j — 1] + cost  (substitute)

3
where cost is 0 if the characters R[i — 1] and
Al[j — 1] are the same, and 1 otherwise.

Open-set tasks. For notation analysis tasks with
open-ended answers, we used 2 type assessment:

(I1)Calculating using metrics. Our metrics are
divided into two categories: semantic similar-
ity and word matching. For semantic similar-
ity, we use LSA, which measures the seman-
tic similarity of text by computing the cosine
similarity between vectors. For word matching,
we use ROUGE-1, ROUGE-L, and METEOR,
which respectively calculate the number of unigram
matches, longest common subsequence matches,
and synonym matches.

(2)Scoring using LLM as an evaluator. As ex-
isting studies (Zheng et al., 2023) demonstrated,
strong LLMs can be good evaluators. We com-
pare the analysis generated by NotaGPT-7B with
the analysis generated by other models, and have
GPT-4 (text model) evaluate the analysis from both
models. The evaluation considers both the music
itself and the music’s background. The evalua-
tion of the music itself includes aspects such as
musical language (melody, tonality, rhythm, musi-
cal terminology, etc.), technique application, and
composition style. The evaluation of the music’s
background includes considerations of the social,
historical, and cultural context, including the com-
poser’s milieu, the background of the composition,
and the ideology of the creation.

6 Results

Our experiment revolves around proving the effec-
tiveness of NOTA in promoting music understand-



Model | LSA ROUGE-1 ROUGE-L METEOR | Avg
InternVL-Chat-v1.5 14.96 19.71 13.32 19.68 16.92
InternVL-14B-224px 3.28 5.30 4.63 4.18 4.35

Visual GLM-6B 10.36 21.61 13.21 18.19 15.84
DeepSeek-VL-7B-base 9.92 16.43 11.60 13.81 12.94
InstructBLIP-Flan-T5-xl1 9.38 20.91 15.28 14.57 15.04
InstructBLIP-Flan-T5-xx1 | 7.64 17.55 12.32 14.96 13.12
InstructBLIP-Vicuna-7B 8.28 22.23 14.93 16.74 15.55
InstructBLIP-Vicuna-13B | 8.37 20.29 14.18 14.17 14.25
MiniCPM-Llama3-V2_5 | 16.26 20.72 13.36 20.83 17.79
Yi-VL-6B 11.77 18.66 13.04 15.84 14.83
Yi-VL-34B 12.47 19.44 13.20 17.18 15.57
Qwen-VL 9.58 15.21 10.37 12.56 11.93
Qwen-VL-Chat 9.66 16.80 11.37 14.42 13.06
Gemini-pro-vision 15.88 22.21 15.09 20.31 18.37
GPT-4V 14.03 18.49 11.36 19.94 15.96

GPT4o 15.92 18.27 11.35 20.26 16.45

NotaGPT-7B 12.46 22.63 15.53 18.34 17.24

Table 3: Comparisons of analysis and form Evaluation (%). Part 1: Open-source models; Part 2: API-based models.

ing. In order to enable the model to ultimately
achieve music understanding, we have broken
down the experiment into three sub-experiments:
multimodal information extraction, score image
recognition, and music analysis. Multimodal infor-
mation extraction only extracts the basic elements
from the score image, such as author information,
title, T, K, L, M and C. Score image recognition
builds upon the basic element extraction, further
extracting the music score in ABC notation form.
Music analysis then, based on the extracted mu-
sic score, conducts understanding and analysis, in-
cluding score structure analysis and musical style
analysis.

6.1 Music Information Extraction Evaluation

General comparison The evaluation results are
presented in Table 2. We report the average extrac-
tion rate, with 23.53% of the models showing an
effective precision lower than 10%. Additionally,
58.82% of the models have an accuracy approxi-
mately between 10% to 30% , and only 17.64%
of the models achieve an accuracy exceeding 30%.
Overall, NotaGPT-7B demonstrated the best perfor-
mance among all the models evaluated, achieving
an extracte rate of 67.84. These findings highlight
the challenges of the NOTA test dataset.

Comparative analysis Figure 4 illustrates the
comparative performance of NotaGPT-7B and
Gemini in several subcategories of an information
extraction task. NotaGPT-7B significantly outper-
forms Gemini in the tasks of Author, K, L, and
M, demonstrating the effectiveness of the training

data. NotaGPT-7B does not perform very well on
the title extraction task, and after analyzing it, we
found that it is because it mistakenly extracts author
information as title information.

After training with the NOTA dataset, models of
size 7B achieved substantial improvements in the
categories K, L, and M, where performance was
originally poor. These enhancements allowed them
to surpass models of the same size and even those
of larger sizes.

6.2 Music Cross-modal Alignment Evaluation

Table 1 presents the evaluation results. Overall,
while high precision in music information extrac-
tion benefits cross-modal tasks, the relationship
isn’t simply linear. NotaGPT-7B consistently per-
forms well, showcasing its strength in both extract-
ing and aligning musical information. In contrast,
while GPT-4V and Gemini-pro-vision score simi-
larly in extraction tasks (around 33.34), they differ
greatly in alignment accuracy, with Levenshtein
distances of 655.45 and 354.30, respectively, sug-
gesting that factors like model structure and opti-
mization strategies also influence performance.

6.3 Music Score Analysis Evaluation

Metric evaluation Since the model’s analysis
and the standard answer cannot be completely iden-
tical, we evaluate the strength of the model’s analy-
sis capability of the recognized music score from
the aspects of semantic similarity and word match-
ing.

From the results in Table 3, in terms of the LSA
metric, the performance of NotaGPT-7B is stronger



Musical styles

Score Structures

Model A ‘ Type ‘ Awin Tie Bwin ‘ Awin Tie Bwin ‘ C-Rate
w/nfo. | 500 3350 6150 | 134 3356 6510 | 96.56
InstructBLIP-Flan-T5-xx1 ‘ w/o Info. ‘ 550 39.00 5550 ‘ 134 2684 7181 ‘ 96.27
. wiinfo. | 100 2500 7400 | 268 3289 6443 | 9828
TnstructBLIP-Vicuna-78 ‘w/o Info. ‘ 150 3600 6250 ‘ 201 2886 69.12 ‘ 98.28
. winfo. | 100 2650 7250 | 134 3087 67.79 | 9885
InstructBLIP-Vicuna-13B ‘ wlo Info. ‘ 200 3500 63.00 ‘ 0.13 2348 7517 ‘ 98.28
w/info. | 57.00 3350 950 | 4832 4429 738 | 4670
InternVL-Chat-v1.5 ‘ w/o Info. ‘ 3500 49.00 16.00 ‘ 2684 5570 1744 ‘ 68.48
OwenVL wiinfo. | 2450 4500 3050 | 1611 39.60 4430 | 79.08
wiolnfo. | 050 3350 6600 | 0.67 1946 79.87 | 99.43
. wilnfo. | 3650 4650 17.00 | 3221 5638 1141 | 6533
VisualGLM-6B ‘w/olnfo ‘ 1400 4650 39.50 ‘ 1140 4093 4765 ‘ 34.67
ViVLGE w/info. | 3600 4050 2350 | 3020 49.66 20.14 | 6647
wiolnfo. | 9400 350 250 | 1342 3892 4765 | 40.40
GPT4Y wiinfo. | 6950 2500 550 | 5570 3356 1074 | 3639
wiolInfo. | 5200 3400 1400 | 3288 4966 1744 | 56.16

Table 4: Results of models generating music analysis, evaluated by GPT-4 (text model).

Info. means music

background information, A win means in GPT-4’s view, model A’s response is better than model B’s as evaluated by
GPT-4; tie means the responses are equal; B win means model B’s response is better. C-Rate means comparable rate

between model B and model A.

Different models V.S. NotaGPT-7B

InstructBLIP-Flan-T5-xxI| 39.00%

InstructBLIP-Vicuna-7B 36.00%
InstructBLIP-Vicuna-13B 35.00%
InternVL-Chat-v1.5

Qwen-VL 33.50%

VisualGLM-6B

0 10 20 30 40 50 60 70 80 90 100
Percentage

Figure 5: Visualization of evaluation results (w/o Info.)
of all other models compared with our proposed No-
taGPT model under GPT-4V.

than most models, including some models with
larger parameter sizes than 7B, only second to a few
open-source models with larger parameter sizes, as
well as API-based models. In the metric of word
matching , NotaGPT-7B achieves SOTA perfor-
mance on 2/3 of the metrics.

NotaGPT-7B does not achieve the best perfor-
mance on the LSA metric, on the one hand be-
cause the parameter size of NotaGPT-7B is only
7B, much smaller than the 25.5B of InternVL and
the 34B of Yi-VL, which limits its capability; on
the other hand, the base model of NotaGPT-7B
does not use an instruction-tuned model like the
Mistral-7B-Instruct series.

The results demonstrate the effectiveness of
the NOTA test dataset, allowing the parameter-

limited model NotaGPT-7B, after pre-training on
the NOTA train dataset, to outperform models that
have not been trained on the NOTA dataset in mul-
timodal information extraction.

Analysis comparison Table 4 contains the com-
parison between analyses of different models, and
all the model B are NotaGPT-7B. Based on the re-
sults, the appreciation generated by NotaGPT-7B
is better or on par with 75% of the models. In com-
parison with most models, NotaGPT-7B’s win rate
is higher in the absence of music background infor-
mation than with music background information.
This performance can be attributed to NotaGPT-
7B’s training on a small set of music analysis data
samples, which has endowed it with the capability
to generally analyze musical scores and styles. It
performs commendably even in prompts that lack
background knowledge of the music piece.

7 Conclusion

In this study, we introduce NOTA, a large-scale
music understanding dataset encompassing 3 tasks
with over 1.1 million data entries. Based on
the NOTA train dataset, we trained NotaGPT-7B,
which demonstrates robust music notation under-
standing capability. We further assess 17 multi-
modal models’ capabilities in music understanding.
The results show the constraints that are caused by
the lack of multimodal music datasets, emphasizing
the significance of the NOTA dataset.



Limitations

Although NOTA makes substantial advancement in
developing effective music understanding datasets,
we are aware of typical limitations in MLLMs, in-
cluding hallucinations and shallow reasoning. Our
future efforts will focus on improving the fidelity
and dependability of these models.

References

Andrea Agostinelli, Timo I Denk, Zaldn Borsos,
Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco
Tagliasacchi, et al. 2023. Musiclm: Generating mu-
sic from text. arXiv preprint arXiv:2301.11325.

James  Allwright.  2003. Abc  version
of the nottingham music database.
https://abc.sourceforge.net/NMD/index.html.

Anthony Baez and Horacio Saggion. 2023. LSLIama:
Fine-tuned LLaMA for lexical simplification. In Pro-
ceedings of the Second Workshop on Text Simplifica-
tion, Accessibility and Readability, pages 102-108,
Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Erion Cano and Maurizio Morisio. 2017. Moodylyrics:
A sentiment annotated lyrics dataset. In Proceedings
of the 2017 international conference on intelligent
systems, metaheuristics & swarm intelligence, pages
118-124.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. 2024. Simple and controllable music gen-
eration. Advances in Neural Information Processing
Systems, 36.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems, 36.

Gourab Dey, Adithya V Ganesan, Yash Kumar Lal,
Manal Shah, Shreyashee Sinha, Matthew Matero,
Salvatore Giorgi, Vivek Kulkarni, and H. Schwartz.
2024. SOCIALITE-LLAMA: An instruction-tuned
model for social scientific tasks. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 454—-468, St. Julian’s, Malta.
Association for Computational Linguistics.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao,
Bin Wang, Linke Ouyang, Xilin Wei, Songyang
Zhang, Haodong Duan, Maosong Cao, Wenwei
Zhang, Yining Li, Hang Yan, Yang Gao, Xinyue
Zhang, Wei Li, Jingwen Li, Kai Chen, Conghui He,
Xingcheng Zhang, Yu Qiao, Dahua Lin, and Jiaqi
Wang. 2024. Internlm-xcomposer2: Mastering free-
form text-image composition and comprehension in
vision-language large model.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335.

Carina Geerlings and Albert Merono-Penuela. 2020.
Interacting with gpt-2 to generate controlled and be-
lievable musical sequences in abc notation. In Pro-
ceedings of the 1st Workshop on NLP for Music and
Audio (NLP4MusA), pages 49-53.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904—6913.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré,
Adam Chilton, Alex Chohlas-Wood, Austin Peters,
Brandon Waldon, Daniel Rockmore, Diego Zam-
brano, et al. 2024. Legalbench: A collaboratively
built benchmark for measuring legal reasoning in
large language models. Advances in Neural Informa-
tion Processing Systems, 36.

Liang He, Hongke Wang, Yongchang Cao, Zhen Wu,
Jianbing Zhang, and Xinyu Dai. 2023. More: A
multimodal object-entity relation extraction dataset
with a benchmark evaluation. In Proceedings of the
31st ACM International Conference on Multimedia,
pages 4564-4573.

Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi
Ganti, Judith Yue Li, and Daniel PW Ellis. Mulan:
A joint embedding of music audio and natural.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al.
2024a. Audiogpt: Understanding and generating
speech, music, sound, and talking head. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 23802-23804.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. 2024b.
C-eval: A multi-level multi-discipline chinese evalua-
tion suite for foundation models. Advances in Neural
Information Processing Systems, 36.


https://aclanthology.org/2023.tsar-1.10
https://aclanthology.org/2023.tsar-1.10
https://aclanthology.org/2023.tsar-1.10
https://aclanthology.org/2024.eacl-short.40
https://aclanthology.org/2024.eacl-short.40
https://aclanthology.org/2024.eacl-short.40
http://arxiv.org/abs/2401.16420
http://arxiv.org/abs/2401.16420
http://arxiv.org/abs/2401.16420
http://arxiv.org/abs/2401.16420
http://arxiv.org/abs/2401.16420

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Qiuqgiang Kong, Yin Cao, Turab Igbal, Yuxuan Wang,
Wenwu Wang, and Mark D Plumbley. 2020. Panns:
Large-scale pretrained audio neural networks for au-
dio pattern recognition. I[EEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2880—
2894.

Max WY Lam, Qiao Tian, Tang Li, Zongyu Yin, Siyuan
Feng, Ming Tu, Yuliang Ji, Rui Xia, Mingbo Ma,
Xuchen Song, et al. 2024. Efficient neural music gen-
eration. Advances in Neural Information Processing
Systems, 36.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. 2024. Llava-
med: Training a large language-and-vision assistant
for biomedicine in one day. Advances in Neural In-
formation Processing Systems, 36.

Peike Li, Boyu Chen, Yao Yao, Yikai Wang, Allen
Wang, and Alex Wang. 2023. Jen-1: Text-guided
universal music generation with omnidirectional dif-
fusion models. arXiv preprint arXiv:2308.04729.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 34892-34916. Curran Associates,
Inc.

Shansong Liu, Atin Sakkeer Hussain, Chenshuo Sun,
and Ying Shan. 2024. Music understanding llama:
Advancing text-to-music generation with question
answering and captioning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 286—290.
IEEE.

Peiling Lu, Xin Xu, Chenfei Kang, Botao Yu, Chengyi
Xing, Xu Tan, and Jiang Bian. 2023. Musecoco:
Generating symbolic music from text. arXiv preprint
arXiv:2306.00110.

Jan Melechovsky, Zixun Guo, Deepanway Ghosal,
Navonil Majumder, Dorien Herremans, and Soujanya
Poria. 2023. Mustango: Toward controllable text-to-
music generation. arXiv preprint arXiv:2311.08355.

OpenAl. 2022. Chatgpt: Optimizing language models
for dialogue. OpenAl Blog.

OpenAl. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

10

Sarah Pratt, Mark Yatskar, Luca Weihs, Ali Farhadi,
and Aniruddha Kembhavi. 2020. Grounded situa-
tion recognition. In Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK, August 23—
28, 2020, Proceedings, Part IV 16, pages 314-332.
Springer.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748-8763. PMLR.

Jesung Ryu, Seungyeon Rhyu, Hong-Gyu Yoon, Eun-
chong Kim, Ju Young Yang, and Tachyun Kim. 2024.
Mid-fild: Midi dataset for fine-level dynamics. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 222-230.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal-
isiewicz, and Andrew Rabinovich. 2020. Superglue:
Learning feature matching with graph neural net-
works. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
4938-4947.

Bob L Sturm. 2013. The gtzan dataset: Its contents, its
faults, their effects on evaluation, and its future use.
arXiv preprint arXiv:1306.1461.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2024. Sci-
eval: A multi-level large language model evaluation
benchmark for scientific research. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19053-19061.

Xian Sun, Peijin Wang, Wanxuan Lu, Zicong Zhu, Xi-
aonan Lu, Qibin He, Junxi Li, Xuee Rong, Zhujun
Yang, Hao Chang, et al. 2022. Ringmo: A remote
sensing foundation model with masked image model-
ing. IEEE Transactions on Geoscience and Remote
Sensing.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Jinhao Tian, Zuchao Li, Jiajia Li, and Ping Wang. 2024.
N-gram unsupervised compoundation and feature in-
jection for better symbolic music understanding. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 15364—15372.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.


https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

Hai Wan, Manrong Zhang, Jianfeng Du, Ziling Huang,
Yufei Yang, and Jeff Z Pan. 2021. Fl-msre: A few-
shot learning based approach to multimodal social
relation extraction. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 35, pages
13916-13923.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023.
Pandalm: An automatic evaluation benchmark for
IIm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. 2016.
Situation recognition: Visual semantic role labeling
for image understanding. In Proceedings of the IEEE

conference on computer vision and pattern recogni-
tion, pages 5534-5542.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Dingyao Yu, Kaitao Song, Peiling Lu, Tianyu He,
Xu Tan, Wei Ye, Shikun Zhang, and Jiang Bian. 2023.
MusicAgent: An Al agent for music understanding
and generation with large language models. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, pages 246255, Singapore. Association for
Computational Linguistics.

Li Yuan, Yi Cai, Jin Wang, and Qing Li. 2023. Joint
multimodal entity-relation extraction based on edge-
enhanced graph alignment network and word-pair
relation tagging. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 37, pages
11051-11059.

Ruibin Yuan, Hanfeng Lin, Yi Wang, Zeyue Tian,
Shangda Wu, Tianhao Shen, Ge Zhang, Yuhang Wu,
Cong Liu, Ziya Zhou, et al. 2024. Chatmusician: Un-
derstanding and generating music intrinsically with
IIm. arXiv preprint arXiv:2402.16153.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 29(6):1091-1095.

Yilun Zhao and Jia Guo. 2021. Musicoder: A univer-
sal music-acoustic encoder based on transformer. In
MultiMedia Modeling: 27th International Confer-
ence, MMM 2021, Prague, Czech Republic, June
22-24, 2021, Proceedings, Part I 27, pages 417-429.
Springer.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena.

11

A Appendix

A.1 Social Impact

The Nota-Eval dataset contains music from multi-
ple regions and diverse cultural backgrounds. Not
understanding the cultural context of the music
may lead to misinterpretation of the music data,
such as misreading the meaning and emotional ex-
pression of the music, as well as misjudging the
characteristics and styles of the music.

A.2 Region-Level Evaluation

Table 5 presents the overall information extrac-
tion results for five information extraction tasks
across 3 different regions using various models on
our NOTA dataset. The experimental results indi-
cate that the GPT-4V model significantly outper-
forms other models in music information extraction
across different regions. For the five information
extraction tasks in the regions of China and Europe,
different models showed better performance com-
pared to the America region. Additionally, there
are noticeable differences in the information ex-
traction capabilities of different models across the
three regions. This suggests that different models
have distinct preferences for understanding music
from different regions, which may be related to the
distribution of training data in these multimodal
models.

A.3 Detailed Evaluation Metrics for Open-Set
Tasks

Latent Semantic Analysis (LSA) is a technique
in natural language processing and information re-
trieval that analyzes relationships between a set of
documents and the terms they contain by produc-
ing a set of concepts related to the documents and
terms. LSA assumes that words that are close in
meaning will appear in similar pieces of text. The
core idea involves constructing a term-document

NotaGPT-78

GPT-4V

80.45

15,44,

3108 67.84

Figure 6: Comparing between GPT-4V and
NotaGPT-7B.
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Model | China America Europe | Avg
InternVL-14B-224px 0.00 0.00 0.15 0.05
InternVL-Chat-V1.5 0.48 5.56 1.81 2.61

Visual GLM-6B 8.66 2.53 10.36 6.64
DeepSeek-VL-1.3B-base 7.51 0.64 8.09 5.03
DeepSeek-VL-7B-base 4.08 0.32 1.94 2.31
InstructBLIP-Flan-T5-x1 0.46 0.17 2.46 0.69
InstructBLIP-Flan-T5-xx1 1.03 0.00 5.24 1.36
InstructBLIP-Vicuna-7B 3.57 0.47 5.89 2.80
InstructBLIP-Vicuna-13B 1.08 0.12 2.65 0.98
Yi-VL-6B 0.14 0.03 0.19 0.11
Yi-VL-34B 0.14 0.12 0.32 0.16
MiniCPM-Llama3-V2_5 6.79 5.97 11.39 7.26
Qwen-VL 2.35 1.31 1.88 1.88
Qwen-VL-Chat 0.26 0.47 0.13 0.32
GPT-4V 16.19 12.31 11.27 13.90

Table 5: Comparisons with SoTA for region-level Evaluation
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Scores of Models on Different Metrics and Average Scores
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Figure 7: Music analysis figure.

matrix, which is then decomposed using singular
value decomposition (SVD). The semantic similar-
ity between texts is often measured using the cosine
similarity between their vector representations. Let
A be the term-document matrix, then LSA involves
the following computation:

A~ UV
where:
» U}, represents the first k£ columns of U,
e Y is the top k x k submatrix of 3,
« VI is the first k rows of VT.

ROUGE-1 is a metric used to evaluate automatic
summarization and machine translation software,
focusing specifically on the overlap of unigrams
(single words) between the system-generated sum-
mary or translation and a set of reference sum-
maries. The ROUGE-1 score is calculated by count-
ing the number of unigrams in the generated text
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that match the unigrams in the reference text and
then normalizing this number by the total num-
ber of unigrams in the reference text, providing a
measure of recall. ROUGE-N is a metric for evalu-
ating text summarization and machine translation
quality by measuring the overlap of N-grams be-
tween system-generated summaries and reference
summaries. Specifically, ROUGE-1 is a variant
of ROUGE-N where N equals 1, meaning it calcu-
lates the overlap using unigrams (individual words).
ROUGE-1 focuses on assessing the recall of sin-
gle words, providing a basic measure of content
overlap and is widely used due to its simplicity and
effectiveness in capturing essential content accu-
racy. ROUGE-N can be represented as:

ZSEReferenceSummaries Zgramn €S Countmamh (gramn )
ZSE ReferenceSummaries Zgram,,L es Count(gramn )

Rouge-N =

ROUGE-L measures the longest common sub-
sequence (LCS) between a system-generated sum-
mary or translation and a set of reference texts. It



is particularly useful for evaluating the fluency and
the order of the text in summaries and translations.
The LCS does not require consecutive matches but
is a sequence where each word is in the same order
in both texts. The score is computed by dividing
the length of the LCS by the total length of the ref-
erence sequence, providing insights into the overall
text structure retention.It can be represented as:

LCS(X,Y
F = S5
m
LCS(X,Y
Plcs = #
n
1+ %) Ries P
Flcs _ ( /6 ) IcsL Ics

Rlcs + /82Plcs

METEOR, or the Metric for Evaluation of
Translation with Explicit ORdering, is a metric
for evaluating machine translation output by align-
ing it to one or more reference translations. Unlike
other metrics, METEOR accounts for exact word
matches, synonymy, and stemming. It calculates
scores based on the harmonic mean of precision
and recall, weighted towards recall. The inclusion
of synonyms and stemming allows METEOR to
perform a more nuanced assessment of language
use than simple exact matching. The METEOR
score is calculated as follows:

METEOR = Fjpean X (1 — Penalty)

where:
5 10-P-R
mean — 5 . o D
R+9-P
number of chunks 3
Penalty = 0.5 x (number of unigrams in candidate translation)

In these equations:
* P is the precision,
¢ R is the recall,

e Chunks are contiguous sequences of words
that are in the same order in both the candidate
and the reference but are possibly interspersed
with non-matching words.
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