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Abstract

We propose a new strategy to handle contro-001
versial topics in LLM-based chatbots based002
on Wikipedia’s Neutral Point of View (NPOV)003
principle: acknowledge the absence of a sin-004
gle true answer and surface multiple perspec-005
tives. We frame this as controlled text gener-006
ation, where perspectives are retrieved from a007
knowledge base and the LLM is tasked with008
generating a fluent and faithful response from009
the perspectives. Our main contribution is a010
detailed study of common failure modes of011
LLMs, namely hallucination and coverage er-012
rors, in the context of this controlled genera-013
tion task. We propose and evaluate three meth-014
ods to detect such errors based on (1) word-015
overlap, (2) salience, and (3) LLM-based clas-016
sifiers. Our results demonstrate that classi-017
fiers, even when trained only on synthetic er-018
rors, can achieve high performance, with ROC019
AUC scores of 95.3% for hallucination and020
90.5% for coverage error detection on unam-021
biguous error cases. We show that when no022
training data is available, our other methods023
can still yield good results on hallucination024
(84.0%) and coverage error (85.2%) detection.025

1 Introduction026

Large Language Models (LLMs) have risen in027

popularity due to state-of-the-art performance on028

a wide range of tasks, and a growing audience029

of users is engaging with LLM-driven chatbots.1030

While these chatbots are highly flexible and gener-031

alizable, they are known to struggle with factuality032

and bias (Shuster et al., 2021; Sheng et al., 2019).033

Particularly when discussing controversial topics,034

model developers may desire more control over035

LLM-based chatbot responses.036

In this paper, we investigate how LLMs can be037

used in controlled text generation for controversial038

1Among others: https://openai.com/blog/chatgpt;
https://bard.google.com; https://www.anthropic.
com/index/introducing-claude.

topics. While it is important for generative text 039

systems to provide accurate answers wherever pos- 040

sible, users often seek information on topics for 041

which there are not agreed-upon factual answers. 042

These topics range from the inconsequential (the 043

superiority of the Yankees vs. the Red Sox) to the 044

fundamental (“What religious faith should I adhere 045

to?”). Building useful LLMs requires the ability to 046

ensure that LLM responses adhere to desired levels 047

of neutrality and nuance in such cases. 048

We introduce the NPOV Response Task: when 049

a user asks a query about a controversial topic, 050

the model is provided with arguments for multi- 051

ple perspectives and is tasked to generate a multi- 052

perspective response, inspired by Wikipedia’s Neu- 053

tral Point of View (NPOV) principle. We adapt a 054

conversational LLM to this task and examine two 055

common error types violating our goal of faithful- 056

ness to inputs: (1) hallucinations (response con- 057

tains unprovided arguments), and (2) coverage er- 058

rors (response omits provided arguments). 059

We build a dataset of model query-response 060

pairs, conditioned on arguments from Britannica’s 061

ProCon (ProCon.org, 2022a). Using expert anno- 062

tators, we identify instances of hallucination and 063

coverage errors. We then propose methods for de- 064

tecting such hallucination and coverage errors, both 065

with and without access to human-labeled data. 066

Our main results demonstrate that with access 067

to error-free examples and examples containing 068

only synthetic errors, LLM-based classifiers can 069

achieve ROC AUCs of 95.3% and 90.5% in de- 070

tecting organic hallucinations and coverage errors 071

respectively on our task. Even without access to an- 072

notated data, we can leverage salience and ROUGE- 073

based techniques to achieve ROC AUCs of 84.0% 074

for hallucinations and 85.2% for coverage errors. 075

2 Handling Controversial Topics 076

Our work is centered around how LLMs can be 077

controlled to respond to queries about controversial 078
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Should abortion be legal?

This is a controversial topic and people hold different 
perspectives on it. Let me show a few…
People in support of abortion bans for example claim 
that they deny bodily autonomy, which has wide-ranging 
repercussions. They also say that abortion would be 
safe medical procedure that protects lives. On the other 
hand, those who oppose abortion bans claim that 
abortion is murder because life begins at conception. 
Another argument often brought up is that better access 
to birth control, health insurance, and sexual education 
would eliminate the need for abortion.

KB

Abortion is a safe medical procedure that protects 
lives.

Abortion bans deny bodily autonomy, creating 
wide-ranging repercussions.

… Increased access to birth control, health insurance, 
and sexual education would make abortion 
unnecessary.

Life begins at conception, making abortion murder.

…

User
query

Response
intro

Response
main

Figure 1: Example NPOV response to a user query on a senstive topic (left) based on pro and con perspectives
with two arguments each, as obtained from a knowledge base (right). Arguments taken from ProCon.org (2022b).
Our error detection methods focus on the NPOV main response.

topics for which there is no single correct answer.079

For example, in response to “Should abortion be080

legal?”, an LLM without direction might produce081

a highly opinionated or offensive response. To ad-082

dress such concerns, “guardrails” are oftentimes083

added to LLMs, either completely preventing the084

generation of responses to such topics or respond-085

ing with canned answers (“I am just a language086

model and cannot answer this question...”). Such087

approaches can lead to erasure harm and reduce088

the usefulness of the system on potentially impor-089

tant topics. Another approach is to personalize090

responses to align with a user’s position; however,091

this can reinforce harmful biases and popular mis-092

conceptions, and act as a chatbot echo chamber.093

As an alternative strategy, we propose to ac-094

knowledge the lack of agreement and surface main095

viewpoints instead. This approach is inspired by096

Wikipedia’s Neutral Point of View (NPOV) prin-097

ciple, which requires that content is written such098

that it represents “fairly, proportionately, and, as099

far as possible, without editorial bias, all the sig-100

nificant views that have been published by reliable101

sources on a topic.”2 Figure 1 (left) gives an exam-102

ple of an NPOV response on a highly controversial103

topic. We explore whether such responses can be104

generated by an LLM using controlled text genera-105

tion, and we detect common failure modes such as106

hallucination and coverage errors.107

2.1 NPOV Response Generator108

We separate response generation from content gen-109

eration. We assume that there is a content retrieval110

process and a knowledge base of curated arguments111

for different points of view. The knowledge base112

we use in this paper consists of arguments from113

2From https://en.wikipedia.org/wiki/Wikipedia:
Neutral_point_of_view, last accessed 2023/04/06.

Britannica’s ProCon website (see §2.2). 114

The NPOV Response Task is then: given the user 115

query and perspectives (where various arguments 116

are concatenated, each with a prefix like “pro” or 117

“con”), generate a response that consists of an intro- 118

duction sentence, serving as a bridge from the user 119

query, and a verbalization of the given perspectives. 120

When generating the response, relevant aspects of 121

the given arguments must not be dropped (ensure 122

full coverage) and no other arguments should be 123

added (avoid hallucinations). This task formulation 124

gives model developers fine-grained control over 125

LLM responses. An example is shown in Figure 1. 126

We adapt an LLM to generate such NPOV re- 127

sponses using prompt-tuning (Lester et al., 2021); 128

see §A.3 for the specific task format and prompt- 129

tuning hyperparameters. Our base LLM3 is a 64B 130

decoder-only model pre-trained on public dialog 131

data and web text. Our training set consists of 80 132

query-response pairs covering 9 controversial top- 133

ics from ProCon (§2.2). ProCon question headers 134

(e.g. “Should abortion be legal?”) are used as user 135

queries. For each topic, we sample one, two, or 136

three arguments from the pro and con side in Pro- 137

Con and then manually write several paraphrased 138

responses capturing these arguments. We observe 139

that after prompt-tuning, the NPOV Response Gen- 140

erator generalizes well beyond the topics and argu- 141

ments seen during training. 142

2.2 ProCon as a Knowledge Base 143

Britannica’s ProCon (ProCon.org, 2022a) is a web- 144

site presenting pros and cons for commonly de- 145

bated topics. Pros and cons are researched and 146

compiled by ProCon research staff and editors, and 147

they aim to be nonpartisan. As of October 2022, 148

ProCon contains 72 active (i.e. “non-archived”) 149

3Model details are omitted for blind review.
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topics. For both the pro and con perspective for150

each topic, several arguments are given, each con-151

sisting of a short argument phrase accompanied152

by a longer explanation. The median number of153

arguments per perspective per topic is 4, but some154

topics contain many more arguments (e.g. Social155

Media has 23 arguments per perspective). We ran-156

domly sample ProCon arguments as inputs to the157

NPOV Response Generator for each topic (§4.1).158

Each topic is associated with a leading question in159

ProCon (e.g. “Should abortion be legal?”), which160

we treat as the user query asked to the LLM. See161

§A.1 for more details.162

3 Methods to Detect Hallucinations and163

Coverage Errors164

We focus on hallucination and coverage error de-165

tection, adopting the following definitions:166

• If the generated response contains at least one167

argument which was not provided, we call this168

a hallucination.169

• If one or more of the given arguments is com-170

pletely dropped from the response, we call this171

a coverage error.172

We call these full errors, as they address the hallu-173

cination or coverage of a full argument.174

On top of these well-defined errors, we notice175

that the NPOV Response Generator sometimes pro-176

duces other unfaithful changes to arguments, in-177

cluding: (1) partial hallucinations (slight meaning178

change, e.g.“consensus” becomes “unanimity”), (2)179

partial coverage errors (only a part of the argument180

is dropped), (3) repetitions (response contains the181

same given argument multiple times), and (4) per-182

spective confusions (response inverts the perspec-183

tives, e.g. pro arguments are presented as cons).184

We call all of these ambiguous errors.185

We propose the following three methods for de-186

tecting hallucination and coverage errors in gener-187

ated responses: ROUGE, salience, and classifiers.188

3.1 ROUGE189

As a baseline, we use ROUGE-1 (word-matching)190

to compute hallucination and coverage error scores191

(Lin, 2004). For a given response from the NPOV192

Response Generator, ROUGE calculates the pro-193

portion of response words that are matched in the194

input arguments (ROUGE-1 precision) and the pro-195

portion of input argument words that are matched196

in the response (ROUGE-1 recall). Low precision197

is indicative of hallucination, and low recall is in- 198

dicative of a coverage error. Because the NPOV Re- 199

sponse Task requires that both input perspectives be 200

covered, we compute ROUGE-1 recall separately 201

for each input perspective and then compute the 202

minimum as our overall recall score. For ROUGE, 203

words are defined using whitespace and punctu- 204

ation separation, dropping stop words and using 205

word stemming from NLTK (Bird et al., 2009). 206

3.2 Salience 207

Aside from word matching, previous work has pro- 208

posed methods to quantify attributions from input 209

to output subword tokens in LLMs using model 210

gradients (Bastings and Filippova, 2020). One pop- 211

ular approach is to compute the loss gradient for 212

each output token with respect to each input token 213

embedding, producing a gradient vector for each 214

input-output token pair. The attribution from each 215

input to the output token is defined as the dot prod- 216

uct between the corresponding gradient vector and 217

the input token embedding (Denil et al., 2014).4 218

In the NPOV Response Generation scenario, 219

each output token has an attribution value from 220

each input token (e.g. the given arguments per per- 221

spective and the user query) and each previously 222

generated token in the response. This produces a 223

token-to-token salience map Mtokens ∈ R(m+`)×`, 224

where m is the number of input tokens and ` is 225

the number of model response tokens. Before any 226

further processing, we square the salience map and 227

normalize columns to sum to one (i.e. the attribu- 228

tion to each output token sums to one). 229

Because we are primarily concerned with hallu- 230

cination and coverage errors for content words, we 231

convert the subword token-to-token salience map 232

to a word-to-word salience mapMwords. We define 233

words by concatenating consecutive LLM tokens 234

that are not separated by punctuation or whitespace; 235

we then drop stop words, as defined in NLTK (Bird 236

et al., 2009). We define the attribution from an 237

input word w0 to an output word w1 as the maxi- 238

mum attribution from any subword token in w0 to 239

any subword token in w1. We restrict our salience 240

maps to the input argument words (rows) and the 241

output NPOV response words (columns). A sample 242

word-to-word salience map for a query-response 243

pair is shown in Figure 2. 244

Qualitatively, we observe that covered words 245

tend to have a high contribution to a single corre- 246

4We obtain comparable results using gradient L2 norms.
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Figure 2: Top: salience map from input argument content words (rows) to model response content words (columns).
Bottom: individual word scores for contribution (input words; left) and attribution (response words; right). The
highlighted words are hallucinated in the model response.

sponding word in the response. Thus, we define247

an input argument word’s contribution score as its248

maximum contribution to any response word (i.e.249

maximum for each row of Mwords). We define a250

response word’s attribution score as its maximum251

attribution from any input argument word (i.e. max-252

imum for each column of Mwords). Contribution253

and attribution scores for input words and response254

words respectively are shown in Figure 2.255

To compute an example-level contribution score256

for a query-response pair, we compute the geomet-257

ric mean of contribution scores for words in each258

of the two input perspectives. As with ROUGE, we259

take the minimum of the two perspective contribu-260

tions as a final contribution score. To compute an261

example-level attribution score, we compute the ge-262

ometric mean of attribution scores for all response263

words. Finally, hallucination and coverage error264

scores in [0, 1] are computed by subtracting the at-265

tribution and contribution scores respectively from266

1.0. See Appendix A.7 for equations.267

3.3 Classifiers268

The two previous methods for detecting hallucina-269

tion and coverage errors are data-free, not requir-270

ing labeled model responses. We now explore how271

well LLM-based classifiers perform on these tasks,272

leveraging human annotations if available. Our273

classifiers are built on a 62B decoder-only LLM 274

which has been instruction-tuned on a large number 275

of tasks analoguously to Chung et al. (2022).5 We 276

use prompt-tuning to adapt this LLM into classi- 277

fiers for hallucination and coverage detection. The 278

classifiers have as input: (1) the user query, (2) the 279

generated NPOV response, and (3) the given argu- 280

ments per perspective. We train the LLM to predict 281

the label “NO” if there is a full error and “YES” 282

otherwise. See §A.3 for the specific task format 283

and prompt-tuning hyperparameters, and §5.2 for 284

the training datasets used. 285

For inference, we generate error classification 286

scores in [0, 1] by obtaining the LLM’s log per- 287

plexity scores for the tokens corresponding to the 288

two output class labels (“YES” and “NO”), apply 289

softmax, and take the score of the negative class. 6 290

4 Dataset 291

To train and evaluate the hallucination and cover- 292

age error detection methods above on the NPOV 293

Response Task, we construct datasets of organic 294

(i.e. naturally occurring) and synthetic errors, with 295

and without paraphrasing. 296

5Model details are omitted for blind review.
6For single-token labels, this score equals the probability

of “NO” conditioned on either “YES” or “NO” output token.
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4.1 Annotation Procedure297

For each of the 72 controversial topics from Pro-298

Con (ProCon.org, 2022a), we generate up to 18299

query-response pairs by first randomly sampling300

combinations of pro and con arguments, with either301

1, 2, or 3 arguments per side, and then using the302

NPOV Response Generator to generate a response.303

We annotate these query-response pairs (also called304

examples) in three stages to (1) identify error-free305

examples, (2) identify examples with errors, and306

(3) generate paraphrased examples:307

1. For the first three examples per topic, we sam-308

ple two generator responses, with temperatures309

0.0 and 0.7 respectively. We annotate whether310

responses contain hallucinations or coverage311

errors, annotating examples with a mix of the312

two temperatures. We annotate the token spans313

in the response that cover each input argument,314

along with any hallucinated response spans and315

uncovered input argument spans.316

2. Because examples with hallucination and cov-317

erage errors are less frequent than error-free318

examples even for high temperatures (20.0% er-319

rors in 0.7 temperature responses), we sample a320

single 0.7 temperature response for each of the321

remaining (up to) 15 examples per topic.7 We322

annotate for hallucination and coverage errors,323

including both full and ambiguous errors (§3).324

3. Hallucination and coverage error detection325

methods should capture whether meaning is326

retained between input arguments and gener-327

ated responses, even if the arguments are not328

copied verbatim. We therefore generate exam-329

ples with enforced paraphrasing between the330

input arguments and the response. To do so, we331

paraphrase the input arguments for all error-free332

examples generated in Step 1. For each argu-333

ment, we use an off-the-shelf paraphrasing tool334

and manually verify that the paraphrasing does335

not induce substantial meaning change.8336

In total, we identify 160 examples with no errors337

and 326 examples with at least one error, and we338

generate 152 paraphrased examples with no errors.339

See §A.4 for details on the annotated examples and340

errors in different dataset splits.341

7Preliminary experiments with the NPOV Response Gen-
erator suggest that temperatures above 1.0 tend to produce
overly long and irrelevant responses.

8We use https://quillbot.com/ for paraphrasing. We
find it more efficient to paraphrase the input arguments than
to paraphrase the whole response.

4.1.1 Inter-Annotator Agreement 342

To validate the viability and coherence of our anno- 343

tation task, we hired a team of 10 external annota- 344

tors to re-identify both hallucination and coverage 345

errors in our dataset. Our annotation provider was 346

paid 49 USD per hour for a total of 25 hours of 347

work. Annotators were presented with 188 of the 348

query-response pairs annotated in annotation Step 349

1 (§4.1) and 86 pairs from Step 2. Given the user 350

query, the provided arguments, and the response 351

from the NPOV Response Generator, annotators 352

were asked to mark whether each response had a 353

hallucination or coverage error (details in §A.2). 354

Each query-response pair was annotated by 5 an- 355

notators. We compare the annotator majority vote 356

to our annotated labels, finding 90% agreement for 357

hallucinations and 94% for coverage errors. To 358

measure inter-annotator agreement, we compute 359

Krippendorff’s alpha for hallucinations (α = 0.60) 360

and coverage errors (α = 0.73) across the 10 anno- 361

tators. These values are in line with or above simi- 362

lar text classification tasks (Wulczyn et al., 2017). 363

4.2 Synthetic Errors Dataset 364

Due to the relative rarity of organic errors produced 365

by the NPOV Response Generator, we synthetically 366

generate examples with errors by modifying error- 367

free query-response pairs. Specifically, we modify 368

the list of given arguments while keeping the origi- 369

nal response unchanged. For coverage errors, we 370

add one randomly sampled unused argument for 371

the given topic from ProCon and add it to the list of 372

given arguments. This creates a full coverage error 373

because the original response does not cover this 374

argument. For hallucinations, we randomly remove 375

one of the given arguments. This creates a halluci- 376

nation because the original response still addresses 377

the removed argument. We apply synthetic error 378

generation to both paraphrased and unparaphrased 379

examples that were annotated as error-free in §4.1 380

(312 examples), generating 667 new examples with 381

synthetic hallucinations, synthetic coverage errors, 382

or both. See §A.4 for detailed numbers. 383

4.3 Test Sets with Different Error Types 384

Taking the annotations and synthetic errors gener- 385

ated above, we split the 72 ProCon topics into a 386

train set (9 topics), a development set (28 topics), 387

and a test set (35 topics). Our dataset contains two 388

types of query-response pairs (paraphrased and un- 389

paraphrased) and three types of errors (synthetic 390

5
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Hallucinations Coverage Errors
Test set error type ROUGE Salience Classifier ROUGE Salience Classifier
Full organic 0.840 0.808 0.953 0.795 0.852 0.905
Unparaphrased synthetic 0.772 0.736 0.998 0.890 0.875 0.986
Paraphrased synthetic 0.680 0.708 0.977 0.746 0.831 0.993
Ambiguous organic 0.814 0.772 0.851 0.834 0.755 0.756

Table 1: ROC AUC scores for example-level hallucination and coverage error detection on four test sets (§A.5).

full, organic full, and organic ambiguous). We eval-391

uate the performance of our error detection meth-392

ods on different slices of the test set to better un-393

derstand where different approaches have strengths394

or weaknesses. Hence, each table in the results395

section states the specific test set slices evaluated.396

See §A.5 for details (size and composition) about397

each test set slice.398

5 Results399

5.1 Example-Level Error Detection400

First, we evaluate the three error detection methods401

(ROUGE, salience, and classifiers) on the example-402

level, i.e. detecting whether a query-response pair403

contains an error. The classifiers shown here are404

trained only on query-response pairs which are ei-405

ther error-free or contain synthetic errors, including406

both paraphrased and unparaphrased versions (503407

examples total); we explore the impact of training408

data on classifier performance in §5.2.409

Table 1 shows ROC AUC scores on the different410

test sets (§4.3) for all three methods. While the411

full organic set (organic error-free examples vs. or-412

ganic full errors) is the most realistic, our synthetic413

sets allow for more controlled evaluations.414

Classifiers consistently outperform the other two415

methods by a large margin on all sets except am-416

biguous coverage errors (discussed below), with417

ROC AUCs above 90% for both hallucination and418

coverage error detection, for all full error types419

(organic and synthetic, paraphrased and unpara-420

phrased). Comparing ROUGE and salience, results421

are mixed. On the full organic errors, ROUGE422

performs better at detecting hallucinations (84.0%423

AUC), whereas salience performs better at detect-424

ing coverage errors (85.2% AUC).425

For copy-like tasks with few expected word426

changes, ROUGE outperforms salience on both hal-427

lucination and coverage error detection (results on428

the unparaphrased synthetic errors set). However,429

on the paraphrased synthetic errors set, it appears430

that salience captures the underlying semantics bet-431

ter than ROUGE, allowing it to more accurately 432

detect both hallucination and coverage errors. 433

Finally, we evaluate our methods on ambiguous 434

errors (including partial argument hallucination and 435

coverage errors, argument repetition, and perspec- 436

tive confusion; see §3). ROUGE performs well 437

here, likely due to minimal natural paraphrasing 438

from the NPOV Response Generator. Classifier 439

ROC AUC scores drop substantially on ambiguous 440

errors, likely because classifiers are trained only on 441

full errors. This discrepancy seems most problem- 442

atic for coverage error detection, where classifiers 443

perform even worse than ROUGE. Future work 444

should establish clearer definitions of ambiguous 445

errors, allowing larger sets of ambiguous errors to 446

be annotated and used to train classifiers. 447

5.2 Classifier Training Data Ablations 448

We analyze the impact of different types and 449

amounts of training data on classifier performance, 450

considering the following four scenarios: 451

• Error-free +Synth: all error-free query- 452

response pairs, plus synthetic errors; training 453

split only (70 examples). 454

• +Para: previous, plus equivalent paraphrased 455

examples; training split only (138 examples). 456

• +Dev: previous, plus equivalent examples from 457

the development split (503 examples). 458

• +Org: previous, plus examples with organic 459

full errors; training and development splits (573 460

examples). 461

Table 2 shows classifier performance on the full 462

organic and ambiguous organic test sets (§4.3). For 463

coverage error detection, performance strictly im- 464

proves on the full organic set as we add more train- 465

ing data. However, adding the organic error ex- 466

amples leads to a decline in performance on the 467

ambiguous organic set. For hallucination detection 468

as well, we see performance improvement when 469

adding more training data. Adding the organic er- 470
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Hallucinations Coverage Errors
Error-free Error-free

Test set error type +Synth +Para +Dev +Org + Synth +Para +Dev +Org
Full organic 0.789 0.828 0.953 0.920 0.880 0.903 0.905 0.956
Ambiguous organic 0.807 0.820 0.851 0.862 0.702 0.529 0.756 0.640

Table 2: ROC AUC scores for classifiers trained on different amounts and types of data (§5.2), ordered from
smallest to largest training set size. Table 1 results use the classifiers trained on +Dev.

Hallucinations Coverage Errors
Test set error type ROUGE Salience ROUGE Salience
Full organic 0.673 0.724 0.669 0.799
Unparaphrased synthetic 0.697 0.710 0.693 0.808
Paraphrased synthetic 0.614 0.673 0.582 0.742
Ambiguous organic 0.542 0.542 0.738 0.740

Table 3: ROC AUC scores for word-level error detection results for ROUGE and salience.

rors leads to a performance drop on the full organic471

set, but not the ambiguous organic set.472

Overall, adding more data, even consisting of473

synthetic errors, leads to improvements on most474

test sets and for both hallucination and coverage475

error detection. Surprisingly, adding organic errors476

on top leads to mixed results, showing that organic477

data is not necessarily always helpful or needed for478

good classifier performance. The +Dev scenario479

might already be large enough that the addition of480

organic errors does not provide benefit.481

5.3 Word-Level Error Detection482

In practice, it may also be useful to locate specific483

response words that are hallucinated, or specific484

input words that are uncovered. Of the methods485

in §3, ROUGE and salience can both produce hal-486

lucination and coverage error scores at the word487

level. Specifically, the ROUGE coverage error488

score would be 0 if an input word is matched in489

the response (and 1 otherwise), and the ROUGE490

hallucination score would be 0 if a response word491

is matched in the input arguments (and 1 other-492

wise). For salience, before example-level aggrega-493

tion, scores are already computed per word (§3.2).494

Sample word-level salience scores for hallucination495

and coverage errors are shown in Figure 2.496

We compare the word-level hallucination and497

coverage error scores from salience and ROUGE498

with the ground truth annotations of hallucinated499

and uncovered words annotated in our test sets500

(§4.1). Results are computed over all non-stop501

words in each test set, defining words by merging502

LLM tokens (§3.2). Results are reported in Table 3.503

Salience performs equally to or better than ROUGE 504

for detecting both hallucinated words in model re- 505

sponses and uncovered words in input arguments 506

on all test sets. On the test set with paraphrased syn- 507

thetic errors, salience has the largest relative gains 508

over ROUGE, likely due to its ability to capture 509

semantics even in cases of word mismatch, similar 510

to the trends on example-level error detection. 511

6 Discussion 512

Overall, LLM-based classifiers trained on relatively 513

small amounts of data perform surprisingly well, 514

outperforming all other methods detecting full er- 515

rors and obtaining promising ROC AUC scores 516

between 90% and 99%. This is especially notable 517

given that the classifiers are trained only on syn- 518

thetic hallucination and coverage errors and yet 519

perform well on the organic test set. 520

While not as strong as the classifiers, the data- 521

free methods presented here still achieve strong 522

results. Our experiments demonstrate that ROUGE 523

is a strong data-free baseline for hallucination and 524

coverage error detection in tasks with minimal para- 525

phrasing. When more paraphrasing is expected, 526

salience provides stronger results, appearing to bet- 527

ter capture semantics than simple word matching. 528

Moreover, salience is effective for word-level hal- 529

lucination and coverage error detection, allowing 530

us to locate the parts of a generated response that 531

are problematic. 532

Our experiments also show the value of different 533

test set slices. While the synthetically constructed 534

datasets might diverge from the true data distri- 535

bution, they offer a way to analyze strengths and 536
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weaknesses of different methods in an isolated fash-537

ion, e.g. paraphrased examples demonstrating the538

shortcomings of ROUGE.539

Finally, all methods struggle on ambiguous or-540

ganic errors, although these results are inconclu-541

sive. Largely, this set is a “catch-all” for problem-542

atic and low-agreement errors, possibly explaining543

the poor performance of different error detection544

approaches. Training classifiers on this subset is545

important future work, but requires a larger dataset546

of more clearly-defined ambiguous errors.547

7 Related Work548

Errors in controlled text generation. Our ap-549

proach to NPOV Response Generation using pro-550

vided input perspectives can be seen as an ex-551

ample of table-to-text generation, which aims to552

generate fluent and faithful natural language de-553

scriptions of tabular data. Table-to-text genera-554

tion has been studied in the context of a variety of555

datasets including WikiBio (Lebret et al., 2016),556

ToTTo (Parikh et al., 2020), DART (Nan et al.,557

2021), and WebNLG (Gardent et al., 2017). Tra-558

ditional metrics such as ROUGE, BLEU, and ME-559

TEOR compare model responses to a reference560

output, but metrics have also been developed specif-561

ically for table-to-text tasks to address a generally562

poor correlation between previous metrics and hu-563

man assessment. PARENT (Dhingra et al., 2019)564

considers both the table source and reference out-565

put when scoring a model response, and IE-based566

metrics (e.g. Liu et al., 2021) compare entities567

between the table source and the response.568

In typical table-to-text tasks, individual table569

inputs are short expressions, often only consisting570

of named entities or numbers that allow for minimal571

paraphrasing. In our case, however, the input fields572

are perspectives composed of several full sentences573

for the arguments. For this reason, pure matching-574

based scoring approaches (e.g. ROUGE, BLEU,575

and PARENT) may be less effective.576

Our task is also closely related to retrieval-577

augmented generation, where information (e.g. a578

document or paragraph) is retrieved from a knowl-579

edge source and used to condition a model response.580

Like the NPOV Response Generator, retrieval-581

augmented models sometimes exhibit hallucination582

(Dziri et al., 2022) and coverage errors (Krishna583

et al., 2021) relative to the retrieved source.584

More broadly, hallucinations are a common ar-585

tifact in natural language generation (NLG). At a586

high level, they can be described as cases where 587

the generated output is “unfaithful” to the source 588

content (Ji et al., 2023). Due to the fluency of mod- 589

ern NLG systems, hallucinations are particularly 590

concerning as they can remain undetected and mis- 591

lead users. Tolerance to such errors is particularly 592

low in summarization and table-to-text tasks. In 593

the NPOV Response Task, we focus on full errors, 594

where a hallucinated or uncovered argument can 595

be identified relatively unambiguously. 596

Prompt-tuning. Both the NPOV Response Gen- 597

erator (§2.1) and the classifiers (§3.3) use soft 598

prompt-tuning, a method where only a small num- 599

ber of parameters are tuned and the base LLM is 600

left unchanged (Lester et al., 2021). Mozes et al. 601

(2023) show that LLMs can be prompt-tuned even 602

on very small datasets to function as classifiers. 603

Salience. Previous work has identified hallucina- 604

tions in machine translation using proportions of 605

source contributions to output tokens (Dale et al., 606

2022; Voita et al., 2021), calculated with aggre- 607

gated layerwise token attribution (Ferrando et al., 608

2022). Our salience-based method for error de- 609

tection is similar in spirit, but our attributions are 610

based on loss gradients (Bastings and Filippova, 611

2020). We focus on the dot products between gra- 612

dients and inputs, which are often used to roughly 613

quantify Transformer model attributions from in- 614

put tokens (Ding and Koehn, 2021; Boggust et al., 615

2022; Zhao et al., 2022).9 Previous work has ap- 616

plied gradient-based salience methods to fine-tuned 617

encoder-decoder and encoder-only classification 618

models (Tenney et al., 2020). Here, we extend this 619

work to a large decoder-only model, prompt-tuned 620

on a sequence-to-sequence task. 621

8 Conclusion 622

In this paper, we introduce the NPOV Response 623

Task as an approach to controlled text generation 624

when dealing with controversial topics. We pro- 625

pose and evaluate methods for detecting hallu- 626

cination and coverage errors in LLM-generated 627

responses, and we demonstrate a synthetic error 628

generation strategy that can be used to train and 629

evaluate our proposed methods. We find that 630

prompt-tuned LLM classifiers trained only on syn- 631

thetic errors can achieve high error detection perfor- 632

mance on organic examples, and our other methods 633

achieve strong results without any training data. 634

9We obtain comparable results using gradient L2 norms.
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Ethical Considerations635

With the rise of LLM-based chatbots and broader636

societal concerns about echo chambers, filter bub-637

bles, and polarization, the ability of LLMs to pro-638

vide neutral, factual, and nuanced responses to con-639

troversial topics is an important avenue of work.640

However, having LLMs respond to queries about641

controversial topics is inherently challenging: who642

decides what is controversial, neutral, and factual,643

and how this is encoded in an LLM is a hard and644

nebulous problem. Moreover, as LLMs and chatbot645

technologies become increasingly easy to create,646

maliciously engineered and maliciously applied647

models are likely to become more prevalent. Con-648

trolled text generation is a way to control LLM649

responses in a maximally transparent way.650

In this paper, we assume the existence of a651

database with NPOV-expressed perspectives. How-652

ever, such a database is not an easy artifact to create,653

and the contents will often be hotly contested. The654

dataset we use is derived from Britannica’s Pro-655

Con website (ProCon.org, 2022a). However, this656

still reduces arguments to pro and con perspectives,657

which can reinforce a binary vision of the world.658

Our work does not address how to best arrive at659

and reflect consensus on specific arguments. For660

example, when should the model express “many661

experts” vs. “a few experts” as a qualification for662

an argument? Failure here can serve to elevate663

fringe arguments. Even deciding whether a topic664

is controversial is already culturally charged. For665

instance, the subject of gun control might be a666

non-issue for some European countries yet remain667

polarizing in the United States. Similarly, omitting668

topics or arguments that are relevant for minorities669

or non-Western countries risks reinforcing systemic670

erasure and promoting socio-cultural biases. To ad-671

dress and mitigate these biases in a perspectives672

database, processes are necessary to ensure that the673

group of experts providing perspectives is diverse674

and multicultural.675

The more basic question of when to apply an676

LLM in practical scenarios needs careful consider-677

ation. In some domains (e.g. medical information),678

even very low error rates may not be acceptable,679

while other domains (e.g. creative writing) have680

very different risk profiles. Proper evaluations, poli-681

cies, and guardrails should be put in place before682

LLMs are applied in practice to new domains.683

Limitations 684

Our work has several limitations. The NPOV Re- 685

sponse Generator is trained and evaluated only in 686

English, and our NPOV Response Task does not 687

address how to create the content in the perspec- 688

tives and their arguments. The arguments used in 689

our work are pulled from ProCon, which limits 690

both our set of controversial topics and our sets 691

of perspectives (i.e. only pro and con; see Ethical 692

Considerations); future work might consider more 693

nuanced methods of perspective identification, se- 694

lection, and/or generation. 695

Our work also does not focus on biases in LLM 696

hallucinated content or the types of content that 697

LLMs often fail to cover. For example, the NPOV 698

Response Generator may be more likely to halluci- 699

nate or fail to cover arguments for specific topics or 700

perspectives, e.g. based on the frequency of topics 701

and perspectives in the LLM pre-training corpus. 702

Even when focusing just on error detection rather 703

than content, we focus primarily on errors that 704

are easy to identify and have high levels of inter- 705

annotator agreement. Based on our own annota- 706

tions, inter-annotator agreement on ambiguous er- 707

rors appears lower, but a full analysis is missing 708

and subject to future work. Moreover, an important 709

branch of future work is to establish more thorough 710

taxonomies and annotation schemes for hallucina- 711

tion and coverage error types. 712

Finally, the computational footprints of the 713

NPOV Response Generator and the LLM-based 714

error classifiers are large, with each model built 715

upon a 60B+ parameter LLM. Similarly, comput- 716

ing salience maps for error detection requires com- 717

puting gradients from the NPOV Response Genera- 718

tor itself, thus inducing a large computational cost. 719

Of the error detection methods evaluated in our 720

work, ROUGE is by far the most computationally 721

efficient. Future work may consider more compu- 722

tationally efficient approaches, such as evaluating 723

smaller models as error detection classifiers. 724
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A Appendix885

A.1 ProCon886

We use the perspectives and arguments for the dif-887

ferent topics listed on Britannica’s ProCon website888

as of October 2022 (ProCon.org, 2022a). We ran-889

domly split the 72 ProCon topics into train, dev,890

and test, as shown in Table 5, ensuring no overlap in891

topics across these splits. In line with ProCon’s us-892

age guidelines (https://www.procon.org/faqs/893

#II), all arguments are used verbatim as stated on894

the specific topic website under the section “Pro895

& Con Arguments”. We scrape the subtitles of896

the pro and con columns as our arguments; Fig-897

ure 5 shows an example. The median number of898

arguments per pro and con perspective per topic 899

is 4, with a maximum of 23 and a minimum of 2. 900

The ProCon data is publicly available through their 901

website, containing no personally-identifying infor- 902

mation about individuals. We follow the guidelines 903

specified by ProCon on “How to Use” their data 904

(https://www.procon.org/faqs/#II). 905

A.2 Human Annotation Details 906

For the human annotations in §4.1.1, our annotation 907

service provider was paid 49 USD per hour for a 908

total of 25 hours of work, and we asked them to en- 909

sure fair payment to annotators. The 10 annotators 910

were specialized workers in the United States con- 911

tracted by our annotation provider. Our annotation 912

provider reported self-disclosed genders and age 913

brackets of annotators, but this information was not 914

used in our analyses. Our annotations focused on 915

attributes of our NPOV Response Generator query- 916

response pairs, collecting annotation labels but no 917

other data generated by the annotators. To reduce 918

annotation bias, annotators were not told how the 919

labeled examples would be used, and they were 920

not told that the response was machine-generated. 921

See Figure 6 for a screenshot of the annotation tool 922

used by the human annotators. 923

A.3 Prompt-Tuning 924

This section discusses implementation details of 925

(1) the NPOV Response Generator and (2) the hal- 926

lucination and coverage error classifiers, which are 927

both based on prompt-tuning an LLM. We use the 928

same prompt-tuning settings for both. 929

We deliberately refrain from resource-intense 930

hyperparameter tuning and instead use configura- 931

tions previously shown to work well (Mozes et al., 932

2023). We use soft prompt lengths of 5 tokens 933

initialized with a random sample of the model’s 934

5K most frequent token vocabulary embeddings 935

(Lester et al., 2021). We train with a learning rate 936

of 0.1 with 500 warm-up steps and linear decay. 937

We use small batch sizes of 16 for training and 938

limit training to 20K steps. In most cases, we reach 939

the maximum development set performance after 940

2-5K steps. Prompt-tuning runs take a maximum 941

of 4 hours per run on 64 TPUv4 chips. 942

For the task representations, we utilize a “curly 943

braces format” to verbalize the task, consisting 944

of several key-value pairs in the input and tar- 945

get sequence for the LLM. This format is easily 946

picked up by modern LLMs, as they have typically 947

been exposed to code during pre-training. Figure 3 948
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shows how we format the task for the NPOV Re-949

sponse Task (§2.1). Figure 4 shows how we format950

the error classification tasks (§3.3).951

A.4 Annotated Example Counts952

Table 6 shows the number of annotated examples953

from Steps 1 through 3 in §4.1, along with the954

synthetically-generated errors from §4.2. We report955

the numbers of annotated error-free examples and956

errors of different types for the train, dev, and test957

set splits.958

A.5 Test Set Details959

In §5, we report results on four different test set960

slices:961

• Full organic: unparaphrased error-free exam-962

ples from §4.1 Step 1 (base annotations), vs.963

organic full errors from §4.1 Steps 1 (base an-964

notations) and 2 (extra organic errors).965

• Unparaphrased synthetic: unparaphrased966

error-free examples from §4.1 Step 1 (base an-967

notations), vs. corresponding examples with968

synthetically-generated errors.969

• Paraphrased synthetic: paraphrased error-970

free examples from §4.1 Step 3 (paraphrasing),971

vs. corresponding examples with synthetically-972

generated errors.973

• Ambiguous organic: unparaphrased error-free974

examples from §4.1 Step 1 (base annotations),975

vs. ambiguous organic errors from §4.1 Steps 1976

(base annotations) and 2 (extra organic errors).977

Ambiguous errors are defined in §3, including978

partial errors, repetition, and perspective confu-979

sion.980

Dataset sizes and distributions of errors for each981

test set slice are reported in Table 7.982

A.6 Classifier Ablation: Annotation-Free983

Scenario984

As an additional experiment, we analyze whether985

we can obtain good classifiers for hallucination986

and coverage detection by just re-utilizing the987

original training data from the NPOV Response988

Task, without the need to perform any of the man-989

ual annotations described in §4.1. We turn the990

data used to train the NPOV Response Genera-991

tion into error classifier training data by (1) treat-992

ing NPOV Response Task training examples as993

no error-examples, and (2) adding synthetic errors994

according to our procedure in §4.2. We call this 995

approach “annotation-free” as we do not have to 996

create any additional human annotations for classi- 997

fier training. The resulting hallucination and cov- 998

erage error classifiers are trained on 50 error-free 999

examples and 131 examples with synthetic errors. 1000

Table 4 shows results on the organic test sets 1001

for the “annotation-free” classifiers. Overall, these 1002

results are significantly worse than results with 1003

the non-annotation-free classifiers (compare to Ta- 1004

ble 2), and often worse than other data-free ap- 1005

proaches (compare to ROUGE and salience in Ta- 1006

ble 1). 1007

Test Set Hallucination Coverage
Full Organic 0.739 0.896
Ambiguous organic 0.732 0.804

Table 4: Annotation-free classifer ROC AUC scores.

A.7 Salience Formulas 1008

In §3.2, we describe how we compute a word-to- 1009

word salience map Mwords ∈ Rm×n, where m is 1010

the number of non-stop words in the input argu- 1011

ments and n is the number of non-stop words in 1012

the generated NPOV response. Our salience maps 1013

are based on gradient times input attribution scores, 1014

but we obtain comparable results using gradient L2 1015

norms. Here, we include equations defining our 1016

hallucination and coverage error detection metrics 1017

based on Mwords. 1018

Assume Ipro and Icon are the sets of non-stop 1019

words in the input pro and con arguments respec- 1020

tively. Assume Oresp is the set of non-stop words 1021

in the generated NPOV main response. For each 1022

input word wi ∈ Ipro ∪ Icon, we define its con- 1023

tribution score αi as its maximum contribution to 1024

any response word (i.e. the maximum across the 1025

corresponding row of Mwords): 1026

αi = max(Mwords[i, :]) 1027

Similarly, for each output word wj ∈ Oresp, we 1028

define its attribution score βj as its maximum attri- 1029

bution from any input argument word (i.e. the maxi- 1030

mum across the corresponding column of Mwords): 1031

βj = max(Mwords[:, j]) 1032

Sample contribution and attribution scores for input 1033

words and response words respectively are shown 1034

in Figure 2. For word-level error detection (§5.3), 1035
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Input Sequence:
User question: {Should abortion be legal?}
Topic: {abortion}
Perspective #1: {pro: Abortion bans deny bodily autonomy, creating wide-ranging repercussions. pro: 
Abortion is a safe medical procedure that protects lives.}
Perspective #2: {con: Life begins at conception, making abortion murder. con: Increased access to birth 
control, health insurance, and sexual education would make abortion unnecessary.}
Neutral response opening: {

Target Sequence:
This is a controversial topic and people hold different perspectives on it. Let me show a few…}
Neutral response core: {People in support of abortion bans for example claim that they deny bodily 
autonomy, which has wide-ranging repercussions. They also say that abortion would be safe medical 
procedure that protects lives. On the other hand, those who oppose abortion bans claim that abortion is 
murder because life begins at conception. Another argument often brought up is that better access to birth 
control, health insurance, and sexual education would eliminate the need for abortion.}

Figure 3: Task format for the NPOV Response Task.

Coverage Detection
Input Sequence
User question: {Should abortion be legal?}. 
Neutral response: {This is a controversial topic and people hold different 
perspectives on it. Let me show a few… People in support of abortion bans for 
example claim that they deny bodily autonomy, which has wide-ranging 
repercussions. They also say that abortion would be safe medical procedure that 
protects lives. On the other hand, those who oppose abortion bans claim that 
abortion is murder because life begins at conception. Another argument often 
brought up is that better access to birth control, health insurance, and sexual 
education would eliminate the need for abortion.}. 
Given pro arguments: {pro: Abortion is a safe medical procedure that protects 
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging 
repercussions.}. 
Given con arguments: {con: Increased access to birth control, health insurance, 
and sexual education would make abortion unnecessary. con: Life begins at 
conception, making abortion murder.}. 
All the given arguments are covered by the neutral response: {
Target Sequence
YES}

Hallucination Detection
Input Sequence
User question: {Should abortion be legal?}. 
Neutral response: {This is a controversial topic and people hold different 
perspectives on it. Let me show a few… People in support of abortion bans for 
example claim that they deny bodily autonomy, which has wide-ranging 
repercussions. They also say that abortion would be safe medical procedure that 
protects lives. On the other hand, those who oppose abortion bans claim that 
abortion is murder because life begins at conception. Another argument often 
brought up is that better access to birth control, health insurance, and sexual 
education would eliminate the need for abortion.}. 
Given pro arguments: {pro: Abortion is a safe medical procedure that protects 
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging 
repercussions.}. 
Given con arguments: {con: Increased access to birth control, health insurance, 
and sexual education would make abortion unnecessary. con: Life begins at 
conception, making abortion murder.}. 
Only given arguments are contained in the neutral response: {
Target Sequence
YES}

Figure 4: Task format for LLM-based error classifiers.

these word-level scores can be converted into cov-1036

erage error scores 1.0−αi and hallucination scores1037

1.0− βj .1038

For example-level error detection (§5.1), we1039

compute an example-level coverage error score by1040

(1) taking the geometric mean of word-level contri-1041

bution scores for each input perspective, (2) taking1042

the minimum of the two perspective scores (to re-1043

flect the fact that both perspectives must contribute),1044

and (3) subtracting from 1.0 (lower contributions1045

are more likely to be coverage errors):1046

scov = 1.0−min
(

gmeanwi∈Ipro(αi),1047

gmeanwi∈Icon(αi)
)

1048

We compute an example-level hallucination score1049

by (1) taking the geometric mean of word-level1050

attribution scores in the NPOV main response, and1051

(2) subtracting from 1.0 (lower attributions are 1052

more likely to be hallucinations): 1053

shall = 1.0− gmeanwj∈Oresp
(βj) 1054

Note that scov, shall ∈ [0, 1] because entries of 1055

Mwords are in [0, 1]. We evaluate these hallucina- 1056

tion and coverage error scores for example-level 1057

error detection in §5.1. 1058
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Split # of topics Topics
Train 9 Animal Dissection; Concealed Handguns; Cuba Embargo; Filibuster;

Free College; GMOs (Genetically Modified Organisms); Net Neutrality;
Obesity; Vaping E-Cigarettes

Dev 28 Binge-Watching; Cancel Culture; Churches and Taxes; College Education;
Corporal Punishment; Daylight Saving Time; Dress Codes; Electoral Col-
lege; Employer Vaccine Mandates; Fighting in Hockey; Golf; Homework;
Kneeling during National Anthem; Marijuana (CBD) for Pets; Olympics;
Penny; Pit Bull Bans; Pokémon; School Vouchers; Space Colonization;
Standardized Tests; Student Loan Debt; Tablets vs. Textbooks; Teacher
Tenure; Uber & Lyft; US Supreme Court Packing; Video Games and
Violence; Zoos

Test 35 Abortion; American Socialism; Animal Testing; Artificial Intelligence;
Banned Books; Bottled Water Ban; Cell Phone Radiation; Climate
Change; Corporate Tax Rate; DACA & Dreamers; DC and Puerto Rico
Statehood; Defund the Police; Drone Strikes Overseas; Fracking; Gold
Standard; Gun Control; Historic Statue Removal; Mandatory National
Service; Minimum Wage; OTC Birth Control; Paying College Athletes;
Police Body Cameras; Prescription Drug Costs; Private Prisons; Recre-
ational Marijuana Legalization; Reparations for Slavery; Right to Health
Care; Sanctuary Cities; Saturday Halloween; School Uniforms; Social
Media; Social Security Privatization; Universal Basic Income; Vaccines
for Kids; Vegetarianism

Table 5: ProCon topics assigned to the different dataset splits.

Annotation set Split Topics Examples Error-free Hall. only Cov. only Both errors
Step 1: Base Unparaphrased

Train 9 26 21 1 4 0
Dev 28 76 61 9 6 0
Test 35 93 78 9 6 0

Step 2: Extra Organic Errors
Train 9 35 - 14 15 6
Dev 26 128 - 65 35 28
Test 32 130 - 58 38 34

Step 3: Base Paraphrased
Train 9 21 21 - - -
Dev 25 54 54 - - -
Test 35 77 77 - - -

Synthetic Errors: Unparaphrased
Train 9 50 - 13 15 22
Dev 22 123 - 33 40 50
Test 31 165 - 48 47 70

Synthetic Errors: Paraphrased
Train 9 47 - 13 15 19
Dev 21 116 - 32 36 48
Test 31 166 - 48 46 72

Table 6: Numbers of annotated examples from the annotations in §4.1 (Steps 1 through 3) and the synthetic error
generation in §4.2.
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Test set Examples Error-free Hall. only Cov. only Both errors
Full organic 173 78 49 32 14
Unparaphrased synthetic 243 78 48 47 70
Paraphrased synthetic 243 77 48 46 72
Ambiguous Organic 128 78 18 12 20

Table 7: Statistics for our four different test set slices. All errors are full errors, except in the ambiguous organic
dataset.

Figure 5: Screenshot of the ProCon page on abortion (ProCon.org, 2022b); pink boxes show the first argument
scraped for the pro and con perspectives. The scraped user query is the header “Should abortion be legal?”.
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Figure 6: Screenshot of the annotation tool for the human annotators in §4.1.1. This example is on the topic
Vegetarianism (ProCon.org, 2022c).
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