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Abstract

We propose a new strategy to handle contro-
versial topics in LLM-based chatbots based
on Wikipedia’s Neutral Point of View (NPOV)
principle: acknowledge the absence of a sin-
gle true answer and surface multiple perspec-
tives. We frame this as controlled text gener-
ation, where perspectives are retrieved from a
knowledge base and the LLM is tasked with
generating a fluent and faithful response from
the perspectives. Our main contribution is a
detailed study of common failure modes of
LLMs, namely hallucination and coverage er-
rors, in the context of this controlled genera-
tion task. We propose and evaluate three meth-
ods to detect such errors based on (1) word-
overlap, (2) salience, and (3) LLM-based clas-
sifiers. Our results demonstrate that classi-
fiers, even when trained only on synthetic er-
rors, can achieve high performance, with ROC
AUC scores of 95.3% for hallucination and
90.5% for coverage error detection on unam-
biguous error cases. We show that when no
training data is available, our other methods
can still yield good results on hallucination
(84.0%) and coverage error (85.2%) detection.

1 Introduction

Large Language Models (LLMs) have risen in
popularity due to state-of-the-art performance on
a wide range of tasks, and a growing audience
of users is engaging with LLM-driven chatbots.!
While these chatbots are highly flexible and gener-
alizable, they are known to struggle with factuality
and bias (Shuster et al., 2021; Sheng et al., 2019).
Particularly when discussing controversial topics,
model developers may desire more control over
LLM-based chatbot responses.

In this paper, we investigate how LLMs can be
used in controlled text generation for controversial

1Among others: https://openai.com/blog/chatgpt;
https://bard.google.com; https://www.anthropic.
com/index/introducing-claude.

topics. While it is important for generative text
systems to provide accurate answers wherever pos-
sible, users often seek information on topics for
which there are not agreed-upon factual answers.
These topics range from the inconsequential (the
superiority of the Yankees vs. the Red Sox) to the
fundamental (“What religious faith should I adhere
to?”). Building useful LLMs requires the ability to
ensure that LLM responses adhere to desired levels
of neutrality and nuance in such cases.

We introduce the NPOV Response Task: when
a user asks a query about a controversial topic,
the model is provided with arguments for multi-
ple perspectives and is tasked to generate a multi-
perspective response, inspired by Wikipedia’s Neu-
tral Point of View (NPOV) principle. We adapt a
conversational LLM to this task and examine two
common error types violating our goal of faithful-
ness to inputs: (1) hallucinations (response con-
tains unprovided arguments), and (2) coverage er-
rors (response omits provided arguments).

We build a dataset of model query-response
pairs, conditioned on arguments from Britannica’s
ProCon (ProCon.org, 2022a). Using expert anno-
tators, we identify instances of hallucination and
coverage errors. We then propose methods for de-
tecting such hallucination and coverage errors, both
with and without access to human-labeled data.

Our main results demonstrate that with access
to error-free examples and examples containing
only synthetic errors, LLM-based classifiers can
achieve ROC AUC:s of 95.3% and 90.5% in de-
tecting organic hallucinations and coverage errors
respectively on our task. Even without access to an-
notated data, we can leverage salience and ROUGE-
based techniques to achieve ROC AUCs of 84.0%
for hallucinations and 85.2% for coverage errors.

2 Handling Controversial Topics

Our work is centered around how LLMs can be
controlled to respond to queries about controversial
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User
query

[ Should abortion be legal? ]

Response
intro

This is a controversial topic and people hold different
perspectives on it. Let me show a few...

People in support of abortion bans for example claim
that they deny bodily autonomy, which has wide-ranging
repercussions. They also say that abortion would be
safe medical procedure that protects lives. On the other
hand, those who oppose abortion bans claim that
abortion is murder because life begins at conception.
Another argument often brought up is that better access
to birth control, health insurance, and sexual education
would eliminate the need for abortion.

Response
main

Abortion is a safe medical procedure that protects
lives.

KB

Abortion bans deny bodily autonomy, creating
wide-ranging repercussions.

Increased access to birth control, health insurance,
and sexual education would make abortion
unnecessary.

Life begins at conception, making abortion murder.

Figure 1: Example NPOV response to a user query on a senstive topic (left) based on pro and con perspectives
with two arguments each, as obtained from a knowledge base (right). Arguments taken from ProCon.org (2022b).
Our error detection methods focus on the NPOV main response.

topics for which there is no single correct answer.
For example, in response to “Should abortion be
legal?”, an LLLM without direction might produce
a highly opinionated or offensive response. To ad-
dress such concerns, “guardrails™ are oftentimes
added to LLMs, either completely preventing the
generation of responses to such topics or respond-
ing with canned answers (“I am just a language
model and cannot answer this question...”). Such
approaches can lead to erasure harm and reduce
the usefulness of the system on potentially impor-
tant topics. Another approach is to personalize
responses to align with a user’s position; however,
this can reinforce harmful biases and popular mis-
conceptions, and act as a chatbot echo chamber.

As an alternative strategy, we propose to ac-
knowledge the lack of agreement and surface main
viewpoints instead. This approach is inspired by
Wikipedia’s Neutral Point of View (NPOV) prin-
ciple, which requires that content is written such
that it represents “fairly, proportionately, and, as
far as possible, without editorial bias, all the sig-
nificant views that have been published by reliable
sources on a topic.”? Figure 1 (left) gives an exam-
ple of an NPOV response on a highly controversial
topic. We explore whether such responses can be
generated by an LLM using controlled text genera-
tion, and we detect common failure modes such as
hallucination and coverage errors.

2.1 NPOV Response Generator

We separate response generation from content gen-
eration. We assume that there is a content retrieval
process and a knowledge base of curated arguments
for different points of view. The knowledge base
we use in this paper consists of arguments from

2From https://en.wikipedia.org/wiki/Wikipedia:
Neutral_point_of_view, last accessed 2023/04/06.

Britannica’s ProCon website (see §2.2).

The NPOV Response Task is then: given the user
query and perspectives (where various arguments
are concatenated, each with a prefix like “pro” or
“con”), generate a response that consists of an intro-
duction sentence, serving as a bridge from the user
query, and a verbalization of the given perspectives.
When generating the response, relevant aspects of
the given arguments must not be dropped (ensure
full coverage) and no other arguments should be
added (avoid hallucinations). This task formulation
gives model developers fine-grained control over
LLM responses. An example is shown in Figure 1.

We adapt an LLM to generate such NPOV re-
sponses using prompt-tuning (Lester et al., 2021);
see §A.3 for the specific task format and prompt-
tuning hyperparameters. Our base LLM? is a 64B
decoder-only model pre-trained on public dialog
data and web text. Our training set consists of 80
query-response pairs covering 9 controversial top-
ics from ProCon (§2.2). ProCon question headers
(e.g. “Should abortion be legal?”’) are used as user
queries. For each topic, we sample one, two, or
three arguments from the pro and con side in Pro-
Con and then manually write several paraphrased
responses capturing these arguments. We observe
that after prompt-tuning, the NPOV Response Gen-
erator generalizes well beyond the topics and argu-
ments seen during training.

2.2 ProCon as a Knowledge Base

Britannica’s ProCon (ProCon.org, 2022a) is a web-
site presenting pros and cons for commonly de-
bated topics. Pros and cons are researched and
compiled by ProCon research staff and editors, and
they aim to be nonpartisan. As of October 2022,
ProCon contains 72 active (i.e. ‘“non-archived”)

*Model details are omitted for blind review.
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topics. For both the pro and con perspective for
each topic, several arguments are given, each con-
sisting of a short argument phrase accompanied
by a longer explanation. The median number of
arguments per perspective per topic is 4, but some
topics contain many more arguments (e.g. Social
Media has 23 arguments per perspective). We ran-
domly sample ProCon arguments as inputs to the
NPOV Response Generator for each topic (§4.1).
Each topic is associated with a leading question in
ProCon (e.g. “Should abortion be legal?”’), which
we treat as the user query asked to the LLM. See
§A.1 for more details.

3 Methods to Detect Hallucinations and
Coverage Errors

We focus on hallucination and coverage error de-
tection, adopting the following definitions:

* If the generated response contains at least one
argument which was not provided, we call this
a hallucination.

* If one or more of the given arguments is com-
pletely dropped from the response, we call this
a coverage error.

We call these full errors, as they address the hallu-
cination or coverage of a full argument.

On top of these well-defined errors, we notice
that the NPOV Response Generator sometimes pro-
duces other unfaithful changes to arguments, in-
cluding: (1) partial hallucinations (slight meaning
change, e.g.“consensus” becomes “unanimity”), (2)
partial coverage errors (only a part of the argument
is dropped), (3) repetitions (response contains the
same given argument multiple times), and (4) per-
spective confusions (response inverts the perspec-
tives, e.g. pro arguments are presented as cons).
We call all of these ambiguous errors.

We propose the following three methods for de-
tecting hallucination and coverage errors in gener-
ated responses: ROUGE, salience, and classifiers.

3.1 ROUGE

As a baseline, we use ROUGE-1 (word-matching)
to compute hallucination and coverage error scores
(Lin, 2004). For a given response from the NPOV
Response Generator, ROUGE calculates the pro-
portion of response words that are matched in the
input arguments (ROUGE-1 precision) and the pro-
portion of input argument words that are matched
in the response (ROUGE-1 recall). Low precision

is indicative of hallucination, and low recall is in-
dicative of a coverage error. Because the NPOV Re-
sponse Task requires that both input perspectives be
covered, we compute ROUGE-1 recall separately
for each input perspective and then compute the
minimum as our overall recall score. For ROUGE,
words are defined using whitespace and punctu-
ation separation, dropping stop words and using
word stemming from NLTK (Bird et al., 2009).

3.2 Salience

Aside from word matching, previous work has pro-
posed methods to quantify attributions from input
to output subword tokens in LLMs using model
gradients (Bastings and Filippova, 2020). One pop-
ular approach is to compute the loss gradient for
each output token with respect to each input token
embedding, producing a gradient vector for each
input-output token pair. The attribution from each
input to the output token is defined as the dot prod-
uct between the corresponding gradient vector and
the input token embedding (Denil et al., 2014).*

In the NPOV Response Generation scenario,
each output token has an attribution value from
each input token (e.g. the given arguments per per-
spective and the user query) and each previously
generated token in the response. This produces a
token-to-token salience map Myokens € R(m+O)xL
where m is the number of input tokens and ¢ is
the number of model response tokens. Before any
further processing, we square the salience map and
normalize columns to sum to one (i.e. the attribu-
tion to each output token sums to one).

Because we are primarily concerned with hallu-
cination and coverage errors for content words, we
convert the subword token-to-token salience map
to a word-to-word salience map M ,,.qs. We define
words by concatenating consecutive LLM tokens
that are not separated by punctuation or whitespace;
we then drop stop words, as defined in NLTK (Bird
et al., 2009). We define the attribution from an
input word wq to an output word w; as the maxi-
mum attribution from any subword token in wg to
any subword token in wj. We restrict our salience
maps to the input argument words (rows) and the
output NPOV response words (columns). A sample
word-to-word salience map for a query-response
pair is shown in Figure 2.

Qualitatively, we observe that covered words
tend to have a high contribution to a single corre-

*We obtain comparable results using gradient L2 norms.
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Figure 2: Top: salience map from input argument content words (rows) to model response content words (columns).
Bottom: individual word scores for contribution (input words; left) and attribution (response words; right). The

highlighted words are hallucinated in the model response.

sponding word in the response. Thus, we define
an input argument word’s contribution score as its
maximum contribution to any response word (i.e.
maximum for each row of M,,,.4s). We define a
response word’s attribution score as its maximum
attribution from any input argument word (i.e. max-
imum for each column of M,,,45). Contribution
and attribution scores for input words and response
words respectively are shown in Figure 2.

To compute an example-level contribution score
for a query-response pair, we compute the geomet-
ric mean of contribution scores for words in each
of the two input perspectives. As with ROUGE, we
take the minimum of the two perspective contribu-
tions as a final contribution score. To compute an
example-level attribution score, we compute the ge-
ometric mean of attribution scores for all response
words. Finally, hallucination and coverage error
scores in [0, 1] are computed by subtracting the at-
tribution and contribution scores respectively from
1.0. See Appendix A.7 for equations.

3.3 Classifiers

The two previous methods for detecting hallucina-
tion and coverage errors are data-free, not requir-
ing labeled model responses. We now explore how
well LLM-based classifiers perform on these tasks,
leveraging human annotations if available. Our

classifiers are built on a 62B decoder-only LLM
which has been instruction-tuned on a large number
of tasks analoguously to Chung et al. (2022).> We
use prompt-tuning to adapt this LLM into classi-
fiers for hallucination and coverage detection. The
classifiers have as input: (1) the user query, (2) the
generated NPOV response, and (3) the given argu-
ments per perspective. We train the LLM to predict
the label “NO” if there is a full error and “YES”
otherwise. See §A.3 for the specific task format
and prompt-tuning hyperparameters, and §5.2 for
the training datasets used.

For inference, we generate error classification
scores in [0, 1] by obtaining the LLM’s log per-
plexity scores for the tokens corresponding to the
two output class labels (“YES” and “NO”), apply
softmax, and take the score of the negative class. ©

4 Dataset

To train and evaluate the hallucination and cover-
age error detection methods above on the NPOV
Response Task, we construct datasets of organic
(i.e. naturally occurring) and synthetic errors, with
and without paraphrasing.

SModel details are omitted for blind review.
®For single-token labels, this score equals the probability
of “NO” conditioned on either “YES” or “NO” output token.



4.1 Annotation Procedure

For each of the 72 controversial topics from Pro-
Con (ProCon.org, 2022a), we generate up to 18
query-response pairs by first randomly sampling
combinations of pro and con arguments, with either
1, 2, or 3 arguments per side, and then using the
NPOV Response Generator to generate a response.
We annotate these query-response pairs (also called
examples) in three stages to (1) identify error-free
examples, (2) identify examples with errors, and
(3) generate paraphrased examples:

1. For the first three examples per topic, we sam-
ple two generator responses, with temperatures
0.0 and 0.7 respectively. We annotate whether
responses contain hallucinations or coverage
errors, annotating examples with a mix of the
two temperatures. We annotate the token spans
in the response that cover each input argument,
along with any hallucinated response spans and
uncovered input argument spans.

2. Because examples with hallucination and cov-
erage errors are less frequent than error-free
examples even for high temperatures (20.0% er-
rors in 0.7 temperature responses), we sample a
single 0.7 temperature response for each of the
remaining (up to) 15 examples per topic.” We
annotate for hallucination and coverage errors,
including both full and ambiguous errors (§3).

3. Hallucination and coverage error detection
methods should capture whether meaning is
retained between input arguments and gener-
ated responses, even if the arguments are not
copied verbatim. We therefore generate exam-
ples with enforced paraphrasing between the
input arguments and the response. To do so, we
paraphrase the input arguments for all error-free
examples generated in Step 1. For each argu-
ment, we use an off-the-shelf paraphrasing tool
and manually verify that the paraphrasing does
not induce substantial meaning change.®

In total, we identify 160 examples with no errors
and 326 examples with at least one error, and we
generate 152 paraphrased examples with no errors.
See §A.4 for details on the annotated examples and
errors in different dataset splits.

"Preliminary experiments with the NPOV Response Gen-
erator suggest that temperatures above 1.0 tend to produce
overly long and irrelevant responses.

8We use https://quillbot.com/ for paraphrasing. We

find it more efficient to paraphrase the input arguments than
to paraphrase the whole response.

4.1.1 Inter-Annotator Agreement

To validate the viability and coherence of our anno-
tation task, we hired a team of 10 external annota-
tors to re-identify both hallucination and coverage
errors in our dataset. Our annotation provider was
paid 49 USD per hour for a total of 25 hours of
work. Annotators were presented with 188 of the
query-response pairs annotated in annotation Step
1 (§4.1) and 86 pairs from Step 2. Given the user
query, the provided arguments, and the response
from the NPOV Response Generator, annotators
were asked to mark whether each response had a
hallucination or coverage error (details in §A.2).
Each query-response pair was annotated by 5 an-
notators. We compare the annotator majority vote
to our annotated labels, finding 90% agreement for
hallucinations and 94% for coverage errors. To
measure inter-annotator agreement, we compute
Krippendorff’s alpha for hallucinations (o = 0.60)
and coverage errors (o = (0.73) across the 10 anno-
tators. These values are in line with or above simi-
lar text classification tasks (Wulczyn et al., 2017).

4.2 Synthetic Errors Dataset

Due to the relative rarity of organic errors produced
by the NPOV Response Generator, we synthetically
generate examples with errors by modifying error-
free query-response pairs. Specifically, we modify
the list of given arguments while keeping the origi-
nal response unchanged. For coverage errors, we
add one randomly sampled unused argument for
the given topic from ProCon and add it to the list of
given arguments. This creates a full coverage error
because the original response does not cover this
argument. For hallucinations, we randomly remove
one of the given arguments. This creates a halluci-
nation because the original response still addresses
the removed argument. We apply synthetic error
generation to both paraphrased and unparaphrased
examples that were annotated as error-free in §4.1
(312 examples), generating 667 new examples with
synthetic hallucinations, synthetic coverage errors,
or both. See §A.4 for detailed numbers.

4.3 Test Sets with Different Error Types

Taking the annotations and synthetic errors gener-
ated above, we split the 72 ProCon topics into a
train set (9 topics), a development set (28 topics),
and a test set (35 topics). Our dataset contains two
types of query-response pairs (paraphrased and un-
paraphrased) and three types of errors (synthetic
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Hallucinations Coverage Errors
Test set error type ROUGE | Salience | Classifier | ROUGE | Salience | Classifier
Full organic 0.840 0.808 0.953 0.795 0.852 0.905
Unparaphrased synthetic | 0.772 0.736 0.998 0.890 0.875 0.986
Paraphrased synthetic 0.680 0.708 0.977 0.746 0.831 0.993
Ambiguous organic 0.814 0.772 0.851 0.834 0.755 0.756

Table 1: ROC AUC scores for example-level hallucination and coverage error detection on four test sets (§A.5).

full, organic full, and organic ambiguous). We eval-
uate the performance of our error detection meth-
ods on different slices of the test set to better un-
derstand where different approaches have strengths
or weaknesses. Hence, each table in the results
section states the specific test set slices evaluated.
See §A.5 for details (size and composition) about
each test set slice.

5 Results

5.1 Example-Level Error Detection

First, we evaluate the three error detection methods
(ROUGE, salience, and classifiers) on the example-
level, i.e. detecting whether a query-response pair
contains an error. The classifiers shown here are
trained only on query-response pairs which are ei-
ther error-free or contain synthetic errors, including
both paraphrased and unparaphrased versions (503
examples total); we explore the impact of training
data on classifier performance in §5.2.

Table 1 shows ROC AUC scores on the different
test sets (§4.3) for all three methods. While the
full organic set (organic error-free examples vs. or-
ganic full errors) is the most realistic, our synthetic
sets allow for more controlled evaluations.

Classifiers consistently outperform the other two
methods by a large margin on all sets except am-
biguous coverage errors (discussed below), with
ROC AUC:s above 90% for both hallucination and
coverage error detection, for all full error types
(organic and synthetic, paraphrased and unpara-
phrased). Comparing ROUGE and salience, results
are mixed. On the full organic errors, ROUGE
performs better at detecting hallucinations (84.0%
AUC), whereas salience performs better at detect-
ing coverage errors (85.2% AUC).

For copy-like tasks with few expected word
changes, ROUGE outperforms salience on both hal-
Iucination and coverage error detection (results on
the unparaphrased synthetic errors set). However,
on the paraphrased synthetic errors set, it appears
that salience captures the underlying semantics bet-

ter than ROUGE, allowing it to more accurately
detect both hallucination and coverage errors.

Finally, we evaluate our methods on ambiguous
errors (including partial argument hallucination and
coverage errors, argument repetition, and perspec-
tive confusion; see §3). ROUGE performs well
here, likely due to minimal natural paraphrasing
from the NPOV Response Generator. Classifier
ROC AUC scores drop substantially on ambiguous
errors, likely because classifiers are trained only on
full errors. This discrepancy seems most problem-
atic for coverage error detection, where classifiers
perform even worse than ROUGE. Future work
should establish clearer definitions of ambiguous
errors, allowing larger sets of ambiguous errors to
be annotated and used to train classifiers.

5.2 Classifier Training Data Ablations

We analyze the impact of different types and
amounts of training data on classifier performance,
considering the following four scenarios:

* Error-free +Synth: all error-free query-
response pairs, plus synthetic errors; training
split only (70 examples).

* +Para: previous, plus equivalent paraphrased
examples; training split only (138 examples).

* +Dev: previous, plus equivalent examples from
the development split (503 examples).

* +0rg: previous, plus examples with organic
full errors; training and development splits (573
examples).

Table 2 shows classifier performance on the full
organic and ambiguous organic test sets (§4.3). For
coverage error detection, performance strictly im-
proves on the full organic set as we add more train-
ing data. However, adding the organic error ex-
amples leads to a decline in performance on the
ambiguous organic set. For hallucination detection
as well, we see performance improvement when
adding more training data. Adding the organic er-



Hallucinations Coverage Errors
Error-free Error-free
Test set error type +Synth | +Para | +Dev | +Org + Synth | +Para | +Dev | +Org
Full organic 0.789 0.828 | 0.953 | 0.920 0.880 0.903 | 0.905 | 0.956
Ambiguous organic 0.807 0.820 | 0.851 | 0.862 0.702 0.529 | 0.756 | 0.640

Table 2: ROC AUC scores for classifiers trained on different amounts and types of data (§5.2), ordered from
smallest to largest training set size. Table 1 results use the classifiers trained on +Dev.

Hallucinations Coverage Errors
Test set error type ROUGE | Salience | ROUGE \ Salience
Full organic 0.673 0.724 0.669 0.799
Unparaphrased synthetic | 0.697 0.710 0.693 0.808
Paraphrased synthetic 0.614 0.673 0.582 0.742
Ambiguous organic 0.542 0.542 0.738 0.740

Table 3: ROC AUC scores for word-level error detection results for ROUGE and salience.

rors leads to a performance drop on the full organic
set, but not the ambiguous organic set.

Overall, adding more data, even consisting of
synthetic errors, leads to improvements on most
test sets and for both hallucination and coverage
error detection. Surprisingly, adding organic errors
on top leads to mixed results, showing that organic
data is not necessarily always helpful or needed for
good classifier performance. The +Dev scenario
might already be large enough that the addition of
organic errors does not provide benefit.

5.3 Word-Level Error Detection

In practice, it may also be useful to locate specific
response words that are hallucinated, or specific
input words that are uncovered. Of the methods
in §3, ROUGE and salience can both produce hal-
lucination and coverage error scores at the word
level. Specifically, the ROUGE coverage error
score would be O if an input word is matched in
the response (and 1 otherwise), and the ROUGE
hallucination score would be O if a response word
is matched in the input arguments (and 1 other-
wise). For salience, before example-level aggrega-
tion, scores are already computed per word (§3.2).
Sample word-level salience scores for hallucination
and coverage errors are shown in Figure 2.

We compare the word-level hallucination and
coverage error scores from salience and ROUGE
with the ground truth annotations of hallucinated
and uncovered words annotated in our test sets
(§4.1). Results are computed over all non-stop
words in each test set, defining words by merging
LLM tokens (§3.2). Results are reported in Table 3.

Salience performs equally to or better than ROUGE
for detecting both hallucinated words in model re-
sponses and uncovered words in input arguments
on all test sets. On the test set with paraphrased syn-
thetic errors, salience has the largest relative gains
over ROUGE, likely due to its ability to capture
semantics even in cases of word mismatch, similar
to the trends on example-level error detection.

6 Discussion

Overall, LLM-based classifiers trained on relatively
small amounts of data perform surprisingly well,
outperforming all other methods detecting full er-
rors and obtaining promising ROC AUC scores
between 90% and 99%. This is especially notable
given that the classifiers are trained only on syn-
thetic hallucination and coverage errors and yet
perform well on the organic test set.

While not as strong as the classifiers, the data-
free methods presented here still achieve strong
results. Our experiments demonstrate that ROUGE
is a strong data-free baseline for hallucination and
coverage error detection in tasks with minimal para-
phrasing. When more paraphrasing is expected,
salience provides stronger results, appearing to bet-
ter capture semantics than simple word matching.
Moreover, salience is effective for word-level hal-
lucination and coverage error detection, allowing
us to locate the parts of a generated response that
are problematic.

Our experiments also show the value of different
test set slices. While the synthetically constructed
datasets might diverge from the true data distri-
bution, they offer a way to analyze strengths and



weaknesses of different methods in an isolated fash-
ion, e.g. paraphrased examples demonstrating the
shortcomings of ROUGE.

Finally, all methods struggle on ambiguous or-
ganic errors, although these results are inconclu-
sive. Largely, this set is a “catch-all” for problem-
atic and low-agreement errors, possibly explaining
the poor performance of different error detection
approaches. Training classifiers on this subset is
important future work, but requires a larger dataset
of more clearly-defined ambiguous errors.

7 Related Work

Errors in controlled text generation. Our ap-
proach to NPOV Response Generation using pro-
vided input perspectives can be seen as an ex-
ample of table-to-text generation, which aims to
generate fluent and faithful natural language de-
scriptions of tabular data. Table-to-text genera-
tion has been studied in the context of a variety of
datasets including WikiBio (Lebret et al., 2016),
ToTTo (Parikh et al., 2020), DART (Nan et al.,
2021), and WebNLG (Gardent et al., 2017). Tra-
ditional metrics such as ROUGE, BLEU, and ME-
TEOR compare model responses to a reference
output, but metrics have also been developed specif-
ically for table-to-text tasks to address a generally
poor correlation between previous metrics and hu-
man assessment. PARENT (Dhingra et al., 2019)
considers both the table source and reference out-
put when scoring a model response, and IE-based
metrics (e.g. Liu et al., 2021) compare entities
between the table source and the response.

In typical table-to-text tasks, individual table
inputs are short expressions, often only consisting
of named entities or numbers that allow for minimal
paraphrasing. In our case, however, the input fields
are perspectives composed of several full sentences
for the arguments. For this reason, pure matching-
based scoring approaches (e.g. ROUGE, BLEU,
and PARENT) may be less effective.

Our task is also closely related to retrieval-
augmented generation, where information (e.g. a
document or paragraph) is retrieved from a knowl-
edge source and used to condition a model response.
Like the NPOV Response Generator, retrieval-
augmented models sometimes exhibit hallucination
(Daziri et al., 2022) and coverage errors (Krishna
et al., 2021) relative to the retrieved source.

More broadly, hallucinations are a common ar-
tifact in natural language generation (NLG). At a

high level, they can be described as cases where
the generated output is “unfaithful” to the source
content (Ji et al., 2023). Due to the fluency of mod-
ern NLG systems, hallucinations are particularly
concerning as they can remain undetected and mis-
lead users. Tolerance to such errors is particularly
low in summarization and table-to-text tasks. In
the NPOV Response Task, we focus on full errors,
where a hallucinated or uncovered argument can
be identified relatively unambiguously.

Prompt-tuning. Both the NPOV Response Gen-
erator (§2.1) and the classifiers (§3.3) use soft
prompt-tuning, a method where only a small num-
ber of parameters are tuned and the base LLM is
left unchanged (Lester et al., 2021). Mozes et al.
(2023) show that LLMs can be prompt-tuned even
on very small datasets to function as classifiers.

Salience. Previous work has identified hallucina-
tions in machine translation using proportions of
source contributions to output tokens (Dale et al.,
2022; Voita et al., 2021), calculated with aggre-
gated layerwise token attribution (Ferrando et al.,
2022). Our salience-based method for error de-
tection is similar in spirit, but our attributions are
based on loss gradients (Bastings and Filippova,
2020). We focus on the dot products between gra-
dients and inputs, which are often used to roughly
quantify Transformer model attributions from in-
put tokens (Ding and Koehn, 2021; Boggust et al.,
2022; Zhao et al., 2022).9 Previous work has ap-
plied gradient-based salience methods to fine-tuned
encoder-decoder and encoder-only classification
models (Tenney et al., 2020). Here, we extend this
work to a large decoder-only model, prompt-tuned
on a sequence-to-sequence task.

8 Conclusion

In this paper, we introduce the NPOV Response
Task as an approach to controlled text generation
when dealing with controversial topics. We pro-
pose and evaluate methods for detecting hallu-
cination and coverage errors in LL.M-generated
responses, and we demonstrate a synthetic error
generation strategy that can be used to train and
evaluate our proposed methods. We find that
prompt-tuned LLM classifiers trained only on syn-
thetic errors can achieve high error detection perfor-
mance on organic examples, and our other methods
achieve strong results without any training data.

“We obtain comparable results using gradient L2 norms.



Ethical Considerations

With the rise of LLM-based chatbots and broader
societal concerns about echo chambers, filter bub-
bles, and polarization, the ability of LLMs to pro-
vide neutral, factual, and nuanced responses to con-
troversial topics is an important avenue of work.
However, having LLMs respond to queries about
controversial topics is inherently challenging: who
decides what is controversial, neutral, and factual,
and how this is encoded in an LL.M is a hard and
nebulous problem. Moreover, as LLMs and chatbot
technologies become increasingly easy to create,
maliciously engineered and maliciously applied
models are likely to become more prevalent. Con-
trolled text generation is a way to control LLM
responses in a maximally transparent way.

In this paper, we assume the existence of a
database with NPOV-expressed perspectives. How-
ever, such a database is not an easy artifact to create,
and the contents will often be hotly contested. The
dataset we use is derived from Britannica’s Pro-
Con website (ProCon.org, 2022a). However, this
still reduces arguments to pro and con perspectives,
which can reinforce a binary vision of the world.
Our work does not address how to best arrive at
and reflect consensus on specific arguments. For
example, when should the model express “many
experts” vs. “a few experts” as a qualification for
an argument? Failure here can serve to elevate
fringe arguments. Even deciding whether a topic
is controversial is already culturally charged. For
instance, the subject of gun control might be a
non-issue for some European countries yet remain
polarizing in the United States. Similarly, omitting
topics or arguments that are relevant for minorities
or non-Western countries risks reinforcing systemic
erasure and promoting socio-cultural biases. To ad-
dress and mitigate these biases in a perspectives
database, processes are necessary to ensure that the
group of experts providing perspectives is diverse
and multicultural.

The more basic question of when to apply an
LLM in practical scenarios needs careful consider-
ation. In some domains (e.g. medical information),
even very low error rates may not be acceptable,
while other domains (e.g. creative writing) have
very different risk profiles. Proper evaluations, poli-
cies, and guardrails should be put in place before
LLMs are applied in practice to new domains.

Limitations

Our work has several limitations. The NPOV Re-
sponse Generator is trained and evaluated only in
English, and our NPOV Response Task does not
address how to create the content in the perspec-
tives and their arguments. The arguments used in
our work are pulled from ProCon, which limits
both our set of controversial topics and our sets
of perspectives (i.e. only pro and con; see Ethical
Considerations); future work might consider more
nuanced methods of perspective identification, se-
lection, and/or generation.

Our work also does not focus on biases in LLM
hallucinated content or the types of content that
LLMs often fail to cover. For example, the NPOV
Response Generator may be more likely to halluci-
nate or fail to cover arguments for specific topics or
perspectives, e.g. based on the frequency of topics
and perspectives in the LLM pre-training corpus.

Even when focusing just on error detection rather
than content, we focus primarily on errors that
are easy to identify and have high levels of inter-
annotator agreement. Based on our own annota-
tions, inter-annotator agreement on ambiguous er-
rors appears lower, but a full analysis is missing
and subject to future work. Moreover, an important
branch of future work is to establish more thorough
taxonomies and annotation schemes for hallucina-
tion and coverage error types.

Finally, the computational footprints of the
NPOV Response Generator and the LLM-based
error classifiers are large, with each model built
upon a 60B+ parameter LLM. Similarly, comput-
ing salience maps for error detection requires com-
puting gradients from the NPOV Response Genera-
tor itself, thus inducing a large computational cost.
Of the error detection methods evaluated in our
work, ROUGE is by far the most computationally
efficient. Future work may consider more compu-
tationally efficient approaches, such as evaluating
smaller models as error detection classifiers.
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A Appendix
A.1 ProCon

We use the perspectives and arguments for the dif-
ferent topics listed on Britannica’s ProCon website
as of October 2022 (ProCon.org, 2022a). We ran-
domly split the 72 ProCon topics into train, dev,
and test, as shown in Table 5, ensuring no overlap in
topics across these splits. In line with ProCon’s us-
age guidelines (https://www.procon.org/faqgs/
#1I1), all arguments are used verbatim as stated on
the specific topic website under the section “Pro
& Con Arguments”. We scrape the subtitles of
the pro and con columns as our arguments; Fig-
ure 5 shows an example. The median number of
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arguments per pro and con perspective per topic
is 4, with a maximum of 23 and a minimum of 2.
The ProCon data is publicly available through their
website, containing no personally-identifying infor-
mation about individuals. We follow the guidelines
specified by ProCon on “How to Use” their data
(https://www.procon.org/faqs/#II).

A.2 Human Annotation Details

For the human annotations in §4.1.1, our annotation
service provider was paid 49 USD per hour for a
total of 25 hours of work, and we asked them to en-
sure fair payment to annotators. The 10 annotators
were specialized workers in the United States con-
tracted by our annotation provider. Our annotation
provider reported self-disclosed genders and age
brackets of annotators, but this information was not
used in our analyses. Our annotations focused on
attributes of our NPOV Response Generator query-
response pairs, collecting annotation labels but no
other data generated by the annotators. To reduce
annotation bias, annotators were not told how the
labeled examples would be used, and they were
not told that the response was machine-generated.
See Figure 6 for a screenshot of the annotation tool
used by the human annotators.

A.3 Prompt-Tuning

This section discusses implementation details of
(1) the NPOV Response Generator and (2) the hal-
lucination and coverage error classifiers, which are
both based on prompt-tuning an LLM. We use the
same prompt-tuning settings for both.

We deliberately refrain from resource-intense
hyperparameter tuning and instead use configura-
tions previously shown to work well (Mozes et al.,
2023). We use soft prompt lengths of 5 tokens
initialized with a random sample of the model’s
5K most frequent token vocabulary embeddings
(Lester et al., 2021). We train with a learning rate
of 0.1 with 500 warm-up steps and linear decay.
We use small batch sizes of 16 for training and
limit training to 20K steps. In most cases, we reach
the maximum development set performance after
2-5K steps. Prompt-tuning runs take a maximum
of 4 hours per run on 64 TPUv4 chips.

For the task representations, we utilize a “curly
braces format” to verbalize the task, consisting
of several key-value pairs in the input and tar-
get sequence for the LLM. This format is easily
picked up by modern LLMs, as they have typically
been exposed to code during pre-training. Figure 3
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shows how we format the task for the NPOV Re-
sponse Task (§2.1). Figure 4 shows how we format
the error classification tasks (§3.3).

A.4 Annotated Example Counts

Table 6 shows the number of annotated examples
from Steps 1 through 3 in §4.1, along with the
synthetically-generated errors from §4.2. We report
the numbers of annotated error-free examples and
errors of different types for the train, dev, and test
set splits.

A.5 Test Set Details

In §5, we report results on four different test set
slices:

* Full organic: unparaphrased error-free exam-
ples from §4.1 Step 1 (base annotations), vs.
organic full errors from §4.1 Steps 1 (base an-
notations) and 2 (extra organic errors).

Unparaphrased synthetic: unparaphrased
error-free examples from §4.1 Step 1 (base an-
notations), vs. corresponding examples with
synthetically-generated errors.

Paraphrased synthetic: paraphrased error-
free examples from §4.1 Step 3 (paraphrasing),
vs. corresponding examples with synthetically-
generated errors.

Ambiguous organic: unparaphrased error-free
examples from §4.1 Step 1 (base annotations),
vs. ambiguous organic errors from §4.1 Steps 1
(base annotations) and 2 (extra organic errors).
Ambiguous errors are defined in §3, including
partial errors, repetition, and perspective confu-
sion.

Dataset sizes and distributions of errors for each
test set slice are reported in Table 7.

A.6 Classifier Ablation: Annotation-Free
Scenario

As an additional experiment, we analyze whether
we can obtain good classifiers for hallucination
and coverage detection by just re-utilizing the
original training data from the NPOV Response
Task, without the need to perform any of the man-
ual annotations described in §4.1. We turn the
data used to train the NPOV Response Genera-
tion into error classifier training data by (1) treat-
ing NPOV Response Task training examples as
no error-examples, and (2) adding synthetic errors
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according to our procedure in §4.2. We call this
approach “annotation-free” as we do not have to
create any additional human annotations for classi-
fier training. The resulting hallucination and cov-
erage error classifiers are trained on 50 error-free
examples and 131 examples with synthetic errors.

Table 4 shows results on the organic test sets
for the “annotation-free” classifiers. Overall, these
results are significantly worse than results with
the non-annotation-free classifiers (compare to Ta-
ble 2), and often worse than other data-free ap-
proaches (compare to ROUGE and salience in Ta-
ble 1).

Test Set Hallucination | Coverage
Full Organic 0.739 0.896
Ambiguous organic 0.732 0.804

Table 4: Annotation-free classifer ROC AUC scores.

A.7 Salience Formulas

In §3.2, we describe how we compute a word-to-
word salience map M,orqs € R™*™, where m is
the number of non-stop words in the input argu-
ments and n is the number of non-stop words in
the generated NPOV response. Our salience maps
are based on gradient times input attribution scores,
but we obtain comparable results using gradient L.2
norms. Here, we include equations defining our
hallucination and coverage error detection metrics
based on M, prds-

Assume Iy, and I.,, are the sets of non-stop
words in the input pro and con arguments respec-
tively. Assume O, is the set of non-stop words
in the generated NPOV main response. For each
input word w; € Ipro U Ion, we define its con-
tribution score ¢ as its maximum contribution to
any response word (i.e. the maximum across the
corresponding row of M,ords):

Q; = maX(Mwords [Za ])

Similarly, for each output word w; € Oyegp, We
define its attribution score 3; as its maximum attri-
bution from any input argument word (i.e. the maxi-
mum across the corresponding column of M ,,;-qs):

6j = maX(MondS[:7 jD

Sample contribution and attribution scores for input
words and response words respectively are shown
in Figure 2. For word-level error detection (§5.3),



Input Sequence:
User question: {Should abortion be legal?}

Topic: {abortion}

Neutral response opening: {

Target Sequence:

Perspective #1: {pro: Abortion bans deny bodily autonomy, creating wide-ranging repercussions. pro:
Abortion is a safe medical procedure that protects lives.}

Perspective #2: {con: Life begins at conception, making abortion murder. con: Increased access to birth
control, health insurance, and sexual education would make abortion unnecessary.}

This is a controversial topic and people hold different perspectives on it. Let me show a few...}

Neutral response core: {People in support of abortion bans for example claim that they deny bodily
autonomy, which has wide-ranging repercussions. They also say that abortion would be safe medical
procedure that protects lives. On the other hand, those who oppose abortion bans claim that abortion is
murder because life begins at conception. Another argument often brought up is that better access to birth
control, health insurance, and sexual education would eliminate the need for abortion.}

Figure 3: Task format for the NPOV Response Task.

Coverage Detection

Input Sequence

User question: {Should abortion be legal?}.

Neutral response: {This is a controversial topic and people hold different
perspectives on it. Let me show a few... People in support of abortion bans for
example claim that they deny bodily autonomy, which has wide-ranging
repercussions. They also say that abortion would be safe medical procedure that
protects lives. On the other hand, those who oppose abortion bans claim that
abortion is murder because life begins at conception. Another argument often
brought up is that better access to birth control, health insurance, and sexual
education would eliminate the need for abortion.}.

Given pro arguments: {pro: Abortion is a safe medical procedure that protects
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging
repercusswons.).

and sexual education would make abortion unnecessary. con: Life begins at
conception, making abortion murder.}.
All the given arguments are covered by the neutral response: {

Target Sequence
YES}

Given con arguments: {con: Increased access to birth control, health insurance,

Hallucination Detection

Input Sequence

User question: {Should abortion be legal?}.

Neutral response: {This is a controversial topic and people hold different
perspectives on it. Let me show a few... People in support of abortion bans for
example claim that they deny bodily autonomy, which has wide-ranging
repercussions. They also say that abortion would be safe medical procedure that
protects lives. On the other hand, those who oppose abortion bans claim that
abortion is murder because life begins at conception. Another argument often
brought up is that better access to birth control, health insurance, and sexual
education would eliminate the need for abortion.}.

Given pro arguments: {pro: Abortion is a safe medical procedure that protects
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging
repercussions.}.

Given con arguments: {con: Increased access to birth control, health insurance,
and sexual education would make abortion unnecessary. con: Life begins at
conception, making abortion murder.}.

Only given arguments are contained in the neutral response: {

Target Sequence

YES}

Figure 4: Task format for LLM-based error classifiers.

these word-level scores can be converted into cov-
erage error scores 1.0 — «; and hallucination scores
1.0 — B;.

For example-level error detection (§5.1), we
compute an example-level coverage error score by
(1) taking the geometric mean of word-level contri-
bution scores for each input perspective, (2) taking
the minimum of the two perspective scores (to re-
flect the fact that both perspectives must contribute),
and (3) subtracting from 1.0 (lower contributions
are more likely to be coverage errors):

(2) subtracting from 1.0 (lower attributions are
more likely to be hallucinations):

Shany = 1.0 — gmean,, <o, .., (B;)

Note that Sco, Spau € [0, 1] because entries of
Myords are in [0, 1]. We evaluate these hallucina-
tion and coverage error scores for example-level
error detection in §5.1.

Scor = 1.0 — min (gmeanwi Elpro (o),
gmean,,,;,,, ()

We compute an example-level hallucination score
by (1) taking the geometric mean of word-level
attribution scores in the NPOV main response, and
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Split # of topics | Topics

Train 9 Animal Dissection;, Concealed Handguns;, Cuba Embargo; Filibuster;
Free College; GMOs (Genetically Modified Organisms); Net Neutrality;
Obesity; Vaping E-Cigarettes

Dev 28 Binge-Watching; Cancel Culture; Churches and Taxes; College Education;
Corporal Punishment; Daylight Saving Time; Dress Codes; Electoral Col-
lege; Employer Vaccine Mandates; Fighting in Hockey; Golf; Homework;
Kneeling during National Anthem; Marijuana (CBD) for Pets; Olympics;
Penny; Pit Bull Bans; Pokémon,; School Vouchers; Space Colonization;
Standardized Tests; Student Loan Debt; Tablets vs. Textbooks; Teacher
Tenure; Uber & Lyft; US Supreme Court Packing; Video Games and
Violence; Zoos

Test 35 Abortion; American Socialism; Animal Testing; Artificial Intelligence;
Banned Books; Bottled Water Ban; Cell Phone Radiation; Climate
Change; Corporate Tax Rate; DACA & Dreamers; DC and Puerto Rico
Statehood; Defund the Police; Drone Strikes Overseas, Fracking; Gold
Standard; Gun Control; Historic Statue Removal; Mandatory National
Service; Minimum Wage; OTC Birth Control; Paying College Athletes;
Police Body Cameras; Prescription Drug Costs; Private Prisons, Recre-
ational Marijuana Legalization; Reparations for Slavery; Right to Health
Care; Sanctuary Cities; Saturday Halloween; School Uniforms; Social
Media; Social Security Privatization; Universal Basic Income; Vaccines
for Kids; Vegetarianism

Table 5: ProCon topics assigned to the different dataset splits.

Annotation set \ Split \ Topics \ Examples | Error-free | Hall. only | Cov. only | Both errors
Step 1: Base Unparaphrased

Train 9 26 21 1 4 0

Dev 28 76 61 9 6 0

Test 35 93 78 9 6 0
Step 2: Extra Organic Errors

Train 9 35 - 14 15 6

Dev 26 128 - 65 35 28

Test 32 130 - 58 38 34
Step 3: Base Paraphrased

Train 9 21 21 - - -

Dev 25 54 54 - - -

Test 35 77 77 - - -
Synthetic Errors: Unparaphrased

Train 9 50 - 13 15 22

Dev 22 123 - 33 40 50

Test 31 165 - 48 47 70
Synthetic Errors: Paraphrased

Train 9 47 - 13 15 19

Dev 21 116 - 32 36 48

Test 31 166 - 48 46 72

Table 6: Numbers of annotated examples from the annotations in §4.1 (Steps 1 through 3) and the synthetic error
generation in §4.2.
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Test set Examples | Error-free | Hall. only | Cov. only | Both errors
Full organic 173 78 49 32 14
Unparaphrased synthetic 243 78 48 47 70
Paraphrased synthetic 243 77 48 46 72
Ambiguous Organic 128 78 18 12 20

Table 7: Statistics for our four different test set slices. All errors are full errors, except in the ambiguous organic
dataset.

BRITANNICA RELIABLE.
NONPARTISAN. ¥ K
P ROCO N .ORG | EMPOWERING. enwanceD BY Google

[ |
¥ Our B
FEMINIST '—

I. MAJORITY

Po.amalldAiRATIAN

Last updated on: 6/24/2022 | Author: ProCon.org

The debate over whether abortion should be a legal option has long divided people around the world. Split A Abortion — Home
into two groups, pro-choice and pro-life, the two sides frequently clash in protests.

Q
Proponents of legal abortion believe abortion is a safe medical procedure that protects lives, while abortion :«'P\' Take Action
bans endanger pregnant people not seeking abortions, and deny bodily autonomy, creating wide-ranging
repercussions. 66 99 Pro & Con Quotes
Opponents of legal abortion believe abortion is murder because life begins at conception, that abortion
creates a culture in which life is disposable, and that increased access to birth control, health insurance, and l!m History of Abortion
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Figure 5: Screenshot of the ProCon page on abortion (ProCon.org, 2022b); pink boxes show the first argument
scraped for the pro and con perspectives. The scraped user query is the header “Should abortion be legal?”.
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Do Responses Have Multiple Perspectives?

Topic: Vegetarianism Instructions on Perspective Rating
User Query: Should People Become 1. Read each perspective statement below and indicate if the statement is present or not in the
Vegetarian? fospanse

2. Indicate if there are any additional perspective statements in the generated response that are not
covered by the statements below.

Response: Those who argue in favor of 3. If there are additional perspective statements, copy the text from those statements in the text
vegetarianism say that it can lower the risk box.
of diseases and also be healthier than a
carnivorous diet in general. However, on the
other hand, it is said that a diet consisting of
meat does not always increase the risk of
diseases, and in fact, it may be even A vegetarian diet lowers risk of diseases. (required)
healthier. And finally, it's said that
vegetarians do not live longer.

1.) Number of Pro Perspectives: 2

O Yes: Perspective is present in the response
O No: Perspective is absent in the response

A vegetarian diet is more healthful than a carnivorous diet. (required)
O Yes: Perspective is present in the response
O No: Perspective is absent in the response

2.) Number of Con Perspectives: 2

A diet that includes meat does not raise risk of disease. (required)
O Yes: Perspective is present in the response
O No: Perspective is absent in the response

Vegetarians do not live longer. (required)
O Yes: Perspective is present in the response
O No: Perspective is absent in the response

3.) There are additional perspectives in the response that are not covered in the
perspective statements above (required)

O Yes: there are additional perspectives in the response
) No: there are no other perspectives in the response

Figure 6: Screenshot of the annotation tool for the human annotators in §4.1.1. This example is on the topic
Vegetarianism (ProCon.org, 2022c¢).
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