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ABSTRACT

Large language models are becoming the go-to solution for the ever-growing num-
ber of tasks. However, with growing capacity, models are prone to rely on spu-
rious correlations stemming from biases and stereotypes present in the training
data. This work proposes a novel method for detecting and mitigating gender bias
in language models. We perform causal analysis to identify problematic model
components and discover that mid-upper feed-forward layers are most prone to
convey bias. Based on the analysis results, we intervene in the model by apply-
ing a linear projection to the weight matrices of these layers. Our titular method
DAMA significantly decreases bias as measured by diverse metrics while main-
taining the model’s performance on downstream tasks. We release code for our
method and models, which retrain LLaMA’s state-of-the-art performance while
being significantly less biased.1

1 INTRODUCTION

Large language models have a large capacity for learning linguistic and factual information from
training data, but they are prone to capture unwanted biases. It has been shown that LLMs are gen-
der biased (Stanczak & Augenstein, 2021; Blodgett et al., 2020; van der Wal et al., 2023; Nadeem
et al., 2021; Nangia et al., 2020; Limisiewicz & Mareček, 2022). This bias is manifested by re-
lying on a spurious correlation between seemingly gender-neutral expressions and specific gender.
For instance, language models tend to ascribe stereotypical gender to certain practitioners, e.g. by
outputting high probabilities for phrases such as “male mechanics” or “female cleaners” (Lu et al.,
2020b). In many tasks, the models also show uneven performance for the test examples involving
different gender contexts.

This work analyzes the LLaMA family of models (Touvron et al., 2023). These openly available
models obtain state-of-the-art performance on a variety of downstream tasks. We focus specifically
on the gender bias present in these models, but our method is applicable to other types of bias as well.
We specifically ask: 1) Can we identify evidence of gender bias in LLaMA? Specifically, do they
associate professional names with the stereotypical gender? 2) Can we identify which components
of the model store the gender-biased representation? 3) Can we edit the model’s weights to decrease
the bias while preserving its performance on end-tasks?

To answer the first question, we check the LLaMA performance on popular tests for gender bias:
WinoBias (Zhao et al., 2018) and StereoSet (Nadeem et al., 2021). We introduce an interpretable
metric that evaluates bias on the language generation task. To answer the second question, we per-
form causal tracing (Vig et al., 2020; Meng et al., 2022a). We monitor changes in the distribution
of predictions when the stereotypical representation is revealed only in one of the components, such
as MLP (multilayer perceptron) or attention layer. Following the terminology of Pearl (2001), we
call such component gender bias mediator. To tackle the last question, we introduce “Debiasing
Algorithm through Model Adaptation”. In DAMA, we edit bias-vulnerable feed-forward layers by
multiplying linear transformation weights by the orthogonal projection matrix similar to Ravfogel
et al. (2022). Our results show that with directed changes in model weights, we can reduce gender
bias substantially while having only a minimal impact on the model’s performance. Specifically,

1The code available at: github.com/tomlimi/DAMA
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X = “The lifeguard laughed because ”

(a)

(b) (c) (d)

Figure 1: Schema (b) shows DAMA intervention in a LLaMA layer. Even though I− Pc is depicted
as a separate module, in practice, it is multiplied with the output matrix of a feed-forward layer
(WFF ). Therefore, DAMA is neutral to the model’s parameter count and architecture. (a) We show
the behavior of the model when presented with a stereotypical prompt. Specifically, (c) shows
the projections of the feed-forward latent vector (u⃗) onto the output space. With DAMA (lower
arrow), we nullify the gender component of the representation. It results in balanced probabilities of
gendered tokens in the model’s output, as shown in (d).

we monitor performance changes in language modeling (measured by perplexity) and in four down-
stream tasks.

To list our contributions: We evaluate gender bias in LLaMA models and introduce a novel, trans-
parent metric for quantifying bias directly in language generation. Most importantly, we propose
DAMA, a method for editing weights of the bias mediator to significantly reduce gender bias in three
different tasks without sacrificing performance across unrelated tasks. This is an improvement over
prior methods that were focused on one type of bias manifestation (Ranaldi et al., 2023) or were not
tested for preserving language understanding capabilities of the model (Lauscher et al., 2021; Gira
et al., 2022).

2 METHODOLOGY AND EXPERIMENTAL SETUP

2.1 LLAMA MODELS

LLaMA models are causal language models following Transformer decoder architecture (Vaswani
et al., 2017). LLaMA family contains models with 7B, 13B, 30B, and 65B parameters. The original
paper (Touvron et al., 2023) presented state-of-the-art results on multiple downstream tasks, which
we also use for evaluation. In our implementation, we used the model checkpoint accessible through
the Huggingface library huggingface.co. Due to the large size of the models, we used half-
precision weights, which we observed to have no significant impact on the results.

2.2 GENDER BIAS EVALUATION IN LANGUAGE GENERATION

To better understand gender bias in language generation, we construct our dataset of prompts and an
interpretable diagnostic measure.

We use the set of professions chosen and annotated by Bolukbasi et al. (2016).2 Each profes-
sion was assigned two scores: factual score xf (originally called definitionality) and stereotypical
score xs. They define how strongly a word is connected with the male or female gender respec-
tively through semantically or through stereotypical cues. By convention, scores range from −1 for

2The data is available at: https://github.com/tolga-b/debiaswe/blob/master/data/
professions.json
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female-associated words to 1 for male ones.3 We fill the proposed profession words in the prompts of
the structure presented in Figure 1a. The lifeguard is, by definition, a gender-neutral word (xf = 0)
and associated with the male gender by a stereotypical cue (xs = 0.6). We measure the probabilities
for gendered prediction for a given prompt PM (o|X). For that purpose, we use pronouns o+ = “he”
and o− = “she”, as they are probable continuations for given prompts.

Subsequently for each prompt, we compute empirical score y = PM (o+|X) − PM (o−|X). To
estimate the relationship between the observed score and annotated ones xs and xf , we construct a
linear model:

y = as · xs + af · xf + b0 (1)

The linear fit coefficients have the following interpretations: as is an impact of stereotypical signal
on the model’s predictions; af is an impact of the factual (semantic) gender of the word. Noticeably,
y, xs, and xf take the values in the same range. The slope coefficient tells how shifts in annotated
scores across professions impact the difference in prediction probabilities of male and female pro-
nouns. The intercept b0 measures how much more probable the male than the female pronouns are
when we marginalize the subject. We provide the details on the prompt selection and test train splits
in Appendix C.

2.3 OTHER GENDER BIAS INDICATORS

We also evaluate other well-established methods of evaluating gender bias manifestations in two
downstream tasks:

WinoBias Zhao et al. (2018) present the dataset containing a WinoGrad scheme (Levesque et al.,
2011) examples. Each example contains two gender-neutral profession names and gendered pro-
nouns. The task is to identify the coreference link between the pronouns and the correct profes-
sional. The dataset consists of two parts: pro-stereotypical, where coreference links to a profession
name with stereotypical gender matching the gender of the pronoun; in anti-stereotypical examples,
the profession’s stereotypically assumed gender is different from the gender of the pronouns. An
example from the anti-stereotypical subset: “The nurse notified the patient that his shift would be
ending in an hour.”4

We evaluate the general accuracy of coreference resolution Acc. Inspired by the analysis of
Stanovsky et al. (2019), we introduce two measures of bias: ∆S: the difference between the accu-
racy of pro and anti-stereotypical examples, and ∆G: the difference between the accuracy between
examples containing male and female pronouns.

StereoSet Nadeem et al. (2021) propose a dataset for measuring stereotypical biases on four do-
mains. We consider only gender domain and intrasentence task. This task contains 765 sentences,
each with a gap and three possible completions: stereotypical, anti-stereotypical, and meaningless.
E.g., a sentence Girls tend to be more than boys. and three completions soft, determined, and
fish. The authors propose three evaluation measures: 1) lms – the percentage of sentences where the
model prefers the meaningful over the meaningless completion; 2) ss – the percentage of sentences
where the model prefers the stereotypical over the anti-stereotypical completion; and 3) icat score
that combines the previous two: icat = lms ·min(ss, 100 − ss)/50. Note that typically lower ss
scores refer to less biased models since they are closer to 50.

2.4 LANGUAGE MODELING

To evaluate the performance of the model’s pre-training task, we measure perplexity on the
Wikipedia 103 corpus (Merity et al., 2016) available through HuggingFace.

3We use positive values for male gender following the original paper. This is only an arbitrary choice, and
switching polarities wouldn’t affect this analysis. Importantly, we do not intend to ascribe negative valuations
to any of the genders.

4In this example, the coreferential link relies on semantics, while in other instances, coreference can be
resolved solely through syntax.
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Figure 2: Causal tracing of factual af , stereotypical as coefficients and intercept b in regression
to indirect effects of the model yIE . The linear models are independently fitted for restored MLP
clean representation at each layer and token position.

2.5 DOWNSTREAM TASKS

We have selected three datasets that measure common sense reasoning and language understanding
to evaluate the possible performance loss after altering the model: OpenBookQA (OBQA) (Mi-
haylov et al., 2018) contains 500 multiple-choice questions aimed at combining science facts with
common knowledge. AI2 Reasoning Challenge (ARC) (Clark et al., 2018) contains natural sci-
ence questions authored for use on standardized tests. It is partitioned into a Challenge Set (1172
test questions) and an Easy Set (2376 test questions). Massive Multitask Language Understand-
ing (MMLU) (Hendrycks et al., 2021) contains 14 042 questions on 57 topics, including math, law,
or social sciences. The former two tasks are evaluated in a zero-shot regime. In the MMLU, we
provide five in-context examples. In all the evaluations, we followed closely the original setting of
Touvron et al. (2023).

3 BIAS EVALUATION AND CAUSAL TRACING

3.1 EXPERIMENTS

Bias Evaluation We assess gender bias in LLaMA by employing the linear model outlined in
Section 2.2. We compare the linear coefficients: the larger the coefficient, the more the model is
biased. We also measure the bias scores for the WinoBias and StereoSet datasets.

Causal Tracing To identify the components storing gendered associations, we perform causal
tracing for gender bias in text generation. We use a similar methodology as Meng et al. (2022a). For
each test prompt, (1) we perform a clean run and collect all the activations at all layers and tokens;
(2) we perform a corrupted run by adding noise to the tokens of the profession (details in Appendix C
); (3) we perform corrupted runs with restoration: at each step, we restore the activations from the
clean runof each output of MLP at one particular layer and token. For each layer l, token position
i, and a prompt X we compute the score yl,i(X) = Pl,i(o+|X)− Pl,i(o−|X). By fitting the linear
model (Equation 1) across all the prompts X , we get the as and af scores for each layer l and token
position i. Following Meng et al. (2022b), we aggregate token positions into six groups shared
across the whole dataset: first, middle, last subject token, first subsequent token, further tokens, and
the last token.

3.2 RESULTS

Bias Evaluation We show the coefficient of the linear model in Table 1. We see that the linear
model proposed by us is moderately well fitted for all sizes of LLaMA models R2 > 0.35. For all
sizes, the factual coefficient is higher than the stereotypical one. The models are more influenced
by semantical than stereotypical cues (af > as). Also, we observe a positive intercept in all cases,
showing that LLaMA models are more likely to predict male than female pronouns.

Similarly, other metrics confirm that LLaMA models are biased in coreference resolution and sen-
tence likelihood estimation. In WinoBias, we observe that the bias stemming from stereotypes ∆S
is more prominent than the accuracy difference between examples with male and female pronouns
∆G.
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Bias in LM WinoBias StereoSet gender

↓ as ↑ af ↓ b ↓R2 ↑ Acc ↓∆S ↓∆G ↑ lms ↓ ss ↑ ICAT

MEMIT 0.209 0.282 0.071 0.497 59.3% 40.5% 3.3% 95.6 72.0 53.6
LoRA FT 0.144 0.261 -0.040 0.413 58.8% 34.4% 5.6% 89.0 62.9 66.0

LLaMA 7B 0.235 0.320 0.072 0.494 59.1% 40.3% 3.0% 95.5 71.9 53.7
DAMA -0.005 0.038 -0.006 0.208 57.3% 31.5% 2.3% 95.5 69.3 58.5
± (std) 0.004 0.004 0.004 0.026 0.5% 0.9% 0.7% 0.3 0.8 1.5

LLaMA 13B 0.270 0.351 0.070 0.541 70.5% 35.7% -1.5% 95.2 71.4 54.4
DAMA 0.148 0.222 0.059 0.472 66.4% 31.1% -1.1% 94.4 68.6 59.4

LLaMA 30B 0.265 0.343 0.092 0.499 71.0% 36.0% -4.0% 94.7 68.4 59.9
DAMA 0.105 0.172 0.059 0.471 63.7% 26.7% -3.7% 94.8 65.7 65.0

LLaMA 65B 0.249 0.316 0.095 0.490 73.3% 35.7% 1.4% 94.9 69.5 57.9
DAMA 0.185 0.251 0.100 0.414 71.1% 27.2% 0.8% 92.8 67.1 61.1

Table 1: Bias evaluation for the LLaMA models and their debiased instances Significance analysis
for the 7B model was performed by running DAMA with five random seeds. We bold the score
for the original model or DAMA, whichever is better if there are more than two standard deviations
apart. We underline the best value in each column.

LM Downstream

↓ PPL ↑ ARC-C ↑ ARC-E ↑ OBQA ↑ MMLU

MEMIT 26.1 42.7 68.9 57.0 30.2
LoRA FT 51.1 37.7 66.5 45.6 26.6

LLaMA 7B 26.1 42.2 69.1 57.2 30.3
DAMA 28.9 41.8 68.3 56.2 30.8
± (std) 0.2 0.4 0.2 0.5 0.5

LLaMA 13B 19.8 44.9 70.6 55.4 43.3
DAMA 21.0 44.7 70.3 56.2 43.5

LLaMA 30B 20.5 47.4 72.9 59.2 55.7*
DAMA 19.6 45.2 71.6 58.2 56.1*

LLaMA 65B 19.5 44.5 73.9 59.6 —*
DAMA 20.1 40.5 67.7 57.2 — *

Table 2: Performance evaluation for the LLaMA models and their debiased instances. The signif-
icance analysis was performed the same as in Table 1. (*) Due to hardware limitations, we could
not run MMLU inference for 65B models. In the evaluation of 30B model, we excluded 4% longest
prompts.

Causal Tracing In Figure 2, we observe the indirect effect of MLPs in each layer and token
position of the 7B model. The best fit is obtained for the representation in the lower layers (0-5) at the
subject position and mid-upper layers (18 -25) at the last position. In the search for stereotypically
biased components, we direct our attention to the mid-upper layers because they appear to covey
less signal about factual gender. We also expect that the information stored in those MLP layers is
more likely to generalize to unseen subjects. Interestingly, the last layers manifest weak negative
slope coefficients, suggesting that these MLPs tend to counter the bias of the models.

In Figure 4 (in Appendix B), we show the results of casual tracing for attention and the whole layer.
For those components, the high indirect effects are distributed more extensively across both token
positions and layers, indicating that they primarily reflect bias from the MLPs. For larger models,
we observe analogous patterns shifted according to the total layer count.

4 DEBIASING ALGORITHM THROUGH MODEL ADAPTATION

We introduce the algorithm that decreases bias in language models by directly editing the model
weights. This section describes our method based on projection-based intervention on selected
layers, called DAMA. Further, we provide theoretical and empirical backing for the method’s effec-
tiveness.
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4.1 OBTAINING STEREOTYPE KEYS AND GENDERED VALUES

Following the convention from Geva et al. (2021), we treat MLP layers as memory units mapping
specific input key representations to value representations. Our focus lies in understanding how these
layers map stereotypical keys to gendered values. As our choice of keys, we take prompts introduced
in Section 2.2, which carry stereotypical signal. The values are the output vectors corresponding to
one of the personal pronouns (male, female, or neutral).

To compute the stereotypical key at lth layer, we feed the stereotypical prompt X up to l layer’s
feed-forward MLP (FFl) to obtain its vector representation. We, specifically, take the vector repre-
sentation at the last token of the prompt. We denote stereotypical keys as u ∈ RdFF following the
convention from Figure 1c.

To compute the value representation corresponding to a specific gender, we employ the next-token
prediction task based on the stereotypical prompt X . As possible next token, we consider one of
the pronouns indicating gender (O+ = “he′′ for male, O− = “she′′ for female, and O0 = “they′′

for neutral). We use the regular cross-entropy loss and optimize the output of the lth layer’s feed-
forward denoted V:

vo = argmin
z∈RdM

[
− logPM [V=z](o|X) + λ1DKL[PM [V=z](o

′|X ′)||PM (o′|X ′)] + λ2||z||2
]

(2)

The second part of the loss is added to preserve the model’s LM capabilities for predicting the next
token (o′) given general (not-biased) prompts (X ′). The last summand is L2 regularization. We use
gradient descent with 20 iterations to obtain a value vector for each of the pronouns vo ∈ RdM .

4.2 OBTAINING PROJECTION ON STEREOTYPE SUBSPACE WITH PLS

To identify the stereotype subspace, we concatenate value vectors for each pronoun (male, neutral,
and female) across all prompts to obtain gendered value matrices V+, V0, and V−. The gendered
value matrices are normalized by subtracting the mean calculated across all three pronouns for a
given prompt. Analogically, we concatenate key vectors for all prompts into one matrix U . Then,
we multiply it by the feed-forward’s output matrix denoted WFF,out,l:

WFF,out,l · U → Û (3)

We concatenate V+, V0, and V− together and concatenate Û three times. We use the Partial Least
Squares algorithm to identify the linear mapping B1 maximizing correlation between stereotypical
keys [Û , Û , Û ] and gendered values [V+, V0, V−]:

[V+, V0, V−] ≈PLS B1 · [Û , Û , Û ] +B0 (4)
By definition of PLS, B1 identifies the stereotypical directions most correlated with gendered val-
ues.5 Therefore, we compute the matrix projecting representation on subspace orthogonal to the one
spanned by dc first columns of B1 to nullify the stereotypical signal. For brevity, we denote the
trimmed matrix as Bdc

1 = B1[:, :dc]. The projection is given by the equation:

P = I− Pc = I−Bdc
1 (BdcT

1 Bdc
1 )−1BdcT

1 (5)
Finally, we perform the model editing by multiplying lth MLP feed-forward matrix WFF,out,l by
the projection matrix P , see Figure 1c. Our algorithm DAMA is based on iterative computation
and applying projections to feed-forwards of multiple subsequent MLP layers. It changes neither
the model’s architecture nor parameter sizes, as the result of matrix multiplication is of the same
dimensionality as the original feed-forward matrix.

4.3 THEORETICAL PERSPECTIVE

In this section, we show theoretical guarantees that multiplying linear feed-forward matrix WFF,out,l

by projection matrix P will be the optimal mapping between keys (U ) and values (V ), fulfilling that
WFF,out,l · U is orthogonal to the guarded bias subspace C.

5Matrix B0 can be used to normalize the value matrix. However, we have noticed that its loadings become
nearly zero due to the earlier normalization of [V+, V0, V−].
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Theorem 1. Assume that we have a linear subspace C ⊆ Ro. Given a n-element key matrix U ∈
Ri×n a value matrix V ∈ Ro×n, we search a mapping matrix W ∈ Ro×i minimizing the least
squares and satisfying ∀ni=1Wui ⊥ C. Specifically, we solve:

Ŵ = argmin
W

||WU − V ||2F such that ∀ni=1Wui ⊥ C

This equation is solved by:
Ŵ = (I− Pc)V UT (UUT )−1

Where Pc is a projection matrix on a subspace C.

The proof of the theorem is in Appendix A. Noteworthy V UT (UUT )−1 solves the regular mean
square error problem of mapping prompt keys to values corresponding to the model’s output.
Due to gradient optimization in the model’s pre-training, we can assume that in general case
WFF,out,l = V UT (UUT )−1. Thus, the application of projections would break the correlation
between stereotypical keys and gendered values without affecting other correlations stored by the
MLP layer.

4.4 EMPIRICAL PERSPECTIVE

Effectivness We apply DAMA to MLPs in approximately one-third of the model’s upper layers (in
LLaMA 7B layers 21 - 29 out of 32 with projection dimensionality dc = 256). In the previous sec-
tion, we have shown that those layers are the most prone to stereotypical bias. We check the impact
of DAMA on bias coefficients of linear model (see Section 2.2) and LM perplexity. Furthermore,
we evaluate the modified model on a set of diverse downstream tasks described in Section 2. In the
choice of tasks, we focused both on gender bias (WinoBias, StereoSet) and language understanding
evaluation (ARC-C, ARC-E, OBQA. MMLU).

Baselines We compare the method with a similar model editing method MEMIT (Meng et al.,
2023) and a parameter-efficient fine-tuning via LoRA (Hu et al., 2022). In both baselines, we
optimize by the objective of predicting a randomly sampled pronoun when presented with a biased
prompt.

Choice of Layers and Dimensionality We analyze how the results vary depending on the number
of layers selected for debiasing Due to the iterative character of intervention, we always start editing
at the fixed layer (22 in LLaMA 7B) and gradually add subsequent layers. Further, we check the
effect of the number of projection dimensions (dc) in the power sequence from 32 to 1024.

Scaling Lastly, we examine the algorithm’s performance for larger scales of LLaMA model: 13B,
30B, and 65B.

4.5 RESULTS

Effectivness DAMA effectively decreases the gender bias of the model while preserving its per-
formance on other tasks, as seen in Table 1. Our algorithm effectively decreased the bias manifested
in language generation for a set of unseen professions.6

Morover, DAMA significantly mitigates bias in StereoSet and WinoBias. In the latter task, general
accuracy decreases, presumably due to the weakening of the stereotypical cue contributing to correct
predictions in numerous test examples.

Our observations confirm that MLP layers contain stereotypical correlations responsible for multiple
manifestations of bias. Furthermore, we observe in Table 2 that the algorithm causes a slight dete-
rioration in general language modeling measured by perplexity on Wikipedia texts. It has a minor
reflection in performance for downstream tasks. The altered model achieves a slightly lower score,
yet differences are statistically significant only for one task (ARC-E). Therefore, we can conclude
that DAMA does not impact the model’s ability in question-answering tasks.

6In Table 3, we also show examples of next token probabilities in the original and debiased model.
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Figure 3: The effect of applying DAMA to LLaMA 7B model on performance and bais in language
modeling. We measured bias on gendered prompts (Section 2.2) by linear coefficients: as and b
coefficient, the causal language modeling capabilities are measured by perplexity. Stars mark the
performance of the model picked for further evaluation. The dashed line corresponds to the scores
of the original LLaMA 7B model.

Baselines In contrast to DAMA, MEMIT has a minor effect on bias measures. We think it is be-
cause it is aimed to alter information specific to key-value pairs selected for intervention. Therefore,
the intervention performed on the training set of professions does not generalize to unseen profes-
sions or other types s of gender bias. LoRA manifests stronger debiasing properties, coming close
to the results of DAMA in multiple bias metrics, and performs better in StereoSet ss and ICAT .
Nevertheless, fine-tuning significantly deteriorates perplexity and the performance in language un-
derstanding tasks.

Choice of Layers and Dimensionality In Figure 3, we observe that the choice of the number
of layers for debiasing and the dimensionality of projection affect both parameters. Expanding the
depth (number of layers) and width (dimensions) of the intervention increases the insensitivity of
debiasing, i.e., decreases as and b coefficients and negatively impacts perplexity. Interestingly, we
observe a negative impact on both measured aspects when applying DAMA on the two last layers of
the models. As noted in Section 3.1, the MLPs in those layers tend to counter bias in the original
model.

Scaling We performed a coarse hyperparameter search for sensitive parameters of DAMA: number
of layers and dimensionalities of the projections. Our analysis showed that the algorithm should
be applied to the mid-top layers, starting from the 65th percentile to the 93rd percentile of layers
ordered from input to output (the exact values are presented in Table 4).

We have achieved a notable reduction in bias scores for all models. Noticeably, although we do
not observe the shared pattern for the bias metrics across different model sizes, the improvements
brought by DAMA are consistent. Moreover, the perplexity and downstream performance of the
original models do not deteriorate and even slightly improve for some settings.

5 DISCUSSION

Our approach is connected to previous methodologies in model editing Meng et al. (2022b) and bias
mitigation (Ravfogel et al., 2022). The important contribution of our work is the introduction of bias
evaluation schema directly in language generation. To answer our first question, we show that all
LLaMA models are biased in this aspect.

Using the evaluation scheme closely connected to the model’s pre-training task had two fundamental
benefits. Firstly, it allowed us to perform a causal analysis of model components. The analysis
allowed us to answer our second research question. We identified mid-upper MLP layers as the most
apparent mediator of gender bias in the model. Secondly, we could perform debiasing adaptation
directly on the model’s weights without using a proxy task (Ravfogel et al., 2022) or fine-tuning on
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limited data that often deteriorates the model’s general performance (Gira et al., 2022). Answering
the third question, we succeeded in significantly reducing bias with a minor impact on general
performance.

The proposed algorithm generalizes the applicability of model-editing (Meng et al., 2022a;b;
Mitchell et al., 2022; De Cao et al., 2021) to the case of modifying general dataset artifacts in-
stead of the information specific to particular examples. Although we focused on gender bias, the
method can be easily generalized to other types of bias or unwanted correlations. Additionally, it is
applicable not only to LLaMA but to a broad family of transformer-based causal language models.

Future Work We plan to improve the method of finding projection matrices, possibly using a
convex search (Ravfogel et al., 2022) or analytically derived pseudo-projections (Belrose et al.,
2023). We aim to investigate further the ranges of layers and dimensions that convey bias to apply
DAMA on other model types effectively. Lastly, we consider further investigating bias in other
languages, both in multilingual LM and machine translation settings. We are particularly interested
in how our approach can be generalized for morphologically rich languages with more ubiquitous
gender marking than English (Zmigrod et al., 2019).

6 RELATED WORK

Measuring bias in language model Gender bias in language models has multiple manifestations
quantified by various metrics, which often show low mutual correlation (Delobelle et al., 2022;
van der Wal et al., 2023). One common approach to operationalize bias is to compare the probability
assigned by a model to sentences conveying neutral and stereotypical information, e.g. SeteroSet
(Nadeem et al., 2021), CrowS-Pairs (Nangia et al., 2020). Probability-based methods were criticized
for being sensitive to the annotation choices (Blodgett et al., 2021) and are hard to apply to auto-
regressive models such as LLaMA.

Another popular method to estimate gender bias is based on the coreference task, where personal
pronouns should be assigned to the correct antecedent in Winograd scheme (Levesque et al., 2011),
e.g. WinoBias (Zhao et al., 2018), Winogender (Rudinger et al., 2018). The task is complicated
by including two potential antecedents, one of which is stereotypically associated with a specific
gender. The analysis of such examples shows that models struggle with solving non-stereotypical
links.

Debiasing methods Similarly to the number of bias metrics, researchers proposed various debi-
asing methods (Stanczak & Augenstein, 2021; Savoldi et al., 2021). The common observation is
that models learn the biases from training data (Navigli et al., 2023). Therefore, one approach is to
curate the model’s training corpus or expose it to gender-balanced data in fine-tuning step (Lu et al.,
2020b; Ranaldi et al., 2023). Alternatively, the model can be fine-tuned on a dataset of a balanced
number of examples for each gender (Guo et al., 2022; Zmigrod et al., 2019).

Another set of approaches is to apply targeted changes to the model’s parameters. Lauscher et al.
(2021); Gira et al. (2022); Xie & Lukasiewicz (2023) fine-tune specific parts of the models most
prone to convey biases. Alternative approaches include a null-space projection of latent states (Rav-
fogel et al., 2022), causal intervention (Vig et al., 2020), or model adapters (Fu et al., 2022). DAMA
belongs to this category of methods, merging aspects of causal intervention, model editing, and
signal projection techniques.

7 CONCLUSION

We introduced Debiasing Algorithm through Model Adaptation based on guarding stereotypical
gender signals and model editing. DAMA is performed on specific modules prone to convey gender
bias, as shown by causal tracing. Our novel method effectively reduces gender bias in LLaMA
models in three diagnostic tests: generation, coreference (WinoBias), and stereotypical sentence
likelihood (StereoSet). The method does not change the model’s architecture, parameter count,
or inference cost. We have also shown that the model’s performance in language modeling and a
diverse set of downstream tasks is almost unaffected.
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Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-
23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 18400–18421. PMLR, 2022. URL https://proceedings.mlr.press/
v162/ravfogel22a.html.

Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. Gender Bias in
Coreference Resolution. In Marilyn A. Walker, Heng Ji, and Amanda Stent (eds.), Proceedings

12

http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://aclanthology.org/D18-1260
https://openreview.net/pdf?id=0DcZxeWfOPt
https://aclanthology.org/2021.acl-long.416
https://aclanthology.org/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.1145/3597307
https://doi.org/10.48550/arXiv.2305.13862
https://doi.org/10.48550/arXiv.2305.13862
https://proceedings.mlr.press/v162/ravfogel22a.html
https://proceedings.mlr.press/v162/ravfogel22a.html


Published as a conference paper at ICLR 2024

of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June
1-6, 2018, Volume 2 (Short Papers), pp. 8–14. Association for Computational Linguistics, 2018.
doi: 10.18653/v1/n18-2002. URL https://doi.org/10.18653/v1/n18-2002.

Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri, and Marco Turchi. Gender Bias in
Machine Translation. Transactions of the Association for Computational Linguistics, 9:845–874,
08 2021. ISSN 2307-387X. doi: 10.1162/tacl a 00401. URL https://doi.org/10.1162/
tacl_a_00401.

Karolina Stanczak and Isabelle Augenstein. A Survey on Gender Bias in Natural Language Process-
ing. CoRR, abs/2112.14168, 2021. URL https://arxiv.org/abs/2112.14168.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pp. 1679–1684, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1164. URL https://aclanthology.org/P19-1164.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
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A THEORETICAL BACKGROUND

In this section, we provide additional theoretical background with proofs. First, we present a theorem
that will help prove Theorm 1.

Theorem 2 (Ordinary Least Square Problem). Given a n-element key matrix U ∈ Ri and a value
matrix V ∈ Ro×n, we search for a mapping matrix W ∈ Ro×i minimizing least squares. Specifi-
cally, we solve:

Ŵ = argmin ||WU − V ||2F
This equation is solved by:

Ŵ = V UT (UUT )−1

The proof for the theorem can be found, e.g., in Goldberger et al. (1964). Now we are ready to
provide a proof for Theorem 1.

Proof. Without loss of generality, we consider a case where n = 1, i.e., U and V are column vectors.
For clarity, we will denote those vectors u ∈ Ri and v ∈ Ro respectively. Therefore, we aim to solve
an equation:

Ŵ = argmin
W

||Wu− v||2F such that Wu ⊥ C (6)

Note that we can substitute the Furbenious norm with the Euclidean norm and decompose vector v
into the sum of two orthogonal vectors.

||Wu− v||2F = ||Wu− v||2 = ||Wu− (I− P )v − Pv||2 (7)

We infer that Wu − (I − P )v ⊥ C from a) Wu ⊥ C (6); and b) (I − P ) ⊥ C as P is projection
matrix on C. Moreover, from the properties of linear projection, we have Pv ∈ C. We note thus that
Wu− (I− P )v ⊥ Pv.

Now, let’s get back to Pythagoras Theorem saying that for pair of orthogonal vectors −→a ⊥ −→
b , we

have ||−→a ||2 + ||−→b ||2 = ||−→a +
−→
b ||2. We can apply this theorem to 6 by taking Wu− (I− P )v as

−→a and Pv as
−→
b . Thus, we can write:

||Wu− (I− P )v − Pv||2 = ||Wu− (I− P )v||2 + ||Pv||2 (8)

In argmin notation, we can omit the second part of the formula because it doesn’t depend on W

Ŵ = argmin
W

||Wu− v||2 = argmin
W

||Wu− (I− P )v||2 (9)

Now, we can apply the same steps to all the columns in U = [u1, . . . , un] and V = [v1, . . . , vn], to
obtain:

Ŵ = argmin
W

||WU − (I− P )V ||2F (10)

Based on Theorm 2 it is solved by Ŵ = (I−P )V UT (UUT )−1. We can easily obtain this result by
substituting V by (I− P )V in the theorem.

Lastly, it can be shown that for any vector x ∈ Ri we have Ŵx ⊥ C from the fact that applying P

projection to Ŵx always produces a null vector:

PŴx = P (I− P )V UT (UUT )−1 = (P − P )V UT (UUT )−1 = 0⃗ (11)

14



Published as a conference paper at ICLR 2024

0 4 8 12 16 20 24 28

First subject token

Middle subject tokens

Last subject token

First subsequent token

Further tokens

Last token

Factual

0 4 8 12 16 20 24 28

Stereotypical

0 4 8 12 16 20 24 28

Intercept

0 4 8 12 16 20 24 28

R2

−0.2

0.0

0.2

−0.1

0.0

0.1

−0.25

0.00

0.25

(a) Attention

0 4 8 12 16 20 24 28

First subject token

Middle subject tokens

Last subject token

First subsequent token

Further tokens

Last token

Factual

0 4 8 12 16 20 24 28

Stereotypical

0 4 8 12 16 20 24 28

Intercept

0 4 8 12 16 20 24 28

R2

−0.2

0.0

0.2

−0.1

0.0

0.1

−0.2

0.0

0.2

(b) Layer

Figure 4: LLaMA 7B. Gender factual and stereotypical coefficients for linear regression to indirect
effects of the model yIE . The indirect effect is calculated by reintroducing “clean representation” to
the output of specific components (attention or whole layer) and token position.
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Figure 5: LLaMA 13B
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Figure 6: LLaMA 30B
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Figure 7: LLaMA 65B
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Prompt DAMA @1 @2 @3 @4 @5

Softmax Probability

The lifeguard laughed because
✗

he I she the it
26% 13% 11% 8% 8%

✓
she the he it I
10% 10% 9% 9% 8%

The nurse laughed because
✗

she I the it he
39% 9% 8% 6% 4%

✓
the it I he she

11% 9% 7% 5% 5%

The boy stayed up because
✗

he of his the it
54% 12% 8% 6% 5%

✓
of the he it his

18% 13% 9% 8% 7%

The nurse notified the patient
that his shift would be ending
in an hour. ”His” refers to the

✗
patient nur pron subject person
41% 25% 3% 2% 2%

✓
patient nur pron person hospital
56% 23% 2% 1% 1%

The mechanic greets with the
receptionist because he was in a
good mood. ”He” refers to the

✗
mechan reception person gre customer

51% 10% 4% 2% 2%

✓
mechan reception person gre customer

20% 19% 7% 3% 2%

Table 3: The most probable tokens predicted by the model given stereotypical prompts. We compare
LLaMA 7B with and without DAMA intervention. The prompts are based on test examples proposed
by Lu et al. (2020b) and Zhao et al. (2018) (WinoBias).

B SUPLEMENTARY RESULTS

B.1 CAUSAL TRACING

The Figures 4, 5, 6, and 10 present causal tracing results for other types of components than MLP:
attention and whole layers, as well as larger LLaMA models. For other components, the high indirect
effects are distributed more extensively across both token positions and layers, indicating that they
primarily reflect bias from the MLPs.

For larger models, we observe analogous patterns shifted according to the total layer count. Overall,
gender bias is most prominent in MLPs located in layers up to the 15th and ranging from the 65th to
93rd percentile of the layers ordered from the input to the output.

B.2 DISTRIBUTION OF PREDICTIONS IN LANGUAGE GENERATION

In Table 3, we present a comparison of the softmax probabilities associated with the most likely
tokens predicted by the model before and after the DAMA intervention. Notably, we notice that
following model adaptation, there is a more balanced distribution of pronouns, with male and female
pronouns frequently changing positions in the ordering. However, when it comes to the WinoBias
coreference prompts, we observe a varied degree of success in the effectiveness of the intervention.

B.3 HYPERPARAMETER CHOICE FOR DAMA

Table 4 presents the width (dimensionality of projection) and depth (number of layers) chosen in
LLaMA models of all sizes. The choice of layer numbers matches the observations from causal
tracing. We further backed the parameter selection by a limited parameter search, which results are
presented in Figures 8, 9, and 10
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Model size # layers layers adapted # dimensions projected dimensions

Llama 7B 32 21 – 29 4096 256
Llama 13B 40 26 – 36 5120 512
Llama 30B 60 39 – 55 6656 1024
Llama 65B 80 52 – 71 8192 2048

Table 4: Number of layers and latent dimensions of LLaMA models compared with the number of
DAMA adapted layers and the projected dimension.
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Figure 8: Change in results for different layer and dimensionality configurations of DAMA for
LLaMA 13B model.
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Figure 9: Change in results for different layer and dimensionality configurations of DAMA for
LLaMA 30B model.
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Figure 10: Change in results for different layer and dimensionality configurations of DAMA for
LLaMA 65B model.
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Figure 11: Gender bias for the prompts proposed by Lu et al. (2020a) measured by p(he) − p(she)
averaged over all professions.
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Figure 12: Probability of the pronouns she (red), he (blue), and they (green) and their dependence
on the multiplicative constant of the noise level. Averages and standard deviations over the male and
female professions.

C TECHNICAL DETAILS

C.1 LANGUGE GENERATION BIAS EVALUATION DATASET

Prompt templates selection. Lu et al. (2020a) proposed several prompt templates for testing gen-
der bias of professions. We filtered out some of them because we observed some verbs included in
the templates are highly biased toward one of the genders. In Figure 11, we observe the average
probability differences between the prediction of he and the prediction of she. Some verbs such as
“yelled”, “was promoted”, “was fired”, or “slept” are highly biased towards males. On the other
hand, verbs such as “wanted”, “cried”, “desired”, or “stayed up” are only very little biased towards
males. Given the general skewness of the model towards predicting male pronouns, we can say these
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verbs are female-related. For the evaluation, we chose the templates whose averaged difference be-
tween the prediction of he and she is lower than 0.8%. Thus we are excluding the prompts “slept
because”, “was fired because”, “was promoted because”, “yelled that”, and “yelled because”.

Test train split. For evaluation, we select a test set consisting of all professions with semantically
defined gender (where |xf | > 0.25). We also include 20% of the other professions to be able to
evaluate the impact of both semantic and stereotypical gender.

The remainder of the professions are assigned to the train set. Noticeably, the trainset doesn’t contain
a profession with a semantically defined gender. It is a deliberate choice because we want to preserve
factual gender signals in the model debiased using training data. For both splits, we use all selected
prompt templates.

C.2 CORRUPTING REPRESENTATION

In step (2) of the causal tracing, we need to obfuscate the tokens in the profession’s words. We use
the same methodology as in Meng et al. (2022a). We add random gaussian noise ϵ ∼ N (0, ν) to
the token embeddings h(0)

i := h0
i + ϵ for each token i in the profesion word. The parameter was set

ν to be three times larger than the empirical standard deviation of the embeddings of professions.
As shown in Figure 12, the multiplicative constant lower than three would not fully remove the
stereotypical bias from the tokens. Higher values could remove too much information, e.g., the
information that the subject of the prompt refers to a person.

C.3 OPTIMIZING VALUE REPRESENTATION

To find the value representation, we minimize the loss given by Equation 2. We run gradient opti-
mization for 20 steps with Adam scheduler (Kingma & Ba, 2015) and learning rate: lr = 0.5. We
picked the following regularization constants: λ1 = 0.0625 and λ2 = 0.2.

C.4 BASELINE IMPLEMENTATION

We implement two baselines for adapting LLaMA 7B: MEMIT (Meng et al., 2023) and LoRA (Hu
et al., 2022). Both methods were applied to the output projections of MLPs in 9 layers selected by
causal tracing. We optimize the parameters with the objective of predicting a randomly sampled
pronoun when presented with a biased prompt. The data and training hyperparameters are the same
as in DAMA, if not stated otherwise.

LoRA is a parameter-efficient fine-tuning technique. It adapts weight by adding an update matrix,
which is a product of two trainable matrices dW = B · A. For efficiency, matrices B and A have
lower dimensionality than W ∈ Ro×i, i.e. B ∈o×r and A ∈r×i. In our implementation, we used
factor r = 8 and learning rate lr = 0.0001.
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