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Abstract
We propose an end-to-end differentiable train-001
ing paradigm for stable training of a rational-002
ized transformer classifier. Our approach re-003
sults in a single model that simultaneously clas-004
sifies a sample and scores input tokens based005
on their relevance to the classification. To this006
end, we build on the widely-used three-player-007
game for training rationalized models, which008
typically relies on training a rationale selec-009
tor, a classifier and a complement classifier.010
We simplify this approach by making a single011
model fulfill all three roles, leading to a more012
efficient training paradigm that is not suscep-013
tible to the common training instabilities that014
plague existing approaches. Further, we extend015
this paradigm to produce class-wise rationales016
while incorporating recent advances in param-017
eterizing and regularizing the resulting ratio-018
nales, thus leading to substantially improved019
and state-of-the-art alignment with human an-020
notations without any explicit supervision.021

1 Introduction022

Neural networks are increasingly prevalent across023

a wide range of applications, driving significant024

advancements in fields such as natural language025

processing, computer vision, and beyond. Due026

to the black-box nature of these networks, this027

widespread use comes with an increased demand028

for interpretability (Lyu et al., 2024), as understand-029

ing the basis for the decisions made by these mod-030

els is crucial for their reliable and ethical deploy-031

ment. This need has become especially clear with032

the increasing use of notoriously uninterpretable033

large language models, which have the potential to034

quickly lose a user’s trust after only few confidently035

incorrect predictions (Dhuliawala et al., 2023).036

One possible mitigation is the use of encoder-037

only models, which lend themselves more readily038

to classical interpretability approaches designed for039

general neural network classifiers while still provid-040

ing state-of-the-art performance due to continuous041

improvements in model structure (He et al., 2021, 042

2023) and training paradigms (Zhang et al., 2023). 043

While a variety of explainability methods ex- 044

ist, that usually assign scores to input tokens indi- 045

cating their importance for a classification (Sun 046

et al., 2021), these methods often suffer from 047

several drawbacks, including high computational 048

cost, difficult-to-interpret explanations, and poten- 049

tially even unfaithful representations of the model’s 050

decision-making process. In this study, we close 051

this gap by developing a rationalized transformer 052

predictor that generates faithful and interpretable 053

explanations in addition to its decisions within the 054

same forward pass. 055

As a foundation for our approach, we build upon 056

the existing and commonly used three-player game 057

proposed by Yu et al. (2019). In this framework, a 058

selector model chooses a subset of the input as ratio- 059

nale, while a predictor and a complement predictor 060

model are trained to infer the correct label from 061

either the tokens included in the rationale or the 062

tokens not included in the rationale, respectively. 063

The selector model is then trained to maximally aid 064

the predictor in predicting the correct label while 065

preventing the complement predictor from doing 066

the same, thus ensuring that all tokens indicative of 067

the correct label are included in the rationale. 068

While the general three-player game is sensible, 069

the actual realizations that are proposed often have 070

several limitations, including being not end-to-end 071

differentiable due to a stochastic sampling process 072

in the forward pass, showing interlocking dynam- 073

ics that might prevent convergence to a suitable 074

solution, and having no guarantee of providing a 075

rationale that actually explains the prediction (com- 076

pare Section 2.3 for a more detailed discussion). 077

For this reason, we propose a new take on this 078

three-player game that is not susceptible to these 079

drawbacks. We achieve this by making use of a 080

single unified model that is trained as a standard 081

classifier on the complete unaltered input, while 082
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simultaneously predicting class-wise importance083

scores for each input token in the same forward084

pass, which are then trained using self-training to085

mark spans that the model itself considers impor-086

tant for the specific class.087

Our proposed rationalized transformer predic-088

tor (RTP) simplifies and enhances the common089

three-player structure in several ways, including 1)090

using only a single model to fulfill all three roles of091

the three-player game, thus enabling classification092

and rationale prediction in a single forward pass 2)093

training the rationales to explain the predictor, but094

avoiding training the predictor on the rationales,095

which ensures that the rationales faithfully explain096

the predictions 3) creating rationalized inputs in097

continuous fashion to enable fully differentiable098

training and avoid sampling 4) creating class-wise099

rationales and 5) using a parameterization that max-100

imizes similarity with human rationale annotations.101

We evaluate our method on two benchmarks102

for explainable AI and compare it with existing103

post-hoc explanation methods as well as methods104

leveraging standard multi-player procedures. We105

show that our method achieves state-of-the-art per-106

formance on both tasks, demonstrating previously107

unseen alignment with human rationales in combi-108

nation with high rationale faithfulness.109

2 Background110

2.1 Post-Hoc Rationalization111

Since neural networks are black-box models, the112

ever-increasing use of such model in research and113

industry has led to a strong demand for methods114

that reliably explain neural network classifications.115

To this end, a variety of approaches have been pro-116

posed, many of which are designed to create post-117

hoc explanations for an already trained classifier.118

These methods rely on a variety of mechanisms,119

including 1) making use of the models gradients120

at different inputs to obtain importance scores (Si-121

monyan et al., 2013; Sundararajan et al., 2017) 2)122

quantifying the influence of individual input ele-123

ments by observing the effect of input perturbations124

(Castro et al., 2009; Zeiler and Fergus, 2014; Zhou125

et al., 2014; Petsiuk et al., 2018) 3) fitting inter-126

pretable models to neural-network outputs (Ribeiro127

et al., 2016) 4) developing backpropagation-like128

procedures to propagate importance information129

from the model output to the input features (Zeiler130

and Fergus, 2014; Springenberg et al., 2015; Bach131

et al., 2015; Shrikumar et al., 2017; Chefer et al.,132

2021a,b) 5) performing input-optimization to cre- 133

ate an altered input that only retains the informa- 134

tion important for the classification (Brinner and 135

Zarrieß, 2023). 136

2.2 Rationalized Classification 137

Due to the inherent difficulty of creating post-hoc 138

explanations for classifiers that were never de- 139

signed to be explainable, rationalized predictors 140

have been proposed that are explicitly trained to 141

perform the original task while simultaneously pro- 142

viding a rationale for the prediction in a single for- 143

ward pass. Lei et al. (2016) were the first to propose 144

a two-player game for textual inputs, involving a 145

rationale selector model and a classifier model. The 146

rationale selector assigns a probability to each in- 147

put word, indicating its likelihood of belonging to 148

the rationale, so that a discrete rationale can be sam- 149

pled from this distribution. The classifier then uses 150

only the rationale to make its classification, thus 151

ensuring that the selected words were responsible 152

for the classification. During training, the classifier 153

is trained as usual to predict the correct label from 154

a sampled rationale, while the rationale selector is 155

trained to produce rationales that aid the classifier 156

in making the correct predictions, ensuring that 157

words indicative of the correct class are selected. 158

2.3 Common Issues of Rationalized Classifiers 159

While the general training paradigm of the two- 160

player game is sensible, several issues affect the 161

training, performance and faithfulness of the ratio- 162

nales: 163

1. Stochastic Sampling: Training requires 164

stochastic sampling of rationales, meaning 165

that gradients can only be estimated using 166

methods like REINFORCE (Williams, 1992), 167

which are generally less stable and slow to 168

convergence. 169

2. Class-Independent Rationales: A single ra- 170

tionale is predicted regardless of the sample’s 171

class. In case a sample belongs to multiple 172

classes, it is not possible to identify which part 173

of the input is indicative of a specific class. 174

3. Interlocking Dynamics: Interlocking dynam- 175

ics might lead to degenerate solutions, for ex- 176

ample, if the rationale predictor adapts too 177

quickly to the noisy rationales that are pro- 178

duced by the randomly initialized rationale 179

selector or vice versa (Yu et al., 2021). 180
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4. Dominant Selector: The training paradigm181

enforces rationales that persuade the classifier182

to predict a label that the predictor deemed cor-183

rect, which does not necessarily correspond184

to faithful explanations of the actual reason-185

ing process (Jacovi and Goldberg, 2021). In186

extreme cases, the rationale generator might187

simply encode the correct classification in the188

rationale (e.g., by selecting a specific kind of189

token), so that the classifier does not perform190

any significant reasoning itself.191

5. Mismatch with Human Annotations: Often,192

rationales are most-useful if they resemble193

rationales provided by human annotators. De-194

spite regularizers designed to enforce the se-195

lection of longer, consecutive spans of text,196

models often struggle to select spans that197

match human annotations, since overly strong198

regularization often overpowers the weak gra-199

dient signal created by REINFORCE, leading200

to degenerate solutions (e.g., selecting no to-201

kens or all tokens).202

6. Degraded Classification Performance: The203

actual classification performance often de-204

grades compared to standard classifiers (Ja-205

covi and Goldberg, 2021).206

Several approaches have been proposed to mod-207

ify or extend the two-player game to address these208

issues. Yu et al. (2019) extended this paradigm into209

a three-player game by introducing a complement210

predictor that is trained to predict the correct label211

from all words not included in the rationale. The212

rationale selector is then trained to prevent the com-213

plement predictor from identifying the correct class,214

thus ensuring that all words indicative of the cor-215

rect class are selected as rationale, addressing issue216

3 and (in part) issue 4. Chang et al. (2019) propose217

the CAR framework that uses two encoders and one218

decoder per class to generate class-wise and poten-219

tially counterfactual) rationales, solving issues 2, 3220

and (in part) 4. They also use the straight-through221

gradient estimator (Bengio et al., 2013) instead222

of using REINFORCE, which addresses issue 1.223

Liu et al. (2023) make use of multiple generators224

to mitigate issue 3, while the A2R method (Yu225

et al., 2021) addresses the same issue by introduc-226

ing a separate predictor that uses a soft selection227

of inputs instead of binary thresholding. To our228

knowledge, our proposed method for training a ra-229

tionalized classifier is the only one to address all of230

the issues discussed above.231

3 Method 232

We propose a new method for end-to-end differen- 233

tiable training of a rationalized transformer predic- 234

tor (RTP). In the following, plain letters (e.g., x) 235

denote scalars, while bold letters (e.g., x) denote 236

vectors or tensors. We assume a text classification 237

problem with label set Y , and a training set consist- 238

ing of texts x0, ..., xn with corresponding ground 239

truth vectors y0, ..., yn. 240

3.1 Concept 241

The RTP relies on a single model that, in one for- 242

ward pass, produces both a classification output 243

and class-wise importance scores for each token, 244

denoting how indicative each token is of the respec- 245

tive class. The classification component is trained 246

as a standard classifier, while the token-wise ratio- 247

nales are trained by creating altered inputs that only 248

retain the important information for each individ- 249

ual class. The quality of these altered inputs (and 250

therefore the quality of the rationales) is judged by 251

the model itself by passing them through the model 252

and observing its classification output. Through 253

this end-to-end differentiable procedure, the ratio- 254

nales are optimized to faithfully explain the model 255

predictions. 256

3.2 Model Structure 257

The basis of our method is a single model M , that, 258

given an input text x, simultaneously predicts class 259

probabilities ỹ, as well as a mask tensor m: 260

ỹ,m = M(x) (1) 261

with the mask m being the rationale for the classifi- 262

cation output ỹ. Notably, m consists of |Y| individ- 263

ual vectors m0, ...,m|Y| that constitute individual 264

rationales for each class c ∈ Y , with each mc be- 265

ing a vector containing a mask value mc
i in the 266

range 0 to 1 for each input token xi, indicating its 267

influenc on the predicted likelihood of class c. In 268

practice, the basis for classification output ỹ will be 269

the CLS-token embedding of the transformer clas- 270

sifier, while the mask values m will be calculated 271

from the predicted outputs for each token. 272

3.3 Mask Parameterization 273

In this section, we will discuss the parameterization 274

that transforms token-wise neural network outputs 275

into a smooth mask. The RTP outputs a mask for 276

each individual class, but since mask calculations 277

for individual classes are independent of each other, 278
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Figure 1: An exemplary output of the RTP for a positive review from the movie reviews dataset.

we will look at the mask mc for a single class c,279

denoted as m for simplicity.280

A simple mask parameterization would predict281

a logit li for each token xi and define mi = σ(li).282

Even with regularizers that enforce smooth mask283

selections, this approach often fails to select long284

spans of text as rationales, which would be de-285

sirable for matching human annotations. For this286

reason, we opted for the mask parameterization287

proposed by Brinner and Zarrieß (2023) that ex-288

plicitly enforces the prediction of longer spans of289

text as rationales by letting neighboring mask val-290

ues influence each other.291

In this parameterization, the model outputs two292

values wi and σi for each word xi. wi is mainly293

responsible for determining the mask value of word294

xi, while σi determines the influence of wi on the295

mask values of neighboring words. Introducing296

regularizers to enforce large values for σi then leads297

to smooth masks. The mathematical formulation298

of the parameterization is as follows:299

wi→j = wi · exp
(
− d(i, j)2

σi

)
(2)300

mj = sigmoid(
∑
i

wi→j) (3)301

Here, d(i, j) denotes the distance between two302

words xi and xj and wi→j is the influence of wi on303

the mask value of word j. mj is then calculated by304

applying the sigmoid to the sum of all influence val-305

ues, resulting in the mask m for the specific class306

at hand. Predicting masks m0, ...,m|Y| for each307

class will simply be done by predicting individual308

outputs wc and σc for each class c and performing309

the calculations independently.310

3.4 Model Training311

Given a sample (x, y), the classification capabilities312

of model M are trained like a standard neural net-313

work classifier by performing a prediction and ap-314

plying a loss function like cross-entropy loss to the315

predicted output. In contrast to other rationalized316

models, our training paradigm therefore trains the317

classifier on the unaltered input, not on a masked318

version that might remove crucial information.319

To train the rationale predictions (i.e., the masks 320

m), we use these masks to create two altered in- 321

puts xc and xc for each ground-truth class c, with 322

input xc retaining all information that is indica- 323

tive of class c according to mask mc, while xc is 324

the complement input that removes all information 325

specified by mask mc: 326

xc = mc · x + (1− mc) · b (4) 327

xc = (1− mc) · x + mc · b (5) 328

Here, b denotes an uninformative background (e.g., 329

PAD-token embeddings). Notably, the mask m is 330

applied in continuous fashion to x and b, meaning 331

that embeddings for words are linearly blended 332

towards uninformative embeddings according to 333

m. In contrast to sampling of a discrete mask, this 334

ensures full differentiability and was proven to have 335

the desired effect of gradual removal of information 336

by Brinner and Zarrieß (2023). 337

The rationalized inputs are then fed back into 338

the same model M and are trained to allow it to 339

predict the correct label from xc, but not from xc, 340

meaning that all information indicative of class c is 341

contained in the rationale (thus enforcing rationale 342

comprehensiveness). The loss formulations used 343

are the following: 344

Lc = CE(M(xc), y) (6) 345

Lc = relu(M(xc)[c]− α) (7) 346

where CE denotes the cross-entropy loss, M(x)[c] 347

denotes the predicted probability of class c and α 348

is a hyperparameter ensuring that the model is not 349

required to drive the probability of class c for input 350

xc to 0, since driving it to a small value is sufficient. 351

Importantly, the model M is only trained with re- 352

spect to the first forward pass that produces the 353

rationales, and is therefore not updated to improve 354

classification on the altered inputs xc and xc. This 355

ensures that the classification performance in not 356

influenced, and that the rationales actually explain 357

the classification instead of dictating it. The final 358

optimization problem looks as follows: 359

arg min
M

CE(M(x),y) +
∑
c∈y

[
Lc + Lc

]
+Ωλ +Ωσ

(8) 360
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where c ∈ y indicates summing over all ground-361

truth labels and Ωλ and Ωσ denote regularizers that362

enforce sparsity and smoothness of the rationales,363

respectively. Details on these regularizers and fur-364

ther details on the general objective are available365

in Appendix A.3.366

3.5 Advantages367

Our proposed scheme solves all issues discussed368

in Section 2.3, and is (to our knowledge) the only369

method to do so. The main advantages lie in the370

fully differentiable formulation that does not re-371

quire sampling and gradient approximation, the372

fact that class-wise rationales are created, and espe-373

cially in the fact that the classifier is trained on the374

unaltered inputs instead of on the rationalized vari-375

ants. This last point ensures that the rationales do376

not dictate the classification result, but instead ex-377

plain the actual classification made by the classifier.378

It also means that no degradation is classification379

performance is to be expected.380

4 Experiments381

We evaluate our method with regards to matching382

human evidence annotations for text classifications,383

as well as with regards to the faithfulness of the ex-384

planations with regards to the classifier. For details385

regarding the model and the training and prediction386

procedures, see Appendix A.387

4.1 Datasets388

In our evaluation, we use two text classification389

datasets with span-level evidence annotations, each390

posing different challenges. The first is the movie391

review dataset (Zaidan et al., 2007), containing392

2000 reviews with sentiment labels (positive or393

negative) and span-level evidence annotations. For394

this dataset, DeYoung et al. (2020) provided more395

comprehensive rationales for the test split, which396

we use in our evaluation. Since class labels are397

mutually exclusive, this dataset allows models to398

perform optimally even without class-wise ratio-399

nales. Additionally, this dataset enables optimal400

assessment of agreement between predicted ratio-401

nales and human annotations, since the simplicity402

of the classification task eliminates the lack of un-403

derstanding of the inputs as a cause for mismatches.404

As for a more challenging classification task, we405

use the INAS dataset (Brinner et al., 2022), consist-406

ing of 954 scientific paper titles and abstracts from407

the domain of invasion biology together with labels408

indicating which hypothesis (from a set of 10 com- 409

mon hypotheses in the field) is addressed in each 410

paper. In a subsequent study, Brinner et al. (2024) 411

provided span-level evidence annotations for 750 412

of the samples. Since some samples have multiple 413

correct labels, optimal performance on this dataset 414

requires class-wise rationalization. Additionally, 415

the more challenging nature of the classification 416

task can highlight degraded classification perfor- 417

mance of rationalized models. 418

4.2 Evaluation Metrics 419

We evaluate the consistency with human annota- 420

tions on token-level and span-level as done in (Brin- 421

ner et al., 2024), and evaluate the faithfulness of 422

rationales with respect to the classifier as done in 423

(Brinner and Zarrieß, 2023). 424

Token-Level Evaluation To evaluate agreement 425

with human rationales at the token level, we use 426

the area under the precision-recall curve (AUC-PR). 427

We also assess the token-level F1 score (Token-F1), 428

which requires binary predictions. This is done by 429

selecting the highest-scoring p percent of tokens 430

as positive predictions, calculating the standard F1 431

score, and averaging over 19 values of p (5, 10, ..., 432

95). For a better absolute assessment of prediction 433

quality, we use the discrete token-level F1 score (D- 434

Token-F1), where the top k tokens (matching the 435

number in the ground-truth annotation) are treated 436

as the rationale and evaluated with the F1 score. 437

Span-Level Evaluation We also evaluate the 438

quality of predicted spans of text, defined as con- 439

secutive words selected as part of the rationale after 440

binary thresholding. The span-level IoU-F1 score 441

(IoU-F1) is calculated by determining spans in both 442

the binary rationale prediction and the ground-truth 443

annotation, calculating the IoU for all span pairs, 444

and selecting the maximum IoU for each predicted 445

and annotated span. IoU-precision and IoU-recall 446

are then defined as the averages of these maximum 447

IoU values for predicted and ground-truth spans, 448

respectively. The holistic IoU-F1 score is then ob- 449

tained by averaging over the same 19 discrete token 450

selections used for the token-level F1 score. The 451

discrete IoU-F1 score (D-IoU-F1) is again calcu- 452

lated by selecting the top-scoring tokens to match 453

the number in the ground-truth annotation. 454

Faithfulness Evaluation We evaluate faithful- 455

ness using scores for sufficiency and comprehen- 456

siveness of the predicted rationales. The sufficiency 457

score measures the model’s ability to predict the 458

correct label using only the highest-scoring words 459
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Method Clf-F1 AUC-PR Token-F1 D-Token-F1 IoU-F1 D-IoU-F1 Suff. ↓ Comp.↑ Perf.

Random - 0.220 0.255 0.222 0.067 0.003 0.194 0.191 0.289
Supervised 0.730 0.557 0.406 0.509 0.231 0.257 0.005 0.396 1.028

MaRC 0.748 0.366 0.336 0.351 0.219 0.178 -0.002 0.396 0.953
Occlusion 0.748 0.307 0.277 0.294 0.145 0.071 0.020 0.315 0.717
Int. Grads 0.748 0.315 0.302 0.318 0.087 0.013 -0.017 0.465 0.871
LIME 0.748 0.272 0.280 0.273 0.082 0.007 0.039 0.357 0.680
Shapley 0.748 0.309 0.301 0.320 0.084 0.009 -0.083 0.515 0.983
L2E-MaRC 0.748 0.431 0.359 0.402 0.174 0.131 0.020 0.427 0.940

2-Player 0.675 0.272 0.286 0.270 0.085 0.007 -0.050 0.303 0.724
3-Player 0.722 0.287 0.296 0.286 0.080 0.004 0.023 0.403 0.756
CAR - 0.314 0.281 0.280 0.184 0.133 - - -
A2R 0.686 0.268 0.287 0.264 0.084 0.008 0.122 0.282 0.531
A2R-Noise 0.618 0.271 0.285 0.262 0.087 0.011 0.072 0.198 0.498
RTP 0.710 0.436 0.359 0.415 0.220 0.203 0.066 0.565 1.078

Table 1: Results on the INAS dataset, divided into groups of standard-baselines, post-hoc explainability methods
and rationalized neural networks. Best scores per metric are bold, second best are underlined.

in the rationale. A lower sufficiency score indicates460

that fewer tokens are needed for a correct predic-461

tion, thus indicating a more faithful rationale:462

sufficiency(x, r) =
1

19

19∑
i=1

M(x)−M(ri) (9)463

464 The comprehensiveness score is higher if remov-465

ing the highest-scoring words according to the ra-466

tionale quickly degrades the model’s predictions,467

again indicating faithful rationales:468

comp(x, r) =
1

19

19∑
i=1

M(x)−M(x\ri) (10)469

470 In these equations, x denotes the input sample, ri471

denotes the (i ·5)% of input tokens with the highest472

scores according to the rationale, x\ri denotes the473

input x with the tokens from ri removed, and M(x)474

denotes the probability that model M assigns to475

the correct class given input x. To avoid relying476

on a single threshold, these scores are calculated477

by summing over different percentages of rationale478

tokens used or removed, respectively.479

Overall Performance Ideally, a model should480

produce rationales that both agree with human ra-481

tionales and demonstrate faithfulness. We therefore482

provide an overall performance score (Perf.) that483

sums over the Token-F1, IoU-F1, comprehensive-484

ness and negative sufficiency scores, thus assessing485

agreement and faithfulness comprehensively.486

4.3 Baseline Methods487

We compare our rationalized transformer predictor488

(RTP) against other rationalized classifiers, which489

are a two-player game as proposed by Lei et al.490

(2016), a three-player structure with complement 491

predictor (Yu et al., 2019), the CAR framework 492

for class-wise rationale generation (Chang et al., 493

2019), and the A2R method (Yu et al., 2021) as well 494

as an extension to it using noise injection (Storek 495

et al., 2023). We also compare post-hoc explain- 496

ability methods that are applied to a standard clas- 497

sifier, which includes MaRC (Brinner and Zarrieß, 498

2023), Occlusion (Zeiler and Fergus, 2014), Inte- 499

grated Gradients (Sundararajan et al., 2017), LIME 500

(Ribeiro et al., 2016), Shapley value sampling (Cas- 501

tro et al., 2009), as well as a neural network pre- 502

dictor trained on MaRC rationales (L2E-MaRC, 503

Situ et al. (2021)). Finally, we report results for a 504

supervised model trained on rationale annotations 505

and a random predictor as additional baselines. For 506

a more detailed overview, see Appendix A.1. 507

5 Results 508

The results for the evaluation on the movie review 509

dataset and the INAS dataset are displayed in Table 510

2 and Table 1, respectively. Exemplary predictions 511

are displayed in Figure 1, with further examples 512

being included in Appendix B. 513

5.1 Classification Performance 514

On the INAS dataset, our RTP method ranks among 515

the best-performing rationalized neural networks, 516

although all rationalized models show slightly 517

worse classification performance compared to a 518

standard classifier (used by the post-hoc methods). 519

We do not attribute this to a generally decreased 520

classification ability of the rationalized classifiers, 521

since we selected the best-performing version of 522

each model with respect to rationale-predictions 523
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Method Clf-F1 AUC-PR Token-F1 D-Token-F1 IoU-F1 D-IoU-F1 Suff. ↓ Comp.↑ Perf.

Random - 0.316 0.326 0.312 0.061 0.002 0.227 0.238 0.398
Supervised 0.980 0.670 0.514 0.626 0.144 0.169 0.001 0.638 1.295

MaRC 0.965 0.428 0.404 0.423 0.181 0.118 0.036 0.478 1.027
Occlusion 0.965 0.409 0.367 0.377 0.151 0.079 -0.021 0.569 1.108
Int. Grads 0.965 0.376 0.358 0.371 0.067 0.009 0.049 0.484 0.860
LIME 0.965 0.379 0.361 0.369 0.076 0.014 0.005 0.603 1.035
Shapley 0.965 0.442 0.390 0.426 0.082 0.020 -0.029 0.827 1.328
L2E-MaRC 0.965 0.565 0.460 0.534 0.126 0.104 -0.016 0.652 1.254

2-Player 0.930 0.516 0.449 0.508 0.113 0.066 -0.024 0.210 0.796
3-Player 0.955 0.458 0.422 0.465 0.089 0.023 0.003 0.354 0.862
CAR - 0.384 0.364 0.376 0.078 0.013 - - -
A2R 0.955 0.474 0.433 0.486 0.111 0.046 0.109 0.320 0.755
A2R-Noise 0.950 0.483 0.440 0.492 0.107 0.044 0.005 0.338 0.880
RTP 0.975 0.558 0.458 0.527 0.192 0.177 -0.006 0.803 1.459

Table 2: Results on the movie reviews dataset, divided into groups of standard-baselines, post-hoc explainability
methods and rationalized neural networks. Best scores per metric are bold, second best are underlined.

on the validation set, not with respect to classifica-524

tion performance. Additionally, this task shows a525

high variance between training runs (Brinner et al.,526

2022). Results on the movie review dataset are sim-527

ilar, with most rationalized classifiers performing528

slightly worse than the standard classifier. Notably,529

the RTP even outperforms the baseline, which we530

again attribute to variance between training runs.531

5.2 Token-Level Performance532

For token-level rationale evaluations on the INAS533

dataset, our RTP method outperforms others in534

AUC-PR, token-F1, and discrete token-F1 scores.535

Only the L2E-Marc method, which is a neural net-536

work trained to predict rationales created by the537

MaRC method, comes close to or matches the RTP.538

A discussion of the superior performance of these539

exact two methods is done in Section 6. Espe-540

cially the ability to predict class-wise rationales541

benefits the RTP and the post-hoc methods on this542

dataset compared to the other rationalized neural543

networks, since only the CAR method possesses544

this ability among them. This can also be seen by545

noticing the much better performance of these ratio-546

nalized networks on the movie review dataset, since547

on this task the ability to predict class-wise ratio-548

nales is irrelevant, thus reducing the gap to the RTP549

and making them surpass most post-hoc methods.550

Generally, the supervised baseline outperforms all551

methods with regards to token-level predictions,552

which is to be expected considering that the weakly553

supervised methods were never explicitly told what554

to predict. However, the RTP comes rather close to555

the supervised baseline in many metrics, indicating556

that in the absence of ground-truth rationales for557

training, using the weakly supervised scheme can 558

be an effective alternative. 559

5.3 Span-Level Performance 560

Our RTP method is consistently the best perform- 561

ing method with regards to the IoU-F1 and the 562

discrete IoU-F1 scores. Compared to the other ra- 563

tionalized methods this is to be expected, since 564

the RTP has been explicitly designed to extract 565

longer spans of text as rationales. In contrast, other 566

rationalized predictors often rely on a total vari- 567

ation regularizer in their optimization objective, 568

which we found to be ineffective since increasing 569

it’s strength quickly leads to degenerate solutions 570

with either all or none of the words being selected. 571

This highlights the importance of using the MaRC 572

mask parameterization that reliably leads to the de- 573

sired results. Notably, the RTP comes close to the 574

supervised method on the INAS dataset without 575

any supervision regarding the usual form of human 576

annotations. On the movie review dataset, the RTP 577

even outperforms the supervised method due to the 578

rationales from the test set being more extensive, 579

thus causing a mismatch between training and test 580

data distributions. This shows, that even if slightly 581

inaccurate training data is available for a given task, 582

using a weakly supervised method instead might 583

be preferable. 584

5.4 Faithfulness Results 585

Our RTP method achieves competitive suffi- 586

ciency scores and state-of-the-art comprehensive- 587

ness scores. We found that assigning high scores 588

to few important words distributed throughout the 589

whole input is a great strategy for achieving high 590
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sufficiency, since the model can quickly recognize591

the correct label from these few highly indicative592

words. Our RTP model still performs well despite593

being explicitly discouraged from pursuing this594

strategy, indicating that our optimization objective595

is reasonable for generating faithful rationales.596

For comprehensiveness, the RTP attains state-597

of-the-art results on the INAS dataset and nearly598

matches the Shapley value sampling method on599

the movie reviews dataset, with both methods out-600

performing all other contenders by a large margin.601

Good faithfulness scores for Shapley value sam-602

pling are expected, though, since its objective for603

scoring input tokens aligns closely with the evalua-604

tion measures for faithfulness.605

Overall, our RTP method compares favourably606

to other rationalized neural networks, since it opti-607

mizes its rationales to actually explain the classifi-608

cation, while other methods suffer from issues like609

a dominant predictor that already dictates a specific610

label, and additionally train the predictor on the611

rationales, which leads to a constant mismatch be-612

tween the current predictor and the predictor that613

the rationales have been trained to explain.614

Another important insight is, that post-hoc expla-615

nation methods do not offer an advantage over the616

rationales generated by the RTP. Considering, that617

post-hoc explainers outperform other rationalized618

networks with respect to faithfulness of the explana-619

tions, our method is the first all-in-one method that620

offers both predictions and rationales with state-of-621

the-art faithfulness in a single forward pass.622

5.5 Overall Performance623

As discussed, the RTP achieves state-of-the-art re-624

sults in agreement with human rationales and ra-625

tionale faithfulness, resulting in dominant scores626

for overall performance (Perf.) on both tasks. In627

comparison, other rationalized neural networks fall628

significantly short, with only few post-hoc methods629

coming somewhat close. These methods have the630

downside of a substantially higher computational631

cost in producing a rationale, with, for example,632

MaRC and Shapley value sampling requiring hun-633

dreds of forward passes to create a single rationale.634

6 Discussion635

The RTP model demonstrated strong performance636

across all evaluated metrics. Comparing it specif-637

ically to the MaRC method, it outperformed it638

in every metric related to measuring agreement639

with human annotations and most faithfulness met- 640

rics. This is notable since the RTP can be seen 641

as a neural network parameterized version of the 642

MaRC approach, which originally optimized mask 643

parameters for each sample individually instead 644

of training a neural network to directly predict 645

them from the input. Another well-performing 646

method, especially with regards to token-level eval- 647

uation, is the L2E-MaRC method. The L2E frame- 648

work (Situ et al., 2021) trains a neural network 649

on pre-calculated rationales created by a post-hoc 650

explainer. Even though it only saw rationales pro- 651

duced by the MaRC method, it manages to out- 652

perform it on all metrics measuring token-level 653

agreement with human rationales. These two re- 654

sults indicate, that training to explain many differ- 655

ent samples leads to better generalization, which 656

we attribute to reduced overfitting to one specific 657

input. This effect is crucial for the RTP, since it per- 658

forms input optimization with respect to specific 659

neural network outputs, which has been shown to 660

generally lead to unexpected and uninterpretable ar- 661

tifacts (Simonyan et al., 2013). The MaRC method 662

successfully mitigated this issue by combining con- 663

strained optimization with heavy regularization, but 664

artifacts (i.e., unexpected spans included in the ra- 665

tionale) are still to be expected. In the case of the 666

RTP, training on many samples further reduces this 667

issue, since these unwanted gradient signals will 668

generally not match between different samples, so 669

that the neural network mainly adapts to the wanted 670

signal that is consistent within larger parts of the 671

training set, and that corresponds to features that 672

are generally indicative of the respective class. 673

7 Conclusion 674

We presented a new method for training a ratio- 675

nalized transformer predictor and demonstrated 676

its strong performance on two natural language 677

processing benchmarks. Since our proposed train- 678

ing scheme is not invasive to the general training 679

process and does not produce significant overhead 680

during prediction, we believe that this approach 681

has the potential to facilitate wider adoption and 682

availability of rationalized predictors. Given that 683

transformers are widely used in other modalities 684

(Dosovitskiy et al., 2021; Verma and Berger, 2021), 685

we hypothesise that our approach can be extended 686

to these modalities and potentially lead to results 687

of similar quality. 688
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8 Limitations689

While our method for rationalization generally does690

not interfere with the training of the prediction mod-691

ule and does not produce notable overhead during692

prediction, it nevertheless increases the computa-693

tional cost of model training due to a second for-694

ward pass through the model, as well as through695

more training epochs being required due to slower696

convergence of rationale training compared to the697

classification component.698

Additionally, the exact form of the produced ra-699

tionales depends on the models inner working, so700

that generally a high overlap with human rationales701

is not guaranteed in cases where the model’s rea-702

soning and human reasoning differ.703

Finally, while having access to word-level ra-704

tionale scores is generally helpful, this does not705

equate to a complete description of the model’s706

inner workings and the actual reasoning process,707

which most likely is impossible to represent in such708

a simple form.709
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A Experimental Details934

The code for our experiments is available at Link935

will be added in final version of the paper.936

A.1 Baseline Methods937

We evaluate our rationalized transformer predic-938

tor against a variety of baseline methods that pur-939

suit different strategies for rationalizing predictions.940

This section provides a general overview, with941

many model and training details being discussed942

in Appendix A.2. The first group are rationalized943

neural networks, that learn to create rationales from944

sample-level labels alone. We evaluate the perfor-945

mance of the following methods:946

• 2-Player: A two-player structure using a ra-947

tionale extractor and a predictor as proposed948

by Lei et al. (2016). We used an own imple-949

mentation, since the original work did not use950

transformers.951

• 3-Player: A three-player structure using a952

rationale extractor, a predictor and a comple-953

ment predictor as proposed by Yu et al. (2019).954

We used an own implementation, since the955

original work did not use transformers.956

• CAR: The CAR framework for creating class-957

wise rationales (Chang et al., 2019). We use958

an own implementation, since the original959

work did not use transformers. Additionally, 960

we use more extensive parameter sharing, as 961

the original work use a separate rationale pre- 962

dictor for each class, which is impracticable 963

especially for the 10-class classification prob- 964

lem on the INAS dataset. Therefore, a single 965

BERT model predicts rationales for each class 966

at the same time, while a second BERT model 967

acts as the single predictor. 968

• A2R: The A2R framework as proposed by 969

(Yu et al., 2021). We use the implementa- 970

tion of (Storek et al., 2023), who created 971

an implementation relying on BERT models, 972

which, according to their evaluation, outper- 973

formed the original implementation that relies 974

on GRUs. 975

• A2R-Noise: The A2R framework with addi- 976

tional noise injection as proposed by (Storek 977

et al., 2023). We use the implementation pro- 978

vided by the original study. 979

We also evaluated a variety of post-hoc explana- 980

tion methods: 981

• MaRC: The MaRC method as proposed by 982

(Brinner and Zarrieß, 2023). We use the up- 983

dated weight regularizer proposed by (Brinner 984

et al., 2024). 985

• Occlusion: The occlusion method as pro- 986

posed by Zeiler and Fergus (2014). We chose 987

to mask slightly larger spans of 5 tokens as 988

this produced smoother masks which resulted 989

in higher IoU F1 scores. We use the imple- 990

mentation by Kokhlikyan et al. (2020). 991

• Int. Grads: The integrated gradients method 992

(Sundararajan et al., 2017). We use the imple- 993

mentation by (Kokhlikyan et al., 2020). 994

• LIME: The LIME method (Ribeiro et al., 995

2016). We train a linear classifier on scores 996

from 50 function evaluations. In each eval- 997

uation, 5 − 13% of tokens are selected and 998

the thee tokens starting from the chosen token 999

are removed as input perturbation. We use the 1000

implementation by (Kokhlikyan et al., 2020). 1001

• Shapley: Shapley value sampling (Castro 1002

et al., 2009). We perform 25 feature permuta- 1003

tions per sample, and use the implementation 1004

by (Kokhlikyan et al., 2020). 1005

• L2E-MaRC: The L2E framework (Situ et al., 1006

2021). We use the rationales created by the 1007

MaRC method on the training samples. We 1008

discretize the rationales into 5 bins and train 1009
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a classifier on this dataset. For scoring, we1010

predict the bin-probabilities for each word,1011

multiply them by the bin-means and sum over1012

the resulting values to get a single, continuous1013

score for each word.1014

We also evaluate two further baselines: A ran-1015

dom baseline that predicts random scores for each1016

input token, and a supervised method that is trained1017

to perform a binary prediction on each individual1018

token from the input.1019

A.2 Model and Training Details1020

Base Models For the movie review experiment, we1021

use bert-base-uncased (Devlin et al., 2019) as base1022

model to stay consistent with previous work and1023

the be able to use existing code bases to ensure im-1024

plementational accuracy. For the INAS dataset, we1025

use PubMedBERT-base-uncased (Gu et al., 2021),1026

since it shows strong performance on the standard1027

classification task for this dataset (Brinner et al.,1028

2022). These base classifiers are used for all base-1029

line methods, and for all parts of the pipelines (en-1030

coder, predictor, base classifier, etc.).1031

Input Processing During training, samples that1032

exceed the 510 token limit for BERT models were1033

split into multiple segments, and one segment was1034

chosen randomly for this model update. For the1035

evaluation, we again split each sample into smaller1036

parts that adhere to the token limit and that overlap1037

for 100 tokens. Scores were predicted for each split1038

separately and linearly blended afterwards.1039

Model Selection During training, evaluations on1040

the validation set were performed after each epoch,1041

and the best-performing version of the model was1042

selected for testing. On the INAS dataset, the agree-1043

ment of the predicted rationales with the human1044

annotations was evaluated after each epoch, and1045

the mean of all five scores (AUC-PR, Token-F1,1046

D-Token-F1, IoU-F1, D-IoU-F1) was taken as per-1047

formance indicator. On the movie dataset, this1048

procedure was not possible, since the data distribu-1049

tion of the validation and test samples is different,1050

meaning that validation results are not a good in-1051

dicator for performance on the test set. Especially1052

the span-level evaluation scores were unsuitable,1053

since much shorter spans were annotated on the1054

validation set. We chose to use the AUC-PR as1055

performance measure, since it still indicates the1056

models ability to generally recognize useful words.1057

A.3 RTP Objective Details 1058

We use two regularizers in the optimization objec- 1059

tive for our rationalized transformer predictor. The 1060

first is a sparsity regularizer that ensures that only 1061

a subset of tokens is selected as rationale: 1062

Ωλ =
∑
c∈y

α1 · mean(mc)2 + α2 · mean(mc) 1063

+
∑
c/∈y

α3 · mean(mc)2 + α4 · mean(mc) 1064

In summary, we perform L1 and L2 regularization 1065

on the mask means for the masks of the ground 1066

truth classes and non-ground-truth classes. In our 1067

experiments, we used α1 = 0.2 and α3 = 0.05, 1068

meaning that regularization for masks of incorrect 1069

classes is weaker. We chose this setting, since for 1070

incorrect classes there is no signal that forces words 1071

the be unmasked, so that less strong regularization 1072

is required. The L1 parameters are set to rather low 1073

values of α2 = α4 = 0.001. 1074

The smoothness regularizer has the following 1075

form: 1076

Ωσ = β1 ·
∑
c∈Y

mean((σc − β2)
2) 1077

Here, the inner subtraction is meant to be element- 1078

wise, so that we regularize each individual sigma 1079

value towards a value of β2. The actual hyperpa- 1080

rameters used are β1 = 0.02 and β2 = 3. 1081

Finally, we use individual weights for each major 1082

component of the optimization objective (Equation 1083

8): 1084

arg min
M

γ1 · CE(M(x), y)

+
∑
c∈y

[
γ2 · Lc + γ3 · Lc

]
+ γ4 · Ωλ

+ γ5 · Ωσ

1085

These values are set to γ1 = 2, γ2 = 5, γ3 = 10, 1086

γ4 = 6 and γ5 = 6. 1087

A.4 Evaluation Post-Processing 1088

In the INAS dataset, rationales do not cross sen- 1089

tence boundaries. For that reason, we opted to 1090

employ a post-processing step that uses SciSpacy 1091

(Neumann et al., 2019) to split each abstract into 1092

sentences, and set the rationale score of the last 1093

token in each sentence (that corresponds to punctu- 1094

ation) to 0. This is done for all methods and gen- 1095

erally lead to a slight improvement in agreement 1096

scores. 1097
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B Examples 1098

B.1 Movie Reviews Dataset 1099

Figure 2: An exemplary output of the RTP for a positive review from the movie reviews dataset. Green text indicates
the ground-truth annotations.

Figure 3: An exemplary output of the RTP for a negative review from the movie reviews dataset. Green text indicates
the ground-truth annotations.

B.2 INAS Dataset 1100

Figure 4: An exemplary output of the RTP for an abstract by Jarnevich et al. (2006), which is included in the
INAS dataset. The rationale was created for the Biotic Resistance Hypothesis label, with green spans indicating the
ground-truth annotations.

Figure 5: An exemplary output of the RTP for an abstract by Cripps et al. (2011), which is included in the INAS
dataset. The rationale was created for the Enemy Release Hypothesis label, with green spans indicating the ground-
truth annotations.
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