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Abstract

Neural architecture search (NAS) seeks to automate neural network design to optimize
performance criteria, but designing a search space for NAS largely remains a manual effort.
When available, strong prior knowledge can be used to construct small search spaces, but
using such spaces inevitably limits the flexibility of NAS, and prior information is not always
available on novel tasks and/or architectures. On the other hand, many NAS methods have
been shown to be sensitive to the choice of search space and struggle when the search space is
not sufficiently refined. To address this problem, we propose a differentiable technique that
learns a policy to refine a broad initial search space during supernet training. Our proposed
solution is orthogonal to almost all existing improvements to NAS pipelines, is largely search
space-agnostic, and incurs little additional overhead beyond standard supernet training.
Despite its simplicity, we show that on tasks without strong priors, our solution consistently
discovers performant subspaces within an initially large, complex search space (where even
the state-of-the-art methods underperform), significantly robustifies the resultant supernet
and improves the performance across a wide range model sizes. We argue that our work
takes a step toward full automation of the network design pipeline.

1 Introduction

Over the last half-decade, neural architecture search (NAS), which aims to automate the design of neural
network architectures for various tasks, has seen great successes: for example, in a wide range of tasks (Zoph
et al., 2018; Chen et al., 2019; Liu et al., 2019a; Zhang et al., 2019), architectures designed by NAS often
outperform handcrafted networks designed by human experts. Many early NAS methods adopt a query-based
paradigm by repeatedly training and refining models via, for example, reinforcement learning (RL) (Zoph
et al., 2018; Tan et al., 2019; Baker et al., 2017)), evolutionary algorithms (Real et al., 2019; Liu et al., 2021;
Real et al., 2017) and/or Bayesian optimization/quadrature (White et al., 2021; Ru et al., 2021; Wan et al.,
2022a; Kandasamy et al., 2018; Hamid et al., 2023); these methods typically require prohibitive amounts
of computing resources even on simple vision tasks (e.g., early RL-based methods require thousands of
GPU-hours even on simple CIFAR tasks). More recent methods typically leverage weight-sharing supernets
to conduct architecture search in a one-shot manner without training candidate architectures individually
(Brock et al., 2018; Pham et al., 2018; Liu et al., 2019b; Guo et al., 2020; Li & Talwalkar, 2020; Cai
et al., 2019): typically, modern NAS methods first train all candidate networks in the search space A via
parameter-sharing supernets (supernet training), which is followed by architecture selection to identify the
most promising candidate sub-networks that lead to best trade-offs between performance and costs (e.g.,
in terms of model size, latency, etc.). While earlier supernet-based methods often require re-training the
resulting sub-networks (Pham et al., 2018; Liu et al., 2019b) or at least fine-tuning (Cai et al., 2020), more
recent advancements, such as the use of in-place knowledge distillation and sandwich sampling proposed by
Yu & Huang (2019) and subsequently widely used in related literature (Yu et al., 2020; Wang et al., 2021a;
Gong et al., 2022; Wang et al., 2021b), have enabled practitioners to obtain performant sub-networks by
simply slicing the supernet appropriately without further training (Yu et al., 2019).

Although these advances in the search methodology have democratized the usage of NAS by reducing its com-
putational costs, choosing a good search space remains a practical challenge that has received less attention.
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Figure 1: Illustration of an iteration in baseline supernet training (§2, left) and training with boundary
learning (§3, right): at each mini-batch, the max and min networks are always sampled alongside random
networks from A (sandwich sampling), and only the max network is trained with cross-entropy loss with
the true label; the other networks are trained with knowledge distillation using the soft logits of the max
network as the teacher (in-place KD). In baseline supernets (left), the max and min networks are fixed to
be the largest and smallest sub-networks in the search space. In contrast, we propose to learn max and min
policies and sample max and min networks from those policies at each iteration to use as the endpoints in
sandwich sampling. Importantly, the sampled max and min networks may differ from the ground-truth max
and min networks, respectively, and the policies are optimized in an end-to-end manner jointly with the
supernet training losses (CE and KD losses) (right).

While large and expressive search spaces are, in principle, desirable or even crucial for discovering high-
performing and novel architectures, it has been shown that NAS methods, particularly the supernet-based
methods, require meticulously designed search spaces. Previous works have shown that NAS performance is
sensitive to search space design—arguably more so than the choice of search algorithm (Wan et al., 2022b;
Yang et al., 2020). Moreover, directly applying many existing popular NAS methods in large, unrefined
search spaces has been observed to lead to sub-optimal performance (Ci et al., 2021; Zela et al., 2020)—
and as we will show, such issues persist even with modern, state-of-the-art search methods. As a result,
many works benchmark methods on carefully engineered search spaces often constructed by modifying and
inserting searchable dimensions on top of human-designed networks known to perform well and/or careful
handcrafting with human knowledge. Nonetheless, we argue that such practices inherently limit the utility
of NAS. For example, in new production use cases or if the task involves new architecture paradigms, prior
knowledge of effective search spaces may not be available, and such information may be expensive. More
fundamentally, the current reliance on handcrafted search spaces inhibits NAS from achieving its goal of
maximizing model performance “in an automated way with minimal human intervention” (Ren et al., 2021)
because human expertise is still required for selecting the search space.

In this paper, we tackle this issue by proposing a simple yet effective modification to the state-of-the-art
supernet training methods, where a policy that defines the search space is learned jointly with supernet
weights in an end-to-end, differentiable manner during supernet training. Starting with completely uninfor-
mative priors about the search space at initialization, the policies jointly learn a subspace within the original
broad search space where NAS methods perform well. Our proposed approach incurs negligible additional
computational overhead, requires no further retraining or fine-tuning, unlike several previous works (Pham
et al., 2018), and is orthogonal with respect to most existing improvements in the supernet training pipeline
(and thus offers complementary benefits). We show that our approach consistently discovers reasonable
search space boundaries in huge, realistic search spaces where even the current state-of-the-art methods fail
and yields high-performing supernets. Fundamentally, we argue that our method advances the applicability
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of NAS in search spaces beyond those commonly benchmarked in academic settings (often with extensive
manual engineering) and thus represents a step towards full automation of the network architecture design
pipeline.

2 Preliminaries

Problem setup. We consider a generic, typically huge NAS search space A that can be represented as
the Cartesian product of multiple search dimensions s(i): A =

∏D
i=1 s(i), where D is the total number of

search dimensions. Each search dimension s(i) is an ordinal variable that is chosen from a list of possible
values {o(i)

1 , ..., o
(i)
di
} in an ascending order (where di is the number of candidate choices of the i-th search

dimension), which in turn determines a characteristic of the resulting candidate network, such as the channel
depth, width, kernel size, etc. of a layer of the network, and an architecture a ∈ A can thus be represented
by a D-dimensional vector that concatenates the search dimensions. The objective of NAS can then be
formulated as a multi-objective optimization problem. For simplicity but without loss of generality, we
denote the problem as a two-objective optimization problem where we aim to minimize both the validation
loss Lval(a, W ∗) and some cost metric (g(a)), such as the number of floating point operations (FLOPs) of
some architecture a:

min
a∈A

(
Lval(a, W ∗), g(a)

)
;

s.t.W ∗ = arg min
W
Ltrain(a, W ),

gL ≤ g(a) ≤ gU ,

(1)

where W denotes the network weights that are trained on some training set and [gL, gU ] denote some lower
and upper bounds on the cost metrics that are known a-priori (for example, for deployments of neural
networks on mobile devices, we typically roughly know the upper and lower bounds in terms of the number
of parameters or FLOPs of the architectures we are interested in searching).

Given the multi-objective nature of the problem, we typically search for a Pareto-optimal set of architectures
A∗ = {a∗

1, ..., a∗
|A|}: we say that an architecture a dominates another architecture a′ (denoted f(a′) ≺ f(a)) if

Lval(a, W ∗) ≤ Lval(a′, W ∗) and g(a) ≤ g(a′) and either Lval(a, W ∗) < Lval(a′, W ∗) or g(a) < g(a′). Denoting
f(a) := [Lval(a, W ∗), g(a)]⊤, the set of Pareto-optimal architectures A∗ are those that are mutually non-
dominated: A∗ = {a∗

i ∈ A | ∄ a′ ∈ A s.t. f(a′) ≺ f(a∗
i )}. The Pareto front P∗ is the image of the Pareto

set of architectures: P∗ = {f(a) | a ∈ A∗}.

Supernet training with in-place KD and sandwich sampling. As discussed, the current state-of-the-
art NAS methods often rely on the ability to train supernets effectively. For a search space A, the supernet
is the largest possible sub-network amax = [o(1)

d1
, ..., o

(D)
dD

] that selects the largest candidate o
(i)
di

along all
search dimensions. Letting amax be parameterized by weights W , the goal of supernet training is that all
sub-networks a ∈ A are optimized simultaneously to achieve good performance in downstream tasks. Recent
works show that in-place knowledge distillation and sandwich sampling (illustrated and explained in Fig. 1)
have significantly improved the supernet performance and eliminated the need for retraining (Yu & Huang,
2019; Yu et al., 2020). Formally, at time step t, the supernet is updated with Wt ← Wt−1 − η∇WL(Wt−1)
where η is the learning rate and ∇WL(Wt−1) is the gradient given by:

∇WL(Wt−1) = ∇W

(
LD([a, W ]) + LKD([a, a, W ]) + γEa∼Unif(a1,...,aD)LKD([a, a, W ])

)∣∣∣∣
W =Wt−1

(2)

where the first term denotes the standard cross-entropy (CE) loss (LD(·)) for the max network, the second
term denotes the knowledge distillation (KD) loss, given by the KL divergence between the logits the max
network a (the teacher) and the min network a (the student), and the final term denotes the KD loss (with
the same teacher a) of the random networks and γ is a weighting factor. Unless stated otherwise, we follow
previous works (Yu et al., 2020; Wang et al., 2021b;a) and always sample 2 random networks in each iteration,
thus γ = 2.
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Figure 2: Naïvely training supernets in large search spaces is ineffectual, but boundary learning closes the
gap. Distribution of CIFAR-100 validation accuracy of 30 sub-networks of varying million-FLOPs (MFLOPs)
ranges, sampled from supernets trained with sandwich sampling and in-place KD in search spaces of varying
sizes and complexity: W: searching widths (output width and expansion ratio in Inverted Residual blocks)
only; W+K: searching widths and kernel sizes (3 × 3, 5 × 5); W+D: searching widths and depth of each in-
verted residual block; W+K+D: searching widths, kernel sizes, and depths simultaneously; W+K+D+BL: searching
all three elements, but with dynamic boundaries learning as described in §3. Boxes show medians and
interquartile ranges.

3 Methods

Limitations of current methods. Unlike previous techniques (Liu et al., 2019b; Pham et al., 2018; Cai
et al., 2019; 2020), the key advantage of the technique described in §2 is that the resulting supernets may be
directly deployed without retraining from scratch or expensive fine-tuning (one only has to re-calibrate the
batch normalization statistics of the desired subnetworks without gradient back-propagation). Nonetheless,
we find that the quality of the supernet training from the aforementioned technique still heavily depends
on the search space design, consistent with earlier literature investigating methods on alternative search
spaces (Ci et al., 2021). In Fig. 2, we train supernets consisting of MobileNet-like inverted residual blocks
on search spaces of varying search space complexities. The smallest search space only contains the width
search dimensions and sets other architecture parameters to fixed values that are known to perform well a
priori (e.g., values in the original MobileNetv2 network specification – see Appendix A.1 for details), but the
largest search space contains widths, depths, and kernel sizes simultaneously. As the search space becomes
larger, the supernet performance generally deteriorates as measured by the accuracy of the sampled sub-
networks of varying FLOP ranges. Intuitively, as the search space becomes larger and more complicated, the
subnetworks become increasingly different from each other, and it is consequently more difficult for one-shot
supernet to simultaneously improve all subnetworks as the optimization directions might conflict with each
other (known as gradient conflict (Peng et al., 2021; Gong et al., 2022)). Moreover, in a complex search
space, the ground-truth smallest network might be unreasonably small or contain many harmful operators,
but in naïve sandwich sampling, the supernet is still forced to sample it at each iteration even though its
gradient directions might not be useful for the other subnetworks. While previous works typically bypass this
problem by manually fine-tuning the search space such that the min network is still a reasonable performance
lower bound, as we have discussed in §1, this is not always feasible. In the following sections, we propose a
method to dynamically learn such boundaries without relying on expert knowledge.
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Dynamic boundaries during supernet training. As discussed in §2, at each minibatch of supernet
training, the existing supernet training method always samples the max network (i.e., the supernet) ā and
the smallest network a and samples two random networks a ∈ A with uniform probability. We consider a
probabilistic formulation of sandwich sampling through a set of policies over the 3 different types of archi-
tectures, assuming the candidate values along each search dimension {o(i)

1 , ..., o
(i)
di
} are sorted in ascending

order:

Max: ā ∼
D∏

i=1
Cat(ā(i)|ϕ(i));

Min: a ∼
D∏

i=1
Cat(a(i)|θ(i));

Random: a ∼
D∏

i=1
Cat

(
a(i)
∣∣∣ω(i)

)
,

(3)

where ϕ(i), θ(i), ω(i) ∈ ∆di−1, ∆di−1 denotes the (di − 1)-simplex, and Cat(a(i)|·) denotes that variable a(i)

follows a categorical distribution parameterized by (·). The baseline strategy (standard sandwich sampling)
can be expressed through this formulation by setting Cat(a(i)|ϕ(i)) and Cat(a(i)|θ(i)) to be point-mass dis-
tributions on the largest and smallest values for each component, respectively, and setting ω(i) = [ 1

di
, ..., 1

di
].

Instead of deterministically selecting the smallest architecture amin = [o(1)
1 , ..., o

(D)
1 ] and the largest architec-

ture amax = [o(1)
d1

, ..., o
(D)
dD

] over the entire search space as the minimum and maximum points of sandwich
sampling, we propose instead to learn the optimal boundaries. Specifically, we instantiate two policies for
the min and max networks, respectively and learn parameters θ, ϕ ∈ R

∑D

i=1
di controlling the min and max

bounds of sandwich sampling, respectively. Although it is possible to use a more expressive policy to handle
the dependencies between different search dimensions, empirically, we find using the independent policies
outlined above Eq. (3) performs well. We propose to optimize the policy jointly weights {θ, ϕ} alongside su-
pernet weights W by first modifying losses (LD and LKD([a, W ])) associated with the max and min networks,
respectively, with:

Max: Eā∼π̄(ā|ϕ)

[
LD([ā, W ]) + λℓ

(
gU − g(ā)

)]
;

Min: Ea∼π(a|θ)

[
LKD([a, a, W ]) + λℓ

(
(g(a)− gL)

)]
,

(4)

where ℓ(y) = max(0, y) is the hinge loss to penalize the max and min networks for moving too far away from
the pre-determined range defined in terms of some cost metric (FLOPs in this paper). These penalties are
in place to avoid missing out on portions of the Pareto front in the region of interest, and λ controls the
strength of penalization (set to 5 throughout). It is worth noting that the min and max networks are now
both sampled from some parameterized policies. Thus, the samples (and parameterized distributions) may
differ at each gradient update step.

We retain the uniform sampling strategy for the regular random architectures, but condition on the learned
min and max policies. Formally, at each search dimension i ∈ [1, D] we first, compute the cumulative density
functions (CDFs) of both the min and max policies. For the j-th choice of the i-th dimension, the CDFs of
the max and min policies are simply:

Max CDF: F (ϕ(i))j =
j∑

k=1
ϕ

(i)
k ;

Min CDF: F (θ(i))j =
j∑

k=1
θ

(i)
k ∀ j ∈ [1, di],

(5)

where ϕ(i) = [ϕ(i)
1 , ..., ϕ

(i)
di

] and θ(i) = [θ(i)
1 , ..., θ

(i)
di

]. The parameters ω = [ω(1), ..., ω(D)] for the random policy
random architectures are set to:

Random: ω
(i)
j := c(i)

1(1− F (ϕ(i))j − τ) · 1(F (θ(i))j − τ), (6)
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Figure 3: Comparison of the Pareto fronts of top-1 accuracy vs. million FLOPs (MFLOPs) of architectures
in the width-only search space (§4.1) searched with standard techniques described in §2 with (Sandwich)
and without (Sandwich + BL) our proposed boundary learning in, from left to right, CIFAR-10, CIFAR-100,
and ImageNet-D. The upper and lower bounds in terms of MFLOPs ({gL, gU} in Eq. (1) are set to [6, 60]
MFLOPs in all experiments (the MFLOPs range of interest is marked in white in the figures).

where 1(·) is the Heaviside step function, τ is some threshold (set to 0.5 in all our experiments), and c(i) is
a normalization factor c(i) = 1∑

j
ω

(i)
j

. This strategy essentially performs uniform sampling but only in the

regions in the search space bounded by the min and max architectures with high probabilities. Specifically,
ω

(i)
j is 1 if and only if the cumulative probability that the index of max network for dimension i is greater

than j and the cumulative probability that the index of min network for dimension i is less than j are both
greater than τ .

Policy learning. To reflect an uninformative prior on the search space, we initialize the policy param-
eters to imitate the baseline sandwich sampling strategy by assigning the most probability to each search
dimension’s smallest/largest choices for the min/max policies, respectively. Formally, for the i-th search
dimension, we initialize the policy weights as follows:

Max: ϕ(i) ← σ

([
a0, a0 + ϵ0, ..., a0 +

di−1∑
j=1

ϵ0

]⊤/
T

)
;

Min: θ(i) ← σ

([
a0 +

di−1∑
j=1

ϵ0, a0 +
di−2∑
j=1

ϵ0, ..., a0)
]⊤/

T

)
,

(7)

where a0 is a constant set to 0.1, ϵ0 are positive random weights sampled from a normal distribution
N (0, 10−3), σ(·) denotes the softmax function, and T is the softmax temperature (we use a T = 0.1 through-
out). This initialization formula ensures that the weights sum up to 1 and that at initialization, the probabil-
ity masses that we assign on each candidate value are in ascending order (with the largest probability for the
largest possible choice) for the max policy and descending order for the min policy along each search dimen-
sion. It is worth noting that the above initialization recipe can be adapted to incorporate prior knowledge,
if available, by simply re-allocating the probability masses appropriately.

To enable learning {ϕ, θ} and W jointly in a differentiable manner using Eq. (4), we need to compute gradients
∇ϕEā∼π̄(ā|ϕ)

[
LD([ā, W ])+λℓ

(
gU−g(ā)

)]
and∇θEa∼π(a|θ)

[
LKD([a, W ])+λℓ

(
(g(a)−gL)

)]
. It is worth noting

that the partial derivatives for the activated weights (i.e., the weights included in the current subnetwork) are
the same as the partial derivatives in Eq. (2), and the partial derivatives for the inactivated weights are zero
since the modification to the loss function is independent of W . To achieve so, we use the Gumbel-softmax
relaxation (Jang et al., 2017) for the categorical policies in Eq. (3) for gradient approximation. Specifically,
we use the straight-through variant where we always discretize an architecture during a forward pass (i.e.,
sample exactly from the categorical distributions) but backpropagate using the gradient of the non-one-
hot Gumbel-softmax sample. Although other gradient estimators such as the score-based (Williams, 1992;
Fu, 2006) and measure-valued (Mohamed et al., 2020) alternatives may also be used, we opt for Gumbel-
softmax because we have a differentiable objective function and pathwise methods are likely to yield lower
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gradient variances (Carvalho et al., 2021). We also use an analytical formula to compute FLOPs during
the forward pass to ensure the constraint term in Eq. (4) is also differentiable. In the case where no such
analytical formula is available for an alternative cost metric, such as latency in mobile devices, we may still
use techniques such as pre-computed look-up tables proposed in FBNet (Wu et al., 2019) or differentiable
latency modules (Xu et al., 2020) to retain differentiability. The overall pipeline of the proposed algorithm
is presented in Algorithm 1, with the key differences from the standard sandwich sampling highlighted in
magenta.

Algorithm 1 Sandwich sampling with boundary learning
Initialize policy weights of {ϕ, θ} according to Eq. (7).
while not converged do

Sample a mini-batch of data B from train data D.
Draw a max network ā ∼ π̄(ā|ϕ).
Train the max network ā with true labels from B
Draw a min network a ∼ π(a|θ) to mimic the max network with the KD loss
Compute & store gradient of policy parameters ϕ and θ w.r.t. loss in Eq. (4)
Sample max(n − 2, 0) random network(s) according to Eq. (3) with a training objective to mimic the
output logits of the max network with the KD loss.
Update supernet weights W and policy parameters ϕ, θ via gradient descent.

end while

Analysis of computing costs. Our method incurs minimal additional computational overhead over
standard supernet training: The only additional cost is the cost to train & backpropagate the gradients of
the policies (i.e., ϕ and θ in Eq. 3; note that ω are not free parameters and are linked to ϕ and θ through
Eq. 6). There are a total of 2

∑D
i=1 di such free parameters parameterizing the two categorical distributions

for the max and min policies, where D, the number of search dimensions in the search space, is typically ≤
50, and di, the number of choices of the i-th search dimension, is typically ≤ 10. The additional number of
parameters to train is thus ∼ O(103), which is negligible compared to the number of parameters of modern
neural networks, which is at least O(106).

4 Experiments

In this section, we i) empirically investigate the effectiveness of boundary learning in various search spaces
inspired and generalized from well-known architectures like Slimmable networks (Yu et al., 2019) and
MobileNet-family CNNs and ii) analyze the learned boundaries. It is worth noting that we deliberately
focus on expanded, less hand-tuned search spaces rather than the existing, commonly used search spaces.
This is because, as discussed in §1, existing search spaces, such as those used in previous works like Wang
et al. (2021b) and Wang et al. (2021a), feature per-layer handcrafted boundaries and some fixed search
dimensions. These search spaces are often heavily engineered by human experts such that NAS works well,
and it is unknown how well the results may generalize. Thus, rather than focusing on search spaces that
have undergone extensive handcrafting, we focus on less hand-tuned search spaces as a closer proxy to arbi-
trary, novel search spaces likely encountered in practical settings. We also opt not to study cell-based search
spaces such as the DARTS (Liu et al., 2019b) or the NAS-Bench spaces (Ying et al., 2019; Dong et al.,
2021) because the objective of our work is to improve the retraining-free NAS and to identify a family of
Pareto-optimal architectures over a wide range of costs similar to previous works like Wang et al. (2021b),
Yu et al. (2020) and Cai et al. (2020). In contrast, the aforementioned cell-based search spaces typically
feature a small variation in model size, and usually, the objective is to identify a single best architecture.

4.1 Width-only Search Space

Search space. We first experiment on a width-only search space that we adapt and enlarge from the
one introduced in Slimmable networks (Yu et al., 2019). The search space admits a wide range of channel
width configurations with other search dimensions, such as kernel sizes and depths, fixed. In contrast with
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Figure 4: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures for Weight-sharing
NAS experiments (§4.2) in CIFAR-10, CIFAR-100, ImageNet-D, and the original ImageNet (left to right).
The upper and lower bounds in terms of MFLOPs for all datasets are set to [10, 90].

Slimmable networks, we follow Chin et al. (2021) and allow the widths of the different layers to be different:
instead of forcing all layers to have the same width (measured as the fraction of the width of activated
neurons to the maximum width of each layer). The original search space essentially couples all the sub-
networks to a manually-specified supernet configuration, which implies a rather strong prior on the search
space. Our relaxed search space significantly weakens that coupling and yields a much more complex search
space over more diverse architectures, as the width of each layer width becomes a free search dimension, and
the number of possible subnetworks scales combinatorially.

Settings. Our search space is largely adapted from the MobileNetv2 variant of the Slimmable networks
search space, and we search for the output width and the width of the expanded intermediate convolution
layers for all stages as well as the initial convolution channels. As in Yu & Huang (2019), we set the maximum
width w

(i)
max of each layer and allow the width to be chosen from w(i) = {0.125, 0.25, ..., 0.875, 1}×w

(i)
max along

each search dimension. Note that this is a significantly larger range than the search space originally proposed
(Yu et al., 2019), and the corresponding search space contains many more small networks not found in the
original search spaces, which are useful for additional devices with modest computational powers. Apart from
the restriction that the output channel width of i-th layer must match the input width of the (i + 1)-th, we
place no further constraints on what width each layer may take. We train all models for 120 epochs using SGD
for the supernet weights W and Adam (Kingma & Ba, 2015) for the policy weights (ϕ and θ), and we use a
single set of hyperparameters for all our experiments without further task- or model-specific hyperparameter
tuning (see Appendix A.2 and A.3 for the implementation details). After the supernet training, we closely
follow Wang et al. (2021b) and Wang et al. (2021b) to run an adapted version of genetic algorithm to identify
the set of non-dominated Pareto-optimal architectures that trade between Top-1 accuracy and the number of
FLOPs (although a more sample efficient method, such Bayesian optimization methods adapted to discrete
search spaces and/or multiobjective optimization settings (Ru et al., 2021; Daulton et al., 2021; 2022), may
be used instead). For the width-only search space, we experiment on CIFAR-10, CIFAR-100 (Krizhevsky,
2009), and a downsampled variant of ImageNet (denoted as ImageNet-D) (Chrabaszcz et al., 2017), which is
the full ImageNet dataset but only with resolution downsampled from 224× 224 to 32× 32, thereby making
it an even more challenging task than the full-resolution ImageNet.

Results. We summarize the results in Fig. 3. On all datasets, we find that boundary learning yields
significant improvements of the Pareto front over vanilla supernet training with the recipe described in §2.

4.2 Weight-sharing NAS

MobileNetv2-like search space. Going beyond width-only search spaces, we further investigate
MobileNetv2-like search spaces that are more consistent with modern weight-sharing NAS methods that
further incorporate the depth and kernel size dimensions (Wang et al., 2021b;a). In addition to the width
dimensions in §4.1, we also incorporate dynamic kernel sizes (3 × 3 and 5 × 5) and dynamic depth per
stage, and the detailed specification may be found in Table 1. To simulate real-life NAS search spaces with
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Figure 5: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures in the
MobileNetv3-like search spaces in CIFAR-10 and ImageNet-D.

scarce prior knowledge, we design a search space that is orders-of-magnitude larger and more complex than
common search spaces featured in the literature and features significantly less handcrafting. Specifically,
unlike existing works that often only allow widths and depths to vary in narrow, carefully selected, and often
layer-specific ranges, we allow width configurations to vary widely, and we adopt the same range for the
possible depth for each stage. As a result, our search space is far more generalizable than previous bespoke
search spaces defined using prior knowledge.

We report the results in the search space described in Table 1 in Fig. 4 where boundary learning has
significantly improved the supernet across FLOPs ranges. It is also noteworthy that the margin of gain in
ImageNet-D is particularly large, possibly due to the challenging nature of the task warrants a careful search
space design.

MobileNetv3-like search space. We also conduct preliminary experiments on an even larger and more
challenging search space inspired by MobileNetv3 (Howard et al., 2019): in addition to the search dimensions
in Table 1, we also include the search for the activation function ({ReLU, swish}) and whether to use squeeze-
and-excite (SE) module (Hu et al., 2018) for Block 1-6, thereby adding a further 12 dimensions to the search
space and we show the results in Fig. 5, where we find the margin of improvement to be even larger in
this search space: even though the elements introduced in MobileNetv3 such as the SE module have been
shown to improve the performance significantly, the additional complexity has a crippling effect on the naïve
supernet training, causing it to perform even worse compared the results reported in Fig. 3 and 4. On the
other hand, boundary learning largely restored the supernet performance, demonstrating its efficacy despite
increased complexity.

Table 1: Specification of the search space used in weight-sharing NAS experiments in §4.2 Intermediate refers
to the possible widths of the expanded convolution module in inverted residual blocks. #SD denotes the
number of search dimensions of a stage.

Stage Intermediate Output Depth Kernel #SD
Head - 4-32 - 3, 5 2
Block1 12-96 2-16 1 3, 5 3
Block2 24-144 3-24 1-4 3, 5 7
Block3 24-144 3-24 1-4 3, 5 7
Block4 48-384 8-64 1-4 3, 5 7
Block5 72-576 12-96 1-4 3, 5 7
Block6 120-960 20-160 1-4 3, 5 7
Block7 240-1920 40-320 1 3, 5 3

9
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4.3 Analysis of Learned Subspaces
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Figure 6: Evolution of the widths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2. Shades denote
one standard deviation. The strength of the color denotes the depth of the search dimension (deeper search
dimensions have darker colors).
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Figure 7: Evolution of the depths and kernel sizes of expected Max and Min networks in MobileNetV2-like
and MobileNetV3-like search spaces described in §4.2.
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Figure 8: Evolution of the SE module presence (0
denotes absence of SE module for a stage and 1 de-
notes presence) and activation function choice for
the Max and Min networks in the MobileNetV3-like
space described in §4.2.

To understand the effectiveness of boundary learn-
ing, we also analyze the boundaries learnt and how
they evolve as the training progresses. Given the
probabilistic nature of the policies, we compute the
trajectories of the expected max and min architec-
tures by marginalizing the policy probabilities along
each search dimension alongside their standard devi-
ation in Fig. 6 – 8 where we analyze the ImegeNet-D
task. The reader is referred to Appendix B for addi-
tional visualizations and analyses of more tasks and
datasets.

For the max architectures, we observe generally on
width and depth dimensions (Fig. 6 and 7a) that
the expected max architecture remains at the largest
possible values as the training progresses. We also
observe that the polices become increasingly confi-
dent over time, as shown by the decreasing standard
deviation of the sampled architectures over epochs.
It is intuitive that the ground-truth, deepest and widest network may be the best max network regardless
of what FLOPs range that we ultimately are interested in since it acts as a teacher. This, however, is not
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necessarily the case when additional search dimensions are included in the search space described in §4.2.
Intuitively, while we expect a wider and/or deeper network to have a larger learning capacity and hence to be
a better teacher, it is less obvious, for example, whether a network with larger kernel sizes will categorically
perform better than an alternative architecture with smaller kernel sizes. Similarly, in the MobileNetv3
search space, there is no obvious a-priori reason to prefer an activation function over another. Indeed, we
observe that from Fig. 7b and 8. In these cases, the policy has learned a max architecture that is different
from the ground-truth maximum by adopting smaller, 3×3 kernel sizes at several initial stages. Interestingly,
this corroborates with the design of MobileNetv3 that also uses smaller kernel sizes at the shallower layers
of the networks and larger ones towards the end.

The min network can be seen as the performance lower bound, and we expect it to have a larger influence
on the overall supernet training. Indeed, we observe that in all cases, the policy has quickly learned to
enlarge the min network away from the smallest possible architecture in the search space, which is often
unreasonably small. Furthermore, we find that the policy has often learned a highly non-uniform lower
bound. While in some search dimensions, the learned min does not move from the initial values at all, on
other search dimensions, it shifts more aggressively. We find that the dimensions where the learned does
change often coincide with the more important dimensions from our domain knowledge. For example, in
search spaces where depths are included as search dimensions (Fig. 7a), the policy always opts to increase
depths first almost across all stages. This is reasonable, given the empirical findings suggesting that depths
are likely the most important search dimensions both in NAS (e.g., Shu et al. (2020) show that a narrower but
deeper network generalizes better than a wider but shallower network of similar sizes in cell-based NAS). Our
analysis suggests that the policies have learned meaningful boundaries, often discovering patterns consistent
with domain knowledge but independently without prior information. This is crucial, as it validates the
potential of boundary learning in arbitrary, potentially unknown search spaces that we might be interested
in.

4.4 Ablation Studies

We also conduct ablation experiments by comparing i) learning both max and min networks vs. learning
the min networks only, ii) whether to back-propagate gradients from the Random architectures to the min
and max policies during training and iii) the comparison between boundary learning with baseline supernet
training with a longer number of epochs. We find that learning max and min modestly outperforms learning
min only, and back-propagating gradients from Random architectures generally worsen performance, likely
due to the additional noise introduced in the gradient estimates. We also find that while doubling the number
of training epochs improves supernet performance trained via the baseline protocol, it is still outperformed
by boundary learning presented in this section, even though the latter is approximately half as expensive.
The readers are referred to Appendix C for details.

5 Related Works

In this section, we give a detailed description of the related works, broadly categorized as either (i) aiming
to improve the supernet training pipeline or (ii) aiming to improve the search space itself.

Improvements on supernet training. Most of the endeavors in NAS have been trying to improve the
search methodology, and given the dominance of supernet-based methods in modern NAS, most previous
works have focused on improving supernet training. In particular, since the initial proposal of retraining-
free and finetuning-free supernet training strategy (Yu & Huang, 2019), various improvements have been
proposed in different stages of the pipeline (and in light of the vast literature, we only discuss the most
relevant works in this section): AttentiveNAS (Wang et al., 2021b) and Joslim (Chin et al., 2021) essentially
propose non-uniform sampling strategies for the Random architectures during training (i.e., a in Eq. (3),
but neither work modifies the Max and Min architectures. AlphaNet (Wang et al., 2021a) replaces the
KL divergence in the KD loss of Eq. (2) with an adaptive alpha divergence. NASViT (Gong et al., 2022)
extends the aforementioned training techniques to hybrid CNN-Vision Transformers (ViT) search spaces and
addresses the issue of gradient conflict. However, our work is search space-agnostic and addresses a different
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aspect in the NAS pipeline, and thus is orthogonal and offers potentially combinable benefits with respect
to all of the aforementioned works.

Improvements on search spaces. Following the recent discoveries of the sensitivity of NAS methods
to search spaces, there has also been a line of work that aims to improve the search space itself (our work
falls into this category): Earlier works (Liu et al., 2018; Perez-Rua et al., 2018; Ru et al., 2020) explore the
ideas of search space evolution and/or optimization within the query-based NAS paradigm, which is typically
very computationally expensive. More recently, Ci et al. (2021), Chen et al. (2021a) and Xia et al. (2022)
consider search spaces evolution of CNNs and ViTs, but the methods proposed require training of multiple
supernets. Lastly, several previous works also explore search space adaptation on the fly similar to us: for
example, Hu et al. (2020) use an angle-based metric; Nayman et al. (2019) use expert advice; Noy et al.
(2020) use annealing; Chen et al. (2021b) gradually increase channel width. However, these methods are
often heuristic- or scheduling-based and are often search space-specific, whereas our method derives signal
for search space adaptation from the training loss directly along with the supernet weights.

6 Conclusion

We propose a novel method that jointly learns and refines the search space boundary with supernet op-
timization in an end-to-end, differentiable manner by introducing learnable policy modules on top of the
supernet. Despite its simplicity, we show its effectiveness in a range of tasks where our method drastically
improves NAS performance in large and complicated search spaces, even though existing methods struggle.
Ultimately, we hope our work opens new possibilities in finding general-purpose NAS methods that function
in any search space, even without prior knowledge.

Limitations and future work. We note that although our method is conceptually generic, we have only
considered image classification tasks in CNN-based search space in this paper, and an immediate next step
is to extend the method to other search spaces (e.g., the one in Gong et al. (2022)) and other tasks (e.g.,
those in NAS-Bench-360 (Tu et al., 2022)). Furthermore, in designing the methodology, we also introduce
a number of hyperparameters in the pipeline, such as T, a0, ϵ0 in Eq. (7) and λ in Eq. (4). While we use a
consistent set of these hyperparameters throughout and do not tune them, their impact on the performance
and the way to potentially automate their choices remain to be investigated. We defer these to future work.
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A Implementation Details

Table 2: Specification of the largest search space used in the paper. Intermediate refers to the possible
widths of the expanded convolution module in inverted residual blocks. #SD denotes the number of search
dimensions of a stage. SE refers to the choice of whether to have a Squeeze-and-Excite module for that stage
and Activation denotes the choices of the activation function.

Stage Intermediate Output Depth Kernel SE Activation #SD
Head - 4-32 - 3, 5 - - 2
Block1 12-96 2-16 1 3, 5 True, False ReLU, Swish 5
Block2 24-144 3-24 1-4 3, 5 True, False ReLU, Swish 9
Block3 24-144 3-24 1-4 3, 5 True, False ReLU, Swish 9
Block4 48-384 8-64 1-4 3, 5 True, False ReLU, Swish 9
Block5 72-576 12-96 1-4 3, 5 True, False ReLU, Swish 9
Block6 120-960 20-160 1-4 3, 5 True, False ReLU, Swish 9
Block7 240-1920 40-320 1 3, 5 True, False ReLU, Swish 5

A.1 Search Spaces

The search spaces used in this paper are largely based on the MobileNet search spaces adapted from the
specification listed in Table 2.

Width-only. The width-only search space (§4.1 and the W search space in Fig. 2 only have Intermediate
and Output search dimensions activated, and the depth dimensions are fixed at values {−, 1, 2, 3, 4, 3, 3, 1}
from Head to Block7, respectively and kernel size is fixed at 3×3. SE is False, and activation is set to ReLU
for all stages. For the experiments done in Fig. 2, W+K denotes the search space with Intermediate, Output
and Kernel dimensions activated, W+D denotes the one with Intermediate, Output and Depth as searchable
dimensions and W+K+D denotes the one with all three as searchable dimensions.

Weight-sharing NAS. The MobileNetv2 search space described in Table 1 in the main text is a subspace
of 2 with SE and Activation set to False and ReLU, respectively. The MobileNetv3 search space has the
full space specification as described in Table 2.

A.2 Training Protocol

We train the supernets for 120 epochs for all experiments using the SGD optimizer with a Nesterov momen-
tum of 0.9. We first use a linear learning rate warm-up schedule for the first 5 epochs, with the learning rate
increased from 10−5 to 10−1, followed by a cosine annealing learning rate decay. We follow previous works
(Wang et al., 2021a;b) and apply a dropout of probability of 0.2 and drop connect probability of 0.2 on the
supernet for additional regularization. On CIFAR-10 and CIFAR-100 datasets, we use a weight decay of
5 × 10−4 for the non-batch normalization (BN) weights and 0 for the BN bias, a batch size of 256, and a
maximum learning rate of 0.1. On ImageNet-D, we use a weight decay of 10−5 for the non-BN weights and
0 for the BN weights, a batch size of 1024, and a maximum learning rate of 0.4. We use Adam optimizer for
the policy weights with a learning rate of 5× 10−4, weight decay of 0, and other parameters unmodified at
their default values.

A.3 Evaluation Protocol

After the training is complete, we search for the Pareto front between accuracy and FLOPs using a genetic
algorithm adapted from previous works (Yu et al., 2020; Wang et al., 2021b). Specifically, we i) randomly
sample 256 sub-networks (including the max and min, which are always sampled) from the supernet and
compute their FLOPs and their validation accuracy, and we select the architectures on the Pareto front for
this initial set of architectures; ii) we apply crossover (given two different parent subnetworks on the Pareto
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front a1 = [s(1)
1 , ..., s

(D)
1 ] and a2 = [s(1)

2 , ..., s
(D)
2 ], we build a3 where each search dimension is sampled from

the values in the two parent subnetworks: s
(3)
i ∼ Unif(s(1)

i , s
(2)
i )) and mutation (given a Pareto architecture

a, on each search dimension, we randomly change its value to another value with probability of 0.1). We fix
the crossover and mutation sizes to 128, thus generating a new set of 256 sub-networks. We then evaluate
the performance of the new sub-networks, repeat the second step for 20 epochs, and report the final Pareto
front at the end of the architecture selection stage.

B Additional Experimental Results
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Figure 9: Evolution of the widths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for CIFAR-10
and CIFAR-100. Shades denote one standard deviation. The strength of the color denotes the depth of
the search dimension (deeper search dimensions have darker colors. Mbv2: MobileNetv2-like search space
(§4.2).
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Figure 10: Evolution of the depths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for CIFAR-100.

In this section, we report additional experimental results by presenting visualizations and analyses of the
learned subspaces on more datasets (presented in Fig. 9 – 11). We observe that most of the high-level trend
described in §4.3 holds, such as the propensity for the policy to quickly increase the width of the min network
over time. One notable exception is that for the CIFAR datasets, the max networks for all search dimensions,
including the kernel size dimension, remain at the largest possible value, unlike the ImageNet-D case where
the kernel size of the max network decreases to 3×3 for some layers.

C Ablation Studies

Learning the min only vs. learning both max and min. Our method is compatible with the setting
where only the min or max network is learned, and the other extremum is fixed. This could be useful when
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Figure 11: Evolution of the kernel sizes (expressed as a fraction of the max width of each layer) for the
Max and Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for
CIFAR-100.
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Figure 12: Comparison of the Pareto fronts of top-1 accuracy vs MFLOPs of architectures in the
MobileNetv2-like search spaces in CIFAR-10 and CIFAR-100. Min+Max denotes boundary learning with
both min and max networks learned (identical to the results presented in the main text). MinOnly denotes
the case where only min network is learned.

partial prior knowledge about the search space exists. The simplification to accommodate the case where
only a single extremum is learned is straightforward: instead of learning two policies, we only learn one,
and we also adjust the sampling strategies for the regular random architectures accordingly. Given that the
results in the main text §4.3 suggests that the min network is more important for the overall training, we
conduct comparisons if only min is learned and max is fixed at the ground-truth largest network, and we
show the results in Fig. 12. We find that in both cases learning both min and max still outperforms min-only,
even though in the MobileNetv2-like search space, the policy eventually converges to the largest network in
the search space (Fig. 6 to 8 in the main text). Finally, we find that learning the min only already leads to
a large improvement over the vanilla sandwich sampling baseline without boundary learning.

Effect of back-propagating gradients from random architectures. We also investigate a variant of
the boundary learning algorithm presented in Algorithm 1 in the main text, but we also update the gradients
of the policy using random architectures. Recall that in §3, we retain the uniform sampling strategy for the
regular, random architectures but condition on the max and min architectures learned, and we use a Heaviside
step function to determine the candidates to be included on each search dimension for the sampling. By using
a straight-through estimator over the hard Heaviside step (i.e., we retain the hard Heaviside step for the
forward backpropagation but use a hard sigmoid for back-propagation), we may retain the differentiability
and allow gradients to be passed from the random architectures as well – the advantage of this approach
is that it allows the policy to be updated more frequently, and in cases such as large-batch training where
the number of gradient updates per epoch is small, the policies may converge faster than otherwise. We
present the results in Fig. 13. We found that although using the additional gradient information increases
the convergence speed of the policy, we obtain better Pareto fronts by using the gradients from min and max
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Figure 13: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures in the
MobileNetv2-like search spaces in CIFAR-10 and CIFAR-100. w/o grad from rand denotes the bound-
ary learning with gradients to the policy updated from min and max networks only (identical to the results
presented in the main text). grad from rand denotes the case where random architecture gradients also
update the policy.

networks only, likely because the random network gradients are noisy and may conflict with the gradients
from max and/or min. Nonetheless, techniques to reduce gradient variance or to remedy gradient conflicts
may be used; we defer a thorough investigation to future work.
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Figure 14: Comparison against
baseline supernet training with 240
epochs in MobileNetv2-like space
(§4.2) on CIFAR-100

Comparing against longer training. To further demonstrate the
effectiveness of boundary learning, we also compare against baseline
supernet training with doubled number of training epochs (240), and
we show the results in Fig. 14: while longer training indeed improves
the supernet performance, it is still outperformed by boundary learn-
ing, which only trains for 120 epochs and is thus approximately half
as expensive.
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