
TinyTTA: Efficient Test-time Adaptation via Early-exit
Ensembles on Edge Devices

Hong Jia1,3 Young D. Kwon1,4 Alessio Orsino1,2 Ting Dang3
Domenico Talia2 Cecilia Mascolo1

1University of Cambridge 2University of Calabria 3University of Melbourne
4Samsung AI Center, Cambridge

{hj359,ydk21,cm542}@cam.ac.uk
{aorsino,talia}@dimes.unical.it

{hong.jia,ting.dang}@unimelb.edu.au

Abstract

The increased adoption of Internet of Things (IoT) devices has led to the gen-
eration of large data streams with applications in healthcare, sustainability, and
robotics. In some cases, deep neural networks have been deployed directly on these
resource-constrained units to limit communication overhead, increase efficiency
and privacy, and enable real-time applications. However, a common challenge
in this setting is the continuous adaptation of models necessary to accommodate
changing environments, i.e., data distribution shifts. Test-time adaptation (TTA)
has emerged as one potential solution, but its validity has yet to be explored in
resource-constrained hardware settings, such as those involving microcontroller
units (MCUs). TTA on constrained devices generally suffers from i) memory
overhead due to the full backpropagation of a large pre-trained network, ii) lack
of support for normalization layers on MCUs, and iii) either memory exhaustion
with large batch sizes required for updating or poor performance with small batch
sizes. In this paper, we propose TinyTTA, to enable, for the first time, efficient
TTA on constrained devices with limited memory. To address the limited mem-
ory constraints, we introduce a novel self-ensemble and batch-agnostic early-exit
strategy for TTA, which enables continuous adaptation with small batch sizes for
reduced memory usage, handles distribution shifts, and improves latency efficiency.
Moreover, we develop the TinyTTA Engine, a first-of-its-kind MCU library that
enables on-device TTA. We validate TinyTTA on a Raspberry Pi Zero 2W and an
STM32H747 MCU. Experimental results demonstrate that TinyTTA improves TTA
accuracy by up to 57.6%, reduces memory usage by up to six times, and achieves
faster and more energy-efficient TTA. Notably, TinyTTA is the only framework
able to run TTA on MCU STM32H747 with a 512 KB memory constraint while
maintaining high performance.

1 Introduction

Deploying deep neural networks on IoT devices, such as microcontroller units (MCUs), holds
significant potential in many applications requiring real-time data analysis and low-latency responses,
such as real-time human health monitoring [1] and robotics [2]. However, a practical challenge in
deploying these models on MCUs in real-world scenarios is their adaptation capability. The data
encountered in real settings often exhibit distribution shifts due to unforeseen noise and environment.
For instance, sensor data can be affected by natural fluctuations and distortions, including weather
changes (e.g., fog and snow) and sensor-related issues (e.g., defocus blur) [3, 4]. Existing mitigation
strategies, such as fine-tuning [5], typically necessitate updating the entire model, which may be

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

impractical for edge devices due to constraints on memory, energy, and computational resources.
Consequently, developing effective adaptation techniques for edge devices to address such distribution
shifts while maintaining efficiency is a critical and pressing need.

Test-time adaptation (TTA) emerges as an effective strategy to mitigate generalization issues [6].
By adapting a pre-trained model to unlabeled test samples, TTA aims to align the model with the
current data distribution through entropy minimization. This technique reduces the model’s prediction
entropy without requiring extensive retraining [6]. However, conventional TTA approaches face
several limitations that prevent them from being applicable to edge devices. Firstly, TTA typically
requires updates to either the entire network or several layers. Even when updating only a few
layers, it still incurs substantial memory overhead due to the need for backpropagation. This process
requires storing activations for a large pre-trained model, therefore imposing substantial memory
requirements. Secondly, few works have considered mixed distribution shifts and have uniformly
updated networks for samples exhibiting varying distribution shifts. This approach not only results in
varying accuracy for different levels of distribution shifts but also increases computational overhead,
as samples with minor shifts may not, in theory, necessitate updating the entire network. Thirdly, the
most effective TTA strategies often involve adapting the normalization layers [3, 7, 8]. However, in
practice, these layers are usually fused with convolutional layers when developed for MCUs to reduce
computational and memory demands [9–11]. This poses practical challenges as currently there is
no available library support for normalization layers in such hardware environments. Lastly, the
effectiveness of normalization-based TTA typically relies on large batch sizes, such as 64 instances
per update [3], which significantly increases computational overhead. Instead, constrained hardware
such as MCUs typically only allow a single batch of data due to limited memory resources. While
smaller batch sizes could be more practical for adaptation in MCUs [5], existing approaches suffer
from significant performance degradation under these conditions. As a result, there is still a lack of
efficient TTA frameworks applicable to resource-constrained edge devices. This challenge is even
more pronounced for extremely constrained devices, such as MCUs, which play a pivotal role in
many applications.

In this paper, we present a novel TTA framework named TinyTTA, which, for the first time, addresses
the challenges posed by the efficiency requirements of constrained devices to enable TTA. We show
how our design choices allow the framework to apply even to the extreme edge, i.e., MCUs. To
address the first challenge, we propose an approach based on self-ensemble and early exits. With
self-ensembles, we innovatively group subsequent layers of the pre-trained network into submodules,
approximating each submodule to emulate the full network’s capability. The early-exit strategy,
combined with these submodules, allows instances to exit from different submodules rather than
passing through the entire pre-trained network at test time. For example, samples that are easily
predicted with high confidence, which is calculated from the model output, can exit from earlier
submodules, alleviating the overhead associated with traversing subsequent layers and reducing the
need for further propagation through the entire network. This design also accommodates mixed
distribution shifts, addressing the second challenge. Samples with minor distribution shifts can be
easily predicted, making a shallow submodule sufficient for reliable prediction, thus facilitating an
early exit. Conversely, samples with significant distribution shifts may necessitate traversing the
entire network to achieve reliable adaptation. To address the third and fourth challenges, we propose
a weight standardization (WS)-based [12] adaptation for TTA. This method facilitates batch-agnostic
TTA by simulating the effects of normalization layers while alleviating the implementation complexity
associated with those layers. Additionally, we construct an operator library, named TinyTTA Engine,
to enable practical deployment on MCUs.

We conducted extensive experiments to assess TinyTTA performance using four benchmark corruption
datasets on two edge devices: the Microprocessor (MPU) Raspberry Pi Zero 2W with 512 MB DRAM
and STM32H747 MCU with 512 KB of SRAM. Results show that TinyTTA improves TTA accuracy
by up to 57.6%, reduces memory usage by up to six times, achieves faster latency, and is more energy-
efficient than conventional baseline methods on MPUs. Notably, TinyTTA is the only framework
able to run on the MCU STM32H747 with a 512 KB memory constraint while maintaining high
performance, opening the door, for the first time, to performing TTA on resource-limited devices.

2 Related Work

This section reviews the key methods for performing TTA, emphasizing their main limitations.
Subsequently, we examine the literature on early exit mechanisms.

2

� � 	 � ��
������� �

�

��

����

�
��

�
��

��
��
��

�

����������
��������

Raspberry Pi Zero 2 W

Out of Memory

(a) Tent memory (ResNet50)

� � 	 � �

����������

�

���

	��

��

���

����

�
��

��
��
��
��

����������
�������

STM32H747XI
512KB

Out of Memory

(b) Tent memory (MCUNet)

� � � � �

���������

�

��

��

��

��

	�

��
��
��
��

������	�
������

Out of Memory
(STM32H747XI)

Out of Memory
(Raspberry Pi Zero 2 W)

(c) Tent Accuracy

Figure 1: Motivation study. (a)-(b) Both modulating and fine-tuning TTA have similar memory usage
and remain memory-intensive, leading to out-of-memory issues during deployment on MPUs and
MCUs. (c) TTA accuracy is highly reliant on batch sizes.

Memory-intensive TTA. Existing TTA work can be categorized into fine-tuning TTA and modulating
TTA. In particular, fine-tuning TTA methods, such as CoTTA [13] and Test-Time Training (TTT) [14],
updates the entire model architecture, leading to intensive memory usage. Modulating TTA methods,
instead, adjust normalization layers while keeping other components frozen, as seen in TENT [6],
TTN [15], NOTE [16], and SoTTA [17]. However, as shown in Figure 1a and 1b, modulating TTA
still exhibits memory usage similar to fine-tuning TTA, since the model still needs to backpropagate
through the full model structure.

Memory-efficient TTA. To address the memory inefficiency of previous TTA methods, various
memory-efficient TTA techniques have been proposed, primarily targeting GPUs. These include
EATA [7], which filters out high-entropy data to minimize optimization cache, and MECTA [18],
which stops backpropagation caching. However, their analyses remain theoretical and impractical,
and memory usage has been shown to be similar to that of modulating TTA [13]. Even the most
efficient TTA method, EcoTTA [13], which achieves memory efficiency on GPUs by distilling the
pre-trained model via shallower models, still relies on updating normalization layers, which are not
supported in MCUs.

TTA under diverse batch sizes. As shown in Figure 1c, the success of most TTA methods relies
on large batch sizes, due to more reliable statistics provided for normalization adaptation. Several
methods target batch size 1 for more efficient adaptation, by using different normalization techniques
like group norm (GN) [8], layer norm (LN) [3], and adaptive norm (AdaptBN) [13]. However, all
these methods still exhibit poor TTA performance and require updating many normalization layers,
which is computationally expensive and impractical for MCUs.

TTA under changing distribution shifts. Existing TTA methods often overlook the dynamic nature
of distribution shifts and apply the same adaptation principle across all samples. However, real-world
data on MCUs, such as sensor readings, exhibit highly diverse distribution shifts over time [19].
To date, only a few studies have considered the presence of different levels of distribution shifts.
For example, NOTE [16] and DELTA [20] employ modified normalization layers, while SAR [3]
proposes sharpness-aware TTA. However, these methods still rely on normalization layers and thus
are not applicable when the batch size is one for MCU deployment.

Early exit. Early exit strategies have been explored to reduce computational costs in various
machine learning architectures, particularly for real-time and resource-constrained applications.
Notably, BranchyNet [21] introduced early exit mechanisms for deep neural networks, enabling
faster inference by adding exit points and allowing models to make predictions at intermediate layers
instead of traversing the full model for every input. Similarly, Shallow-Deep Networks [22] aim to
reduce inference costs by dynamically selecting the exit point based on input complexity. For these
reasons, early exits in the TTA setting can offer significant computational benefits. However, most
early exit methods have not been designed to address distribution shifts or batch size constraints
typical of MCUs.

3 Efficient TTA via Early-exit Ensembles and TinyTTA Engine

TinyTTA is designed for continuous adaptation to various types of distribution shifts in data during
inference on resource-constrained edge devices. This novel framework, as shown in Figure 2, aims

3

Online Single Sample
On-device TTA

Severity 1

(c) WS normalization
Block-wise Memory

Freezed Ensembled

Backward forward cat bird dog cat bird dogcat bird dog

Severity 3 Severity 5

TinyTTA
Batch NormCNN

Pretrained model
(e.g., MCUNet)

Exit (a)(b)(c)(d)WS(μ,𝜎) Linear Exit Exit

(a) Self-ensemble (d) TinyTTA
Engine

(b) Early-exits

MCU

MPUExit

Figure 2: TinyTTA framework overview: TinyTTA (a) begins by analyzing and partitioning a pre-
trained network into submodules based on memory usage similarity, named as self-ensemble network,
(b) introduces early-exits for sample inference through specific submodules based on predicted
confidence levels, (c) integrates WS normalization into each submodule to achieve batch-agnostic
normalization, and (d) ultimately compiles and deploys the model on MCUs and MPUs for on-device
TTA through the TinyTTA Engine.

to improve system memory efficiency during TTA, adaptability of the pre-trained model to diverse
distribution shifts, and deployment feasibility on edge devices. TinyTTA comprises four modules:
i) a self-ensemble network that partitions the network into submodules, each approximating the
capability of the full model; ii) early-exits, which allow samples to be inferred through specific
submodules based on predicted confidence levels, optimizing different submodules for memory and
computational efficiency while managing varying levels of distribution shifts; iii)WS normalization,
integrated into each submodule to achieve batch-agnostic normalization; and iv) TinyTTA Engine,
an MCU library for on-device TTA.

3.1 Self-ensemble network

For edge devices such as MCUs, it has been observed that sharing operational layers and weights,
for instance through TensorFlow Lite Micro (TFLM) [11], can significantly reduce on-chip memory
usage. Instead of utilizing a pre-trained network in its entirety, partitioning it into submodules can
offer substantial benefits in terms of memory usage. Consequently, we propose self-ensembling
pre-trained models by dividing layers into submodules, grouping similar subsequent layers, and
approximating each submodule with the full model’s capabilities. A critical decision in this process
is determining the number of partitions required and how to effectively divide the network into
submodules. Evidence suggests that i) adjacent layers in neural networks tend to exhibit high feature
similarities and ii) these layers often have comparable memory consumption [5]. This provides a
basis for grouping layers with similar memory consumption together as submodules.

We initially conducted an analysis of memory usage during TTA across the layers of a pre-trained
model, ResNet50. This analysis, as illustrated in Figure 3, compares memory usage for both
activations and weights between fine-tuning (top figure) and modulation (bottom figure) TTA, aiming
to identify layers with similar memory usage. We observed the following: i) memory usage is
primarily driven by activations, which store the outputs at each layer for computing gradients during
backpropagation, while the memory consumed by weights is negligible, therefore we focus on
activation memory for self-ensembling; ii) in both methods, activations share similar memory
consumption and are predominantly concentrated in the initial layers, which generally capture crucial
information from the input; iii) certain groups of adjacent layers, specifically layers 0-15, 16-28,
29-44, and 45-52, show similar sizes of activations. Based on this analysis, we group layers with
similar memory usage into submodules (i.e., layers 0-15 for submodule 1, 16-28 for submodule 2,
29-44 for submodule 3, and 45-52 for submodule 4) for subsequent early exits and only update the
heads at early exits, freezing the submodules to improve memory usage. Indeed, this process does
not require backpropagation to the submodules, thus eliminating the need for activation memory. It
is worth highlighting that this analysis shows similar patterns for different model architectures, as
discussed in Appendix D.

3.2 Early-exits

To further optimize memory usage and manage changing distribution shifts, we introduced early-exit
inference combined with self-ensembling submodules. For a given pre-trained model, we sequentially
pass inputs through cascaded submodules and infer a confidence level, calculated from the model’s

4

high activation memory low memory

high weight memory

low memoryhigh activation memory

(a) Fine-tuning per-layer memory usage

(b) Modulating per-layer memory usage

Figure 3: Memory usage of different layers during test-time adaptation. Note that the weight memory
for modulation (bottom Figure) is < 10K, which is negligible. However, both methods show significant
activation memory usage. All experiments were conducted using ResNet50 on the CIFAR-10 dataset
with batch size 1.

prediction, for the predictions at each stage. If the confidence level is high and exceeds a predefined
threshold, which is a hyper-parameter during TTA (discussed in Appendix E), a good prediction is
achieved, allowing the process to exit at that submodule without passing through the remaining ones.
Model updates only occur for the preceding submodules. Conversely, if the confidence level remains
low, indicating difficulty in prediction or a potential high distribution shift, the instance continues
to pass through the subsequent submodules for further inference until it exits from an appropriate
submodule with high confidence. This approach saves memory for easy samples that do not require
extensive processing, while effectively handling varying distribution shifts. Different samples are
processed differently, and updates are optimized according to the varying levels of distributional
shifts in the samples. Our work is the first to introduce early exits for on-device TTA in edge devices,
enhancing both inference efficiency and model accuracy with data distribution shifts.

Specifically, assume K submodules are derived, denoted by Θ = {θk}Kk=1. Each of the submodules is
further associated with exits/classifiers, denoted as Φ = {ϕk}Kk=1, using a linear layer. Given the ith

instance, the output for each submodule is first computed as:

pk
i =

exp (zk
i)

∑C
j=1 exp (zk

j)
(1)

where zk
i ∈ RC denotes the latent representation learned from the kth submodule, and pk

i represents
the predicted probability for C classes for the classifier of the kth submodule after the softmax layer.
Given the predicted probability pk

i , we can estimate the confidence level using the entropy as follows:

H(xi) = −
C

∑
j=1

pkj log p
k
j (2)

A low entropy indicates low uncertainty in the prediction, thus a high confidence level. If H(xi) is
smaller than the threshold γk for each submodule k, this facilitates an early exit of the instance and
also the adaptation of the submodules preceding this kth submodule. Otherwise, we further process
the instance with the subsequent submodules.

3.3 WS normalization

To entirely omit the usage of normalization layers and enable accurate and memory-efficient TTA on
MCUs, we introduce Weight Standardization (WS) as a replacement for traditional normalization
layers [3, 7, 8] for the first time in TTA. Particularly, we propose the inclusion of a WS layer preceding
the linear layer attached to each submodule. Therefore, the exits/classifiers of each submodule ϕk

consist of a WS layer and a linear layer for C class classification. Our method adapts only ϕk, i.e.,
the WS statistics and one linear layer during the testing phase, while keeping the other components
θk frozen. This avoids model collapse with small batch sizes and minimizes memory usage.

Unlike traditional normalization methods like Batch Normalization (BN) and Group Normalization
(GN), which primarily focus on recentering and rescaling activations, Weight Standardization (WS)

5

targets the smoothing effects on weights. This approach results in a more favorable loss landscape
and improved parameter updating. Additionally, WS guarantees batch-agnostic normalization, as it is
not impacted by the batch size. The WS operation is defined as:

W̃ = W −µw

σw + ϵ
(3)

Here, µw and σw represent the mean and standard deviation of the weights calculated over all
channels and dimensions, computed as:

µw =
1

N
∑
i,j

wi,j , σw =
¿
ÁÁÀ 1

N
∑
i,j

(wi,j −µw)2 (4)

and wi,j represents the element of the weight matrix for the ith row and jth column. This normaliza-
tion is applied directly to the early exit CNN layers ϕk. Importantly, WS introduces no additional
parameters within the CNN layers and facilitates TTA across different batch sizes. During inference,
WS is computed solely from the weights, eliminating the need to accumulate batch statistics on the
fly, thus achieving batch-agnostic adaptation. This allows it to be applicable to small batch sizes, thus
further ensuring memory and computational efficiency during TTA and making TinyTTA suitable
for deployment on MCUs. From an implementation viewpoint, for MCU deployment, we introduce
a new CNN layer incorporating the WS normalization in our TinyTTA Engine (see Section 3.5) to
avoid using batch normalization layers, which are not supported by most constrained hardware.

3.4 Training and Inference

To facilitate the learning of submodules θk and early-exit model parameters ϕk, we introduce the
concurrent training of all models on the training dataset. Given the source data, we pass them through
both the pre-trained model and the submodules combined with early exit branches and compute
the losses to optimize the models. The first loss, L1, aims to infer accurate predictions from the
submodules and early-exit modules, which can be formulated as the cross-entropy (CE) for all classes.
The second loss, L2, aims to achieve reliable self-ensembling by aligning the outputs from the
submodules to be the same as the pre-trained models. The process can be formulated as:

L1 =
C

∑
i=1

CE (pi, y) , L2 = ∥z̃k − zk∥1 (5)

where z̃k represents the features learned from the submodules and zk represents the one from the
pre-trained model. The final loss consists of these two losses:

min
θ
L = λL1 + (1 − λ)L2 (6)

where λ controls the trade-off between the two losses.

The training process is performed offline, without additional training costs on the device. Then, at
inference time during the TTA phase, TinyTTA operates without utilizing any source data, as in the
standard TTA setting [6]. The model initially calculates the entropy of the first submodule’s output
and compares it with a predefined entropy threshold. Based on this comparison, the exit determines
whether the feature outputs should proceed to the subsequent submodules of the self-ensemble model.
The process continues if the entropy is greater than the threshold; otherwise, it halts. It is worth
noticing that after training, only the submodules and early exits are deployed on the device. Once
deployed, only early exit branches are updated on-device, while the rest of the model remains frozen,
ensuring both high TTA accuracy and low memory usage.

3.5 TinyTTA Engine

To enable TTA on edge devices like MCUs, we propose TinyTTA Engine as illustrated in Figure 4.
The TinyTTA Engine pipeline encompasses several steps. Initially, once the model is loaded, its
forward graph is constructed. During compile-time, operations are optimized through fusion, and an
automatic differentiation (autodiff) process constructs the backward graph needed for updating.
Following autodiff, the backward graph is optimized via a fuse and quantize procedure, aiming to
mitigate resource limitations during execution.

6

forward graph

fuse op

fp32 fp32

fuse op

autodiff

backward graph

quantize
graph

fuse op

compile time

fp32 fp32

backward graph

freeze&
quantize

freeze&
quantize

freeze&
quantize Load

online sensor
reading

TTA

(a) TinyTTA processed model (b) autodiff (c) ensemble graph (d) on-device TTA

execution time

exit exit
Norm

CNN
Linear

Figure 4: The TinyTTA Engine operates in two phases: compile time and execution time. During
compile time, (a) given a reprocessed model, it (b) fuses backbone operations to enhance efficiency,
then enables backpropagation on TinyTTA exits. Subsequently, (c) it freezes and quantizes the
backbone before integration with TinyTTA exits. Finally, the model is loaded onto the MCU for (d)
on-device TTA during execution time.

The cornerstone of TinyTTA Engine lies in its ability to perform backpropagation on-device. We
build TinyTTA Engine upon the widely used MCU library TFLM by developing a floating-point-
based backpropagation algorithm. TinyTTA Engine specifically caters to the backward computation
needs of prevalent DNN operators such as ReLU, FullyConnected, Softmax, Maxpool, Avgpool,
Conv, and DepthwiseConv. To further optimize memory efficiency, we have developed a layer-wise
update strategy to reduce memory utilization alongside a dynamic memory allocation mechanism
leveraging heap memory. Specifically, the interpreter-based framework of TinyTTA Engine enables
memory reduction by dynamically choosing to save intermediate activations only if a layer needs
updates (refer to Appendices C.2 and C.3). The TinyTTA Engine code is publicly available at
https://github.com/h-jia/TTE.

4 Experimental Setup

Distribution shifted datasets. For comparison with baselines, our experiments were conducted using
four popular corrupted datasets, including domain shift datasets CIFAR10C [23] and CIFAR100C
[24], and two domain generalization datasets, namely OfficeHome [25] and PACS [26]. More details
about the datasets can be found in Appendix B.

Implementation details. To provide a comprehensive evaluation of TinyTTA, we conducted exper-
iments on both MPUs via a Raspberry Pi Zero 2W and MCUs using an STM32H747. Details of
the hardware and MCU implementation can be found in Appendix C. The evaluation of TinyTTA
on MPUs, which are equipped with relatively large memory, allows for a comparison with other
state-of-the-art (SOTA) methods, thereby offering an in-depth understanding of TinyTTA’s algorith-
mic performance. For the MPU experiments, we employed three SOTA mobile models, specifically
EfficientNet [27], MobileNetV2 [28], and RegNet [29]. In particular, we utilized MobileNetV2 with
a scale factor of 0.5 (MobileNetV2_x05), EfficientNet with a scaling factor of 1 (EfficientNet_b1),
and RegNet with a computational cost of 200 million floating-point operations (RegNet-200m). For
the MCU evaluation, we utilized the SOTA model MCUNet [5], which is the only model capable of
running within the 512 KB memory constraint of MCUs. More details are discussed in Appendix D.

Baselines. We compared TinyTTA with several SOTA methods, including: i) TENT [6], which
optimizes the affine parameters of batch normalization layers through entropy minimization; ii)
CoTTA [13], which updates all model parameters using a consistency loss between student and
teacher models and stochastically restores the pre-trained model; iii) a memory efficient baseline
EATA [7], which employs a sample selection criterion for identifying non-redundant samples and
updates the model by minimizing entropy loss; iv) the most memory-efficient method EcoTTA [13],
which freezes the original network parameters, uses AdaptBN [30] normalization layers and updates
attached meta networks for memory-efficient test-time adaptation.

Evaluation metrics. The same evaluation metrics are utilized across all datasets, encompassing
accuracy, memory usage, latency, and energy consumption. Memory usage is quantified using
TinyTL [31] for the Raspberry Pi Zero 2W and with TFLite Tools1 for MCUs, with a focus on the
tensor-arena size. As both the MPU and MCU necessitate loading libraries for TTA, latency is
recorded per batch. This measurement is taken after the model stabilizes following 10 warm-up
iterations of test samples in TTA. Subsequently, the latency is averaged over 100 batches.

1https://github.com/eliberis/tflite-tools

7

https://github.com/h-jia/TTE

CIFAR10C CIFAR100C OfficeHome PACS

50

60

70

A
cc

ur
ac

y
60.2

47.3

53.1

56.1

64.3

51.6

58.3

63.6
62.4

49.1

55.2

58.2

67.5

53.3

61.7

65.7

60.4

48.4

54.5

57.5

65.3

52.6

59.6

62.6

59.1

45.8

51.6
53.6

63.8

50.5

54.4

57.3

MCUNet
MCUNet+TinyTTA

EfficientNet
EfficientNet+TinyTTA

MobileNet
MobileNet+TinyTTA

RegNet
RegNet+TinyTTA

Figure 5: Comparison of model performance across four datasets, demonstrating the accuracy
improvements when models are adapted using TinyTTA. Across all datasets, TinyTTA consistently
boosts accuracy with respect to not adapting the model.

5 Results

This section addresses the following questions: (1) How does TinyTTA improve performance
compared to the source model without adaptation? (2) How does TinyTTA perform compared to
baseline methods on MPUs? (3) How efficient is TinyTTA on typical MCUs? (4) What effect do
self-ensemble, early-exits, and WS have?

5.1 TinyTTA vs. source models on MPUs

We first compare the performance between TinyTTA and the source model without adaptation on
MPUs, as shown in Figure 5. The performance was assessed using four distinct corrupted datasets and
four different model architectures. Notably, TTA is evaluated with a batch size of one, a challenging
scenario for adaptation. Most existing TTA methods generally fail due to unstable statistics associated
with a single batch for normalization layers. For each combination of model and dataset, TinyTTA
demonstrates an average improvement of 4.3%. The most significant enhancement is observed with
the EfficientNet model on the CIFAR100C dataset, where accuracy increases from 49.1% to 53.3%.
Even under the constraint of adapting to a single batch of data during test time, TinyTTA consistently
outperforms models without adaptation, highlighting its potential in real-world scenarios where
limited data is available for adaptation.

5.2 TinyTTA vs. SOTA baselines on MPUs

We further compared TinyTTA with other SOTA baselines across four different datasets and four
model architectures on MPUs. The results are shown in Figures 6a to 6d.

For MCUNet, as shown in Figure 6a, TinyTTA consistently outperforms other TTA methods across
all datasets. Specifically, our method achieves an accuracy of 64.3%, 51.6%, 58.1%, and 63.6%
on CIFAR10C, CIFAR100C, OfficeHome, and PACS datasets, respectively. In comparison, the
second-best performing method, ECoTTA, only attains an accuracy of 13.1%, 5.5%, 6.2%, and 6.3%
on the same datasets, significantly deteriorating the performance compared to the source model
without adaptation. This is due to the small batch size that causes unstable statistics for adaptation.
Notably, on CIFAR100C, OfficeHome, and PACS datasets, TinyTTA achieves substantial accuracy
improvements of 46.6%, 52.1%, and 57.6% over the second-best method, respectively. In terms of
memory usage, TinyTTA is exceptionally efficient, requiring 1.2× less memory than ECoTTA, 2.2×
less than EATA, 2.3× less than TENT (Modulating), 4.2× less than TENT (Fine-tuning), and 6.0×
less than CoTTA on average across all datasets on MPUs.

For EfficientNet, we observe a similar performance trend, as depicted in Figure 6b. In terms
of accuracy, TinyTTA consistently outperforms other TTA methods across all datasets. On the
CIFAR10C dataset, TinyTTA achieves an accuracy of 67.5%, which is 48.5% higher than the second-
best method, CoTTA. Similarly, on CIFAR100C, OfficeHome, and PACS datasets, TinyTTA also
shows 47.3%, 53.7%, and 56.7% relative improvements over the second-best method, respectively.
Regarding memory usage, our method exhibits the lowest memory footprint among all the compared
methods. On the CIFAR10C dataset, TinyTTA requires 5.65 MB of memory, which is 1.2× lower
than ECoTTA (7.06 MB), 2.2× lower than EATA (12.59 MB), 2.3× lower than TENT (Modulating)

8

CIFAR10C

CIFAR100C

OfficeHome
PACS

0

20

40

60

80

A
cc

ur
ac

y

CIFAR10C

CIFAR100C

OfficeHome
PACS

 0

 2

 4

M
em

or
y

(M
B

)

TinyTTA EcoTTA EATA TENT (Modulating) TENT (Finetuning) CoTTA

(a) MCUNet

CIFAR10C

CIFAR100C

OfficeHome
PACS

0

20

40

60

80

A
cc

ur
ac

y

CIFAR10C

CIFAR100C

OfficeHome
PACS

0

50

100

M
em

or
y

(M
B

)

TinyTTA EcoTTA EATA TENT (Modulating) TENT (Finetuning) CoTTA

(b) EfficientNet

CIFAR10C

CIFAR100C

OfficeHome
PACS

0

20

40

60

80

A
cc

ur
ac

y

CIFAR10C

CIFAR100C

OfficeHome
PACS

0

50

100

M
em

or
y

(M
B

)

TinyTTA EcoTTA EATA TENT (Modulating) TENT (Finetuning) CoTTA

(c) MobileNet

CIFAR10C
CIFAR100C

OfficeHome PACS
0

20

40

60

80

A
cc

ur
ac

y

CIFAR10C
CIFAR100C

OfficeHome PACS
0

20

40

M
em

or
y

(M
B

)

TinyTTA EcoTTA EATA TENT (Modulating) TENT (Finetuning) CoTTA

(d) RegNet

Figure 6: TTA methods performance comparison of four edge models over four datasets. (a) TinyTTA
(ours) is the only method capable of performing TTA under MCU constraints while maintaining high
accuracy. (b)-(d) TinyTTA (ours) achieves the best performance using minimum memory. Results
are tested on severity level 5.

(13.02 MB), 4.2× lower than TENT (Fine-tuning) (24.0 MB), and 6.0× lower than CoTTA (33.88
MB). The memory usage trend remains consistent across other datasets.

For MobileNet and RegNet in Figures 6c and 6d, the results also show a similar trend as MCUNet
and EfficientNet in terms of both accuracy and memory usage.

We also compared the latency and energy consumption of the different TTA methods on the
Raspberry Pi Zero 2W MPU using the CIFAR10C dataset, which consists of 50,000 samples.

Table 1: Latency (in seconds) and energy
consumption (in Joule) per image for vari-
ous methods on CIFAR10C on Raspberry Pi
Zero 2W MPU.

Method Latency (sec) Energy (J)
CoTTA 6.25 12.50
TENT (Finetune) 0.51 1.02
TENT (Modulating) 0.51 1.02
EATA 0.25 0.50
ECoTTA 0.37 0.75
TinyTTA (Ours) 0.22 0.44

The results in Table 1 highlight the efficiency
of TinyTTA in terms of both latency and energy
consumption. Specifically, TinyTTA achieves
an inference time of 0.22 seconds per sam-
ple (11,000 seconds in total) with a total en-
ergy consumption of 6.11 Wh. Compared to
EATA, for example, TinyTTA reduces both la-
tency and energy consumption by 12%. On the
other hand, CoTTA shows the highest latency
(312,500 seconds in total) and energy consump-
tion (173.61 Wh), while TENT (both fine-tuning
and modulating), though more efficient than
CoTTA, is still outperformed by TinyTTA. Over-
all, TinyTTA offers the best balance between accuracy, memory, speed, and energy efficiency, making
it ideal for edge AI applications.

5.3 TinyTTA on MCUs

We now show the performance of TinyTTA on extremely resource-constrained edge devices, specifi-
cally MCUs with only 512 KB of on-chip memory—significantly smaller than those of MPUs like
the Raspberry Pi Zero 2W. Notably, TinyTTA is the only method capable of performing TTA under
the STM32H747 MCU’s 512 KB memory constraint while achieving superior accuracy compared to
other methods. This makes TinyTTA a promising solution for resource-constrained devices requiring
efficient and accurate TTA. We examine two scenarios: with and without TinyTTA (“Inference Only”)
to analyze effectiveness and system overheads. The results are shown in Table 2.

In addition to the superior performance over “Inference Only”, as shown in Section 5.2, TinyTTA
reduces overall latency (50.7 ms vs. 55.8 ms) and energy consumption (11.5 mJ vs. 12.7 mJ) per
sample thanks to the early exit mechanism, despite requiring on-device model updates. Regarding
memory usage, TinyTTA incurs small overheads of 40.2 KB for SRAM and 85.1 KB for Flash.

9

Table 2: MCU deployment of the baseline and TinyTTA on
STM32H747 using MCUNet and CIFAR10C.

System Accuracy SRAM Flash Latency Energy
Inference Only 60.2% 82.8KB 290KB 55.8ms 12.7mJ
TinyTTA (update) 64.3% 123KB 375KB 50.7ms 11.5mJ

Specifically, the additional SRAM is
needed for updated parameters after
adaptation, while the early exits re-
quire additional heads, taking up stor-
age on Flash.

Notably, our TinyTTA engine enables
fast (low latency) and efficient (low energy) on-device adaptation with only a few tens of KBs of extra
memory on extremely resource-limited IoT devices.

5.4 Ablation Study

★Self-ensembles +
Early-Exits + WS

Figure 7: Ablation study. ☀ represents
TinyTTA using all components. ∎ represents
without WS. ▲ represents without early-exits
and WS, and ⧫ means without all compo-
nents.

Figure 7 illustrates the trade-offs between accuracy
and memory usage (in MB) across different configura-
tions of our method for four datasets using MCUNet.
The configuration represented by ☀ (TinyTTA us-
ing all components: self-ensemble, early-exits, and
WS) achieves the best balance, with the highest ac-
curacy and optimal memory usage. In contrast, ∎
(TinyTTA without WS) shows a drop in accuracy by
approximately 12-15% and no change in memory us-
age. The ▲ (TinyTTA without early exits and WS)
configuration reduces accuracy by about 44.5-54.5%
and increases memory usage by 5×, highlighting the
critical role of early exits. Finally, ⧫ (without all
components) exhibits the lowest accuracy, decreasing
by around 40.3-50.3%, and the highest memory foot-
print increased by 5-6×, underscoring the necessity
of integrating all components. The ablation study
clearly demonstrates that our method, when leveraging all components, achieves the optimal trade-off
for practical applications.

6 Conclusion

This paper presented TinyTTA, which, for the first time, enables TTA on resource-limited edge
devices such as MCUs. By introducing a self-ensemble framework, an early-exit policy, and weight
standardization, our method overcomes the limitations of traditional TTA methods, enabling efficient
yet competitive on-device TTA on edge devices. We also offer a new library, TinyTTA Engine, to
unlock the development of TTA for various applications on MCUs.

Limitations and Future Work

TinyTTA has only been tested with a batch size of one in the setting to be deployed on a single type
of MCU with image data. Additionally, TinyTTA requires retraining the model via self-ensemble.
However, the underlying TinyTTA Engine offers a robust foundation for extending its capabilities.
We anticipate that with further development, our method and the TinyTTA Engine library could be
adapted for a wider array of applications, encompassing various types of MCUs and diverse data
modalities beyond just images. Future research will involve investigating the potential of TinyTTA
to process different types of data, such as video and inertial measurement unit (IMU) data, thereby
broadening its usability across different real-world applications.

Broader Impacts

Deploying TTA on microcontrollers is particularly useful for applications that need quick decision-
making and operate in resource-limited, changing environments. Unlike traditional model inference,
where the model’s weights stay the same, TTA requires the model to update its weights based on shifts
in input data distribution. This makes it challenging to maintain accuracy while being deployable on
MCUs. Our TinyTTA framework addresses this issue, enabling TTA on MCUs for the first time.

10

7 Acknowledgment

This work is supported by ERC through Project 833296 (EAR), and Nokia Bell Labs through a
donation. We also acknowledge financial support from the PNRR MUR project PE0000013-FAIR
(Italy) - CUP H23C22000860006.

References
[1] Muyang Lin, Ziyang Zhang, Xiaoxiang Gao, Yizhou Bian, Ray S Wu, Geonho Park, Zhiyuan Lou, Zhuorui

Zhang, Xiangchen Xu, Xiangjun Chen, et al. A fully integrated wearable ultrasound system to monitor
deep tissues in moving subjects. Nature Biotechnology, 42(3):448–457, 2024.

[2] Artúr István Károly, Péter Galambos, József Kuti, and Imre J Rudas. Deep learning in robotics: Survey on
model structures and training strategies. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
51(1):266–279, 2020.

[3] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan.
Towards stable test-time adaptation in dynamic wild world. In The Eleventh International Conference on
Learning Representations, 2023.

[4] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness
benchmark. In Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks, 2021.

[5] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device training
under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–22954, 2022.

[6] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In 9th International Conference on Learning Representations,
2021.

[7] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.
Efficient test-time model adaptation without forgetting. In International conference on machine learning,
pages 16888–16905. PMLR, 2022.

[8] Skyler Seto, Barry-John Theobald, Federico Danieli, Navdeep Jaitly, and Dan Busbridge. Realm: Robust
entropy adaptive loss minimization for improved single-sample test-time adaptation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2062–2071, 2024.

[9] Ji Lin, Wei-Ming Chen, Yujun Lin, john cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep learning
on iot devices. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 11711–11722. Curran Associates, Inc., 2020.

[10] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-
Arithmetic-Only Inference. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[11] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian
Nappier, Meghna Natraj, Tiezhen Wang, et al. Tensorflow lite micro: Embedded machine learning for
tinyml systems. Proceedings of Machine Learning and Systems, 3:800–811, 2021.

[12] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with batch-channel
normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

[13] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual test-time
adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11920–11929, 2023.

[14] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on machine
learning, pages 9229–9248. PMLR, 2020.

[15] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. TTN: A domain-shift aware batch normal-
ization in test-time adaptation. In The Eleventh International Conference on Learning Representations,
2023.

11

[16] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note: Robust
continual test-time adaptation against temporal correlation. Advances in Neural Information Processing
Systems, 35:27253–27266, 2022.

[17] Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust test-time
adaptation on noisy data streams. Advances in Neural Information Processing Systems, 36, 2024.

[18] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic continual
test-time model adaptation. In The Eleventh International Conference on Learning Representations, 2022.

[19] Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei W Koh, and Chelsea Finn. Wild-time: A
benchmark of in-the-wild distribution shift over time. Advances in Neural Information Processing Systems,
35:10309–10324, 2022.

[20] Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: Degradation-free fully test-time adaptation. In The
Eleventh International Conference on Learning Representations, 2022.

[21] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early exiting
from deep neural networks. In 23rd International Conference on Pattern Recognition, ICPR 2016, pages
2464–2469. IEEE, 2016.

[22] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, volume 97 of Proceedings of
Machine Learning Research, pages 3301–3310. PMLR, 2019.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[24] Collin Burns and Jacob Steinhardt. Limitations of post-hoc feature alignment for robustness. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2525–2533, 2021.

[25] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5018–5027, 2017.

[26] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pages 5542–5550,
2017.

[27] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 6105–6114. PMLR, 2019.

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[29] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing network
design spaces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 10428–10436, 2020.

[30] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. Advances in neural
information processing systems, 33:11539–11551, 2020.

[31] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for efficient
on-device learning. Advances in Neural Information Processing Systems, 33:11285–11297, 2020.

[32] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay
Janapa Reddi, Matthew Mattina, and Paul Whatmough. Micronets: Neural network architectures for
deploying tinyml applications on commodity microcontrollers. Proceedings of machine learning and
systems, 3:517–532, 2021.

[33] Viet Anh Trinh, Hassan Salami Kavaki, and Michael I. Mandel. Importantaug: A data augmentation agent
for speech. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022,
Virtual and Singapore, 23-27 May 2022, pages 8592–8596. IEEE, 2022.

12

0 10000 20000 30000 40000 50000
Online Samples

0

200

400

600

800

1000

Pr
ed

ic
te

d
C

la
ss

es

Modulating:
collapse at level 5

1000

800

600

400

200

0 20000 4000010000 30000

Pr
ed

ic
te

d
cl

as
se

s

Online samples

0

(a) Modulating at level 5

0 10000 20000 30000 40000 50000
Online Samples

0

200

400

600

800

1000

Pr
ed

ic
te

d
C

la
ss

es

Modulating:
no collapse level 3

1000

800

600

400

200

0 20000 4000010000 30000

Pr
ed

ic
te

d
cl

as
se

s

Online samples

0

(b) Modulating at level 3

0 10000 20000 30000 40000 50000
Online Samples

0

200

400

600

800

1000

Pr
ed

ic
te

d
C

la
ss

es

Finetune:
collapse at level 3

0

1000

800

600

400

200

0 20000 4000010000 30000

Pr
ed

ic
te

d
cl

as
se

s

Online samples

0

(c) Fine-tuning at level 3

0 10000 20000 30000 40000 50000
Online Samples

0

200

400

600

800

1000

Pr
ed

ic
te

d
C

la
ss

es

Finetune:
no collapse level 5

1000

800

600

400

200

0 20000 4000010000 30000

Pr
ed

ic
te

d
cl

as
se

s

Online samples

(d) Fine-tuning at level 5

Figure 8: Comparison between modulating and fine-tuning using online test-time entropy minimiza-
tion. (a-b) For larger domain shifts (e.g., severity level 5), the modulating model is more prone to
collapse and predict fewer classes. (c-d) For smaller domain shifts (e.g., severity level 3), modulating
is more robust than fine-tuning. All experiments are conducted on ImageNet-C for fog noise and
ResNet50. Refer to Section B for more details about severity levels.

A Appendix/supplemental material

Entropy Minimization. In test-time adaptation, the objective is to fine-tune the model parameters
during the testing phase to better align with the test data distribution without the labels. One technique
used for this purpose is entropy minimization [6], which aims to make the model’s predictions more
confident on the test data. For a classification model, the entropy of the model’s prediction for a data
point is calculated using the formula:

H(p̂) = −
C

∑
c=1

p̂c log(p̂c) (7)

where H(p̂) represents entropy, C is the number of classes, and p̂c is the predicted probability of the
data point belonging to class c.

Modulating and Finetune TTA. Our empirical analyses in Figures 8d and 8c demonstrate the
performance of fine-tuning TTA for samples with severity levels 3 and 5, respectively. In contrast,
Figures 8a and 8b illustrate the outcomes of modulation-based methods for the same severity levels.
For fine-tuning TTA, while it can adapt to severe data corruption (e.g., severity level 5) by tuning
the entire model, it struggles with milder domain shifts (e.g., severity level 3), leading to a model
collapse where it predicts only a limited range of classes. This suggests that fine-tuning is more
effective for significant domain shifts but becomes prone to collapse under minor shifts, resulting
in limited class predictions. On the other hand, modulation-based TTA methods exhibit a different
pattern. With milder severity (e.g., level 3) as shown in Figure 8b, the modulation-based method
accurately predicts samples across various classes, indicated by the dispersed points representing the
1000 classes. However, under severe data corruption (e.g., level 5), modulation-based methods tend
to predict only a limited number of classes with sequential test samples, as illustrated in Figure 8a by
the black line showing overlapping predicted classes for a single class. This suggests a paucity in
existing methods, indicating that different mechanisms might be required to address varying levels of
distribution shifts within a universal framework, which TinyTTA achieves.

B Datasets

CIFAR10C and CIFAR100C feature 15 types of corruption, categorized into four main groups:
noise, blur, weather, and digital, each with five severity levels. The OfficeHome dataset com-
prises four domains d ∈ {art, clipart, product, real}, containing 15,588 examples with dimen-
sions (3, 224, 224) and 65 classes. Similarly, the PACS dataset comprises four domains d ∈
{art, cartoons, photos, sketches}, containing 9,991 examples with dimensions (3, 224, 224) and 7
classes.

13

C Implementation

We now introduce the hardware and software implementation of TinyTTA. Following this, we will
discuss one of the core tasks of TinyTTA, which is the MCU implementation.

C.1 Hardware

The self-ensemble training phase of our framework was conducted on a Linux server equipped with
an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz and an NVIDIA Quadro RTX 6000 GPU, where
we pre-trained the shared backbone and multiple heads. For the deployment phase, the system
components were implemented on two types of edge devices. The first MPU was a Raspberry Pi Zero
2W featuring an ARM Cortex-A53 processor with distinct memory specifications. The second MCU
we used is the STM32H747XI, which possesses a dual-core (ARM Cortex M4 and M7) architecture.
We only use the ARM Cortex M7 core, reflecting a typical single-core MCU design. This choice
constrained the SRAM and embedded Flash capacities to 512 KB and 1 MB for STM32H747XI,
respectively. These two platforms are representative of a broad spectrum of devices commonly used
in edge computing. Specifically, as the MCU is based on the ARM Cortex-M architecture, TinyTTA
can be seamlessly deployed across a range of similar ARM Cortex-M-based MCUs, demonstrating
the versatility of our approach in resource-constrained environments.

C.2 Software

The pre-training stage of TinyTTA, executed on a standard Linux server, utilized PyTorch version
1.10.2. For the meta-learner module, Python, NumPy, and TensorFlow Lite Micro (TFLM) were
employed due to their compatibility and efficient integration. TFLM was specifically selected for its
effectiveness and flexibility in deployment across diverse hardware platforms and pre-trained models
without re-generating the code that embeds architectures, weights, and execution graphs and logic.
The efficacy of TinyTTA was evaluated by analyzing the required system resources to enable TTA
regarding memory usage of SRAM and Flash, end-to-end latency, and energy consumption. The
process of transitioning a PyTorch model to these MCUs with TensorFlow Lite involved a multi-stage
conversion: initially to ONNX format, then to TensorFlow, and finally to TensorFlow Lite, utilizing
appropriate converters at each step. The execution of the TensorFlow Lite model on the MCUs was
facilitated by TFLM and Mbed OS.

TensorFlow Lite for Microcontrollers (TFLM) [11] offers a platform tailored for executing machine
learning models on tiny devices, circumventing the necessity for conventional operating systems
or standard C/C++ libraries. TFLM’s interpreter-based methodology has its advantages, providing
adaptability to a wide set of edge devices and pre-trained models with minimal runtime overhead for
deep neural network computations. However, TFLM’s principal shortcoming lies in its incapacity for
on-device training, confining models to a static state post-deployment for solely inference purposes.
Recognizing the advantages of TFLM’s minimal runtime overhead and high level of flexibility, we
developed our TinyTTA Engine framework by augmenting a new functionality, on-device adaptation
during runtime, to TFLM.

C.3 MCU Implementation

We deployed TinyTTA on the STM32H747XI. The deployment process involves loading the necessary
libraries from Mbed OS2 and acquiring the GCC ARM toolchain and the mbed-cli dev tool. For
model management, the TFLM3 framework is set up in the project environment, alongside mbed-os
components. TFLite Tools4 are employed to approximate rough SRAM requirements. The model is
then converted into a C array format suitable for MCU deployment.

In addition, we enabled on-device adaptation of TinyTTA Engine by implementing a backward pass
computation and extending this functionality on top of the floating-point-based operators (mentioned
in Section 3.5) that previously supported only forward-pass computation in the TFLM framework. In
detail, we implemented the gradient calculation regarding weights, biases, and activations in C for

2https://github.com/ARMmbed/mbed-os/tree/master
3https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro
4https://github.com/eliberis/tflite-tools

14

each operator. Furthermore, we developed a layer-wise update logic that allows TinyTTA Engine
to select which layer to update during on-device TTA to further reduce the memory overhead on
SRAM and the required computational costs, as gradient calculation for weights can be omitted for
non-updated layers.

Lastly, the increased binary size derived from our backpropagation implementation in TinyTTA is
merely 8.6 KB as it is implemented on top of the existing operator codebase and third-party libraries.
This shows that TinyTTA enables on-device TTA on MCUs for the first time, with minimal storage
overhead.

C.4 TinyTTA vs. TinyEngine

As our TinyTTA Engine enables on-device training for TTA, in this section we discuss the state-of-
the-art on-device training framework for MCUs, known as TinyEngine [5]. Specifically, TinyEngine
focuses on on-device training (with labeled data), employing automatic differentiation operations at
compile-time and utilizing code generation to minimize runtime overhead. The framework statically
pre-determines the layers and channels to be updated before deployment, allowing these updates to
be executed at runtime. While this approach is efficient, it imposes constraints on post-deployment
adaptability, as any model update requires recompilation for the target device. Furthermore, due to
the code generation process, the model’s architecture, weights, and layer dimensions are hard-coded
into the binary file, which necessitates replacing the entire executable to modify the model.

In contrast, our TinyTTA Engine focuses on test-time adaptation with unlabeled data. It enables
dynamic adaptation during inference by allowing early exits at submodules, specifically for high-
entropy samples, thereby enabling reliable TTA. To adapt TinyEngine for TTA, the only practical
solution is to use TENT [6], which fine-tunes the model via entropy minimization. In our evaluation,
we compared TinyEngine using TENT on a Raspberry Pi Zero 2W (with batch size 1) to our TinyTTA,
measuring performance in terms of accuracy. The experimental setup is the same as described in
Appendices B and C, and the results are summarized in Figure 9.

CIFAR10C
CIFAR100C

OfficeHome PACS
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.13
0.06 0.07 0.06

0.64

0.52
0.58

0.64

TinyEngine TinyTTA

(a) MCUNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.19
0.11 0.09 0.07

0.68

0.53
0.62

0.66

TinyEngine TinyTTA

(b) EfficientNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.18

0.05 0.05 0.06

0.65

0.53
0.60 0.63

TinyEngine TinyTTA

(c) MobileNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

0.15 0.12
0.07 0.08

0.64

0.51 0.54 0.57

TinyEngine TinyTTA

(d) RegNet

Figure 9: Comparison of accuracy between TinyEngine (using TENT) and TinyTTA (ours) on
different datasets and model architectures.

The results demonstrate that TinyTTA, powered by the TinyTTA Engine, significantly outperforms
TinyEngine across all datasets and model architectures due to its ability to dynamically exit high-
entropy samples without the need for recompilation, making it a more practical solution for real-world
deployment, where data distributions may evolve over time.

D Model size

Compared with ResNet50, on which the majority of TTA works focused, models targeting mobile
devices are much smaller in terms of model parameters. Specifically, MobileNetV2_×055, Efficient-
Net_b16, and RegNet-200m 7 have parameters totaling 23.71 MB, 24 MB, and 8.85 MB, respectively.
In comparison, ResNet50 is approximately 40 times larger than MCUNet in terms of the number of
parameters, which only has 2.6 MB. The MCUNet model, optimized for 256KB SRAM and 1MB
Flash, was pre-trained on ImageNet and fine-tuned on CIFAR-10 and CIFAR-100 datasets for 50

5https://github.com/chenyaofo/pytorch-cifar-models
6https://huggingface.co/google/efficientnet-b1
7https://github.com/huggingface/pytorch-image-models

15

Figure 10: Memory usage of different layers for MobileNetV2 and EfficientNet.

epochs, following the methodology outlined in [31]. To further enhance the model’s adaptability, we
fine-tuned MCUNet for an additional 15 layers, enabling one-batch online adaptation.

As shown in Figure 10, similar to ResNet50 (cf. Figure 3), edge models such as MobileNetV2 and
EfficientNet exhibit similar layerwise memory usage patterns, where adjacent layers show similar
memory usage. For example, in MobileNetV2, we can group layers with similar memory usage into
submodules (i.e., layers 0-11 for submodule 1, 12-20 for submodule 2, 21-40 for submodule 3, and
41-52 for submodule 4) for subsequent early exits. Similarly, for EfficientNet, we can group layers
0-26, 27-42, 43-81, and 82-115 for each submodule. Other per-layer model memory profiling can be
accessed via related works, such as MCUNetV3 [5], where layers are grouped as 0-11, 12-18, 19-32,
and 33-42. In RegNet, the layers are grouped as 0-6, 7-10, 11-23, and 24-42.

Regarding the computational overhead introduced by early-exit branches, we analyzed the increase in
model size and the number of parameters for the early exits of three different models across various
datasets. Note that the last exit layer retains the same memory and parameters as the original model.
Table 3 summarizes these results.

Table 3: Memory overhead and number of parameters for early exits across models and datasets.

Model Dataset
1st Exit 2nd Exit 3rd Exit

Mem (MB) Params (KB) Mem (MB) Params (KB) Mem (MB) Params (KB)
CIFAR10C 0.01 2.70 0.03 8.46 0.07 17.29

MobileNet CIFAR100C 0.04 11.43 0.10 25.83 0.17 43.30
OfficeHome 0.03 8.03 0.07 19.07 0.13 33.19

PACS 0.01 2.41 0.03 7.88 0.06 16.42

CIFAR10C 0.02 5.19 0.17 44.17 0.52 137.10
EfficientNet CIFAR100C 0.07 18.24 0.33 87.46 0.75 197.67

OfficeHome 0.05 13.17 0.27 70.62 0.66 174.11
PACS 0.02 4.76 0.16 42.73 0.52 135.08

CIFAR10C 0.10 25.09 0.53 140.22 0.53 140.22
RegNet CIFAR100C 0.15 38.86 0.66 173.43 0.66 173.43

OfficeHome 0.13 33.51 0.61 160.51 0.61 160.51
PACS 0.09 24.63 0.53 139.11 0.53 139.11

Results show that the addition of early-exit branches results in relatively low memory overhead and
parameter increases for all models. Specifically, i) for MobileNet, the overhead ranges from 0.01
MB to 0.17 MB across different datasets, which is negligible compared to typical memory sizes (e.g.,
512 MB or larger memory configurations); ii) EfficientNet exhibits a slightly higher memory and
parameter increase due to its more complex architecture, but still within acceptable limits for most
resource-constrained devices, ranging from 0.02 MB to 0.75 MB depending on the dataset and exit

16

point; iii) In comparison, RegNet has a memory overhead ranging from 0.10 MB to 0.66 MB, which
still remains low relative to the overall system memory available on most edge devices.

E Comparison of WS and GN

L1 L2 L3 L4 L5
0

25

50

75

100

A
cc

ur
ac

y

TinyTTA+WS
TinyTTA+GN

Figure 11: Ablation study at all levels
(L) of distribution shift. Tests are per-
formed on CIFAR10C.

Figure 11 presents the performance comparison of
TinyTTA using different normalization layers, specifi-
cally Weight Standardization (WS) and Group Normal-
ization (GN) [3, 8], across varying levels of distribution
shifts in the CIFAR-10C dataset (L1 to L5). The results
are averaged over three separate runs with different ran-
dom seeds. TinyTTA with WS consistently outperforms
TinyTTA with GN on all datasets. For instance, on dataset
L1, TinyTTA+WS achieves an accuracy of 83.2 compared
to 73.4 for TinyTTA+GN. This performance gap persists
across the other datasets, with TinyTTA+WS maintaining
higher accuracy levels (78.3, 73.6, 68.7, and 64.3) com-
pared to TinyTTA+GN (67.2, 63.1, 57.9, and 53.2) on L2,
L3, L4, and L5, respectively. The observed differences suggest that WS is more effective than GN in
maintaining model accuracy under distribution shifts, likely due to its ability to better standardize the
weights during the adaptation process, thus enhancing the robustness and generalization capability of
TinyTTA on resource-constrained MCUs.

F Impact of Changing Distribution Shifts

When examining the results across different datasets for TinyTTA, as shown in Figure 11, it is
evident that the severity of distribution shifts significantly impacts the model’s performance. As
the datasets progress from L1 to L5, there is a noticeable decline in accuracy, indicating increasing
levels of difficulty in adapting to the distribution shifts. Specifically, TinyTTA achieves an accuracy
of 83.2 on L1, but this performance drops to 78.3 on L2, 73.6 on L3, 68.7 on L4, and finally 64.3
on L5. This downward trend suggests that as the severity of the shifts increases, the model finds it
progressively harder to maintain high accuracy. Despite this challenge, TinyTTA demonstrates a
relatively strong ability to adapt, maintaining a higher level of accuracy compared to methods using
other normalization strategies. This highlights the robustness of WS in handling varying degrees of
distribution shifts, making it a suitable choice for deployment in resource-constrained microcontroller
environments where consistent performance is crucial.

G Choice of Entropy Thresholds

The entropy thresholds represent the level of distribution shift in data during adaptation made
by each model. A higher entropy threshold indicates a lower level of confidence in the model’s
predictions, while a lower entropy threshold suggests more confident predictions. The grid search
results indicate the optimal entropy thresholds for four models—MCUNet, EfficientNet, MobileNet,
and RegNet—across four datasets: CIFAR10C, CIFAR100C, OfficeHome, and PACS. For the
CIFAR10C dataset, which comprises 10 classes, the entropy thresholds are 1.12, 1.34, 1.53, and
1.26 for MCUNet, EfficientNet, MobileNet, and RegNet, respectively. For CIFAR100C, containing
100 classes, the thresholds are 3.26, 2.58, 3.1, and 2.31. For the OfficeHome dataset, which has 65
classes, the thresholds are 2.53, 2.16, 2.28, and 2.44. For PACS, the thresholds are 1.58, 1.43, 1.14,
and 1.33. These values suggest that the entropy thresholds vary significantly depending on the model
and the dataset, reflecting the need for model-specific and dataset-specific tuning to achieve optimal
performance.

H Experimental Results on Distribution-Shifted Audio Data

In this section, we present the results of our experimental evaluation on distribution-shifted audio
data, aiming to demonstrate the adaptive capabilities of TinyTTA with data modalities beyond

17

images. Specifically, we utilized a pre-trained MicroNets model [32], which was originally trained
on the Speech Commands V2 dataset, achieving an accuracy of 86%. This dataset consists of
35 keywords, including "yes," "no," and "forward," among others. To evaluate the robustness of
the model in real-world scenarios, we tested it on the Musan Keywords Spotting test dataset [33],
which includes the same 35 speech commands but under various real-world noise conditions such
as dial tones, fax machine noises, car idling, thunder, wind, footsteps, rain, and animal noises.

CoT
TA

TENT (F
ine

tu
nin

g)

TENT (M
od

ula
tin

g)
EATA

ECoT
TA

Tiny
TTA (o

ur
s)

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

No Adaptation

0.21

0.05
0.11

0.07

0.23

0.61

Figure 12: Performance compari-
son of MicroNets model on the Mu-
san Keywords Spotting test dataset
using different TTA methods.

The hyperparameters setting for TinyTTA is as follows: a learn-
ing rate of 1 × 10−5, a batch size of 1, the SGD optimizer with
a momentum of 0.9, and a self-ensemble of early exit layers
at depths [3, 5, 7]. Figure 12 shows the comparative results of
different TTA methods. Specifically, the pre-trained model ex-
perienced a significant performance drop, losing approximately
33% accuracy when applied to the distribution-shifted Musan
dataset without any adaptation. This highlights the challenge
of adapting models to real-world noisy environments. Instead,
TinyTTA achieved an 8% improvement in accuracy compared
to no adaptation, demonstrating strong resilience to various
types of environmental noise. Finally, TinyTTA outperformed
all other tested methods, achieving the highest accuracy of 0.61.
Notably, the second-best method, CoTTA, achieved only 0.23
accuracy, underscoring the effectiveness of TinyTTA in main-
taining performance under substantial distribution shifts, also
with distribution-shifted audio data.

I Comparison with Updating Bias Only

In this section, we explore the effects of fine-tuning only the bias, as implemented in TinyTL [31],
applied to the TTA setting. We implemented a bias-only fine-tuning strategy via entropy minimization
and compared it against adjusting the exits, as proposed in our TinyTTA. Specifically, during TTA,
only the model’s biases are updated, with no retraining of other parameters. Results in Figure 13
show that fine-tuning only the bias is insufficient for robust TTA performance, whereas integrating
early exit branches and updating them in our TinyTTA demonstrates stable performance in scenarios
involving distribution shifts across different datasets and models.

CIFAR10C
CIFAR100C

OfficeHome PACS
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.15
0.09 0.11

0.07

0.64

0.52
0.58

0.64

Bias Only Exits

(a) MCUNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.13 0.15 0.18
0.09

0.68

0.53
0.62

0.66

Bias Only Exits

(b) EfficientNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.16 0.13 0.15
0.11

0.65

0.53
0.60 0.63

Bias Only Exits

(c) MobileNet
CIFAR10C

CIFAR100C
OfficeHome PACS

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.18
0.13

0.19 0.17

0.64

0.51 0.54 0.57

Bias Only Exits

(d) RegNet

Figure 13: Comparison of bias-only fine-tuning vs. exits adjustment across different models and
datasets.

J Comparison with non-TTA methods

To better provide an understanding of the advantages of implementing TTA in resource-constrained
environments, we present the comparison of TinyTTA with non-TTA methods. In particular, we
implemented a new baseline using Test-Time Training [14] (TTT) with self-supervised rotation
classification. In this setting, we used SGD with momentum (0.9), a learning rate of 1e − 5, an
augmentation size of 20, a batch size of 1, and λ = 0.9. Tests are performed on the Raspberry Pi Zero
2W.

The experimental results, as shown in Figure 14, demonstrate a significant improvement in accuracy
across all models and datasets when using TinyTTA compared to applying Test-Time Training. For
example, on the CIFAR10C dataset, TinyTTA boosts MCUNet’s accuracy from 16% to 64% and

18

CIFAR10C CIFAR100C OfficeHome PACS
0

20

40

60
A

cc
ur

ac
y

16

5 7 7

64

52

58

64

18

6 6

12

68

53

62
66

17

7 8 10

65

53

60
63

15
12

6 7

64

51
54

57

MCUNet+TTT
MCUNet+TinyTTA

EfficientNet+TTT
EfficientNet+TinyTTA

MobileNet+TTT
MobileNet+TinyTTA

RegNet+TTT
RegNet+TinyTTA

Figure 14: Comparison of Test-Time Training (TTT) and TinyTTA in terms of accuracy on various
models with a batch size of one. TinyTTA significantly improves accuracy across all models and
datasets.

CIFAR10C CIFAR100C OfficeHome PACS
0

10

20

30

40

50

M
em

or
y

(M
B

)

0.41 1.35 1.32 1.28
0.2 0.73 0.71 0.63

12.81

37.43
37.21

35.53

5.65

16.94 16.97
14.81

11.43

36.27 36.71

34.33

5.58

16.74 16.79

14.32
12.28 14.33 14.45

12.57

6.13 6.25 6.28 6.21

MCUNet+TTT
MCUNet+TinyTTA

EfficientNet+TTT
EfficientNet+TinyTTA

MobileNet+TTT
MobileNet+TinyTTA

RegNet+TTT
RegNet+TinyTTA

Figure 15: Comparison of Test-Time Training (TTT) and TinyTTA in terms of memory usage (in
MB) on various models with a batch size of one. TinyTTA significantly improves accuracy across all
models and datasets.

EfficientNet’s from 18% to 68%. This trend is consistent across all datasets, with TinyTTA providing
accuracy gains between 40-50% for all models. Interestingly, TinyTTA also reduces memory usage
compared to TTT on the Raspberry Pi Zero 2W across all models and datasets, as shown in Figure 15,
highlighting TinyTTA’s efficiency not only in improving accuracy but also in minimizing resource
consumption, making it particularly suitable for resource-constrained environments.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction should accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the authors discuss the limitations in discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

20

Justification: Not applicable, as this paper does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the authors provide sufficient information about their methodology,
including the experimental setup and data analysis procedures in the Experimental Setup
and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, the paper provides sufficient instructions to reproduce the main experi-
mental results, as described in the supplemental material. The TinyTTA Engine code is fully
publicly available at: https://github.com/h-jia/TTE.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the paper provides a detailed description of the training and test protocols,
including data splits, hyperparameter settings, and the optimization algorithm used in
Experimental Setup and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. The paper includes information about the statistical significance of the
experiments in the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://github.com/h-jia/TTE
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes. The paper provides sufficient details on the computer resources needed to
reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. The research conducted in the paper conforms to the NeurIPS Code of
Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes. The paper discussed the potential beneficial of societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

23

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Topic is not fit.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Yes. The paper credits asset creators, states licenses and terms, and ensures proper respect.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the data, including the URLs, specifics of data generation, and
model development, are provided in the Experimental Setup section and the Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Work
	Efficient TTA via Early-exit Ensembles and TinyTTA Engine
	Self-ensemble network
	Early-exits
	WS normalization
	Training and Inference
	TinyTTA Engine

	Experimental Setup
	Results
	TinyTTA vs. source models on MPUs
	TinyTTA vs. SOTA baselines on MPUs
	TinyTTA on MCUs
	Ablation Study

	Conclusion
	Acknowledgment
	Appendix/supplemental material
	Datasets
	Implementation
	Hardware
	Software
	MCU Implementation
	TinyTTA vs. TinyEngine

	Model size
	Comparison of WS and GN
	Impact of Changing Distribution Shifts
	Choice of Entropy Thresholds
	Experimental Results on Distribution-Shifted Audio Data
	Comparison with Updating Bias Only
	Comparison with non-TTA methods

