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ABSTRACT

Low-Rank Adaptation (LoRA) is an effective fine-tuning algorithm for large mod-
els, enabling efficient adaptation with fewer trainable parameters. Despite its
success, there remains significant potential for improving LoRA’s performance. In
this paper, we introduce iLoRA (Imbalance-Regularized LoRA), which enhances
LoRA by incorporating a regularization term to capture the imbalance in forward
propagation. This regularization maintains an imbalance between matrices A and
B, ensuring stable activation variance independent of dimension. Specifically,
we first analyze forward dynamics, observe this imbalance in stable training, and
introduce imbalanced regularization. Further, by combining this with precondition-
ing techniques (Zhang and Pilanci, 2024), we propose πLoRA (Preconditioned
iLoRA), which improves the backpropagation process. Our method is a plug-and-
play algorithm that requires only minor modifications to the existing code and
incurs negligible additional computational overhead. Finally, experiments on large
language models and text-to-image models demonstrate that iLoRA and πLoRA
significantly outperform existing LoRA and preconditioned LoRA methods.

1 INTRODUCTION

As neural network models in both vision and language domains continue to grow, training a neural
network from scratch to match the performance of existing large models has become increasingly
difficult (Brown et al., 2020; Fedus et al., 2022; Zhai et al., 2022; Dubey et al., 2024). Consequently,
fine-tuning has emerged as a popular approach for downstream tasks (Devlin, 2018; Liu, 2019).
Traditional full-parameter fine-tuning requires extensive storage, making it impractical for many
applications (Raffel et al., 2020). In contrast, recent advances in Parameter-Efficient Fine-Tuning
(PEFT) methods offer a more efficient solution while maintaining strong performance in downstream
tasks (Houlsby et al., 2019; Lester et al., 2021; Hu et al., 2022; Zhang et al., 2023; Hayou et al.,
2024; Zhang and Pilanci, 2024; Tian et al., 2024; Zhu et al., 2024; Dettmers et al., 2024).

One widely used PEFT method is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which introduces
low-rank matrices to existing model weights and only trains these additive components. Specifically,
for a pre-trained weight W(0) ∈ Rm×n, LoRA assumes that the fine-tuned weight W∗ satisfies:

W⋆ = W(0) +∆W = W(0) +BA,

where A ∈ Rr×n and B ∈ Rm×r, with r ≪ {m,n} representing the rank of the adaptation
matrices. During fine-tuning, only A and B are updated, while the original pre-trained weights
W(0) remain frozen. This low-rank factorization significantly reduces memory and computational
overhead (Sainath et al., 2013), as the rank r is chosen to be much smaller than the dimensions of
W(0); for example, r = 8 when m = n = 1024. Despite introducing fewer than 2% additional
trainable parameters, LoRA achieves comparable, and sometimes even better, performance than full
parameters fine-tuning (Hu et al., 2022). Additionally, the multiplication of two small matrices is
more efficient and easier to implement in practice compared to the unstructured sparse matrices used
in methods like Diff-pruning (Fang et al., 2023a;b), making LoRA a practical and scalable solution
for fine-tuning large models.

LoRA+ (Hayou et al., 2024) further examined the optimization paradigm of LoRA, revealing that
for stable feature learning, the learning rate of the parameter B should be set larger than that of
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A, leading to a joint hyperparameter search problem. LoRA+ proposed using a heuristic learning
rate ratio ηB/ηA = 24, and only ηA is tuned in practice. Additionally, Riemannian Preconditioned
LoRA (Zhang and Pilanci, 2024) introduced a r × r preconditioner in each gradient step to stabilize
feature learning without requiring different learning rates. This method is based on a novel Rieman-
nian metric (Absil et al., 2008) and has proven effective in low-rank matrix estimation (Tong et al.,
2021b;c; Zhang et al., 2024; Jia et al., 2023). However, both approaches have notable limitations.
The heuristic learning rate ratio in LoRA+ (ηB/ηA = 24) does not fully align with their theoreti-
cal analysis and overlooks the dimension of matrices A and B, particularly in models with large
dimensions. While Preconditioned LoRA stabilizes feature learning, it does not capture the inherent
asymmetry between A and B. This asymmetry is critical for maintaining consistent forward and
backward propagation dynamics and for ensuring efficient utilization of the parameter space. As a
result, these methods can lead to suboptimal convergence and propagation behaviors in complex,
large-scale models.

In this paper, we introduce Imbalance-Regularized LoRA (iLoRA), a novel method to capture the
inherent asymmetry between matrices A and B. Drawing on insights from the low-rank matrix fac-
torization literature (Tu et al., 2016; Zhu et al., 2021), where regularization terms are used to manage
mismatches between LoRA fine-tuning matrix pairs, we propose a specialized regularization term:∥∥∥AA⊤ − r

m
B⊤B

∥∥∥2
F
,

where the factor r
m compensates for the dimensionality mismatch and captures the inherent

asymmetry between A and B. This regularization ensures that the norms of these components
are appropriately balanced during fine-tuning, mitigating instability in forward propagation and
enhancing the network’s ability to represent complex features. Despite its effectiveness, iLoRA is
a simple, plug-and-play method that requires only minor modifications and introduces negligible
additional computational overhead. Moreover, we observe that standard gradient descent (GD) often
fails to preserve the forward-pass imbalance between A and B in the backward pass, leading to in-
consistencies in optimization dynamics. To resolve this, we apply the preconditioning method (Zhang
and Pilanci, 2024), proving that under this approach, the backward pass maintains the same imbalance
relationship as the forward pass, ensuring consistency throughout the optimization process.

We conduct extensive experiments with iLoRA, including fine-tuning GPT-2 on the E2E Natural
Language Generation challenge (Novikova et al., 2017), Mistral 7B (Jiang et al., 2023) on the GLUE
benchmark (Pilanci and Ergen, 2020), and diffusion models for image generation. Empirically, iLoRA
demonstrates substantial performance improvements over traditional LoRA, with minimal additional
computational cost. Furthermore, combining iLoRA with Riemannian Preconditioned LoRA, referred
to as πLoRA, delivers significant performance gains across multiple tasks, showcasing the versatility
of iLoRA. Additionally, our method exhibits enhanced robustness under varying learning rates,
resulting in more stable and consistent training outcomes.

In summary, our contributions are as follows:

• We propose iLoRA, which introduces an imbalanced regularization strategy to capture the asymme-
try between matrices A and B in LoRA, improving training stability and performance.

• We introduce πLoRA, which combines iLoRA with Riemannian preconditioning techniques (Zhang
and Pilanci, 2024) to capture the inconsistency in backward propagation, ensuring alignment with
the imbalance observed during the forward pass.

• Extensive experiments on GPT-2 (E2E), Mistral 7B (GLUE), and diffusion models demonstrate
that both iLoRA and πLoRA achieve significant performance improvements over LoRA and
preconditioned LoRA.

• Notably, our method incurs minimal computational overhead and requires only minor modifications
to existing code, making it highly accessible and easy to adopt for a wide range of applications.

The rest of this paper is structured as follows: In Section 2, we give a comprehensive overview of
related work. In Section 3, we provide the background and preliminaries. Section 4 provides the
analysis of forward and backward propagation dynamics for LoRA, Section 5 details our iLoRA
and πLoRA algorithms. Section 6 presents the experimental results. Finally, we summarize our
contributions and discusses future work in Section 7.
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2 RELATED WORK

Low-Rank Adaptation: In recent years, the rapid advancement of parameter-efficient fine-tuning
(PEFT) techniques, particularly LoRA, has brought about numerous improvements. LoRA (Hu et al.,
2022) is built on the principle that the updates required for fine-tuning large models can be represented
as low-rank matrices, significantly reducing the number of trainable parameters. This foundational
idea has sparked further innovations aimed at enhancing both the efficiency and effectiveness of LoRA-
based methods. Several works (Hayou et al., 2024; Tian et al., 2024; Zhu et al., 2024) have focused
on introducing asymmetry or refining rank allocation strategies to improve fine-tuning performance
and efficiency. Moreover, preconditioning has been explored in works (Zhang and Pilanci, 2024)
showing significant improvements in convergence and optimization. The gradient approximation
technique (Wang et al., 2024) further enhances computational efficiency. Meanwhile, momentum
filtering techniques (Chen et al., 2024) help mitigate catastrophic forgetting in large models.

In addition, various works have contributed novel architectures and optimizations, such as introducing
multiple regeneration of fine-tuning matrices (Lialin et al., 2024; Xia et al., 2024; Zi et al., 2024),
increasing parameter efficiency (Ren et al., 2024; Hao et al., 2024). These advancements solidify
LoRA as a powerful and flexible tool for fine-tuning large-scale models.

Preconditioning for Matrix Factorization: Accelerating convergence via preconditioning has
become a key approach in low-rank matrix factorization. The idea to precondition the gradient
with (AA⊤)−1 and (B⊤B)−1 was first suggested by Mishra et al. (2012), and later extended to
Stochastic Gradient Descent (SGD) by Mishra and Sepulchre (2016). The convergence properties
in the noiseless setting were studied by Li et al. (2018), leading to the development of the method
now known as Scaled Gradient Descent (ScaledGD) for Matrix Factorization (Tong et al., 2021a). In
subsequent work, Tong et al. (2021c) extended ScaledGD to subgradient methods, while Jia et al.
(2023); Zhang et al. (2024; 2021) improved ScaledGD by using alternating optimization of A and B,
iterative hyperparameter updates and introduces time-varying preconditioning. These preconditioning
methods, by addressing overparameterization and ill-conditioning, have become essential tools for
improving the efficiency and accuracy of low-rank matrix estimation.

3 PRELIMINARIES

LoRA (Hu et al., 2022) builds on the insight that the updates needed for fine-tuning large pre-trained
models are often approximately low-rank. Instead of updating the full-weight matrix during fine-
tuning, LoRA offers a more efficient solution by decomposing the updates into the product of two
low-rank matrices. This approach dramatically reduces the number of trainable parameters and lowers
computational overhead, making it particularly well-suited for resource-intensive scenarios, such as
fine-tuning Large Language Models (LLMs) and diffusion models.

In this paper, we use W to denote the weight matrix of a linear layer in the model. For example,
in transformers, W can correspond to the Q (query), K (key), and V (value) matrices in the self-
attention mechanism, or the weight matrices in the feedforward layers (MLP layers). LoRA’s key
idea is to express the fine-tuning update for each linear weight matrix as:

W⋆ = W(0) +∆W = W(0) +BA ,

where W⋆,W(0) ∈ Rm×n, B ∈ Rm×r, and A ∈ Rr×n, with r ≪ min(m,n). The matrix W(0)

represents the pre-trained weights, which remain frozen during the fine-tuning process, while the low-
rank matrices A and B are the newly introduced trainable parameters. This low-rank structure reduces
memory and computation costs while enhancing the ability to efficiently adapt large pre-trained
models to new tasks, achieving comparable accuracy to full-parameter fine-tuning.

4 ANALYSIS OF DYNAMICS AND IMBALANCED RELATIONSHIP IN LORA

Maintaining stable activations and gradients across layers is crucial to prevent issues such as vanishing
or exploding gradients when training deep learning models (Glorot and Bengio, 2010). A key strategy
to address this is ensuring that activation variances remain constant throughout the network (He
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et al., 2015). In this section, we present key results for achieving this stability for both forward and
backward propagation. First, we derive strategies for maintaining constant variance during forward
propagation. To overcome the limitations of standard gradient descent in preserving proportional
relationships between parameter updates during backward propagation, we integrate our method with
a preconditioned approach. This combination improves training stability and convergence, addressing
both forward and backward propagation challenges in LoRA training. For a more detailed analysis
and proofs, please refer to Appendix B.

We now focus on a single matrix fine-tuning module, which serves as a crucial building block in the
broader framework discussed earlier. Previously, we highlighted the importance of maintaining stable
activations and gradients across multiple layers. Here, we extend these concepts to the LoRA-based
architecture. Specifically, let W(0) ∈ Rm×n represent the pre-trained weight matrix of a neural
network layer, and let A ∈ Rr×n and B ∈ Rm×r be the low-rank matrices introduced during fine-
tuning. Let x ∈ Rn be an input vector. The forward propagation of the network can be expressed as:

f = (W(0) +BA)x . (1)

The optimization objective is to minimize the loss:

L =
1

2
∥f(x)− y∥2 , (2)

where y ∈ Rm is the target output vector. First, we start with the stability of forward propagation.

4.1 VARIANCE PRESERVATION IN FORWARD PROPAGATION

Define the intermediate activations as: f1 = Ax, f2 = Bf1 = BAx. The variances of the elements
in f1 and f2 remain in constant order and do not depend on the dimensions n, m, and r (He et al.,
2015) can ensure stable forward propagation in the network. If these variances were to scale with n,
m, or r, it could lead to vanishing or exploding activations as the network depth or width increases,
causing numerical instabilities and hindering effective training. Therefore, it is sufficient to control
the variances of the elements of the parameter matrices A and B during training so that the variances
of f1 and f2 remain constant order.
Theorem 1 (Variance Preservation in Forward Propagation). Let x ∈ Rn be an input vector with
i.i.d. elements of mean zero and variance σ2

x. Under the assumptions that the elements of A and B
have zero mean and variances σ2

A and σ2
B respectively, if the parameter variances satisfy:

σ2
A = O

(
1

n

)
, σ2

B = O

(
1

r

)
,

the intermediate activations f1 and f2 have constant variances.

Remark 1: Theorem 1 establishes the sufficient conditions for parameter variance to ensure that the
variances of activations f1 and f2 remain constant order during forward propagation. This provides
a clear objective for our regularization strategy, guiding us to maintain the stability of forward
propagation by controlling the variances of the parameter matrices. Additionally, it is important to
note that during stable forward propagation, the variances of the elements in the two fine-tuning
matrices A and B are not identical. This variance asymmetry between the fine-tuning matrices A and
B highlights a key characteristic of the fine-tuning process, indicating that B and A serve distinct
roles in adapting the model, with B potentially requiring more variance than A to achieve balanced
updates and maintain stability. This observation aligns with the findings of Hayou et al. (2024).

To control the imbalance between matrices A and B, we propose modifying the commonly used
balancing regularization term ||AA⊤−B⊤B||2F from the low-rank matrix factorization literature (Zhu
et al., 2021). By imposing this regularization, we can restrict the degrees of freedom in matrix
factorization, reducing the issue of infinitely many solutions due to the scalar associativity of matrix
multiplication. While it might seem natural to directly consider the relationship between A and B or
between A⊤A and B⊤B. However, we instead focus on AA⊤ and B⊤B because, although A and
B have different dimensions, they share a common rank r. This common rank means that both AA⊤

and B⊤B are square matrices of size r× r. This dimensional consistency allows us to compare these
terms and develop an effective regularization strategy.

4
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Specifically, within the framework of Theorem 1, we introduce a scaling coefficient µ1 to control the
balance between the matrices A and B. We derive the results as follows:
Corollary 1 (Scaling of µ1 with Matrix Dimensions). Under the conditions of Theorem 1 , we have:

E[AA⊤] = µ1E[B⊤B], µ1 = O
( r

m

)
.

Remark 2: Corollary 1 highlights that the proportionality constant µ1 scales with the ratio r
m , where

r is the rank of the matrix A and m is the number of rows in B. To compensate for this ratio, an
imbalanced regularization term: ∥∥∥AA⊤ − r

m
B⊤B

∥∥∥2
F
,

is sufficient to maintain this imbalance relationship. This regularization ensures that the scaling of A
and B is aligned according to their respective dimensions, preventing one matrix from dominating
the update process and causing instability. By incorporating this term, we effectively manage the
imbalance between A and B.

4.2 LIMITATIONS OF STANDARD GRADIENT DESCENT

While the forward propagation ensures that activations have constant variance, it is equally important
to maintain a stable update of the parameters during backpropagation. Specifically, we desire
the changes in the parameter matrices to satisfy a similar proportional relationship: d(AA⊤) =
µ2 d(B

⊤B), where d(·) denotes the infinitesimal change or differential in the matrix values during
backpropagation. Our goal is to verify that µ1 (from forward propagation) and µ2 are of the same
order, ensuring consistency between forward and backward propagation.

To explore this relationship further, we analyze how standard gradient descent affects the proportion-
ality constant µ2 during backpropagation in Theorem 2.
Theorem 2 (Proportional Inconsistency in Standard Gradient Descent). Under the conditions of The-
orem 1, for model Eq. (1), applying standard gradient descent to minimize loss Eq. (2) with a small
learning rate η, the proportionality constant µ2 between d(AA⊤) and d(B⊤B) satisfies:

µ2 ≈ 1,

indicating an inherent balance in parameter updates due to the differing dimensions of A and B.

Remark 3: Theorem 2 demonstrates that, under standard gradient descent, there is a balance in
parameter updates across d(AA⊤) and d(B⊤B). However, this is inconsistent with the imbalance
relationship observed during forward propagation for AA⊤ and B⊤B. As a result, µ1 and µ2 cannot
be of the same order for gradient descent. This inconsistency suggests that standard gradient descent
is insufficient for maintaining the desired proportional relationship between the updates of A and B.
Specifically, while forward propagation introduces an inherent imbalance between A and B due to
their differing dimensions, backpropagation under standard gradient descent fails to account for this
imbalance, leading to misaligned updates. To resolve this, we must scale gradient descent to ensure
that the updates to A and B remain consistent with the proportionality introduced during forward
propagation. This modification would allow us to align µ2 with µ1, ensuring that the imbalanced
relationship between the matrices is maintained throughout the training process, ultimately leading to
stable and effective updates.

4.3 SCALED GRADIENT DESCENT

To address the imbalance between parameters and updates identified in Theorem 2, we introduce a
preconditioned gradient update method ScaledGD as proposed in Zhang and Pilanci (2024) which
is also inspired by the previously discussed imbalanced relationship between A and B. The scaled
gradients are defined as:

∇̃A = (B⊤B)−1 ∂L

∂A
, ∇̃B =

∂L

∂B
(AA⊤)−1. (3)

This modification leverages the inverses of the parameter covariance matrices to adjust the gradients,
specifically aiming to resolve the imbalance between A and B and ensure that their updates remain
proportional.

5
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Using these scaled gradients, the parameter updates become:

Anew = A− η∇̃A, Bnew = B− η∇̃B. (4)

Then we aim to verify whether the modified updates satisfy the relationship d(AA⊤) = µ2 d(B
⊤B),

and whether the proportionality constants µ1 from forward propagation and µ2 from backpropagation
are of the same order. This verification ensures that the scaled gradient descent method maintains
proportional consistency for stable parameter updates.
Theorem 3 (Proportional Consistency in Scaled Gradient Descent). Under the conditions of Theo-
rem 1, for model Eq. (1), applying scaled gradient descent Eqs. (3) and (4) to minimize loss Eq. (2)
with a small learning rate η, the proportionality constant µ2 between d(AA⊤) and d(B⊤B) satisfies:

µ2 ≈ µ1 = O
( r

m

)
,

ensuring that µ1 and µ2 are of the same order and thus maintaining consistency between forward
and backward propagation.

Remark 4: Theorem 3 confirms that the scaled gradient descent method effectively aligns the
proportionality constants µ2, ensuring consistency in the proportion of parameters and updates
between A and B. This alignment addresses the inconsistency identified in standard gradient descent,
promoting stable training by maintaining consistent proportional relationships during both forward
and backward propagation.

5 IMBALANCE-REGULARIZED LORA

In this section, we discuss how to incorporate the imbalanced regularization term derived in Section 4
into LoRA training by AdamW, forming the core of our iLoRA algorithm. Similar to the strategy of
introducing weight decay in AdamW, the imbalanced regularization term we introduce only takes
effect at the end of each iteration and does not interfere with the iteration of gradients and momentum.
Specifically, consider the following regularization term scaled by a factor λ:

R(A,B) = λ

∥∥∥∥AA⊤ − r

m
B⊤B

∥∥∥∥2
F

.

The corresponding gradients are:

∇AR(A,B) = λ

(
AA⊤ − r

m
B⊤B

)
A ,

∇BR(A,B) = λ
r

m
B

(
r

m
B⊤B−AA⊤

)
.

After performing standard AdamW updates, we apply parameter update steps Eqs. (5) and (6) similar
to weight decay. These gradients adjust the updates for A and B to ensure that the influence of
imbalanced regularization is reflected in the parameter dynamics. The core steps of the algorithm are
shown in Algorithm 1, while the complete procedure is provided in Algorithm 2 ( We use θA and θB

to represent A and B, respectively in the algorithm).

Our iLoRA algorithm ensures stability in forward propagation, but the inconsistency in backward
propagation requires scaling the gradients to maintain proportionality. As shown in Section 4.3, by
combining iLoRA with preconditioning methods, we introduce πLoRA, which leverages gradient
scaling to ensure consistent parameter updates during both forward and backward propagation.
Specifically, in πLoRA, we only need to replace line 3 in Algorithm 1 with preconditioning methods
such as Scaled GD or Scaled AdamW in Zhang and Pilanci (2024)(see detail in Algorithm 3). This
simple adjustment allows us to effectively combine the strengths of both iLoRA and preconditioning
methods without altering their core structures, achieving the dual benefit of ensuring stability in
forward propagation while resolving gradient inconsistencies in backward propagation. For other
LoRA variants, incorporating the updates from Eqs. (5) and (6) after each iteration allows for a
seamless combination of iLoRA with these variants, achieving a plug-and-play improvement in the
algorithms.

6
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Algorithm 1 iLoRA: Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), λ (regularization factor), θ0 (initial fine-tuning parameters), r (rank), m
(pretrain matrix output dimension), T (number of iterations).

2: for each iteration t = 1, 2, . . . , T do
3: Perform standard AdamW updates for θt−1: yielding θ⋆t
4: # Or perform Scaled AdamW updates for θt−1: yielding θ⋆t in πLoRA
5: Apply imbalanced regularization to θA⋆

t and θB⋆
t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t (5)

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

( r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
(6)

6: end for
7: Output: Optimized parameters θT

6 EXPERIMENTS

In this section, we present a series of experiments to evaluate the performance and efficiency of our
proposed methods. We start by fine-tuning large language models (LLMs) in Section 6.1, beginning
with GPT-2 on the E2E dataset using iLoRA and πLoRA, followed by fine-tuning Mistral 7B1 on the
GLUE benchmark. Next, we showcase face generation results by fine-tuning a diffusion model using
iLoRA and πLoRA in Section 6.2, demonstrating the application of our method beyond the language
model. We then compare the training time of our method with standard LoRA, emphasizing that the
additional computational overhead introduced by our method is negligible in Section 6.3. Finally, we
conduct three ablation studies to explore the impact of key algorithmic details in Section 6.4. All
experimental settings and additional experiments are provided in Appendix C.

6.1 LLM FINE-TUNING

In this section, we fine-tuned large language models using iLoRA and πLoRA methods. Specifically,
we apply these methods to GPT-2 and Mistral 7B models across various tasks, datasets, LoRA ranks,
and benchmarks. Empirically, we observe that the performance of iLoRA and πLoRA far exceed
that of the baseline models, offering more than a 2% improvement in performance. For details of our
experiments, please refer to Appendix C.

6.1.1 GPT-2

In this section, we conducted fine-tuning experiments on the GPT-2 model using iLoRA and πLoRA.
We followed the exact same experimental setup as Zhang and Pilanci (2024), ensuring consistency
and comparability with previous methods. Detailed experimental settings and hyperparameters
can be found in Appendix C.1.1. The results of fine-tuning GPT-2 with a LoRA rank of 4 on the
E2E (Novikova et al., 2017) natural language generation challenge are summarized in Table 1. The
table compares the performance of different methods, including the original LoRA, Preconditioned
LoRA, and our proposed iLoRA and πLoRA methods, across five evaluation metrics: BLEU, NIST,
METEOR (MET), ROUGE-L, and CIDEr. The results of LoRA and Preconditioned LoRA are
referenced from Zhang and Pilanci (2024). From the table, we can see that iLoRA consistently
improves over the original LoRA, demonstrating the effectiveness of our imbalanced regularization
strategy. Moreover, πLoRA achieves the best performance across all evaluation metrics, surpass-
ing both iLoRA and Preconditioned LoRA, demonstrating the benefits of combining imbalanced
regularization with preconditioning. For additional experimental results and analyses, please refer
to Appendix C.1.2.

1https://huggingface.co/mistralai/Mistral-7B-v0.1
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Table 1: Results for LoRA fine-tuning of GPT-2 Model on the E2E Natural Language Generation
Challenge with Different Methods. iLoRA and πLoRA outperform the original LoRA and Precondi-
tioned LoRA across all evaluation metrics.

Method Rank E2E
BLEU NIST MET ROUGE-L CIDEr

LoRA 4 68.9 8.69 46.5 71.4 2.51
iLoRA 4 70.1 8.83 46.8 71.7 2.52

Preconditioned LoRA 4 69.6 8.77 46.6 71.8 2.52
πLoRA 4 70.8 8.89 46.8 72.1 2.54

6.1.2 MISTRAL 7B

In this section, we conducted fine-tuning experiments on the Mistral 7B model (Jiang et al., 2023)
using iLoRA and πLoRA. Mistral 7B, released by the Mistral AI team, has demonstrated superior
performance compared to Llama 2-13B on most benchmarks and has even surpassed Llama 1-34B
on many tasks. As a result, it is considered one of the most powerful language models of its size to
date. We followed the experimental setting from Zhang and Pilanci (2024) and applied our iLoRA
and πLoRA methods to the General Language Understanding Evaluation (GLUE) benchmark (Wang,
2018). Detailed experimental settings and hyperparameters are provided in Appendix C.2.1.

The final results of fine-tuning Mistral 7B with a LoRA rank of 16 on the GLUE benchmark are shown
in Table 2, with LoRA and Preconditioned LoRA results referenced from Zhang and Pilanci (2024).
Our iLoRA method consistently outperforms the original LoRA across all tasks, with an average
improvement of 1.44 and 0.71 over LoRA and Preconditioned LoRA, respectively. πLoRA delivers
the best performance on nearly all tasks, achieving an average improvement of 2.82 over LoRA and
2.09 over Preconditioned LoRA. For further experimental results, please refer to Appendix C.2.

Table 2: Scores for LoRA fine-tuning of Mistral 7B Model on GLUE Benchmark with different meth-
ods. iLoRA and πLoRA show significant improvements respectively over LoRA and Preconditioned
LoRA across all evaluation metrics.

Method Rank GLUE
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI Avg.

LoRA 16 89.86 96.79 88.48 71.05 94.42 91.24 90.61 90.42 81.69 88.28
iLoRA 16 91.59 97.13 89.71 71.90 95.20 91.43 90.98 92.25 87.32 89.72

Preconditioned LoRA 16 90.68 97.25 89.46 71.30 94.67 92.22 91.34 91.10 83.10 89.01
πLoRA 16 91.61 97.25 90.44 71.97 95.37 91.44 91.70 92.35 88.73 91.10

6.2 DIFFUSION MODEL FINE-TUNING

Diffusion models are now widely applied in various image generation tasks, and LoRA has also been
extensively used for fine-tuning these models. In this section, we conduct fine-tuning experiments
on diffusion models to demonstrate the applicability of our methods (iLoRA and πLoRA) beyond
large language models. Specifically, we experiment with the Mix-of-Show model (Gu et al., 2023),
originally designed for multi-concept LoRA and proven to generate high-quality face images. To
better visualize the differences between various LoRA optimization methods, we follow the settings
from Zhang and Pilanci (2024) and disable embedding fine-tuning, focusing only on tuning the
text encoders and U-Nets where LoRA factors are injected. We utilize 14 images of Potter from
the original project repository, replacing the character name in the training images with “⟨Vpotter⟩”.
Fig. 1 presents the generation results for the prompt “a ⟨Vpotter⟩ in front of eiffel tower” across
different learning rates. Our methods (iLoRA and πLoRA) produce images that more accurately
depict the prompt, and consistently perform well across different learning rates, demonstrating their
effectiveness in generating higher-quality images and their robustness to changes in learning rates.
The experimental settings are detailed in Appendix C.3.1. For additional results with different fusion
coefficients and prompts, please refer to Appendix C.3.2.
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LoRA iLoRA πLoRA
Learning Rate Image 1 Image 2 Image 1 Image 2 Image 1 Image 2

(5e-4, 5e-4)

(1e-4, 1e-4)

(5e-5, 5e-5)

Figure 1: Comparison of images generated with LoRA, iLoRA, and πLoRA across different learning
rates for the Mix-of-Show model. The three rows correspond to three different sets of learning rates
for (text encoders, U-Nets): (5e-4, 5e-4), (1e-4, 1e-4) and (5e-5, 5e-5). The first and second columns
show results from LoRA, the third and fourth columns show results from iLoRA, and the fifth and
sixth columns show results from πLoRA. This layout demonstrates the robustness of each method
under these learning rate settings.

6.3 RUNTIME COMPARISON
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Figure 2: Runtime comparison of fine-tuning GPT-
2 on E2E NLG challenge.

In this section, we investigate the impact of the
additional computational cost introduced by im-
balanced regularization in iLoRA and πLoRA
algorithms. We perform fine-tuning of the GPT-
2 model (r = 4) on the E2E NLG challenge and
present a comparison of the training time be-
tween iLoRA, πLoRA, standard LoRA, and Pre-
conditioned LoRA. Fig. 2 shows the runtime of
the fine-tuning tasks using different algorithms
on 1 * NVIDIA A100 GPU. As can be seen, the
runtime differences among the four methods are
minimal. This indicates that the regularization
operations we introduced do not significantly in-
crease the computational overhead, confirming
the efficiency of our methods. Moreover, it is
worth mentioning that the additional computa-
tional cost introduced by our regularization is
smaller than the overhead introduced by the preconditioners in Zhang and Pilanci (2024).

6.4 ABLATION STUDIES ON IMBALANCED COEFFICIENTS

To empirically verify the optimality of the imbalanced ratio r/m in the iLoRA algorithm, we selected
the CoLA task from the GLUE benchmark and conducted three ablation studies using the Mistral
7B model (a detailed introduction of the Mistral 7B model and GLUE benchmark are provide
in Section 6.1.2). These studies evaluated the impact of different coefficients in the imbalanced
regularization term and confirmed that the r/m ratio in the iLoRA algorithm is indeed the most
effective choice in practice.

In the first ablation study, we experimented with different multiplicative scaling factors c applied
to the ratio r/m, aiming to determine whether scaling this ratio could further enhance LoRA’s

9
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Figure 3: Ablation studies on the effects of multiplicative scaling factors and exponents applied to
the ratio r/m in LoRA. The left subplot shows the performance impact of different multiplicative
scaling factors, while the right subplot illustrates the sensitivity of performance to varying exponents.

performance. The results, shown in the left subplot of Fig. 3, highlight the impact of various scaling
factors on the model’s performance. In the second ablation study, we varied the exponent c applied
to the ratio r/m to investigate the sensitivity of performance to the exponentiation of the ratio. The
outcomes of this experiment are displayed in the right subplot of Fig. 3.

The results from both ablation studies confirm that the ratio r/m is empirically optimal. In the
first study, performance peaks around c = 0.9 to c = 1.0, closely aligning with the ratio used in
iLoRA. Similarly, in the second study, the exponent c = 1 achieves the highest performance, further
validating that r/m is the most effective ratio for imbalanced regularization in LoRA. These findings
emphasize the significance of our theoretical analysis, demonstrating that the r/m ratio not only has
theoretical justification but also leads to superior empirical performance.

In the third ablation study, we investigated whether treating the imbalanced ratio coefficient ζ = r
m as

a trainable parameter leads to better performance. Our findings reveal that the final learned value ζT is
closely related to and slightly larger than the initial value ζ0. This is primarily due to the initialization
of B = 0, which causes an imbalance in the regularization term early in training, leading to an
increase in ζ at the beginning of the training progress. However, treating ζ as a trainable parameter
produced slightly worse results compared to iLoRA. On the WNLI task, the performance for trainable
ζ was 85.92, compared to 81.69 for LoRA and 87.32 for iLoRA. This result suggests that, while
treating ζ as a trainable parameter relaxes certain constraints, it does not improve performance overall
and is less effective than iLoRA.

7 CONCLUSION AND LIMITATIONS

In this paper, we proposed a plug-and-play fine-tuning method iLoRA(Imbalance-Regularized LoRA),
which introduces an imbalanced regularization term to address the variance disparity between the fine-
tuning matrices A and B in LoRA-based fine-tuning. This approach ensures that AA⊤ and B⊤B
maintain a proportional relationship, thereby enhancing stability in forward propagation. To address
inconsistencies in backward propagation, we integrate iLoRA with preconditioning techniques to
form πLoRA, utilizing gradient scaling to ensure consistent parameter updates in both forward and
backward passes. Extensive experiments across various large-scale models and tasks demonstrate
that iLoRA and πLoRA significantly improve training stability and model performance.

Nonetheless, certain limitations persist. While our methods address variance disparity within individ-
ual layers, they do not explicitly consider parameter imbalances across different layers, which may
affect overall performance. Additionally, our approach focuses on balancing forward and backward
propagation but does not account for optimization dynamics like momentum in adaptive optimizers.
We also aim to investigate the effectiveness of our methods across a wider range of architectures,
such as large vision-language models. Addressing these challenges will be the focus of future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This work focuses on improving fine-tuning methods for large language models (LLMs) using iLoRA
and πLoRA. Our research does not involve any direct human subjects or the collection of sensitive
data. However, we acknowledge the potential risks associated with deploying fine-tuned LLMs, such
as unintended biases, harmful outputs, and privacy concerns. These risks are primarily related to
how LLMs are used post-deployment and the quality of datasets used during fine-tuning. We have
followed best practices to mitigate such risks by using publicly available datasets (E2E, GLUE) and
ensuring the results focus on model performance. The methods proposed in this paper are intended to
contribute to more efficient and stable fine-tuning but should be used with caution in applications that
could lead to ethical concerns, particularly when deployed in sensitive environments. No conflicts of
interest or external sponsorship influenced this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed experimental settings and hyperpa-
rameters in Appendix C.1.1 and Appendix C.2.1. The source code for iLoRA and πLoRA will be
made publicly available in the camera-ready version. For theoretical results, we provide a complete
analysis and proof in Appendix B. All datasets used in our experiments (E2E, GLUE) are publicly
available, and the specific data processing steps for each experiment are detailed in Appendix C. We
have made every effort to ensure that all components of our work are reproducible and transparent.
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A FULL VERSION OF THE ALGORITHM

Algorithm 2 iLoRA: Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), β1, β2 ∈ [0, 1) (exponential decay rates for moment estimates), λ
(regularization factor), λ⋆ (weight decay factor), ϵ (small constant for numerical stability), θ0
(initial fine-tuning parameters), L(θ) (objective function), r (rank), m (pretrain matrix output
dimension), T (number of iterations).

2: Initialize: m0 ← 0 (initial first moment), v0 ← 0 (initial second moment), t ← 0 (initial
timestep)

3: for each iteration t = 1, 2, . . . , T do
4: Compute gradient: gt ← ∇θL(θt−1)
5: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)gt
6: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)g

2
t

7: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

8: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

9: Perform AdamW update: θ⋆t ← θt−1 − η
(

m̂t√
v̂t+ϵ

+ λ⋆θt−1

)
10: Apply imbalanced regularization to θA⋆

t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t

11: Apply imbalanced regularization to θB⋆
t :

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

( r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
12: end for
13: Output: Optimized parameters θT

B PROOFS AND DETAILED ANALYSIS

B.1 PROOF OF THEOREM 1

Proof. Starting with the intermediate variable f1 = Ax, under the assumption that x has i.i.d.
elements with mean zero and variance σ2

x, and that the elements Akj of matrix A are i.i.d. with mean
zero and variance σ2

A, the variance of each element f1k of f1 is computed as follows:

f1k =

n∑
j=1

Akjxj .

Since Akj and xj are independent and both have zero mean, the variance of f1k is:

Var(f1k) =

n∑
j=1

Var(Akjxj) =

n∑
j=1

Var(Akj) ·Var(xj) = nσ2
Aσ

2
x.

To maintain a constant variance for f1k that is independent of the dimension n, it is necessary that:

σ2
A = O

(
1

n

)
.

Next, consider the intermediate variable f2 = Bf1, where the elements Bik of matrix B are i.i.d. with
mean zero and variance σ2

B . The variance of each element f2i of f2 is:

f2i =

r∑
k=1

Bikf1k.
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Algorithm 3 πLoRA: Preconditioned Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), β1, β2 ∈ [0, 1) (exponential decay rates for moment estimates), λ
(regularization factor), λ⋆ (weight decay factor), ϵ (small constant for numerical stability), θ0
(initial fine-tuning parameters), L(θ) (objective function), r (rank), m (pretrain matrix output
dimension), T (number of iterations).

2: Initialize: m0 ← 0 (initial first moment), v0 ← 0 (initial second moment), t ← 0 (initial
timestep)

3: for each iteration t = 1, 2, . . . , T do
4: Compute gradient: gt ← ∇θL(θt−1)
5: Scale the gradient:

g̃At ← (θB⊤
t−1θ

B
t−1)

−1gAt

g̃Bt ← gBt (θAt−1θ
A⊤
t−1)

−1

6: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)g̃t
7: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)g̃

2
t

8: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

9: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

10: Perform AdamW update: θ⋆t ← θt−1 − η
(

m̂t√
v̂t+ϵ

+ λ⋆θt−1

)
11: Apply imbalanced regularization to θA⋆

t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t

12: Apply imbalanced regularization to θB⋆
t :

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

( r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
13: end for
14: Output: Optimized parameters θT

16
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Since Bik and f1k are independent, and Var(f1k) = nσ2
Aσ

2
x, the variance of f2i is:

Var(f2i) =

r∑
k=1

Var(Bikf1k) =

r∑
k=1

Var(Bik) ·Var(f1k) = rσ2
Bnσ

2
Aσ

2
x.

Substituting σ2
A = O

(
1
n

)
into the equation:

Var(f2i) = rσ2
Bn

(
O

(
1

n

))
σ2
x = rσ2

Bσ
2
x.

To maintain a constant variance for f2i that is independent of the dimension r, it is necessary that:

σ2
B = O

(
1

r

)
.

This completes the proof of Theorem 1.

B.2 PROOF OF COROLLARY 1

Proof. Under the conditions of Theorem 1, we have established that:

σ2
A = O

(
1

n

)
, σ2

B = O

(
1

r

)
.

First, compute the expected values of AA⊤ and B⊤B:

E[AA⊤] = nσ2
AIr = O(1)Ir,

E[B⊤B] = mσ2
BIr = O

(m
r

)
Ir,

where Ir is the r × r identity matrix.

This gives:
µ1 = O

( r

m

)
.

Therefore, the proportionality constant µ1 scales as O
(

r
m

)
, reflecting the relationship between the

dimensions of matrices A and B.

B.3 PROOF OF THEOREM 2

Proof. First, we use e = f(x)− y to denote the error vector and rewrite the mean squared loss as
the following:

L =
1

2
∥f(x)− y∥2 =

1

2
e⊤e,

Next, we compute the gradients with respect to A and B:

∂L

∂A
= B⊤ex⊤ ,

∂L

∂B
= e(Ax)⊤. (7)

By standard gradient descent with learning rate η:

Anew = A− η
∂L

∂A
, Bnew = B− η

∂L

∂B
.

Next, we compute the change in AA⊤:

d(AA⊤) = AnewA
⊤
new −AA⊤

= (A− η
∂L

∂A
)(A− η

∂L

∂A
)⊤ −AA⊤

≈ −η

(
A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤

)
,
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where we neglect the η2 term as η is small. Similarly, compute the change in B⊤B and we get:

d(B⊤B) ≈ −η

(
B⊤

(
∂L

∂B

)
+

(
∂L

∂B

)⊤

B

)
.

Therefore, to satisfy the desired relationship d(AA⊤) = µ2 d(B
⊤B), we need:

A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤ = µ2

(
B⊤

(
∂L

∂B

)
+

(
∂L

∂B

)⊤

B

)
. (8)

Substituting the expressions for the gradients from Eq. (7) to the left-hand side of Eq. (8), we get:

A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤ = A

(
B⊤ex⊤)⊤ +

(
B⊤ex⊤)A⊤

= A
(
xe⊤B

)
+B⊤ex⊤A⊤

= Axe⊤B+B⊤ex⊤A⊤.

Similarly, the right-hand side of Eq. (8) becomes:

µ2

(
B⊤ ∂L

∂B
+

(
∂L

∂B

)⊤

B

)
= µ2

(
B⊤e(Ax)⊤ +

(
e(Ax)⊤

)⊤
B
)

= µ2

(
B⊤ex⊤A⊤ +Axe⊤B

)
.

Therefore, Eq. (8) becomes:

Axe⊤B+B⊤ex⊤A⊤ ≈ µ2

(
B⊤ex⊤A⊤ +Axe⊤B

)
.

By rearranging the term, we have:

(1− µ2)
(
Axe⊤B+B⊤ex⊤A⊤) ≈ 0.

Therefore, unless µ2 ≈ 1, this equality does not generally hold with standard gradient descent.

B.4 PROOF OF THEOREM 3

Proof. We aim to verify that the scaled gradient updates satisfy d(AA⊤) = µ2 d(B
⊤B), and that

µ1 and µ2 are of the same order.

The scaled gradients are:

∇̃A = (B⊤B)−1 ∂L

∂A
, ∇̃B =

∂L

∂B
(AA⊤)−1.

The parameter updates are:

Anew = A− η∇̃A, Bnew = B− η∇̃B.

Then, we compute the change in AA⊤:

d(AA⊤) = AnewA
⊤
new −AA⊤

= (A− η∇̃A)(A− η∇̃A)⊤ −AA⊤

≈ −η
(
A∇̃⊤

A + ∇̃AA⊤
)
, (neglecting η2 terms)

= −η

(
A

(
∂L

∂A

)⊤

(B⊤B)−1 + (B⊤B)−1 ∂L

∂A
A⊤

)
.
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Similarly, compute the change in B⊤B:

d(B⊤B) = B⊤
newBnew −B⊤B

= (B− η∇̃B)
⊤(B− η∇̃B)−B⊤B

≈ −η
(
B⊤∇̃B + ∇̃⊤

BB
)
, (neglecting η2 terms)

= −η

(
B⊤ ∂L

∂B
(AA⊤)−1 + (AA⊤)−1

(
∂L

∂B

)⊤

B

)
.

By substituting the partial derivatives in Eq. (7) into d(AA⊤), we get:

d(AA⊤) = −η

(
A

(
∂L

∂A

)⊤

(B⊤B)−1 + (B⊤B)−1 ∂L

∂A
A⊤

)
= −η

(
A
(
B⊤ex⊤)⊤ (B⊤B)−1 + (B⊤B)−1B⊤ex⊤A⊤

)
= −η

(
Axe⊤B(B⊤B)−1 + (B⊤B)−1B⊤ex⊤A⊤) .

Similarly, substituting into d(B⊤B):

d(B⊤B) = −η
(
B⊤ (e(Ax)⊤

)
(AA⊤)−1 + (AA⊤)−1

(
e(Ax)⊤

)⊤
B
)

= −η
(
B⊤ex⊤A⊤(AA⊤)−1 + (AA⊤)−1Axe⊤B

)
.

Next, we perform Singular Value Decomposition (SVD) on matrices A and B, (the dimension of ΣA

and ΣB are r × r, the elements are arranged from large to small, and it is assumed that there is no
multiplicity):

A = UAΣAV
⊤
A , B = UBΣBV

⊤
B .

Given the matrix relationship AA⊤ = µ1B
⊤B, we compute AA⊤ and B⊤B as follows:

AA⊤ = (UAΣAV
⊤
A)(VAΣ

⊤
AU

⊤
A) = UAΣAΣ

⊤
AU

⊤
A ,

B⊤B = (VBΣ
⊤
BU

⊤
B)(UBΣBV

⊤
B) = VBΣ

⊤
BΣBV

⊤
B .

Substitute into the matrix relationship:

UAΣAΣ
⊤
AU

⊤
A = µ1VBΣ

⊤
BΣBV

⊤
B

Multiply both sides on the left by U⊤
A and on the right by UA:

U⊤
A(UAΣAΣ

⊤
AU

⊤
A)UA = µ1U

⊤
A(VBΣ

⊤
BΣBV

⊤
B)UA

ΣAΣ
⊤
A = µ1(U

⊤
AVB)Σ

⊤
BΣB(V

⊤
BUA)

Since U⊤
AUA = I, we have U⊤

AVB = Q, where Q is an orthogonal matrix. Because ΣAΣ
⊤
A and

Σ⊤
BΣB are diagonal, we require that:

ΣAΣ
⊤
A = µ1QΣ⊤

BΣBQ
⊤ .

For the equality of diagonal matrices, we must have Q± I. Without loss of generality, we consider
Q = I, which implies UA = VB .

Thus, we have the alignment of singular vectors:

UA = VB .

Also, the proportionality of singular values:

ΣAΣ
⊤
A = µ1Σ

⊤
BΣB
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(ΣAΣ
⊤
A)ii = µ1(Σ

⊤
BΣB)ii

σ2
A,i = µ1σ

2
B,i

σA,i =
√
µ1 σB,i

Therefore, the singular values satisfy:

ΣA =
√
µ1 ΣB .

Substituting the SVD Decomposition of A and B into (AA⊤)−1 and (B⊤B)−1:

(AA⊤)−1 = UA(ΣAΣ
⊤
A)

−1U⊤
A,

(B⊤B)−1 = VB(Σ
⊤
BΣB)

−1V⊤
B .

We have that both ΣA and ΣB are diagonal and full-rank. And U⊤
AUA = I and V⊤

BVB = I, this
allows us to further simplify the expressions for d(AA⊤) and d(B⊤B).

Starting with d(AA⊤):

d(AA⊤) =− η(UAΣAV
⊤
Axe

⊤UBΣBV
⊤
BVB(Σ

⊤
BΣB)

−1V⊤
B

+VB(Σ
⊤
BΣB)

−1V⊤
BVBΣ

⊤
BU

⊤
Bex

⊤VAΣ
⊤
AU

⊤
A)

=− η
(
UAΣAV

⊤
Axe

⊤UBΣ
−1
B V⊤

B +VBΣ
−1
B U⊤

Bex
⊤VAΣ

⊤
AU

⊤
A

)
.

Similarly, for d(B⊤B):

d(B⊤B) =− η(VBΣBU
⊤
Bex

⊤VAΣAU
⊤
AUA(ΣAΣ

⊤
A)

−1U⊤
A

+UA(ΣAΣ
⊤
A)

−1U⊤
AUAΣAV

⊤
Axe

⊤UBΣBV
⊤
B)

=− η
(
VBΣBU

⊤
Bex

⊤VAΣ
−1
A U⊤

A +UAΣ
−1
A V⊤

Axe
⊤UBΣBV

⊤
B

)
Combining the previous results:

UA = VB ,

ΣA =
√
µ1 ΣB ,

and substituting into d(AA⊤), we obtain

d(AA⊤) ≈ µ1 d(B
⊤B).

Thus, we have established that the proportionality constants satisfy:

µ1 ≈ µ2.

This result ensures that the scaled gradient descent method maintains balanced updates between A
and B, promoting stable training dynamics.

C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS OF GPT2 FINE-TUNING

In this section, we provide a detailed description of the experimental settings and additional experi-
ments conducted for the fine-tuning of the GPT-2 model. First, in Appendix C.1.1, we present the
experimental details of GPT2 fine-tuning, outlining the methodologies, datasets, and hyperparameters
used to fine-tune GPT-2. Then, in Appendix C.1.2, we compare the performance of our proposed
method πLoRA with LoRA+. The results demonstrate that πLoRA consistently outperforms LoRA+
across various evaluation metrics, highlighting the superior effectiveness of our approach.
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C.1.1 EXPERIMENTAL DETAILS OF GPT2 FINE-TUNING

In this section, we introduce the experimental settings for GPT-2. We strictly follow the same settings
from the original LoRA (Hu et al., 2022) and Preconditioned LoRA (Zhang and Pilanci, 2024). We
use the medium-size GPT-2 model (Radford et al., 2019), with hyperparameters listed in Table 3.
The learning rates for iLoRA and πLoRA are individually tuned via grid search over the range
1 × 10−4, 2 × 10−4, . . . , 9 × 10−4, 1 × 10−3, while the settings for LoRA and Preconditioned
LoRA follow the default values from Zhang and Pilanci (2024). We train for 5 epochs using a linear
learning rate schedule. It is worth noting that the AdamW hyperparameters β1 and β2 also follow the
default values from Zhang and Pilanci (2024).

Table 3: Hyperparameters for GPT-2 fine-tuning on E2E

Method iLoRA πLoRA

Training
Weight Decay 0.01 0.01

Dropout Probability 0.1 0.1
Batch Size 8 8
# Epochs 5 5

Warmup Steps 500 500
LR Scheduler Linear Linear

Label Smoothing 0.1 0.1
Learning Rate (×10−4) 6 7

λ 10 1
AdamW β1 0.9 0.7
AdamW β2 0.999 0.8

LoRA α 32 32

Inference
Beam Size 10 10

Length Penalty 0.8 0.8
No Repeat N-gram Size 4 4

C.1.2 ADDITIONAL EXPERIMENTS OF GPT2 FINE-TUNING FOR LORA+

In this section, we compare the performance of LoRA, LoRA+, and πLoRA on the E2E task using the
GPT-2 model. Table 4 presents the experimental results across five evaluation metrics. We observed
that πLoRA consistently outperforms both LoRA and LoRA+ across all metrics. While LoRA+
shows slight improvements over LoRA, πLoRA demonstrates the most significant gains, particularly
in BLEU and NIST, solidifying its effectiveness in fine-tuning GPT-2 for the E2E task.

Table 4: Performance comparison of GPT-2 fine-tuning on E2E task: LoRA, LoRA+, and πLoRA.

Method Rank E2E
BLEU NIST MET ROUGE-L CIDEr

LoRA 4 68.9 8.69 46.5 71.4 2.51
Lora + 4 70.3 8.84 46.7 71.9 2.54
πLoRA 4 70.8 8.89 46.8 72.1 2.54

C.2 EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS OF MISTRAL 7B
FINE-TUNING

In this section, we provide a comprehensive overview of the experimental settings and additional
experiments conducted for the fine-tuning of the Mistral 7B model. First, in Appendix C.2.1, we
describe the experimental details of Mistral 7B fine-tuning, outlining the methodologies, datasets,
and hyperparameters used throughout the experiments. Next, in Appendix C.2.2, we compare the
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performance of our method, πLoRA, against LoRA+, demonstrating that πLoRA outperforms LoRA+
across various tasks. We also include additional experiments of Mistral 7B fine-tuning for 4-bit
quantization in Appendix C.2.3, where we assess the effects of quantizing the model on performance
and efficiency. Finally, in Appendix C.2.4, we compare the outcomes of experiments where the
learning rate is not tuned (fixed learning rate) to those where the learning rate is tuned, demonstrating
the robustness of our method to the learning rate.

C.2.1 EXPERIMENTAL DETAILS OF MISTRAL 7B FINE-TUNING

In this section, we introduce the experimental settings for Mistral 7B. We follow the setting as
in Zhang and Pilanci (2024), where LoRA factors are injected into each linear layer with a rank of
r = 16. We trained for a total of 5 epochs with a batch size of 8. Apart from batch size, training
epochs, and optimizer-related settings, the learning rate scheduler, warmup steps, warmup ratios,
and maximum gradient norm remained at their default settings in the HuggingFace trainer class.
The weight decay value was set to 0.01. For the five smaller tasks, MRPC, CoLA, RTE, STS-B,
and WNLI, we used 1 * NVIDIA A100 GPU for training. For the other four larger tasks, we
used 4 * NVIDIA A100 GPUs for training. For all tasks, we tuned the learning rate through grid
search, specifically, for the six tasks (SST-2, MRPC, CoLA, RTE, STS-B, and WNLI), the range
was 1 × 10−5, 2 × 10−5, . . . , 9 × 10−5, 1 × 10−4, and for the other three tasks, the range was
1 × 10−6, 2 × 10−6, . . . , 9 × 10−6, 1 × 10−5. We also performed grid search tuning for the
regularization hyperparameter λ over the range 1 × 10−3, 1 × 10−2, . . . , 1 × 101, 1 × 102 and
scaled regularization hyperparameter λ over the range 1× 10−4, 1× 10−3, . . . , 1× 102, 1× 103.
In the experiments detailed in Appendix C.2.4, we verified that not tuning the learning rate or
regularization hyperparameters resulted in only a minor performance drop in our method, which does
not fundamentally affect the conclusions. The learning rate and regularization hyperparameters for
each task are shown in Table 5, and other hyperparameters are listed in Table 6.

Table 5: Learning rate and regularization hyperparameter for Mistral 7B fine-tuning on GLUE. Scaled
Reg is a hyperparameter introduced by Zhang and Pilanci (2024).

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI

iLoRA LR 4.00E-06 1.00E-04 5.00E-05 5.00E-05 5.00E-06 8.00E-06 7.00E-05 1.00E-04 5.00E-05
iLoRA λ 1 1 10 0.1 100 0.01 0.01 0.01 100

πLoRA LR 4.00E-06 6.00E-05 7.00E-05 8.00E-05 4.00E-06 8.00E-06 7.00E-05 8.00E-05 3.00E-05
πLoRA λ 0.01 0.001 0.01 10 100 10 10 1 100

πLoRA Scaled Reg 0.001 0.01 1000 0.01 0.0001 0.001 10 0.1 1

Table 6: Other Hyperparameters for Mistral 7B Fine-Tuning on GLUE.

Method iLoRA& πLoRA

Train batch size 8
Seed (default) 42

AdamW (β1, β2) (0.9, 0.999)
AdamW ϵ 1e−6

LR Scheduler linear
Num Epochs 5

Warmup steps & Warmup ratios 0
Weight decay 0.01

Max grad norm 1
LoRA rank 16

LoRA α 16
LoRA dropout 0.05

C.2.2 ADDITIONAL EXPERIMENTS OF MISTRAL 7B FINE-TUNING FOR LORA+

In this section, we compare the performance of πLoRA and LoRA+ on the GLUE benchmark
tasks. Table 7 presents the experimental results. We find that πLoRA achieved the best overall
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performance across all tasks, particularly excelling in MRPC and RTE with improvements of 1.96%
and 1.45% respectively. While LoRA+ shows a slight advantage on the STS-B task, πLoRA
demonstrates more consistent gains across different tasks. On average, πLoRA improves performance
by 1.90% compared to LoRA+, confirming its effectiveness in a variety of scenarios.

Table 7: Performance Comparison between πLoRA and LoRA+ on GLUE Benchmark.

Method Rank GLUE Avg.
SST-2 MRPC CoLA QNLI RTE STS-B WNLI

LoRA 16 96.79 88.48 71.05 94.42 90.61 90.42 81.69 87.64
LoRA+ 16 96.90 88.48 70.90 95.22 90.25 92.50 80.28 87.79
πLoRA 16 97.25 90.44 71.97 95.37 91.70 92.35 88.73 89.69

C.2.3 ADDITIONAL EXPERIMENTS OF MISTRAL 7B FINE-TUNING FOR 4BIT QUANTIZATION

In the main body of the paper, we present results without applying 4-bit quantization to Mistral 7B
while in Zhang and Pilanci (2024) quantization is applied. Here, we experimentally verified that
4-bit quantization had little effect on the experimental results and the proposed methods can still
outperform the baselines. In this section, we compare the impact of using 4-bit quantization versus
not using it on iLoRA in the GLUE benchmark tasks. Table 8 presents the experimental results. We
found that 4-bit quantization has minimal impact on model performance. For iLoRA, the 4-bit version
slightly outperforms the non-quantized version in most tasks, but the differences are marginal. This
indicates that 4-bit quantization can improve memory and computational efficiency while maintaining
comparable model performance.

Table 8: Comparison of 4-bit Quantization Impact on iLoRA on GLUE Benchmark.

Method 4bit Rank GLUE Avg.
MRPC CoLA RTE STS-B WNLI

LoRA Y 16 88.48 71.05 90.61 90.42 81.69 84.45
Preconditioned LoRA Y 16 89.46 71.30 91.34 91.10 83.10 85.26

iLoRA N 16 89.71 71.90 90.98 92.25 87.32 86.43
iLoRA Y 16 90.93 72.51 92.06 92.24 85.92 86.73

C.2.4 ADDITIONAL EXPERIMENTS OF MISTRAL 7B FINE-TUNING FOR FIXED LEARNING
RATE

In this section, we provide a comprehensive comparison of LoRA, iLoRA, and variations of iLoRA
with fixed learning rate and fixed regularization hyperparameter on the GLUE benchmark tasks using
the Mistral 7B model. Table 9 presents the results of experiments comparing LoRA, iLoRA, and
iLoRA with a fixed learning rate. For the five smaller tasks (WNLI, STS-B, RTE, MRPC, and CoLA),
the learning rate was fixed at 5e−5, while for the other four tasks, it was fixed at 1e−5. We found
that the performance loss of the fixed learning rate version of iLoRA is minimal and remains highly
competitive. Additionally, Table 10 highlights the performance comparison between LoRA, iLoRA,
and iLoRA with a fixed regularization hyperparameter (λ = 0.1) across five smaller tasks (WNLI,
STS-B, RTE, MRPC, and CoLA). Here, iLoRA consistently achieves the highest scores, while
the fixed regularization version also performs strongly. These results emphasize the flexibility and
effectiveness of iLoRA in various experimental settings, confirming its robustness in both learning
rate and regularization parameter configurations.
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Table 9: Comparison of LoRA, iLoRA, and iLoRA with fixed learning rate on GLUE benchmark for
Mistral 7B.

Method Rank GLUE Avg.
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI

LoRA 16 89.86 96.79 88.48 71.05 94.42 91.24 90.61 90.42 81.69 88.28
iLoRA 16 91.59 97.13 89.71 71.90 95.20 91.43 90.98 92.25 87.32 89.72

iLoRA(Fixed LR) 16 91.17 97.02 89.71 71.90 94.86 91.37 89.89 91.84 87.32 89.45

Table 10: Comparison of LoRA, iLoRA, and iLoRA with fixed regularization Hyperparameter on
GLUE benchmark (five small tasks).

Method Rank GLUE Avg.
MRPC CoLA RTE STS-B WNLI

LoRA 16 88.48 71.05 90.61 90.42 81.69 84.45
iLoRA 16 89.71 71.90 90.98 92.25 87.32 86.43

iLoRA(Fixed λ) 16 88.97 71.90 90.61 92.04 85.92 85.89

C.3 EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS OF DIFFUSION MODEL
FINE-TUNING

C.3.1 EXPERIMENTAL DETAILS OF DIFFUSION MODEL FINE-TUNING

In diffusion model experiments, we based our work on the Mix-of-Show model (Gu et al., 2023)
repository. We followed the default settings of (Gu et al., 2023) but made modifications according to
those in Zhang and Pilanci (2024). We used Chilloutmix2 as the pre-trained model, and the rank of
LoRA was set to 4. For sampling, we chose DMP-Solver (Lu et al., 2022). For more details on the
experimental setup, please refer to (Gu et al., 2023). In the experiment described in Section 6.2, we
fixed the learning rate of the text embedding to 1× 10−3 and used different learning rates for the text
encoder and UNet. For experimental results with different LoRA parameter fusion coefficients and
various prompts, please refer to Appendix C.3.2.

C.3.2 ADDITIONAL EXPERIMENTS DIFFUSION MODEL FINE-TUNING

First, we conduct experiments to test the LoRA and iLoRA under different fusion coefficients. The
experimental setup is the same as Fig. 1, with learning rates chosen as (5e− 4, 5e− 4). Fig. 4 shows
the experimental results. The first row has a LoRA parameter fusion coefficient of 0.7, and the second
row is 1. The first two columns are results generated by LoRA, and the last two columns are results
generated by iLoRA. It can be seen that iLoRA produces higher quality images, and in some images,
LoRA ignores the keyword “eiffel tower”.

In the second experiment, we tested the results of LoRA, iLoRA, and πLoRA on a new prompt: “a
pencil sketch of ⟨Vpotter⟩”. We used the same experimental settings as in Fig. 1, only changing the
prompt. The results are shown in Fig. 5. It can be seen that iLoRA and πLoRA generate images that
are significantly better than those generated by LoRA.

2https://civitai.com/models/6424/chilloutmix
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LoRA iLoRA
Fusion

Coefficient
Image 1 Image 2 Image 1 Image 2

0.7

1

Figure 4: Comparison of images generated with LoRA and iLoRA across different fusion coefficient.
The two rows correspond to different fusion coefficients: 0.7 in the first row and 1 in the second row.
The first two columns show results from LoRA, and the last two columns show results from iLoRA.

LoRA iLoRA πLoRA
Learning Rates Image 1 Image 2 Image 1 Image 2 Image 1 Image 2

(5e-4, 5e-4)

(1e-5, 1e-4)

(5e-6, 5e-5)

Figure 5: Comparison of images generated with LoRA, iLoRA, and πLoRA across different learning
rates for the Mix-of-Show model. The three rows correspond to three different sets of learning rates
for (text encoders, U-Nets): (5e-4, 5e-4), (1e-5, 1e-4), and (5e-6, 5e-5). The first and second columns
show results from LoRA, the third and fourth columns show results from iLoRA, and the fifth and
sixth columns show results from πLoRA.
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