
Sketched Adaptive Distributed Deep Learning:
A Sharp Convergence Analysis

Zhijie Chen
Siebel School of Computing and Data Science

University of Illinois Urbana-Champaign
lucmon@illinois.edu

Qiaobo Li
Siebel School of Computing and Data Science

University of Illinois Urbana-Champaign
qiaobol2@illinois.edu

Arindam Banerjee
Siebel School of Computing and Data Science

University of Illinois Urbana-Champaign
arindamb@illinois.edu

Abstract

Combining gradient compression with adaptive optimizers is a highly desirable
goal in distributed learning, with potential benefits in both fewer communica-
tion rounds and less per-round communication. In spite of preliminary empirical
promise, certain major challenges in the convergence analysis of such methods
have stayed open: handling compression based approximation of both first and
second moments (pre-conditioner) which appear as a ratio; avoiding dependence
on the number of parameters, which is extremely large in modern deep models; and
providing high-probability guarantees instead of in-expectation, which can hide
high variance behavior. In this work, we introduce a family of Sketched Adaptive
Distributed Learning (SADL) algorithms which can use suitable unbiased gradient
sketching for compression with suitable adaptive optimization algorithms. As our
main contribution, we provide theoretical convergence guarantees of SADL algo-
rithms which addresses all of the existing challenges. In particular, our guarantees
hold with high probability, picks up only a logarithmic dependence on the number
of parameters, and the first and second moment approximation is handled precisely
yielding a dependence on the intrinsic dimension of the loss Hessian, which is
significantly smaller than the full dimensionality of deep learning models. Empiri-
cally, the SADL algorithms are shown to be competitive with and often outperform
baselines on both vision and language tasks, in both supervised fine-tuning and
training-from-scratch regimes. Further, the SADL algorithms are also competitive
with the state-of-the-art communication-efficient distributed learning algorithms
based on error feedback.

1 Introduction

Despite the recent progress in distributed deep learning (Liu et al., 2022), the cost of communication
arguably remains the main challenge. Wang et al. (2023) showed that a 20 Gbps network bandwidth
is necessary to bring the communication overhead to a suitable scale for finetuning GPT-J-6B, which
is unrealistic in distributed settings. Even with good network conditions, reduction of communication
complexity means one can train much larger models given the same communication budget.

The communication cost of vanilla distributed learning can be represented as O(dT), where d is the
ambient dimension of the parameter space, i.e., the number of parameters, and T is the number of
communication rounds for convergence. Various methods have been proposed to minimize T , e.g.,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

local training (Stich, 2018), large batch training (Xu et al., 2023), etc. Folklores in centralized training
regimes suggest that T heavily relies on the choice of optimizers, where adaptive methods (such as
Adam, AMSGrad, and variants) usually demonstrate faster convergence and better generalization
performance, especially in transformer-based machine learning models (Reddi et al., 2019).

Alternatively, communication costs can be reduced by being more thrifty on the communication
bits in each round, reducing the O(d) factor to O(b), b ≪ d. In modern deep learning models, the
O(d) term is the dominant factor in the communication complexity since d≫ T in modern models.
Considerable efforts have been devoted to design efficient gradient compression methods, which
compress a (gradient) vector of dimension d to an effective size b. Popular gradient compression
methods include quantization (Alistarh et al., 2017; Chen et al., 2023; Reisizadeh et al., 2020; Liu
et al., 2023a), sparsification (Alistarh et al., 2018; Wu et al., 2018; Rothchild et al., 2020) and
sketching (Spring et al., 2019; Jiang et al., 2024; Song et al., 2023).

While progress has been made along both of these lines (see Section A), there are certain truly unique
challenges in provably doing both gradient compression (for communication efficiency) and
adaptive optimization (for faster convergence) simultaneously. First, adaptive methods (such
as Adam (Kingma and Ba, 2014) and AMSGrad (Reddi et al., 2019)) work with a ratio of the first
moment and second moment, and gradient compression will approximate both the numerator and
denominator of such a ratio, making both numerical and statistical analysis of the ratio quite complex.
Note that this major challenge is entirely non-existent in non-adaptive methods, which form bulk of
the literature in distributed and federated learning (Rothchild et al., 2020; Shrivastava et al., 2024).
Second, there are two primary sources of noise in any such analyses: due to mini-batching in client
updates and due to stochasticity in gradient compression; and a third secondary but more complex
source of noise due to sequential dependencies in adaptive updates over iterations. While an “in-
expectation” analysis can mute some of these noises (Gorbunov et al., 2021), the algorithm may have
high variance which will lead to unstable training in practice. To avoid such issues, our focus is to
provide high-probability convergence bounds, while taking into account all three of the above sources
of noise. Third, almost all existing analysis based on gradient compression picks up an undesirable
ambient dimension d dependence in the optimization analysis. Biased compressors generally need
to handle errors from first-order terms because of the distortion in the gradient direction whereas
unbiased compressors typically have high variance which affects the second-order terms. Since
modern deep learning models have ambient dimension in hundreds of billions or even trillions, it
is important to avoid such a dependence. The existing analyses on adaptive methods with gradient
compression are quite alarming, which show that the iterations T needed for convergence can be
inversely proportional to the compression rate (Chen et al., 2022; Song et al., 2023). For constant
per-round communication bits, the bounds indicate the iteration complexity T to scale as O(d), i.e.,
linearly with the ambient dimensionality, which is prohibitively large for modern deep learning
models. Appendix A includes more challenges in the algorithmic and theoretical aspects.

In this work, we introduce a family of Sketched Adaptive Distributed Learning (SADL) algorithms
which have the flexibility of using suitable unbiased gradient sketching compressors with suitable
adaptive optimization algorithms. At a high level, SADL algorithms are analogous to previous
attempts (Tang et al., 2021; Chen et al., 2022; Wang et al., 2022a), which showed preliminary
empirical success of applying gradient compression with adaptive optimizers, and (Song et al., 2023)
which introduced the sketch-and-desketch framework to distributed learning, but comes with a sharp
convergence analysis which addresses all three of the unique challenges.

A key technical contribution of our current work is that the convergence rate of the proposed SADL
algorithms depends only logarithmically (instead of linearly) on the ambient dimension d. The
central technical challenge in addressing the dimensional dependence is to handle the entry-wise
sketching noise in both the the first moments and the second moments (preconditioners) of the
adaptive optimizers, which has been acknowledged to be non-trivial (Tang et al., 2021; Wang et al.,
2022a). Our sharper analysis yields bounds based on the intrinsic dimension (instead of the ambient
dimension d) of the loss Hessian in deep learning, i.e., the ratio of sum of absolute eigenvalues
over the largest eigenvalue. Recent observations on the Hessian spectrum of deep learning models
have demonstrated that the intrinsic dimension is significantly smaller than the ambient dimension,
by showing the eigenvalues decay sharply, with most eigenvalues being close to zero (Li et al.,
2020; Liao and Mahoney, 2021; Liu et al., 2023b), and even arguably conforming with a power-law
decay (Xie et al., 2022; Zhang et al., 2024). This specific eigenspectrum structure provides significant
advantages in the sharp analysis of sketching noise in adaptive methods. The SADL algorithms

2

Algorithm 1 Sketched Adaptive Distributed Deep Learning (SADL)
Input: Learning rate η, initial parameters x0, adaptive optimizer ADA_OPT
Output: Updated parameters xT
Initialize server moments: m0 = 0, v0 = 0, v̂0 = 0, client initial parameters: xc0,0 = x0, client
moments: mc

0 = 0, vc0 = 0, v̂c0 = 0,∀c ∈ [C];
for t = 1, 2, . . . , T do

Client Updates:
for c = 1, 2, . . . , C do

Client model synchronization: xc
t,0,m

c
t , v

c
t , v̂

c
t = ADA_OPT(xc

t−1,0,m
c
t−1, v

c
t−1, v̂

c
t−1, m̄t)

for k = 1, 2, . . . ,K do
Compute stochastic gradient gct,k−1 with respect to the parameters xct,k−1;
Perform gradient step: xct,k = xct,k−1 − ηtg

c
t,k−1;

end for
Sketch (compress) the parameter updates and send m̄c

t to server: m̄c
t = sk(xc

t,0 − xc
t,K);

end for
Server Updates:
Average sketched client updates and send m̄t back to clients: m̄t =

1
C

∑C
c=1 m̄

c
t ;

Update parameters and moments: xt,mt, vt, v̂t = ADA_OPT(xt−1,mt−1, vt−1, v̂t−1, m̄t).
end for

do not involve computing the Hessian eigenspectrum, which is only used for the convergence
analysis. Further, our results do not follow from the standard toolbox for sketching methods, such as
Johnson-Lindenstrauss (Kpotufe and Sriperumbudur, 2020), which ensures nearby vectors stay close
after sketching, but has no direct implications in an optimization setting, especially with adaptive
optimizers which will sketch both the first and second moment, and work with their ratio. Based on
such analysis, our work has the following main contributions:

(1) We introduce SADL algorithms which combine random sketching and adaptive methods. While
the preconditoner in adaptive methods morphs the shape of sketching noise, posing challenges in
leveraging the fast-decaying Hessian eigenstructure, we prove that the proposed sketching effectively
balances iteration complexity and sketching dimension b. We derive a high probability bound showing
that a sketch dimension of b = O(log d) suffices to achieve an O(1/

√
T) convergence rate depending

only on the intrinsic dimension in non-convex deep learning settings.

(2) Unlike existing works (Reddi et al., 2020; Xie et al., 2020), we provide a general convergence
analysis without assuming uniformly bounded gradient norms on either the server or client side. We
prove that SADL automatically generates bounded gradients along the entire optimization trajectory,
where the involvement of mini-batch stochasticity and multiple local training steps calls for careful
analysis on connecting the noisy local training steps with the global loss.

(3) We validate our theoretical claims with empirical evidence on deep learning models from vision
(ResNet, Vision Transformer) and language (BERT) tasks. We cover both fine-tuning and training-
from-scratch regimes. SADL in general achieves comparable performance with adaptive methods
without any gradient compression, using only 0.1% of the full dimensioanlity. Further, SADL is
competitive with the state-of-the-art algorithms based on error feedback and adaptive methods.

2 Sketched Adaptive Distributed Deep Learning

A canonical distributed learning setting involves C clients, each associated with a local data dis-
tribution Dc. The goal is to minimize the averaged empirical risk: L(x) = 1

C

∑C
c=1 Eξ∼Dc l(x, ξ),

where l is the loss function, x ∈ Rd is the parameter vector, and ξ is the data sample. We denote
Lc(x) = Eξ∼Dc l(x, ξ), c ∈ [C] as the client loss computed over the local distribution. We denote
gct,k as the mini-batch gradient over Lc(x) at global step t and local step k.

Algorithm 1 presents a generic framework of communication-efficient adaptive methods, which calls
adaptive optimizers as subroutines. We denote T as the total training rounds. At each round, after
K local SGD steps, client c sends to the server the sketched local model updates with a sketching
operator sk: Rd 7→ Rb. If b≪ d without deteriorating the performance too much, the communication

3

Algorithm 2 ADA_OPT (AMSGrad)
Input:iterate xt−1, moments mt−1, vt−1, v̂t−1 , sketched updates m̄t

Parameters:Learning rate κ, β1, β2, Small constant ϵ, Sketch size b
Output:Updated parameters xt, and moments mt, vt, v̂t
Update mt = β1 ·mt−1 + (1− β1) · desk((m̄t)1:⌊b/2⌋);
Update vt = β2 · vt−1 + (1− β2) · desk((m̄t)⌊b/2⌋:b)

2;
Update v̂t = max(v̂t−1, vt).

Update xt+1 = xt − κ√
v̂t+ϵ

·mt := xt − κV̂
−1/2
t mt.

cost per round can be reduced from O(d) to O(b). Algorithm 2 projects the compressed updates and
second moments back to the ambient dimension using a desketching operator desk: Rb 7→ Rd and
implements a single-step adaptive optimization. The server and clients call Algorithm 2 at every
epoch, i.e. communication round, to update the global model and synchronize local models. Notice
that in Algorithm 1, both the clients and the server transmit sketched vectors which results in an
overall O(bT) communication cost.
Remark 1. (Sketching Randomness) At each single round, the sketching operators sk’s are shared
among clients, via the same random seed. On the other hand, we use fresh sk’s at different rounds to
get statistical independence which helps the analysis.

We list some desired properties for sk, desk and discuss sketching methods which satisfy them.
Property 1. (Linearity). The compression operators are linear w.r.t the input vectors, i.e.
sk(
∑n

i=1 vi) =
∑n

i=1 sk(vi) and desk(
∑n

i=1 v̄i) =
∑n

i=1 desk(v̄i), ∀{vi, v̄i ∈ Rd}ni=1.

Property 2. (Unbiased Estimation). For any vector v ∈ Rd, E[desk(sk(v))] = v.
Property 3. (Bounded Vector Products). For any fixed vector v, h ∈ Rd, P(|⟨desk(sk(v)), h⟩ −
⟨v, h⟩| ≥ (log

1.5(d/δ)√
b

)∥v∥∥h∥) ≤ Θ(δ).

We denote R ∈ Rb×d as the sketching operator, and sk(v) = Rv and desk(v̄) = R⊤v̄. Different
instantiations of R constitute a rich family of sketching operators, including i.i.d. isotropic Gaus-
sian (Song et al., 2023), Subsampled Randomized Hadamard Transform (SRHT) (Lu et al., 2013),
and Count-Sketch (Charikar et al., 2002), among others. The specific bounds for these special cases
can be found in Appendices B.1, B.2, and B.3 respectively.

2.1 Convergence Analysis

We first state a set of standard assumptions commonly used in the literature of first-order stochastic
methods. We will use ∥ · ∥ to denote L2-norm throughout the work.
Assumption 1. (Bounded Global Gradients). Square norm of the gradient is uniformly bounded, i.e.,
∥∇L(x)∥2 ≤ G2

g .
Assumption 2. (Bounded Client Gradients). For every client, there exists a constant Gc ≥ 0, such
that ∥∇Lc(x)∥2 ≤ G2

c , c ∈ [C].

For simplicity, in this section we define G := max{max{Gc}Cc=1, Gg}. In Section 3, we show
that Assumptions 1 and 2 are not necessary to derive the convergence bound we present. We
assume the local stochastic mini-batch noise is sub-Gaussian, which is widely adopted in first-order
optimization (Harvey et al., 2019; Mou et al., 2020).
Assumption 3. (Sub-Gaussian Noise). The stochastic noise ∥∇Lc(x)− gc(x)∥ at each client is a
σ-sub-Gaussian random variable, i.e. P(∥∇Lc(x)− gc(x)∥ ≥ t) ≤ 2 exp(−t2/σ2), for all t ≥ 0.

Besides, we present assumptions on the Hessian eigenspectrum {λi, vi}di=1 of the loss function L.
Assumption 4. (Hessian Matrix Eigenspectrum) The smoothness of the client loss function Li, i.e.
the largest eigenvalue of the loss Hessian HLi is bounded by L.

The local smoothness assumption is commonly used in distributed learning settings (Safaryan et al.,
2021; Fatkhullin et al., 2024) and holds for general deep learning losses. It can be directly derived
from Assumption 4 that the global loss L = 1

C

∑C
c=1 Lc is L−smooth.

4

Definition 2.1. (Intrinsic Dimension) Let {λi}di=1 be the eigenspectrum of the loss Hessian HL. The
intrinsic dimension is defined as I =

∑d
i=1 |λi|/maxi |λi|.

The definition of intrinsic dimension is analogous to that in the classical literature (Ipsen and Saibaba,
2024), but we take the absolute values of eigenvalues. Intuitively, the Hessian matrix possesses an
anisotropic structure in different directions, whereas the conventional smoothness is a pessimistic
estimation of the loss curvature. A large volume of recent empirical literature has identified that
the intrinsic dimension of the Hessian in deep learning losses is significantly smaller than the
ambient dimensionality d. (Ghorbani et al., 2019; Li et al., 2020; Liu et al., 2023b) show the
eigenspectrum enjoys a sharp decay in magnitude. (Sagun et al., 2016; Liao and Mahoney, 2021)
show the eigenspectrum have bulk parts concentrate at zero. (Xie et al., 2022; Zhang et al., 2024)
further show the eigenvalues satisfy a power-law distribution, and in this case the intrinsic dimension
is a constant independent of d. We quote their plots in Appendix E for completeness. Our empirical
verification under the setting of distributed learning can also be found in Fig. 5 in Appendix E.
Remark 2. (Three types of noises in Algorithm 1). One of the key technical contributions of this
work is to theoretically balance the noises from different sources. The noise in the training process
stems from the local mini-batch training, the compression error due to sketching, and the aggregate
noise over the training horizon. The mini-batch stochastic error is σ-sub-Gaussian by Assumption 3.
The sketching error depends on the specific choice of sketching methods, but is always subject to
the bounded property on vector products (Property 3). We will denote the ‘bad probability’ from
mini-batch and sketch respectively as δg and δ, which are usually viewed as a tiny value (10−5) in high
probability bounds. These two kinds of noise are unbiased, but leads to sequential dependencies. In
the analysis (Appendix C), we will show that the aggregated noise due to the sequential dependencies
form a martingale, which will be used to derive high-probability concentration bounds. We denote ν
as the scale of the ψ2-norm (Vershynin, 2018) in the martingale.

Now we characterize the convergence of Algorithm 1 in Theorem 2.2. All technical proofs for this
section are in Appendix C and we provide an outline of the proof techniques in Section 2.2.

Theorem 2.2. (Informal version of Theorem C.1) Suppose the sequence of iterates {xt}Tt=1 is
generated by Algorithm 1 with a constant learning rate ηt ≡ η. Under Assumptions 1-4, for any T
and ϵ > 0, with probability 1−Θ(δ),

κηK

ηKG
√

J(b, d) + ϵ

T∑
t=1

∥∇L(xt)∥2 ≤L(z1) + η
√
TO(1 + J(b, d)) + η2TO(1 + I(1 + J(b, d))2),

where J(b, d) = log1.5(CKd2T 2/δ)√
b

, and z1 = 1
1−β1

x1 − β1

1−β1
x0.

Remark 3. (Nature of High Probability) While our convergence result holds with high probability,
the informal version in Theorem 2.2 hides the dependencies on the three types of noise (Remark 2).
The dependencies follow exponential concentrations, and are shown in Corollaries 1 and 2.
Remark 4. (Rate of Convergence) The rate of convergence may be hard to read off from Theorem 2.2.
At a high level, we show in Corollaries 1 and 2 that the rate is O(1/T) when T ≤ O(1/ϵ2) and is
O(1/

√
T) when T ≥ Ω(1/ϵ2). The specific results provide additional details.

A non-asymptotic convergence bound of training with practical decaying learning rates can be found
in Theorem C.4 in appendix. Given that we only introduce logarithmic factors on d in the iteration
complexity and the per-round communication b is a constant, the total communication bits of training
a deep model till convergence is also logarithmic w.r.t d.

To better understand Theorem 2.2, we can investigate different regimes based on the training stages.
For large T , where T ≥ Ω(1/ϵ2), we can achieve an O(1/

√
T) convergence rate in Corollary 1.

Corollary 1. (Asymptotic Regime of Theorem 2.2) With the same condition as in Theorem 2.2 and
a constant learning rate ηt ≡ 1

K
√
T

, for sufficiently large T ≥ G2

ϵ2 , with probability 1 − Θ(δ) −
O(exp(−Ω(ν2)))− δg ,

1

T

T∑
t=1

∥∇L(xt)∥2 ≤ 4√
T
(1 + J2)

2 4κIL+G

(1− β1)2
G2

ϵ
+

2L(z1)ϵ
κ
√
T

+
2

ϵ

LG2

√
T

+ ν
2√
T
(J2G

2 + σ log
1
2 (

2T

δg
)),

where δ, δg and ν correspond to the three noise types (Remark 2), and J2 := log1.5(CKdT 2/δ)√
b

.

5

More interestingly, when T is relatively small, i.e., T ≤ O(1/ϵ2), we can observe that the coefficient
of ∥∇L(xt)∥2 on the left hand side in Theorem 2.2 and C.4 is approximately a constant, given that ϵ
is relatively small. Therefore, SADL can achieve an O(1/T) convergence for small T , which yields
faster convergence rate than non-adaptive methods.
Corollary 2. (Near-initialization Regime of Theorem 2.2) With the same condition as in Thereom 2.2
and a constant learning rate ηt ≡ 1

K
√
T

, set b ≥ log3(CKd2T 2/δ) and constant J3 >
√
2G, then

for any T ≤ J3−
√
2G

ϵ2 , with probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

1

J3T

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1)ϵ
κT

+
1

ϵ

LG2

T
+

ν

T
(G2 + σ log

1
2 (

2T

δg
)) +

8

T

4κIL+G

(1− β1)2
G2

ϵ
,

where δ, δg and ν correspond to the three noise types (Remark 2).

2.2 Technical Details and Proof Sketch

In this section, we provide a proof sketch behind the main results. We focus on the proof of
Theorem 2.2, and the proof of Theorem C.4 shares the main structure. The proof contains several
critical components, which are unique to adaptive methods. We adopt AMSGrad (Alg. 2) as the
server optimizer and it would be straightforward to extend the analysis to other adaptive methods.

First, we introduce the descent lemma for AMSGrad. For conciseness, we denote the precondtioner
matrix diag((

√
v̂t + ϵ)2) as V̂t. Define an auxiliary variable zt = xt +

β1

1−β1
(xt − xt−1). The

trajectory of L over {zt}Tt=1 can be tracked by the following lemma.
Lemma 2.3. (Informal version of Lemma C.2) For any step t ∈ [T],

L(zt+1) ≲L(zt)−
κη

C

C∑
c=1

K∑
k=1

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rtg
c
t,k + (zt − xt)

⊤HL(ẑt)(zt+1 − zt),

where HL(ẑt) is the loss Hessian at some ẑt within the element-wise interval of [xt, zt], and ≲ omits
the less important terms.

Our objective henceforth is to bound the first-order descent term and the second-order quadratic term
on the right hand side respectively.

Second-Order Quadratic Term. Denote {λj , vj}dj=1 as the eigen-pairs of HL(ẑt). The quadratic
term can be written as (zt − xt)

⊤HL(ẑt)(zt+1 − zt) =
∑d

j=1 λj⟨zt+1 − zt, vj⟩⟨zt − xt, vj⟩. The inner
product term is a projection of the updates onto anisotropic bases. Since zt+1 − zt and zt − xt can be
expressed by xt+1 − xt and xt − xt−1, we can bound the quadratic term using the following lemma.

Lemma 2.4. For any t ∈ [T], |⟨xt−xt−1, vj⟩| ≤ κη(1+ log1.5(CKtd/δ)√
b

)KG
ϵ , with probability 1− δ.

A proof of a generalized version of this statement is deferred to the appendix. Induction method is used
to address the temporal dependence introduced by the momentum factor in AMSGrad. Combining
Lemma 2.4 with Assumption 4 yields a dimension-free bound on the second-order quadratic term.
Remark 5. A straightforward application of smoothness to the second-order term yields a quadratic
term ∥R⊤Rg∥2, which is linearly proportional to d in scale (Rothchild et al., 2020; Song et al.,
2023). We avoid this dimension dependence by combining Property 3 of sketching and the intrinsic
dimension of the deep learning Hessian matrix.

First-Order Descent Term. The first-order term in the descent lemma can be decomposed into three
components, which we will handle separately:

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rtg
c
t,k =∇L(xt)

⊤V̂
−1/2
t−1 ∇Lc(xt)︸ ︷︷ ︸
Dc

1

+∇L(xt)
⊤V̂

−1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xc

t,k))︸ ︷︷ ︸
Dc

2

+∇L(xt)
⊤V̂

−1/2
t−1 (∇Lc(xc

t,k)−∇Lc(xt))︸ ︷︷ ︸
Dc

3

.

First, Dc
3 can be reduced to a second-order term by Taylor expansion on ∇L. Since this term does

not involve any stochasticity from random sketching, we can directly upper bound Dc
3 by Cauchy-

Schwartz. Next, since 1
C

∑C
c=1 ∇Lc(xt) = ∇L(xt), Dc

1 can be viewed as a scaled squared gradient
norm. Applying element-wise high probability bound on random sketching yields a lower bound.

6

0 100 200 300 400 500
Epoch

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

1.6 × 105 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

0 100 200 300 400 500
Epoch

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

1.6 × 106 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS
1bit-Adam
PAQ

0 100 200 300 400 500
Epoch

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

1.6 × 104

1.6 × 105

1.6 × 106

1.6 × 107

1.6 × 108

0 100 200 300 400 500
Epoch

0%

20%

40%

60%

Tr
ai

n
Er

ro
r

1.6 × 104

1.6 × 105

1.6 × 106

1.6 × 107

Figure 1: Model performance on CIFAR-10 with ResNet of 42M parameters. The plot starts from the
10th epoch for better demonstration; First (Second): Validation errors under compression rate 0.1%
(1%). Third: Validation error on SADL with different communication costs. The legend 1.6× 108

represents training in the ambient dimension without sketching. Fourth: Training error on SADL with
different communication costs. Higher compression rate improves the convergence rate in training
and the peak validation error is achieved when the compression rate is 0.1%.

Lemma 2.5. For V̂t−1 generated by Algorithm 1 (SADL), with probability 1− δ,

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥M−1∥∇L(xt)∥2,

where M =
√

1 + log1.5(CKtd2)√
b

ηKG+ ϵ.

Martingale for zero-centered noise. Dc
2 contains a zero-centered noise termR⊤

t Rtg
c
t,k−∇Lc(xct,k),

where the randomness is over Rt and the mini-batch noise at round t. Although xct,k has temporal
dependence, the fresh noise due to mini-batching and sketching-desketching at round t is independent
of the randomness in the previous iterations. Therefore, the random process defined by the aggregation
of Dc

2 forms a martingale. The martingale difference can be bounded with high probability under our
proposed sketching method. By adapting Azuma’s inequality on a sub-Gaussian martingale, we have

Lemma 2.6. With probability 1−O(exp(−Ω(ν2)))− δ − δg ,

T∑
t=1

∣∣∣∣∣ 1C
C∑

c=1

K∑
k=1

∇L(xt)
⊤V̂

−1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xc

t,k))

∣∣∣∣∣ ≤ νK
√
T (

log1.5(CKTd/δ)√
b

G2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
)).

Finally, applying union bounds to these parts and telescoping the descent lemma leads to Theorem 2.2.
Remark 6. While the intrinsic dimension plays a key role in avoiding the ambient dimension
dependence in our convergence bound, it alone is insufficient to address all the technical challenges
in sketched adaptive distributed learning. In fact, intrinsic dimension only addresses the second-order
term in optimization. The analysis of sufficient descent (Lemma 2.3 and 2.5) and bounded aggregate
sketching noise (Lemma 2.6) manages to address the noise, the norm of which is in-expectation linear
to d, in the first-order term.

3 Bounded Gradient Norm Along Optimization Trajectory

Although the gradient norm assumptions (Assumption 1 and 2) are standard in adaptive optimiza-
tion (Reddi et al., 2020) and distributed learning research (Basu et al., 2019; Xie et al., 2020), in this
section, we show that the two assumptions are not necessary to derive the convergence bound.

Our main idea is to show the gradient norm is bounded over the entire optimization path with high
probability. We rely on the following lemma to demonstrate the boundedness.
Lemma 3.1. For any L-smooth function L(x) with optimal value L∗ ≥ 0, ∥∇L(x)∥2 ≤ 2LL(x).

As stated in Lemma 3.1, for any smooth function, the gradient norm can be bounded by the function
value at the specific iterate. That being said, we can derive an upper bound on the gradient norm
along the optimization trajectory via bounding the function values over the iterates. However, the
technical difficulty of the analysis lies in the involvement of the local training steps, which might be
noisy and the relation of which with the global iterate is unclear.

Our analysis can be divided into two steps: 1) We first relate the averaged local gradient norm to
the global function value based on the local smoothness. Notice that this step does not require any
additional assumptions, such as the deviation between local and global function values; 2) We apply

7

10 15 20 25 30 35 40
Epoch

2%

3%

4%

5%

6%

7%

Va
lid

at
io

n
Er

ro
r

3 × 105 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA

10 15 20 25 30 35 40
Epoch

1%

2%

3%

4%

5%

Va
lid

at
io

n
Er

ro
r

3 × 106 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS
1bit-Adam
PAQ

10 15 20 25 30 35 40
Epoch

1%

1%

2%

2%

2%

2%

Va
lid

at
io

n
Er

ro
r

3 × 107 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

Figure 2: Validation Error on CIFAR-10. We finetune a ViT-base model (with 86M parameters). 1
bit-Adam has comparable communication cost with 3× 106 Bytes/epoch. SADL shows competitive
performance under all communication budgets.

the induction method to show the global loss is contained in the neighborhood of the function value
at initialization, and the bound of the gradient norm follows immediately by applying Lemma 3.1.

The following lemma shows how the local gradient norm can be related to the global loss at iterate
xt, which will be a key component in the following analysis.

Lemma 3.2. Under Assumption 3, Let η ≤ 1
2L

√
K

. The local gradients as of k ≤ K can be bounded
with probability 1− CKδc − CK exp(−∆2/σ2) by

1

C

C∑
c=1

∥∇Lc(xc
t,τ)∥ ≤ 2

√
L
√

L(xt) + 2

√
2∆2 ln

2

δc
+∆.

Next, we show the global loss is contained in the neighborhood of the function value at initialization.

With a slight abuse of notation, we define a constant G := max{2∆2(1 +
√

2 ln 2CK
δc

)2, Õ(1)/
√
b+

M} where the full form can be found in (7) in Appendix D and the following lemma holds.
Lemma 3.3. We can derive an upper bound on L(zT) with high probability,

L(zT) ≤ κη
√
TM1G+ κη

√
TM2

√
G+M3 +

T−1∑
t=1

(κη2M4G
3/2 + κη2M5G+ κη2M6

√
G+ κ2η2M7G),

where {Mi}7i=1 are constants independent of κ, η and G, defined in Appendix D.

With the closeness of zT and xT , we can show L(xT) ≤ G
2L under appropriate choice of κ and η,

and it is sufficient to ensure the gradient norm is bounded over the entire optimization path, which
directly leads to the following convergence guarantee. The full proof can be found in Appendix D.

Theorem 3.4. Let η = η0√
T

subject to η0 ≤ min{ ϵ
6
√
L
(1 + log1.5(CKTd2/δ)√

b
)−1,

√
T

2L
√
K
} and

κ = 1√
G

. Then under Assumption 3 and 4, with probability 1 − T exp(−Ω(ν2)) − TCKδc −
TCK exp(−∆2/σ2)− Tδ, the gradient on the iterates xt generated by Algorithm 1 are bounded by
G, i.e. ∥∇L(xt)∥2 ≤ G. Consequently, the averaged gradient converges with rate O(1/

√
T) by

1

T

T∑
t=1

∥∇L(xt)∥2 ≤ G

2κη0L2
√
T

(ηKM8 + ϵ) ,

where M8 :=
√
1 + log1.5(CKd2T 2/δ)√

b
(
√
2G+ 2∆(1 +

√
2 ln 2

δc
)).

4 Empirical Studies

In this section, we instantiate the algorithm framework of SADL to demonstrate the effect of sketching
in common distributed deep learning settings.

Experimental Configurations. We adopt three experimental settings, from vision to language
tasks. For the vision task, we train a ResNet101 (Wu and He, 2018) with a total of 42M parameters
from scratch and finetune a ViT-Base (Dosovitskiy et al., 2020) with 86M parameters on CIFAR-
10 (Krizhevsky et al., 2009). For the language task, we adopt SST2, a text classification task, from

8

5 10 15 20 25 30
Epoch

10%

15%

20%

25%

30%

Va
lid

at
io

n
Er

ro
r

8 × 105 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA

5 10 15 20 25 30
Epoch

10%

20%

30%

40%

50%

Va
lid

at
io

n
Er

ro
r

8 × 106 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS
1bit-Adam
PAQ

5 10 15 20 25 30
Epoch

10%

15%

20%

25%

30%

Va
lid

at
io

n
Er

ro
r

8 × 104

8 × 105

8 × 106

4 × 108

Figure 3: Validation Error on SST2 (GLUE) with BERT of 100M parameters. Left: compression rate
0.2%; Middle: 2%; Right: SADL with communication costs {8× 104, 8× 105, 8× 106, 4× 108}
Bytes/epoch. The legend 4× 108 represents training in the ambient dimension without sketching.
Higher compression rate improves the convergence rate and all compression rates achieve comparable
test errors at the end of training.

the GLUE benchmark (Wang et al., 2018). We train a BERT model (Devlin, 2018) with 100M
parameters. For all experiments we split the training dataset uniformly over 5 clients. Our baselines
include FetchSGD (Rothchild et al., 2020), MARINA (Gorbunov et al., 2021), CocktailSGD (Wang
et al., 2023), CDAdam (Wang et al., 2022a), 1 bit-Adam (Tang et al., 2021), FedCAMS (Wang et al.,
2022b) and FedPAQ (Reisizadeh et al., 2020). A comparison of the theoretical guarantees of the
baselines can be found in Table 12 in the Appendix. We define the compression rate as the ratio
between the transmission size and the full model size (both in bytes). Specifically, for SADL, the
compression rate is b/d, i.e. the ratio between sketch size and full dimensionality.

In each set of experiments, we compare SADL and baseline algorithms under compression rates
of 0.1% and 1% respectively. For fair comparison, All algorithms, including SADL, use Adam as
the server optimizer when applicable. SADL adopts SRHT as the sketching algorithm. Notice that
most existing works only demonstrate the performance under up to 1% compression rate, while our
work further pushes the limit of compression to 0.1%. We will show SADL’s highly competitive
performance in this extreme case, where some baselines fall short.

Sharp-Decaying Hessian Eigenspectrum. Our theoretical result builds upon the notion of intrinsic
dimension. While existing research has repeatedly shown supporting evidence on the sharp-decaying
eigenspectrum, we also provide a verification in distributed deep learning in Fig. 5 in the Appendix.

Convergence Results. We present the empirical performance of SADL under three different tasks
and report the mean values across 3 independent runs, with sources of randomness including client
data partitioning, data shuffling, and sketching. The statistical significance analysis and the hyper-
parameter budgets can be found in Appendix E. Fig. 1 shows the error curves on the validation
set of CIFAR-10 when training ResNet(40M) with communication budget in {1.6 × 105, 1.6 ×
106} bytes/epoch, representing 0.1% and 1% compression rate respectively. For SADL, the two
compression rates are achieved with sketch size b ∈ {4× 104, 4× 105}. The compression rate of
1bit-Adam and FedPAQ is 3%, and are compared with other baselines with compression rate 1%.
We can observe that under both communication budgets, SADL outperforms other optimizers by a
significant margin. Further, we compare the model performance of SADL with different sketch sizes
and find that in this experimental setting, the validation error is not monotonic with the sketch size
and reaches the peak value when b = 4× 104 (i.e. compression rate 0.1%). On the other hand, the
training error, which better reflects the convergence speed, is strictly monotonic with sketch sizes –
larger sketch size leads to faster convergence and agrees with our theory. The discrepancy between the
two rates suggests that sketching methods may implicitly improve the model generalization ability.

Similar phenomenon is observed in the language task. Fig. 3 shows the validation errors of training
SST2 with BERT (100M parameters). The compression rates are selected from {0.2%, 2%}. Fig. 3
includes baseline methods which achieve comparable performance. The full plot including all
baselines is presented in Fig. 7 in the appendix. We observe SADL converges faster and achieves
slightly better validation performance across communication budgets. In Fig. 3, we further compare
SADL with different compression rates from {0.02%, 0.2%, 2%} and distributed adaptive method
without sketching. Remarkably, 1) SADL converges faster with higher compression rates; 2) Under
compression rate 0.2%, SADL achieves almost the same performance as the original unsketched
version; 3) Given that the ambient dimension is 100M, it is thrilling to see under an extremely low
compression rate (0.02%), SADL still achieves comparable performance as trained in the ambient
dimension. We also present results from finetuning a ViT-Base model (80M parameters) in Fig. 2.

9

Table 1: Ablation Study of SADL on the ResNet experiment with communication costs {1.6 ×
105, 1.6× 106} Bytes/epoch. Validation errors of the last communication round are displayed. The
comparison is across different combinations of server optimizers {Adam. AMSGrad} and sketching
algorithm {SRHT, CountSketch}. Adam + SRHT is the recommended combination in practice.

1.6× 105 Bytes/epoch 1.6× 106 Bytes/epoch
SRHT CountSketch SRHT CountSketch

Adam 17.0% 23.8% 16.7% 23.6%
AMSGrad 18.1% 25.1% 17.0% 24.7%

The compression rates are selected from {0.1%, 1%, 10%}. The full plot can be found in Fig. 6 in
the appendix. We observe that SADL is advantageous especially under lower compression rates.
Remarkably, CocktailSGD achieves the best validation error under compression rates 1% and 10%,
while falling short in 0.1%. SADL has a consistent performance across all communication budgets.

Performance under Extremely Low Communication. We experiment with extremely low com-
pression rates to show the theoretical logarithmic dependence can be empirically grounded. The
experiments are conducted under the same setting as Figure 1 and 3 respectively. We adopt com-
pression rates from 0.001% to 1% where the lowest amounts to b = 400 in the ResNet experiment
and b = 2000 in the SST-2 task. We present the validation errors along the training process in
Figure 8 in Appendix E. We observe that although the validation accuracies converge to distinct
values, SADL converges under all sketch sizes. More interestingly, different sketch sizes achieve
similar convergence speed. Even under extremely tiny sketch sizes, SADL converges in the first 100
(25 resp.) epochs in CIFAR-10 (SST2 resp.) task. This observation aligns with our theoretical results
on the logarithmic dependence on d in the convergence rate.

Ablation Studies. SADL naturally supports a custom choice of server optimizers and sketching
algorithms in practice. In the previous experiments, we choose Adam as the server optimizer and
SRHT as the sketching algorithm. Since the mainstream adaptive optimizers share similar designs in
utilizing momentum and preconditioners, the theory we developed can be easily extended to Adam.
The theoretical guarantees can also be seamlessly adapted to other sketching algorithms. We extend
our experimental results to the combination of [Adam, AMSGrad] × [SRHT, CountSketch]. Table 1
presents the validation errors during the last communication round.

Regarding the choice of server optimizer, Adam achieves slightly better performance than AMSGrad.
Regarding the choice of sketching methods, SRHT consistently outperforms CountSketch, while the
latter is still competitive with other baseline methods in Fig. 1. This observation aligns with the error
bound of CountSketch (Lemma B.3), which differs by a 1/

√
b factor with SRHT (Lemma B.1).

5 Conclusion

In this paper, we investigated sketched adaptive methods for distributed learning. While the motivation
behind combining sketching and adaptive methods is clear, there is limited understanding on its
empirical success. We show an exponential improvement in the communication cost from O(d) to
O(log d), i.e., logarithmic in the number of parameters. The improvement is especially important
for modern deep learning models with large number of parameters. Our analysis introduces a novel
technique that handles three sources of noise and adaptive optimization, both of which pose key
challenges in applying sketching methods to communication-efficient adaptive distributed deep
learning. We empirically show that the proposed SADL consistently outperforms the existing
baselines, meaning our method is practical, while having strong theoretical guarantees.

Acknowledgment

The work was supported by the National Science Foundation (NSF) through awards IIS 21-31335,
OAC 21-30835, DBI 20-21898, as well as a C3.ai research award. Compute support for the work was
provided by the National Center for Supercomputing Applications (NCSA) and the Illinois Campus
Cluster Program (ICCP).

10

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). Qsgd: Communication-

efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 30.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat, S., and Renggli, C. (2018). The
convergence of sparsified gradient methods. Advances in Neural Information Processing Systems,
31.

Basu, D., Data, D., Karakus, C., and Diggavi, S. (2019). Qsparse-local-sgd: Distributed sgd with
quantization, sparsification and local computations. Advances in Neural Information Processing
Systems, 32.

Beznosikov, A., Horvath, S., Richtarik, P., and Safaryan, M. (2023). On biased compression for
distributed learning. Journal of Machine Learning Research, 24(276):1–50.

Charikar, M., Chen, K., and Farach-Colton, M. (2002). Finding frequent items in data streams. In
International Colloquium on Automata, Languages, and Programming, pages 693–703. Springer.

Chen, C., Shen, L., Liu, W., and Luo, Z.-Q. (2022). Efficient-adam: Communication-efficient
distributed adam with complexity analysis. arXiv preprint arXiv:2205.14473.

Chen, G., Xie, K., Tu, Y., Song, T., Xu, Y., Hu, J., and Xin, L. (2023). Nqfl: Nonuniform quantization
for communication efficient federated learning. IEEE Communications Letters.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929.

Fatkhullin, I., Tyurin, A., and Richtárik, P. (2024). Momentum provably improves error feedback!
Advances in Neural Information Processing Systems, 36.

Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net optimization via
hessian eigenvalue density. In International Conference on Machine Learning, pages 2232–2241.
PMLR.

Gorbunov, E., Burlachenko, K. P., Li, Z., and Richtárik, P. (2021). Marina: Faster non-convex
distributed learning with compression. In International Conference on Machine Learning, pages
3788–3798. PMLR.

Harvey, N. J., Liaw, C., Plan, Y., and Randhawa, S. (2019). Tight analyses for non-smooth stochastic
gradient descent. In Conference on Learning Theory, pages 1579–1613. PMLR.

Ipsen, I. C. and Saibaba, A. K. (2024). Stable rank and intrinsic dimension of real and complex
matrices. arXiv preprint arXiv:2407.21594.

Jiang, S., Sharma, P., and Joshi, G. (2024). Correlation aware sparsified mean estimation using
random projection. Advances in Neural Information Processing Systems, 36.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kpotufe, S. and Sriperumbudur, B. (2020). Gaussian sketching yields a jl lemma in rkhs. In
International Conference on Artificial Intelligence and Statistics, pages 3928–3937. PMLR.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Li, X., Gu, Q., Zhou, Y., Chen, T., and Banerjee, A. (2020). Hessian based analysis of sgd for deep
nets: Dynamics and generalization. In Proceedings of the 2020 SIAM International Conference on
Data Mining, pages 190–198. SIAM.

11

Liao, Z. and Mahoney, M. W. (2021). Hessian eigenspectra of more realistic nonlinear models.
Advances in Neural Information Processing Systems, 34:20104–20117.

Liu, H., He, F., and Cao, G. (2023a). Communication-efficient federated learning for heterogeneous
edge devices based on adaptive gradient quantization. In IEEE INFOCOM 2023-IEEE Conference
on Computer Communications, pages 1–10. IEEE.

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. (2023b). Sophia: A scalable stochastic second-order
optimizer for language model pre-training. arXiv preprint arXiv:2305.14342.

Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., and Dou, D. (2022). From distributed machine
learning to federated learning: A survey. Knowledge and Information Systems, 64(4):885–917.

Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. (2013). Faster ridge regression via the subsampled
randomized hadamard transform. Advances in neural information processing systems, 26.

Mishchenko, K., Gorbunov, E., Takac, M., and Richtarik, P. (2024). Distributed learning with
compressed gradient differences. Optimization Methods and Software, pages 1–16.

Mou, W., Li, C. J., Wainwright, M. J., Bartlett, P. L., and Jordan, M. I. (2020). On linear stochastic
approximation: Fine-grained polyak-ruppert and non-asymptotic concentration. In Conference on
learning theory, pages 2947–2997. PMLR.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konecny, J., Kumar, S., and McMahan, H. B.
(2020). Adaptive federated optimization. arXiv preprint arXiv:2003.00295.

Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., and Pedarsani, R. (2020). Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantization. In
International conference on artificial intelligence and statistics, pages 2021–2031. PMLR.

Richtárik, P., Sokolov, I., and Fatkhullin, I. (2021). Ef21: A new, simpler, theoretically better, and
practically faster error feedback. Advances in Neural Information Processing Systems, 34:4384–
4396.

Richtárik, P., Sokolov, I., Gasanov, E., Fatkhullin, I., Li, Z., and Gorbunov, E. (2022). 3pc: Three
point compressors for communication-efficient distributed training and a better theory for lazy
aggregation. In International Conference on Machine Learning, pages 18596–18648. PMLR.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I., Braverman, V., Gonzalez, J., and Arora, R.
(2020). Fetchsgd: Communication-efficient federated learning with sketching. In International
Conference on Machine Learning, pages 8253–8265. PMLR.

Safaryan, M., Islamov, R., Qian, X., and Richtárik, P. (2021). Fednl: Making newton-type methods
applicable to federated learning. arXiv preprint arXiv:2106.02969.

Sagun, L., Bottou, L., and LeCun, Y. (2016). Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Interspeech, volume 2014, pages
1058–1062. Singapore.

Shrivastava, M., Isik, B., Li, Q., Koyejo, S., and Banerjee, A. (2024). Sketching for distributed deep
learning: A sharper analysis. Advances in Neural Information Processing Systems, 37:6417–6447.

Song, Z., Wang, Y., Yu, Z., and Zhang, L. (2023). Sketching for first order method: efficient algorithm
for low-bandwidth channel and vulnerability. In International Conference on Machine Learning,
pages 32365–32417. PMLR.

Spring, R., Kyrillidis, A., Mohan, V., and Shrivastava, A. (2019). Compressing gradient optimizers
via count-sketches. In International Conference on Machine Learning, pages 5946–5955. PMLR.

12

Stich, S. U. (2018). Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767.

Szlendak, R., Tyurin, A., and Richtárik, P. (2021). Permutation compressors for provably faster
distributed nonconvex optimization. arXiv preprint arXiv:2110.03300.

Tang, H., Gan, S., Awan, A. A., Rajbhandari, S., Li, C., Lian, X., Liu, J., Zhang, C., and He, Y.
(2021). 1-bit adam: Communication efficient large-scale training with adam’s convergence speed.
In International Conference on Machine Learning, pages 10118–10129. PMLR.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018). Glue: A
multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wang, J., Lu, Y., Yuan, B., Chen, B., Liang, P., De Sa, C., Re, C., and Zhang, C. (2023). Cocktailsgd:
Fine-tuning foundation models over 500mbps networks. In International Conference on Machine
Learning, pages 36058–36076. PMLR.

Wang, Y., Lin, L., and Chen, J. (2022a). Communication-compressed adaptive gradient method for
distributed nonconvex optimization. In International Conference on Artificial Intelligence and
Statistics, pages 6292–6320. PMLR.

Wang, Y., Lin, L., and Chen, J. (2022b). Communication-efficient adaptive federated learning. In
International conference on machine learning, pages 22802–22838. PMLR.

Wu, J., Huang, W., Huang, J., and Zhang, T. (2018). Error compensated quantized sgd and its
applications to large-scale distributed optimization. In International Conference on Machine
Learning, pages 5325–5333. PMLR.

Wu, Y. and He, K. (2018). Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3–19.

Xie, C., Zheng, S., Koyejo, S., Gupta, I., Li, M., and Lin, H. (2020). Cser: Communication-efficient
sgd with error reset. Advances in Neural Information Processing Systems, 33:12593–12603.

Xie, Z., Tang, Q.-Y., Cai, Y., Sun, M., and Li, P. (2022). On the power-law hessian spectrums in deep
learning. arXiv preprint arXiv:2201.13011.

Xu, H., Zhang, W., Fei, J., Wu, Y., Xie, T., Huang, J., Xie, Y., Elhoseiny, M., and Kalnis, P. (2023).
Slamb: accelerated large batch training with sparse communication. In International Conference
on Machine Learning, pages 38801–38825. PMLR.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. (2020). Pyhessian: Neural networks through
the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pages
581–590. IEEE.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo, Z.-Q. (2024). Why transformers need adam:
A hessian perspective. arXiv preprint arXiv:2402.16788.

13

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the contributions and scopes of this work in the abstract
and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14

Justification: We point out that our main results depends on the intrinsic dimension in
Table 12.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proof are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Hyper-parameters are disclosed in the appendix.

Guidelines:

15

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are described in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The analysis of statistical significance can be found in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resource information is disclosed in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

17

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All ethic codes observed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impact is stated in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no model of high risk.
Guidelines:

• The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is well-documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing used.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM is involved.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Related Work and Key Challenges

In this section, we briefly discuss the related work especially in the context of the key challenges in
combining gradient sketching with adaptive methods. At a high level, analysis of adaptive methods
with gradient compression has to manage the error or variance due to compression for both the
first moment and second moment terms, which appear as a ratio in the algorithm. There are two
broad categories of gradient compressors: biased and unbiased. Biased compressors generally need
to handle errors from first-order terms because of the distortion in the gradient direction whereas
unbiased compressors typically have high variance which affects the second-order terms.

Unbiased Compression. Denote C as the compression operator over (gradient) vector x. The
compression error ω can be characterized by E∥C(x) − x∥ ≤ ω∥x∥. The convergence rates of
such compressed gradient methods heavily depend on ω. For the family of unbiased compressors,
ω can have linear dependence on d. For instance, L2-quantization and unbiased RandK sparsi-
fier (Beznosikov et al., 2023) achieves ω = d

b − 1. While recent works (Szlendak et al., 2021) show
that the convergence rate depends on the number of clients C, arguably in many practical settings
with modern deep learning models, the number of parameters d (hundreds of billions or more) is
much larger than the number of active clients C (millions). The usage of such unbiased compressors
effectively leads to dimension-dependent convergence rate in compressed gradient based distributed
learning methods such as MARINA (Gorbunov et al., 2021) and FedPAQ (Reisizadeh et al., 2020).
(Song et al., 2023) is an inspiring work that introduces the sketch-and-desketch framework to dis-
tributed learning. However, the convergence bound derived in (Song et al., 2023) is limited since
their communication cost scales linearly with the number of model parameters d, i.e., O(d), which is
also there in prior results using other compression algorithms.

Biased Compression. Biased gradient compressors achieve a lower variance in the compression error.
TopK and biased RandK, which are commonly-used contractive compressors, achieve ω ≤ (1− b

d).
The issue of the biased methods leading to optimization divergence even in simple cases (Beznosikov
et al., 2023) can be mitigated by introducing error feedback (EF) mechanisms (Seide et al., 2014).
However, the state-of-the-art error feedback EF21 (Richtárik et al., 2021) still suffer from distortion
error which is proportional to d

b . The dimensional dependence is inherited to the convergence rate
of CocktailSGD (Wang et al., 2023) and 3PC (Richtárik et al., 2022) that employ biased gradient
compressions. Further, most of the EF developments do not explicitly show compatibility with
adaptive methods, which involve anisotropic and nonlinear updates (Tang et al., 2021).

Communication. The use of gradient compression calls for designing adequate transmission
mechanisms. For sparsifying compressions, such as TopK and RandK, the average of sparse client
gradients is possibly dense, which increases the downlink (server-to-client) transmission overhead.
In the worst case, a plain average of the client gradients in MARINA (Gorbunov et al., 2021) leads
to bC in the number of non-zero bits. FetchSGD (Rothchild et al., 2020) mitigates the problem by
adopting an extra call of topK compressor on the server side at additional compression costs.

Additional Desiderata and Challenges. Instead of an in-expectation analysis, which can hide high
variance behavior, we want a high probability bound, which has to consider two inherent sources of
noise in such settings: stochastic mini-batch and compression, as well as the third derived source
of noise, due to the sequential dependencies of stochastic adaptive iterative updates. Further, while
assuming gradient norms to be uniformly bounded simplifies analyses, we would like the guarantees
to continue to hold without such an assumption. Finally, we want the analysis to hold when the local
clients are doing multiple steps of updates, unlike the single update common in traditional distributed
learning (Mishchenko et al., 2024; Tang et al., 2021; Wang et al., 2023).

B Lemma for Random Sketching

For completeness, we provide the following lemmas that give high probability bounds on the inner
products.

Lemma B.1. (SRHT)[Same as Lemma D.23 Song et al. (2023)] Let R ∈ Rb×d denote a subsample
randomized Hadamard transform or AMS sketching matrix. Then for any fixed vector h ∈ R and any

21

fixed vector g ∈ R the following properties hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log1.5(d/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Lemma B.2. (Gaussian)[Same as Lemma D.24 Song et al. (2023)] Let R ∈ Rb×d denote a random
Gaussian matrix. Then for any fixed vector h ∈ R and any fixed vector g ∈ R the following properties
hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log1.5(d/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Lemma B.3. (Count-Sketch)[Same as Lemma D.25 Song et al. (2023)] Let R ∈ Rb×d denote a
count-sketch matrix. Then for any fixed vector h ∈ R and any fixed vector g ∈ R the following
properties hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log(1/δ)∥g∥2∥h∥2

]
≤ Θ(δ).

C Proof of Main Results

Theorem C.1. Suppose the sequence of iterates {xt}Tt=1 is generated by Algorithm 1 (SADL) with
a constant learning rate ηt ≡ η. Under Assumptions 1-4, for any T and ϵ > 0, with probability
1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

κηJ1K

T∑
t=1

∥∇L(xt)∥2 ≤L(z1) +
1

ϵ
κη2LK2G2T + νκηK

√
T (

log1.5(CKTd/δ)√
b

G2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
))

+ η2κT (1 +
log1.5(CKdT 2/δ)√

b
)2
8κILK2 + 2G

(1− β1)2
G2

ϵ2
,

where δ, δg , and ν are the randomness of sketching, sub-Gaussian noise, and martingales respectively,

and J1 :=
(√

1 + log1.5(CKd2T 2/δ)√
b

ηKG+ ϵ
)−1

.

Remark 7. (Dependence on K) The convergence bound in Theorem C.1 has a dependence on K.
The primary focus of this work is to reduce the communication cost in FL algorithms, where the cost
only depends on T and sketching dimension b. Therefore, we view K as a constant throughout the
work. As we will show in Corollaries 1 and 2, if we set step-size η as O(1/K

√
T), which is the same

as Reddi et al. (2020), the dependence on K in the bound can be eliminated.

C.1 Proof of Lemma C.2

Let

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1
1− β1

xt−1.

22

Then, the update on zt can be expressed as

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

= − 1

1− β1
κV̂t

−1/2
·mt +

β1
1− β1

κ ˆVt−1
−1/2

·mt−1

= − 1

1− β1
κV̂t

−1/2
· (β1mt−1 + (1− β1) ·R⊤

t m̄t) +
β1

1− β1
κV̂

−1/2
t−1 ·mt−1

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κ

C
V̂t

−1/2
R⊤

t

C∑
c=1

m̄c
t

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κ

C
V̂t

−1/2
R⊤

t

C∑
c=1

Rt(x
c
t,0 − xct,K)

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κη

C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

By Taylor expansion, we have

L(zt+1) = L(zt) +∇L(zt)⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

= L(zt) +∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).

(1)

Bounding the first-order term

∇L(xt)⊤(zt+1 − zt)

=∇L(xt)⊤
(

β1
1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κη

C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

)

≤ β1
1− β1

∇L(xt)⊤
(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

− κη

C
∇L(xt)⊤V̂ −1/2

t−1

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

For the difference term, applying Lemma B.2 yields

η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤ηκ
C

(1 +
log1.5(CKTd/δ)√

b
)∥∇L(xt)∥∥V̂t

−1/2
− V̂

−1/2
t−1 ∥2

C∑
c=1

K∑
k=1

∥gct,k∥

Denote [·]i as the i-th element of a vector. The l2-norm

∥V̂t
−1/2

− V̂
−1/2
t−1 ∥2 = max

i

1√
v̂t−1,i + ϵ

− 1√
v̂t,i + ϵ

= max
i

√
v̂t,i −

√
v̂t−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)

= max
i

v̂t,i − v̂t−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)(

√
v̂t,i +

√
v̂t−1,i)

23

By definition, v̂t = max(v̂t−1, vt). If v̂t,i = v̂t−1,i, the RHS is 0. Otherwise, v̂t,i = vt,i.

∥V̂t
−1/2

− V̂
−1/2
t−1 ∥2 ≤ max

i

vt,i − vt−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)(

√
v̂t,i +

√
v̂t−1,i)

≤ max
i

(1− β2)(v̄t,i − vt−1,i)

ϵ2
√

(1− β2)v̄t,i

≤ max
i

√
1− β2
ϵ2

√
v̄t,i

=

√
1− β2
ϵ2

max
i

√√√√η2

C

C∑
c=1

[(

K∑
k=1

R⊤
t Rtgct,k)

2]i

≤
2η
√
(1− β2)

ϵ2

√
1 +

log1.5(CKtd2/δ)√
b

G.

The first inequality is from v̂t−1,i ≥ vt−1,i. The second inequality comes from v̂t,i ≥ vt,i ≥
(1 − β2)v̄t,i. The last inequality follows from applying Lemma B.2 to each dimension of gct,k.
Plugging into the bound for the difference term

η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤
2η2κ

√
(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3

The quadratic terms can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt) = (zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)),

where ĤL is a second-order Taylor remainder. So the quadratic term can be further seen as a quadratic
form over zt+1 − zt and zt − xt, denote as Q(zt+1 − zt, zt − xt). For the same reason, the term
1
2 (zt+1 − zt)

⊤ĤL(zt+1 − zt) can also be written into a quadratic form Q(zt+1 − zt, zt+1 − zt).
Putting the two terms together yields a quadratic form of Q(zt+1 − zt, zt − xt).

Overall, the descent lemma can be written as

L(zt+1)

≤L(zt) +
2η2κ

√
1− β2

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3 − κη

C
∇L(xt)⊤V̂ −1/2

t−1

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

+ (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).

C.2 Proof of Lemma C.3 (Generalized version of Lemma 2.4)

Proof. We can prove by induction. For t = 0, since m0 = 0, the inequality holds. Suppose we have
for h ∈ Rd, s.t. ∥h∥ ≤ H , with probability 1−Θ((t− 1)δ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)G

24

Then by the update rule,

|m⊤
t h| = |(β1 ·mt−1 + (1− β1) ·

η

C

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k)

⊤h|

≤ β1|m⊤
t−1h|+

(1− β1)η

C

C∑
c=1

K∑
k=1

|⟨R⊤
t Rtg

c
t,k, h⟩|

≤ β1|m⊤
t−1h|+ (1− β1)(1 +

log1.5(CKd/δ)√
b

)η

K∑
k=1

∥gct,k∥2∥h∥2

≤ (1 +
log1.5(CKd/δ)√

b
)ηKGH, w.p. 1−Θ(tδ).

Let h = V̂
−1/2
t vi. Then ∥h∥2 ≤ 1/ϵ. We have

|(V̂ −1/2
t mt)

⊤vi| ≤ (1 +
log1.5(CKd/δ)√

b
)ηKG/ϵ

C.3 Proof of Lemma 2.5

We first prove the element-wise lower bound of the diagonal matrix V̂ −1/2
t−1 . Denote (V̂

−1/2
t−1)i as the

i-th element on the diagonal of V̂ −1/2
t−1 . By the update rule,

(V̂
−1/2
t−1)i ≥ (max

t−1
(
√
vt,i) + ϵ)−1 ≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηKG+ ϵ)−1, w.p. 1−Θ(δ)

where the last inequality follows by letting h as a one-hot vector hi in Lemma B.1, observing that the
elements can be transformed to an inner product form vt,i = v⊤t hi. Then the scaled gradient norm
can be lower bounded as

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥ min

i
(V̂

−1/2
t−1)i

d∑
i=1

[∇L(xt)]2i

≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηKG+ ϵ)−1∥∇L(xt)∥2, w.p. 1−Θ(dδ)

which completes the proof by applying union bounded on the dimension d.

C.4 Proof of Lemma 2.6

Since the noise is zero-centered, we view the random process of

{Yt =
t∑

τ=1

1

C

C∑
c=1

K∑
k=1

∇L(xτ)⊤V̂ −1/2
τ−1 (R⊤

τ Rτg
c
τ,k − gcτ,k)}Tt=1

as a martingale. The difference of |Yt+1 − Yt| is bounded with high probability

|Yt+1 − Yt| =
K∑

k=1

|∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k − gct,k)| ≤

log1.5(CKd/δ)√
b

KG∥V̂ −1/2
t ∇L(xt)∥2,

w.p. 1−Θ(δ)

Then by Azuma’s inequality,

P(|YT | ≥ ν

√√√√ T∑
t=1

(
log1.5(CKd/δ)√

b
KG∥V̂ −1/2

t ∇L(xt)∥2
)2

) = O(exp(−Ω(ν2))) + Tδ

25

Note that the original Azuma’s is conditioned on a uniform bound of the difference term, while our
bound here is of high probability. Hence, we need another union bound. A similar bound can be
achieved for the sub-Gaussian noise in stochastic gradient. Let

Zt =

t∑
τ=1

1

C

C∑
c=1

K∑
k=1

∇L(xτ)⊤V̂ −1/2
τ−1 (gcτ,k −∇Lc(xct,k)).

Then

P(|ZT | ≥ νK

√√√√ T∑
t=1

σ2

ϵ2
log(

2T

δg
)) = O(exp(−Ω(ν2))) + δg

Combining the two bounds by union bound completes the proof.

C.5 Proof of Theorem C.1

We first introduce the lemma

Lemma C.2. For any round t ∈ [T],

L(zt+1) ≤L(zt)−
κη

C

C∑
c=1

K∑
k=1

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rtg
c
t,k + (zt+1 − zt)

⊤HL(ẑt)(zt+1 − zt)

+
2η2κ

(1− β1)ϵ2
+ (∇L(zt)−∇L(xt))

⊤(zt+1 − zt) + (1 +
log1.5(CKtd2/δ)√

b
)3/2G3,

where HL(ẑt) is the loss Hessian at some ẑt within the element-wise interval of [xt, zt]

After applying Lemma C.2. The second order quadratic forms in the descent lemma can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt)

=(zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))

=− κ
β1

1− β1
(V̂

−1/2
t−1 mt−1)

⊤ĤL(
1

1− β1
(−κV̂ −1/2

t mt)−
β1

1− β1
(−κV̂ −1/2

t−1 mt−1))

=κ2
β1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t mt)− κ2

β2
1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t−1 mt−1),

and

(zt+1 − zt)
⊤ĤL(zt+1 − zt)

=(
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))

=
1

(1− β1)2
(xt+1 − xt)

⊤ĤL(xt+1 − xt)−
2β1

(1− β1)2
(xt+1 − xt)

⊤ĤL(xt − xt−1)

+
β2
1

(1− β1)2
(xt − xt−1)

⊤ĤL(xt − xt−1), (2)

which is essentially a quadratic form defined on V̂ −1/2
t mt and V̂ −1/2

t−1 mt−1. Hence, we provide a
generalized version of Lemma 2.4, as follows.

Lemma C.3. With probability 1−Θ(tδ), for eigenvector vi of the Hessian matrix, |(V̂ −1/2
t mt)

⊤vi| ≤
(1 + log1.5(CKd/δ)√

b
)ηKG/ϵ.

26

Note that vi can be any basis and is constant throughout the training process. Then the sum of
quadratic forms is written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt)

≤κ2 β1
(1− β1)2

(V̂
−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t mt)− κ2

β2
1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t−1 mt−1),

=κ2
β1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i)V̂

−1/2
t mt − κ2

β2
1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i)V̂

−1/2
t−1 mt−1

≤κ2 β1
(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi||(V̂ −1/2
t mt)

⊤vi|+ κ2
β2
1

(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi|2

≤κ2 2

(1− β1)2
IL(1 + log1.5(CKd/δ)√

b
)2η2K2G2/ϵ2, (3)

where the last inequality is by β1 ≤ 1 and Lemma. C.3.

First-Order Descent Term. The first-order term in the descent lemma can be decomposed into three
components, which we will handle separately.

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k =∇L(xt)⊤V̂ −1/2

t−1 ∇Lc(xt)︸ ︷︷ ︸
D1

+∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xct,k))︸ ︷︷ ︸

D2

+∇L(xt)⊤V̂ −1/2
t−1 (∇Lc(xct,k)−∇Lc(xt))︸ ︷︷ ︸

D3

.

First, D3 can be reduced to a second-order term by smoothness over L,

∇L(xt)⊤V̂ −1/2
t−1 (∇Lc(xct,k)−∇Lc(xt)) = ∇L(xt)⊤V̂ −1/2

t−1 Ĥc
L(x

c
t,k − xt)

=− η

k∑
τ=1

∇L(xt)⊤V̂ −1/2
t−1 Ĥc

Lg
c
t,τ

≥− η

ϵ
L∥∇L∥

k∑
τ=1

∥gct,τ∥ ≥ −1

ϵ
ηLKG2. (4)

Note that this term does not involve any stochasticity with regard to random sketching, which means
we can directly derive the upper bound by Cauchy-Schwartz in the last inequality.

Next observing that 1
C

∑C
c=1 ∇Lc(xt) = ∇L(xt), D1 composes a scaled squared gradient norm.

Applying element-wise high probability bound on random sketching yields the lower bound for the
scale. By Lemma 2.5, we can derive the lower bound for D1. Note that applying union bound to D1

does not introduce another T dependence, since v̂t,i is monotonically non-decreasing.

Martingale for zero-centered noise. D2 contains a zero-centered noise termR⊤
t Rtg

c
t,k−∇Lc(xct,k),

where the randomness is over Rt and the mini-batch noise at round t. Despite xct,k has temporal
dependence, the fresh noise at round t is independent of the randomness in the previous iterations.
Hence, the random process defined by the aggregation of these norm terms over time forms a
martingale. By Lemma 2.6, we can bound this term D2.

27

Finally, putting these parts together by union bound over [T] and telescoping the descent lemma leads
to Theorem C.1. To show this, with probability 1−Θ(δ),

L(zt+1)

(i)

≤L(zt)−
κη

C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k + (zt+1 − zt)

⊤HL(ẑt)(zt+1 − zt)

+
2η2κ

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3 + (∇L(zt)−∇L(xt))⊤(zt+1 − zt)

(ii)

≤L(zt)− κη(

√
1 +

log1.5(CKtd2/δ)√
b

ηKG+ ϵ)−1∥∇L(xt)∥2 +
1

ϵ
κη2LKG2

+
κη

C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xct,k))

+ κ2
2

(1− β1)2
IL(1 + log1.5(CKd/δ)√

b
)2η2K2G2/ϵ2

+
2η2κ

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3 + (zt+1 − zt)
⊤HL(ẑt)(zt+1 − zt)

(iii)

≤ L(zt)− κη(

√
1 +

log1.5(CKtd2/δ)√
b

ηKG+ ϵ)−1∥∇L(xt)∥2 +
1

ϵ
κη2LKG2

+
κη

C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xct,k))

+ κ2
2 + (1 + β1)

2

(1− β1)2
IL(1 + log1.5(CKd/δ)√

b
)2η2K2G2/ϵ2

+
2η2κ

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3

where (i) follows from Lemma. C.2. (ii) follows from (3), (4) and Lemma 2.5. (iii) follows from
(2).

Summing up with t ∈ [T] and moving the squared gradient norm term to the left hand side yields
that with probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

κη(

√
1 +

log1.5(CKd2T 2/δ)√
b

ηKG+ ϵ)−1
T∑

t=1

∥∇L(xt)∥2

≤L(z1) +
1

ϵ
κη2LKG2T + κ2η2T

2 + (1 + β1)
2

(1− β1)2
IL(1 + log1.5(CKd/δ)√

b
)2K2G2/ϵ2

+
2η2κT

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3

+

T∑
t=1

κη

C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xct,k))

(i)

≤L(z1) +
1

ϵ
κη2LKG2T + κ2η2T

2 + (1 + β1)
2

(1− β1)2
IL(1 + log1.5(CKd/δ)√

b
)2K2G2/ϵ2

+
2η2κT

(1− β1)ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2G3

+ νκηK
√
T (

log1.5(CKTd/δ)√
b

G2

ϵ
+
σ

ϵ
log

1
2 (

2T

δg
)),

where (i) follows from Lemma. 2.6. We conclude the proof by realizing β1 ≤ 1.

28

C.6 Proof of Corollary 1

In the aysmptotic regime, with sufficiently large T , the term
√
1 + log1.5(CKd2T 2/δ)√

b
ηKG approaches

ϵ, so the denominator on the LHS can be replaced with 2ϵ. Then the derivation is straightforward by
just substituting η = 1√

TK
into Theorem C.1.

C.7 Proof of Corollary 2

We first develop the convergence bound in Theorem C.1 under the condition b ≥ log3(CKd2T 2/δ),

(√
2ηKG+ ϵ

)−1

κηK

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1) +
1

ϵ
κη2LK2G2T

+ νκηK
√
T (
G2

ϵ
+
σ

ϵ
log

1
2 (

2T

δg
)) + η2κ2T

32

(1− β1)2
ILK2G2

ϵ2
,

The condition on T ≤ J3−
√
2G

ϵ2 is equivalent to
√
2ηKG+ ϵ

ηK
≤ J3,

since η = 1√
TK

. Then scaling the coefficient on the left hand side and substituting 1√
TK

for η, we
derive

1

J3T

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1)ϵ
κT

+
1

ϵ

LG2

T
+
ν

T
(G2 + σ log

1
2 (

2T

δg
)) +

κ

T

32

(1− β1)2
ILG2

ϵ
,

C.8 A non-asymptotic bound on practical learning rates

We first state a convergence bound on using practical learning rates, which decays as the optimization
procedure.

Theorem C.4. Suppose the sequence of iterates {xt}Tt=1 is generated by Algorithm 1 with a decaying
learning rate ηt = 1√

t+T0K
, where T0 = ⌈ 1

1−β2
1
⌉. Under Assumptions 1-4, for any T and ϵ > 0,

with probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

T∑
t=1

√
1 +

log1.5(CKd2T 2/δ)√
b

ηtJKG+ ϵ

−1

κηt∥∇L(xt)∥2 ≤ L(z1) +
1

ϵ
κLG2 log T

+ νκ log T (
log1.5(CKTd/δ)√

b

G2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
)) + κ2 log T (1 +

log1.5(CKdT 2/δ)√
b

)2
8

(1− β1)2
ILG2

ϵ2
,

where δ, δg , and ν are the randomness from sketching, sub-Gaussian stochastic noise and martingales
respectively, and J is a constant defined in Lemma. C.5.

Alike the analysis in the constant learning rate case, we first define auxiliary variables zt

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1
1− β1

xt−1.

Then, the update on zt can be expressed as

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κηt
C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

29

By Taylor expansion, we have

L(zt+1) = L(zt) +∇L(zt)⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

= L(zt) +∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).

Bounding the first-order term

∇L(xt)⊤(zt+1 − zt)

=∇L(xt)⊤
(

β1
1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κηt
C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

)

≤ β1
1− β1

∥∇L(xt)∥∞(∥κV̂ −1/2
t−1 ∥1,1 − ∥κV̂t

−1/2
∥1,1)∥mt−1∥∞

− ηt
C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k − κηt

C
∇L(xt)⊤V̂ −1/2

t−1

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤

(
β1

1− β1
∥mt−1∥∞ +

ηt
C
∥

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k∥∞

)
∥∇L(xt)∥∞(∥κV̂ −1/2

t−1 ∥1,1 − ∥κV̂t
−1/2

∥1,1)

− κηt
C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k.

The quadratic terms can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt) = (zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)),

where ĤL is a second-order Taylor remainder.

To bound the quadratic term, the counterpart of Lemma C.3 can be stated as
Lemma C.5. With learning rate ηt = O(1√

t+T0
), where T0 = ⌈ 1

1−β2
1
⌉. Denote J =

1−β1√
T0+1

/(1√
T0+1

− β1√
T0
). Then with probability 1−Θ(tδ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)JKGH

Proof. For t = 0, since m0 = 0, the inequality holds. Suppose we have for h ∈ Rd, s.t. ∥h∥ ≤ H ,
with probability 1−Θ((t− 1)δ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)JKGH

By the update rule,

|m⊤
t h| = |(β1 ·mt−1 + (1− β1) ·

η

C

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k)

⊤h|

≤ β1|m⊤
t−1h|+

(1− β1)η

C

C∑
c=1

K∑
k=1

|⟨R⊤
t Rtg

c
t,k, h⟩|

≤ β1|m⊤
t−1h|+ (1− β1)(1 +

log1.5(CKd/δ)√
b

)ηt

K∑
k=1

∥gct,k∥2∥h∥2

≤ (1 +
log1.5(CKd/δ)√

b
)ηtJKGH, w.p. 1−Θ(tδ).

30

By exactly the same as in Sec. C.3, we can lower bound the scaled gradient term by

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥ min

i
(V̂

−1/2
t−1)i

d∑
i=1

[∇L(xt)]2i

≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηtKG+ ϵ)−1∥∇L(xt)∥2, w.p. 1−Θ(dδ).

On the martingale of zero-centered noises, we can simply incorporate the learning rate ηt into the
martingale. Define the random process of sketching noise as

{Yt =
t∑

τ=1

ητ
C

K∑
k=1

∇L(xτ)⊤V̂ −1/2
τ−1 (R⊤

τ Rτg
c
τ,k − gcτ,k)}Tt=1

as a martingale. The difference of |Yt − Yt−1| is bounded with high probability

|Yt − Yt−1| = |ηt
C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k − gct,k)|

≤ log1.5(d/δ)√
b

ηtKG∥V̂ −1/2
t ∇L(xt)∥2, w.p. 1−Θ(CKδ).

Then by Azuma’s inequality,

P(|YT | ≥ ν

√√√√ T∑
t=1

(
log1.5(d/δ)√

b
ηtKG∥V̂ −1/2

t ∇L(xt)∥2
)2

) = O(exp(−Ω(ν2))) + Tδ (5)

A similar bound can be achieved for the sub-Gaussian noise in stochastic gradient. Let

Zt =

t∑
τ=1

ητ
C

K∑
k=1

∇L(xτ)⊤V̂ −1/2
τ−1 (gcτ,k −∇Lc(xct,k)).

Then

P(|ZT | ≥ ν

√√√√ T∑
t=1

(
ηtσ

ϵ
)2 log(

2T

δg
)) = O(exp(−Ω(ν2))) + δg

Combining the two bounds by union bound completes the proof.

D Convergence Without Bounded Gradient Norm Assumption (Proof of
Theorem 3.4)

We first prove the local client gradient Lc is bounded. The client performs stochastic gradient descent
xct,k = xt − η

∑k
τ=1 g

c
t,τ . Let η = η0√

K

Lemma D.1. Under Assumption 3, Let η ≤ 1
2L

√
K

. The local gradients as of k ≤ K can be bounded
with probability 1−Kδc −K exp(−∆2/σ2) by

∥∇Lc(xc
t,k)∥ ≤

√
2∆2 ln

2

δc
+

√
2∆2 ln

2

δc
+ 4LLc(xt) + ∆2.

Proof.

1

2L
∥∇Lc(xct,k)∥2 ≤ Lc(xct,k) ≤ Lc(xt) +

K∑
k=1

⟨∇Lc(xt), x
c
t,k − xct,k−1⟩+

L

2
∥xct,k − xct,k−1∥2

= Lc(xt)− η

K∑
k=1

⟨∇Lc(xct,k),∇Lc(xct,k) + ϵct,k⟩+
L

2
∥xct,k − xct,k−1∥2

= Lc(xt) + η

K∑
k=1

−∥∇Lc(xct,k)∥2 − η

k−1∑
τ=1

⟨∇Lc(xct,τ), ϵ
c
t,τ ⟩+ η2

k∑
τ=1

L(∥∇Lc(xct,τ)∥2 + ∥ϵct,τ∥2)

31

Take induction basis τ ≤ k − 1. We have bounded gradient ∥∇Lc(xct,τ)∥2 ≤ G with probability
1− τδc − τ exp(−∆2/σ2). The RHS can be bounded with probability 1− kδc − k exp(−∆2/σ2)
by

Lc(xt)− η

k−1∑
τ=1

⟨∇Lc(xct,τ), ϵ
c
t,τ ⟩+ η2

k−1∑
τ=1

L(∥∇Lc(xct,τ)∥2 + ∥ϵct,τ∥2)

≤Lc(xt) +
η0√
K

√
2KG∆2 ln

2

δc
+
η20L

K
K(G+∆2)

≤Lc(xt) + η0

√
2G∆2 ln

2

δc
+ η20L(G+∆2)

≤Lc(xt) +
η0
2
G+ η0∆

2 ln
2

δc
+ η20L(G+∆2) ≤ G

2L

Let η0 ≤ 1
2L , and G = (

√
2∆2 ln 2

δc
+
√
2∆2 ln 2

δc
+ 4LLc(xt) + ∆2)2, we have

RHS = Lc(xt) +
η0
2
G+ η0∆

2 ln
2

δc
+ η20L(G+∆2 ln

2

δc
)

≤ Lc(xt) +
1

4L
G+

1

2L
∆2 ln

2

δc
+

1

4L
(G+∆2 ln

2

δc
) =

G

2L

Lemma 3.2. Under Assumption 3, Let η ≤ 1
2L

√
K

. The local gradients as of k ≤ K can be bounded
with probability 1− CKδc − CK exp(−∆2/σ2) by

1

C

C∑
c=1

∥∇Lc(xc
t,τ)∥ ≤ 2

√
L
√

L(xt) + 2

√
2∆2 ln

2

δc
+∆.

Proof. Applying the fact that L(xt) = 1
C

∑C
c=1 Lc(xt) to Lemma D.1, the averaged local gradient

can be bounded by the global loss,

1

C

C∑
c=1

∥∇Lc(xc
t,τ)∥ ≤ 2

√
L
√

L(xt) + 2

√
2∆2 ln

2

δc
+∆.

The averaged local gradient norm will be a key component in the following analysis that focuses on
the global gradients.

Consider the server optimizer

L(zt+1) = L(zt) +∇L(zt)⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

= L(zt) +∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).

∇L(xt)⊤(zt+1 − zt)

=∇L(xt)⊤
(

β1
1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κη

C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

)

=
β1

1− β1
∇L(xt)⊤

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1

− κη

C
∇L(xt)⊤V̂t

−1/2
C∑

c=1

K∑
k=1

∇Lc(xt)−∇Lc(xt) +∇Lc(xct,k)−∇Lc(xct,k) + gct,k − gct,k +R⊤
t Rtg

c
t,k

32

1

C

C∑
c=1

∥∇Lc(xct,τ)∥ ≤ 1

C

C∑
c=1

√
2∆2 ln

2

δc
+

√
2∆2 ln

2

δc
+ 4LLc(xt) + ∆2

≤ 1

C

C∑
c=1

2
√
LLc(xt) + 2

√
2∆2 ln

2

δc
+∆

≤2
√
L

C

√√√√C

C∑
c=1

Lc(xt) + 2

√
2∆2 ln

2

δc
+∆

=2
√
L
√
L(xt) + 2

√
2∆2 ln

2

δc
+∆

where the third inequality follows by Cauchy-Schwarz. On the server side, we consider the induction
basis 1

2L∥∇L(xt)∥2 ≤ L(xt) ≤ G
2L , w.p. 1− texp(−Ω(ν2))− tCKδc− tCK exp(−∆2/σ2) holds

for t ≤ T − 1. The following inequality holds with probability 1−Kδc − CK exp(−∆2/σ2),

κη

C
∇L(xt)⊤V̂t

−1/2
C∑

c=1

K∑
k=1

−∇Lc(xt) +∇Lc(xct,k)

≤κη
C

∥∇L(xt)∥∥V̂t
−1/2

∥
C∑

c=1

K∑
k=1

ηL∥
k−1∑
τ=1

gct,τ∥

≤κη
2L

C
∥∇L(xt)∥∥V̂t

−1/2
∥

C∑
c=1

K∑
k=1

∥
k−1∑
τ=1

gct,τ∥

≤κη
2L

ϵC
∥∇L(xt)∥

C∑
c=1

K∑
k=1

k−1∑
τ=1

∥∇Lc(xct,τ)∥+∆

≤κη
2K2L

ϵ
∥∇L(xt)∥(2

√
L
√

L(xt) + 2

√
2∆2 ln

2

δc
+∆) +

κη2K2L

ϵ
∥∇L(xt)∥∆

≤
√
2κη2K2L2

ϵ
L(xt) +

2κη2K2L

ϵ
∥∇L(xt)∥∆(1 +

√
2 ln

2

δc
)

And for the difference term, applying Lemma B.2 yields

η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤ηκ
C

(1 +
log1.5(CKTd/δ)√

b
)∥∇L(xt)∥∥V̂t

−1/2
− V̂

−1/2
t−1 ∥2

C∑
c=1

K∑
k=1

∥gct,k∥

Denote [·]i as the i-th element of a vector. The l2-norm

∥V̂t
−1/2

− V̂
−1/2
t−1 ∥2 = max

i

1√
v̂t−1,i + ϵ

− 1√
v̂t,i + ϵ

= max
i

√
v̂t,i −

√
v̂t−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)

= max
i

v̂t,i − v̂t−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)(

√
v̂t,i +

√
v̂t−1,i)

33

By definition, v̂t = max(v̂t−1, vt). If v̂t,i = v̂t−1,i, the RHS is 0. Otherwise, v̂t,i = vt,i.

∥V̂t
−1/2

− V̂
−1/2
t−1 ∥2 ≤ max

i

vt,i − vt−1,i

(
√
v̂t−1,i + ϵ)(

√
v̂t,i + ϵ)(

√
v̂t,i +

√
v̂t−1,i)

≤ max
i

(1− β2)(v̄t,i − vt−1,i)

ϵ2
√
(1− β2)v̄t,i

≤ max
i

√
1− β2
ϵ2

√
v̄t,i

=

√
1− β2
ϵ2

max
i

√√√√η2

C

C∑
c=1

[(

K∑
k=1

R⊤
t Rtgct,k)

2]i

≤
η
√
2(1− β2)

ϵ2

√
1 +

log1.5(CKtd2/δ)√
b

(
√
2G+ 2∆(1 +

√
2 ln

2CK

δc
)).

The first inequality is from v̂t−1,i ≥ vt−1,i. The second inequality comes from v̂t,i ≥ vt,i ≥
(1 − β2)v̄t,i. The last inequality follows from applying Lemma B.2 to each dimension of gct,k.
Plugging into the bound for the difference term

η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1)

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤
η2κ
√

2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2
√
G(

√
2G+ 2∆(1 +

√
2 ln

2CK

δc
))2

Consider the sketching noise term. Since the noise is zero-centered, we view the random process of

{Yt =
t∑

τ=1

1

C

C∑
c=1

K∑
k=1

∇L(xτ)⊤V̂ −1/2
τ−1 (R⊤

τ Rτg
c
τ,k − gcτ,k)}T−1

t=1

as a martingale. The difference of |Yt+1 − Yt| is bounded with high probability

|Yt+1 − Yt| ≤
1

C

C∑
c=1

K∑
k=1

|∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k − gct,k)| ≤

K∑
k=1

log1.5(CKd/δ)√
b

∥gct,k∥∥V̂
−1/2
t−1 ∇L(xt)∥2

≤ log1.5(CKd/δ)√
b

K

ϵ

(
2
√
2LL(xt) + 2∥∇L(xt)∥∆(1 +

√
2 ln

2CK

δc
)

)
Then by Azuma’s inequality, with probability at least 1 − T exp(−Ω(ν2)) − Tδc −
TCK exp(−∆2/σ2)

|YT | ≤ν
log1.5(CKTd/δ)√

b

K

ϵ

(
T∑

t=1

(2
√
2LL(xt) + 2∥∇L(xt)∥∆(1 +

√
2 ln

2CK

δc
))2

)1/2

≤ν log
1.5(CKTd/δ)√

b

K

ϵ

√
T (

√
2G+ 2

√
G∆(1 +

√
2 ln

2CK

δc
))

where the second inequality follows from the induction basis.

We also consider the product term |(V̂ −1/2
t mt)

⊤vi|.
Lemma D.2. With probability 1−Θ(tδ), for eigenvector vi of the Hessian matrix, |(V̂ −1/2

t mt)
⊤vi| ≤

(1 + log1.5(CKd/δ)√
b

)ηKG/ϵ.

Proof. We can prove by induction. For t = 0, since m0 = 0, the inequality holds. By the induction
basis, ∥gct,k has a uniform upper bound. Suppose we have for h ∈ Rd, s.t. ∥h∥ ≤ H , with probability
1−Θ((t− 1)δ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)ηKH(
√
2G+ 2∆(1 +

√
2 ln

2CK

δc
))

34

Then by the update rule,

|m⊤
t h| = |(β1 ·mt−1 + (1− β1) ·

η

C

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k)

⊤h|

≤ β1|m⊤
t−1h|+

(1− β1)η

C

C∑
c=1

K∑
k=1

|⟨R⊤
t Rtg

c
t,k, h⟩|

≤ β1|m⊤
t−1h|+ (1− β1)(1 +

log1.5(CKd/δ)√
b

)η
1

C

C∑
c=1

K∑
k=1

∥gct,k∥2∥h∥2

≤ (1 +
log1.5(CKd/δ)√

b
)ηKH(

√
2G+ 2∆(1 +

√
2 ln

2CK

δc
)), w.p. 1−Θ(tδ).

Let h = V̂
−1/2
t vi. Then ∥h∥2 ≤ 1/ϵ. We have

|(V̂ −1/2
t mt)

⊤vi| ≤ (1 +
log1.5(CKd/δ)√

b
)ηK(

√
2G+ 2∆(1 +

√
2 ln

2CK

δc
))/ϵ

Then we consider the quadratic term, with probability 1− tδ − tCK exp(−∆2/σ2)

(∇L(zt)−∇L(xt))⊤(zt+1 − zt)

≤κ2 β1
(1− β1)2

(V̂
−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t mt)− κ2

β2
1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t−1 mt−1),

=κ2
β1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i)V̂

−1/2
t mt − κ2

β2
1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i)V̂

−1/2
t−1 mt−1

≤κ2 β1
(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi||(V̂ −1/2
t mt)

⊤vi|+ κ2
β2
1

(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi|2

≤κ2 2

(1− β1)2
IL(1 + log1.5(CKd2/δ)√

b
)2η2K2(

√
2G+ 2∆(1 +

√
2 ln

2CK

δc
))2/ϵ2

≤κ2 8

(1− β1)2
IL(1 + log1.5(CKd2/δ)√

b
)2η2K2(G+ 2∆2(1 +

√
2 ln

2CK

δc
)2)/ϵ2

where the last but one inequality is by β1 ≤ 1 and Lemma. D.2.

35

Putting all these things together, with probability 1 − T exp(−Ω(ν2)) − TCδc −
TCK exp(−∆2/σ2)− Tδ

L(xT) =L(zT) +
β1

1− β1
⟨∇L(zT), κV̂ −1/2

t mt⟩+
κ2

2

β2
1

(1− β1)2
(V̂

−1/2
t mt)

⊤HL(V̂
−1/2
t mt)

=L(z1) +
T−1∑
t=1

∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

+
β1

1− β1
⟨∇L(zT), κV̂ −1/2

t mt⟩+
κ2

2

β2
1

(1− β1)2
(V̂

−1/2
t mt)

⊤HL(V̂
−1/2
t mt)

≤2L(z1) +
8ηβ1

(1− β1)ϵ
+

T−1∑
t=1

2
√
2κη2K2LG

ϵ
+

4κη2K2L
√
G

ϵ
∆(1 +

√
2 ln

2CK

δc
)

+

T−1∑
t=1

2η2κ
√
2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2
√
G(

√
2G+ 2∆(1 +

√
2 ln

2CK

δc
))2

+ 2κην
log1.5(CKTd/δ)√

b

K

ϵ

√
T (

√
2G+ 2

√
G∆(1 +

√
2 ln

2CK

δc
)) + 2κην

√
T
K
√
G

ϵ
∆

+

T−1∑
t=1

κ2
16

(1− β1)2
IL(1 + log1.5(CKd2/δ)√

b
)2η2K2(G+ 2∆2(1 +

√
2 ln

2CK

δc
)2)/ϵ2

+

T−1∑
t=1

(
1 + β1
1− β1

)2

(1 +
log1.5(CKd2/δ)√

b
)22κ2η2K2IL(G+ 2∆2(1 +

√
2 ln

2CK

δc
)2)/ϵ2

≤2L(z1) +
8ηβ1

(1− β1)ϵ
+
κη20K

2L
√
G

ϵ
4
√
2G+

η20κ
√

2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/216G3/2

+ κη0ν
log1.5(CKTd/δ)√

b

K

ϵ
4
√
2G+ 2κη0ν

K
√
G

ϵ
∆

+ κ2
8 + (1 + β1)

2

(1− β1)2
IL(1 + log1.5(CKd2/δ)√

b
)24η20K

2G/ϵ2

≤2L(z1) +
8ηβ1

(1− β1)ϵ
+
η20K

2L

ϵ
4
√
2G+

η20
√

2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/216G

+ η0ν
log1.5(CKTd/δ)√

b

K

ϵ
4
√
2G+ 2η0ν

K

ϵ
∆

+
8 + (1 + β1)

2

(1− β1)2
IL(1 + log1.5(CKTd2/δ)√

b
)24η20K

2/ϵ2

where the second inequality holds by
√
2G ≥ 2∆(1 +

√
2 ln 2CK

δc
), the third inequality holds by

κ ≤ 1√
G

. Let

η0 ≤ ϵ

2
√
L
min{1

3
,
1− β1

2β1
√
L
}(1 + log1.5(CKTd2/δ)√

b
)−1

G ≥ max{2∆2(1 +

√
2 ln

2CK

δc
)2, 512(

η20K
2L2

ϵ
+

log1.5(CKTd/δ)√
b

η0νK

ϵ
)2 + 32L(L(z1)

(6)

+
4ηβ1

(1− β1)ϵ
+
η0νK∆

ϵ
+

8 + (1 + β1)
2

(1− β1)2
(1 +

log1.5(CKTd2/δ)√
b

)2
2η20K

2IL
ϵ2

)} (7)

suffice to yield RHS ≤ G
2L .

36

Figure 4: The power-law structure of the Hessian spectrum on LeNet. Quoted from Fig.1 (Xie et al.,
2022).

Furthermore, the dropped positive terms regarding the gradient norm is
T∑

t=1

κηK∇L(xt)⊤V̂ −1/2
t ∇L(xt)

≥κη0
√
TL

√1 +
log1.5(CKd2T 2/δ)√

b
ηK(

√
2G+ 2∆(1 +

√
2 ln

2

δc
)) + ϵ

−1

∥∇L(xt)∥2.

Rearranging the terms yields the convergence result.

Finally, we give the full forms of {Mi}7i=1,

M1 := 2
√
2ν

log1.5(CKTd/δ)√
b

K

ϵ

M2 := 4
√
2ν

log1.5(CKTd/δ)√
b

K

ϵ
2
√
G∆(1 +

√
2 ln

2CK

δc
) + 2ν

K

ϵ
∆

M3 := 2L(z1) +
8ηβ1

(1− β1)ϵ

M4 :=
4
√
2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2

M5 :=
2
√
2K2L

ϵ

M6 :=
4K2L

ϵ
∆(1 +

√
2 ln

2CK

δc
) +

4η2κ
√
2(1− β2)

ϵ2
(1 +

log1.5(CKtd2/δ)√
b

)3/2 ln
2CK

δc

M7 := 4
8 + (1 + β1)

2

(1− β1)2
I(1 + log1.5(CKd2/δ)√

b
)2K2/ϵ2

E Experimental Details and Additional Results

Aside from the experimental configurations described in the main paper, we provide additional details.
We use Cross Entropy with label smoothing as the loss function. The parameter for label smoothing
is 0.1. We use a cosine learning rate scheduler on the server optimizer, with the minimal learning
rate is 1e − 5. Client batch size is 128, and weight decay is 1e − 4. We sweep a wide range of
server learning rates over the set [10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 0.1, 0.5, 1.0, 2.0].
The algorithms share all the other hyper-parameters within each set of experiments. The only
exception is CocktailSGD since it’s unclear how to incorporate server-side momentum in their
framework. To ensure a fair comparison, we tune both the server learning rate and the client side
momentum for CocktailSGD. The selected hyperparameters are displayed in Table 2-7. We select
the hyperparameters to balance between the training stability and model performance.

Our experiments were conducted on a computing cluster with AMD EPYC 7713 64-Core Processor
and NVIDIA A100 Tensor Core GPU.

We provide the full comparison of the baseline methods on the benchmarks in Fig. 6 and Fig. 7.
Although CocktailSGD and FedCAMS can achieve comparable performance under compression rate

37

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Epoch: 5

0 50 100
Eigenvalues

10 6

10 4

10 2

100

Epoch: 10

0 100 200
Eigenvalues

10 6

10 4

10 2

100

Epoch: 15

0 50 100 150 200
Eigenvalues

10 6

10 4

10 2

100

Epoch: 20

25 0 25 50 75
Eigenvalues

10 6

10 4

10 2

100

Epoch: 25

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

Epoch: 30

20 0 20 40
Eigenvalues

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)
Epoch: 35

0 20 40
Eigenvalues

10 6

10 4

10 2

100

Epoch: 40

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

Epoch: 45

0 25 50 75
Eigenvalues

10 6

10 4

10 2

100

Epoch: 50

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

Epoch: 55

0 10 20 30 40
Eigenvalues

10 6

10 4

10 2

100

Epoch: 60

0 5 10 15 20
Eigenvalues

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Epoch: 65

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

Epoch: 70

0 50 100
Eigenvalues

10 6

10 4

10 2

100

Epoch: 75

0 50 100
Eigenvalues

10 6

10 4

10 2

100

Epoch: 80

0 20 40 60 80
Eigenvalues

10 6

10 4

10 2

100

Epoch: 85

0 20 40 60
Eigenvalues

10 6

10 4

10 2

100

Epoch: 90

Figure 5: Eigenspectrum density every 5 epochs. The model is ViT-Small and trained on CIFAR10.
The majority of eigenvalues concentrates near 0 and the density enjoys a super fast decay with the
absolute values of eigenvalues, indicating a summable eigenspectra.

Hyperparameter SADL CDAdam FetchSGD MARINA
Server learning rate 0.01 0.01 1.0 0.1
Server momentum 0.9 0.9 0.9 0.9

Server weight decay 0.0001 0.0001 0.0001 0.0001
Client learning rate 0.1 0.1 0.1 0.1
Client momentum 0.0 0.0 0.0 0.0

Table 2: Hyperparameters of SADL, CDAdam, FetchSGD and MARINA in ResNet.

Hyperparameter CocktailSGD CAMS 1bit-Adam PAQ
Server learning rate 0.04 0.01 0.0001 0.1
Server momentum 0.0 0.9 0.9 0.9

Server weight decay 0.0 0.0001 0.0001 0.0001
Client learning rate 0.1 0.1 0.1 0.1
Client momentum 0.9 0.0 0.0 0.0

Table 3: Hyperparameters of CocktailSGD, CAMS, 1bit-Adam and PAQ in ResNet.

Hyperparameter SADL CDAdam FetchSGD MARINA
Server learning rate 0.001 0.0001 0.5 1.0
Server momentum 0.9 0.9 0.9 0.9

Server weight decay 0.0001 0.0001 0.0001 0.0001
Client learning rate 0.001 0.001 0.001 0.001
Client momentum 0.0 0.0 0.0 0.0

Table 4: Hyperparameters of SADL, CDAdam, FetchSGD and MARINA in SST.

Hyperparameter CocktailSGD CAMS 1bit-Adam PAQ
Server learning rate 0.001 0.001 0.00001 0.001
Server momentum 0.0 0.9 0.9 0.9

Server weight decay 0.0 0.0001 0.0001 0.0001
Client learning rate 0.001 0.001 0.001 0.001
Client momentum 0.9 0.0 0.0 0.0

Table 5: Hyperparameters of CocktailSGD, CAMS, 1bit-Adam and PAQ in SST.

Hyperparameter SADL CDAdam FetchSGD MARINA
Server learning rate 0.005 0.005 0.5 1.0
Server momentum 0.9 0.9 0.9 0.9

Server weight decay 0.005 0.005 0.005 0.005
Client learning rate 0.01 0.01 0.01 0.01
Client momentum 0.9 0.9 0.9 0.0

Table 6: Hyperparameters of SADL, CDAdam, FetchSGD and MARINA in ViT.

38

10 15 20 25 30 35 40
Epoch

0%

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

3 × 105 Bytes/epoch

SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

10 15 20 25 30 35 40
Epoch

1%

2%

3%

4%

5%

Va
lid

at
io

n
Er

ro
r

3 × 106 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
1bit-Adam
CocktailSGD
CAMS
PAQ

10 15 20 25 30 35 40
Epoch

1%

1%

2%

2%

2%

2%

Va
lid

at
io

n
Er

ro
r

3 × 107 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

Figure 6: Validation Error on CIFAR-10. We finetune a ViT-base model (with 86M parameters)
from the pretrained backbone checkpoint (Dosovitskiy et al., 2020). 1 bit-Adam has comparable
communication cost with 3× 106. SADL shows competitive performance under all communication
budgets.

5 10 15 20 25 30
Epoch

10%

20%

30%

40%

50%

Va
lid

at
io

n
Er

ro
r

2e5 bits/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

5 10 15 20 25 30
Epoch

10%

20%

30%

40%

50%

Va
lid

at
io

n
Er

ro
r

2e6 bits/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS
1bit-Adam
PAQ

5 10 15 20 25 30
Epoch

10%

15%

20%

25%

30%

Va
lid

at
io

n
Er

ro
r

8 × 104

8 × 105

8 × 106

4 × 108

Figure 7: Validation Error on SST2 (GLUE) with BERT of 100M parameters. Left: compression rate
0.2%; Middle: 2%; Right: SADL with communication costs {8× 104, 8× 105, 8× 106, 4× 108}
Bytes/epoch. The legend 4× 108 represents training in the ambient dimension without sketching.
Higher compression rate improves the convergence rate and all compression rates achieve comparable
test errors at the end of training.

1%, their performance significantly degrades when the compression rate is lowered to 0.1%. On
the other hand, our SADL framework has a consistent performance across different communication
budgets. Notably, we observe that all algorithms, including SADL and the baselines, exhibit stable
behavior during training. We report the statistical significance level of the ResNet experiment in the
following table. Each experiment is repeated three times under different random seeds, with sources
of randomness including client data partitioning, data shuffling, and sketching. Table 8 presents the
validation error during the last communication round, with the values after ± indicating 3×standard
deviation across the runs. 1bit-Adam and PAQ has a fixed compression rate, which amounts to
1.6× 106 Bytes/epoch.

20 40 60 80 100
Epoch

40%

50%

60%

70%

80%

Te
st

 E
rro

r

ResNet
4e2
4e3
4e4
4e5

0 5 10 15 20 25
Epoch

10%

20%

30%

40%

Te
st

 E
rro

r

BERT
2e3
2e4
2e5
2e6

Figure 8: Comparing the performance of tiny sketch sizes on ResNet and BERT. The experiment
settings are the same as in Fig. 1 and Fig. 3. The legends represent sketch sizes. In principle, an
extremely tiny sketch size (with 400 in vision tasks and 2000 in language tasks) still converges at a
similar rate but generates an unfavorable local minima that hardly generalizes.
.

39

0 100 200 300 400 500
Epoch

20%

30%

40%

50%

Va
lid

at
io

n
Er

ro
r

1.6 × 106 Bytes/epoch
Sketch_SGD
SADL

0 100 200 300 400 500
Epoch

20%

30%

40%

50%

Va
lid

at
io

n
Er

ro
r

1.6 × 107 Bytes/epoch
Sketch_SGD
SADL

Figure 9: Validation Error on CIFAR-10. Comparing Sketch-SGD and SADL. The experimental
settings are the same as in Fig. 1. SADL achieves faster convergence and better model performance.

5 10 15 20 25 30
Epoch

10%

15%

20%

25%

Va
lid

at
io

n
Er

ro
r

8 × 105 Bytes/epoch
Sketch_SGD
SADL

5 10 15 20 25 30
Epoch

10%

15%

20%

25%

Va
lid

at
io

n
Er

ro
r

8 × 106 Bytes/epoch
Sketch_SGD
SADL

Figure 10: Validation Error on SST. Comparing Sketch-SGD and SADL. The experimental settings
are the same as in Fig. 3. SADL achieves faster convergence and better model performance.

Next, we present the empirical comparison on using different server optimizers. We present the
comparison on the three benchmarks in Fig. 9, 10 and 11. The sketch-SGD algorithm is the same as
proposed in Song et al. (2023); Shrivastava et al. (2024). We show that using Adam as the server
optimizer consistently outperforms in all communication budgets. We also provide the experimental
results of running AMSGrad on all three experimental settings in the paper. Table 9, 10 and 11
present the validation errors during the last communication round, with the values after ± indicating
3×standard deviation across three independent runs. We can observe that Adam and AMSGrad has
comparable performance on the all experimental settings, indicating that SADL is insensitive to the
choice of optimizers.

Additionally, we include a more challenging set of experiments that considers data heterogeneity
and a larger number of clients in Fig. 12. We train a ViT-Base model on CIFAR100 dataset. The
FL system involves 30 clients (the number is maximized for error-feedback based methods under
hardware constraints). The data is distributed in a heterogeneous way under Dirichlet distribution
with Dirichlet prior α = 0.1. We consider the compression rate 0.1% and 1%, as in the main paper.
The validation accuracy along the training process is reported in Fig. 12. It can be observed that
SADL achieves the best validation accuracy and converges fast.

To verify Assumption 4, we plot the full Hessian eigenspectrum throughout the training process in
Fig. 5. We used stochastic lanczos algorithm implemented by the pyHessian library Yao et al. (2020)
to approximate the distribution of the full eigenspectrum. Our main claim in Assumption 4 is that the

Hyperparameter CocktailSGD CAMS 1bit-Adam PAQ
Server learning rate 0.0001 0.001 0.0001 0.001
Server momentum 0.0 0.9 0.9 0.9

Server weight decay 0.0 0.005 0.005 0.005
Client learning rate 0.01 0.01 0.01 0.01
Client momentum 0.9 0.0 0.0 0.0

Table 7: Hyperparameters of CocktailSGD, CAMS, 1bit-Adam and PAQ in ViT.

40

10 15 20 25 30 35 40
Epoch

2%

2%

3%

4%

Va
lid

at
io

n
Er

ro
r

3 × 105 Bytes/epoch
Sketch_SGD
SADL

10 15 20 25 30 35 40
Epoch

1%

2%

2%

2%

2%

Va
lid

at
io

n
Er

ro
r

3 × 106 Bytes/epoch
Sketch_SGD
SADL

Figure 11: Validation Error on fine-tuning ViT with CIFAR-10 dataset. Comparing Sketch-SGD and
SADL. The experimental settings are the same as in Fig. 2. SADL achieves faster convergence and
comparable performance.

40 60 80 100

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

3e5 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS

40 60 80 100

20%

40%

60%

80%

Va
lid

at
io

n
Er

ro
r

3e6 Bytes/epoch
SADL
CDAdam
FetchSGD
MARINA
CocktailSGD
CAMS
1bit-Adam
PAQ

Figure 12: Validation Error of fine-tuning ViT-base (with 86M parameters) with CIFAR-100 dataset
trained among 30 clients with heterogeneous data distribution. Left: The communication budget
is 3 × 105 Bytes/epoch (0.1% compression rate). Right: The communication budget is 3 × 106

Bytes/epoch (1% compression rate). SADL shows competitive performance under all communication
budgets.

Hessian eigenspectrum at an iterate is summable and the sum is independent of the ambient dimension,
which can be satisfied by common distributions, like power-laws. We run testing experiments on
ViT-small and train on CIFAR-10 dataset, with sketched Adam optimizer. In Fig. 5, we see the
majority of eigenvalues concentrates near 0. The density enjoys a super fast decay with the absolute
values of eigenvalues. The decay also holds throughout the training process. This empirical evidence
shows the validity of our assumption.

In the main body of the paper, we have achieved 99.9% compression rate and 99.98% compression
rate for ResNet and BERT respectively. We further include the results on smaller b in Fig. 8. In
principle, an extremely tiny sketch size (with 400 in vision tasks and 2000 in language tasks) still
converges but generates an unfavorable local minima that hardly generalizes.

Bytes/epoch 1.6× 105 1.6× 106

SADL (17.8± 2.0)% (16.9± 0.8)%
CDAdam (27.7± 3.1)% (25.4± 1.9)%
CAMS (41.2± 4.9)% (26.8± 1.0)%

CocktailSGD (47.4± 2.3)% (31.1± 1.7)%
MARINA (24.4± 2.8)% (24.8± 4.1)%
FetchSGD (36.2± 2.4)% (28.2± 3.1)%
1bit-Adam N/A (32.3± 16.8)%

PAQ N/A (24.6± 1.7)%
Table 8: Statistical Significance. The standard deviations are computed from 3 independent runs on
the ResNet experiment.

41

Bytes/epoch 1.6× 105 1.6× 106

Adam (17.8± 2.0)% (16.9± 0.8)%
AMSGrad (18.6± 1.5)% (17.3± 2.1)%

Table 9: Comparing validation errors of AMSGrad and Adam as server optimizer in SADL on the
ResNet experiment.

Bytes/epoch 3× 105 3× 106

Adam (2.1± 0.1)% (1.6± 0.1)%
AMSGrad (1.8± 0.3)% (1.6± 0.3)%

Table 10: Comparing validation errors of AMSGrad and Adam as server optimizer in SADL on the
ViT experiment.

Additionally, we summarize the theoretical guarantees of the existing approaches in Table 12. From
the table, we can see all the comparisons made in the main paper are fair.

F Discussions

Limitations. The major focus of this work is on distributed deep learning, which is a subset of the
broader distributed learning setting. The specific scenario is of particular interest, since the models
involved in modern deep learning are extremely large (typically in billions of parameters), leading to
prohibitively high communication costs. Our theoretical analysis is based on the specific geometric
structure in distributed deep learning. In extremely pessimistic cases or conventional optimization
problems, the benefits of combining sketching and adaptive optimization require further analysis.

Broader Impacts. This work will facilitate distributed learning in achieving higher communication
efficiency. The proposed SADL framework is especially beneficial for resource-constrained scenarios
and contributes to more accessible distributed learning systems. However, the deployment of
distributed training may also incur malicious attacks and data poisoning, which will require more
attention in the future.

Bytes/epoch 8× 105 8× 106

Adam (8.7± 0.2)% (8.1± 0.3)%
AMSGrad (8.8± 0.2)% (8.7± 0.3)%

Table 11: Comparing validation errors of AMSGrad and Adam as server optimizer in SADL on the
SST experiment.

42

Algorithms Communication Bits learning rate Convergence Rate
FetchSGD Õ(1) O(1/

√
T) O(1/

√
T) (A)

CocktailSGD O(1) O(1/(
√
T + T 1/3d2 + d3)) O(1/

√
T + d2/(T)2/3)

CD-Adam O(1) O(1/
√
d) O(

√
d/

√
T)

Onebit-Adam O(d) O(1/
√
T) O(1/

√
T)

MARINA O(1) (1 +
√
ω(d− b)/(bC))−1 O(

√
ω
n (

d
b − 1)/T) (B)

FedCAMS O(1) O(1/
√
T) O(d/

√
T)

PAQ O(d) O(1/
√
T) O(1/

√
T)

Ours Õ(1) O(1/
√
T) O(1/

√
T) (C)

Table 12: Comparison on Theoretical Guarantees. We only include the dependence on d and T .
(A) Needs a heavy-hitter assumption, otherwise deteriorated to O(T 1/3). (B) The rate is achieved
either under deterministic case or use variance reduction methods. ω is typically Θ(d/b) when the
compressor is RandK or l2−quantization. (C) requires the assumption on the fast-decay Hessian
eigenspectrum. Otherwise, the convergence rate can deteriorate to O(d/

√
T) under dimension-

independent learning rate.

43

	Introduction
	Sketched Adaptive Distributed Deep Learning
	Convergence Analysis
	Technical Details and Proof Sketch

	Bounded Gradient Norm Along Optimization Trajectory
	Empirical Studies
	Conclusion
	Related Work and Key Challenges
	Lemma for Random Sketching
	Proof of Main Results
	Proof of Lemma C.2
	Proof of Lemma C.3 (Generalized version of Lemma 2.4)
	Proof of Lemma 2.5
	Proof of Lemma 2.6
	Proof of Theorem C.1
	Proof of Corollary 1
	Proof of Corollary 2
	A non-asymptotic bound on practical learning rates

	Convergence Without Bounded Gradient Norm Assumption (Proof of Theorem 3.4)
	Experimental Details and Additional Results
	Discussions

