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Abstract

Time series forecasting (TSF) possesses great practical values in various fields, including
power and energy, transportation, etc. TSF methods have been studied based on knowledge
from classical statistics to modern deep learning. Yet, all of them were developed based on
one fundamental concept, the numerical data fitting. Thus, the models developed have long
been known to be problem-specific and lacking application generalizability. Practitioners
expect a TSF foundation model that serves TSF tasks in different applications. The central
question is then how to develop such a TSF foundation model. This paper offers one
pioneering study in the TSF foundation model development method and proposes a vision
intelligence-powered framework, ViTime, for the first time. ViTime fundamentally shifts TSF
from numerical fitting to operations based on a binary image-based time series metric space
and naturally supports both point and probabilistic forecasting. We also provide rigorous
theoretical analyses of ViTime, including quantization-induced system error bounds and
principled strategies for optimal parameter selection. Furthermore, we propose RealTS, an
innovative synthesis algorithm generating diverse and realistic training samples, effectively
enriching the training data and significantly enhancing model generalizability. Extensive
experiments demonstrate ViTime’s state-of-the-art performance. In zero-shot scenarios,
ViTime outperforms TimesFM by 9-15%. With just 10% fine-tuning data, ViTime surpasses
both leading foundation models and fully-supervised benchmarks, a gap that widens with
100% fine-tuning. ViTime also exhibits exceptional robustness, effectively handling missing
data and outperforming TimesFM by 20-30% under various data perturbations, validating
the power of its visual space data operation paradigm.

∗Work performed while at XAUT and Technion.
†Corresponding author
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1 Introduction

Time series forecasting (TSF) is a classic but challenging topic that has been vigorously discussed in various
application fields, including power and energy (Sharadga et al., 2020), environmental studies (Jacox et al.,
2022), transportation studies (Lei et al., 2022), weather forecasting (Yang et al., 2021), stock market analysis
(Lin et al., 2011), public healthcare (Liu et al., 2024). Although new heights of accuracies were repeatedly
refreshed by new studies (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2022; Zeng et al., 2023; Patro &
Agneeswaran, 2024; Wu et al., 2022), most reported methods predominantly relied on a numerical fitting
based modeling paradigm so that models were often dataset- or problem-specific and lack of application
generalizability. The need to repeatedly train models for various TSF tasks has been the critical barrier
of promoting applications of learning-based TSF methods in practice, especially ones with sophisticated
mechanisms. Developing a TSF foundation model capable of serving diverse TSF tasks across different
applications is thus of great practical value. The central question then becomes: how can we develop such a
TSF foundation model?

Studying the TSF foundation model is still in its early stages, and existing efforts observed in literature are
mainly devoted to exploring Large Language Model (LLM)-based and numerical fitting-based models. The
LLM-based model leverages the inference capabilities of LLMs for zero-shot TSF tasks, including TimeGPT-1
(Garza & Mergenthaler-Canseco, 2023) and TIME-LLM (Jin et al., 2023). However, the prediction accuracy
of LLM-based models heavily depends on the underlying capabilities of LLM, and to achieve optimal
performance, the competent large language models, such as GPT-4 or Claude 3.5 (Zhou et al., 2023a),
are usually employed. Meanwhile, in fine-tuning LLM-based TSF foundation models for handling various
downstream tasks demanding higher precision, the computational complexity becomes prohibitively expensive,
resulting in a large, redundant, less precise, and cost-ineffective paradigm for the TSF foundation model (Tan
et al., 2024).

The dominant paradigm in Time Series Forecasting (TSF) is currently centered on numerical fitting-based
models, such as TimesFM (Das et al., 2024) and ForecastPFN (Dooley et al., 2024). These models operate by
directly learning the numerical correlations along the temporal dimension of the data. However, this purely
numerical-driven approach diverges from human cognitive processes. Studies in cognitive science indicate
that for tasks like trend conjecture and forecasting, humans preferentially process and remember correlations
between visual representations rather than directly handling abstract numerical sequences (Pettersson, 1993;
Dondis, 1974). For instance, Dondis (Dondis, 1974) noted that the visual cortex is adept at rapidly identifying
patterns, shapes, and colors, making the processing of visual information more efficient than that of text or
numbers.

Inspired by this cognitive paradigm, the research community has begun to explore the potential of applying
vision intelligence to TSF. Early attempts involved transforming time series into images, either through
direct plotting for image-to-image forecasting (Sood et al., 2021) or via multi-view visual encodings like
Gramian Angular Fields (GAF), Markov Transition Fields (MTF), and Recurrence Plots (Wang & Oates,
2015; Eckmann et al., 1987). More recently, researchers have repurposed powerful vision backbones, such as
Vision Transformers and Masked Autoencoders, for the TSF domain (Du et al., 2024; Chen et al., 2024).
While these works have shown the promising potential, they remain largely heuristic. They often lack a
rigorous theoretical framework for visual quantization and metrics, and the exploration of foundation-model
paradigms within this context remains limited. These observations culminate in a fundamental question: On
the path toward a TSF foundation model, could leveraging vision intelligence as a core modeling paradigm,
alongside conventional numerical methods, offer a more promising avenue?

In addition, training data of TSF tasks typically consist of large-scale real-world datasets (Das et al., 2024),
raising a critical question: Can real-world datasets comprehensively capture the diverse range of universal
time series patterns? Specifically, what kind of foundational capabilities should a TSF foundation model
possess to address a universal spectrum of time series problems?

To tackle these challenges, this paper develops a novel vision intelligence-based TSF foundation model, a
Visual Time Foundation Model (ViTime), aiming to pioneer a new computational paradigm of building the
TSF foundation model from the perspective of vision intelligence. Regarding the computational principle
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innovation aspect, ViTime operates by transforming numerical time series into binary images, converting
numerical temporal correlations into pixel spatial patterns, and solving TSF tasks, including both point and
probabilistic forecasting, in binary image space. We provide detailed theoretical analyses of quantization-
induced errors and establish principled guidelines for optimal parameter settings, ensuring precise control
over the trade-off between computational complexity and prediction accuracy. To offer a large volume of
sufficiently diverse samples for training ViTime, an innovative time-series-data generation method, Real-Time
Series (RealTS), is proposed. RealTS categorizes foundational knowledge of time series analysis into "trend"
and "periodicity" and synthesizes training data during the training of ViTime, ensuring it captures essential
time series characteristics. Experimental results demonstrate that ViTime can achieve SOTA performance
across diverse scenarios, including zero-shot generalization, fine-tuning with limited data, and robustness to
data perturbations.

The main contributions of this work are listed as follows:

• Novel Theoretical Framework for Vision Intelligence Powered TSF. We introduce ViTime,
a pioneering TSF foundation model grounded in a novel theoretical framework that shifts from
conventional numerical fitting to operations within a formally defined binary image-based time
series metric space.

• RealTS: Advanced Data Generation and Augmentation for TSF Foundation Modeling.
To address the training-data sample diversity challenge in developing a TSF foundation model, the
RealTS, a sophisticated time-series data generation method that synthesizes diverse and high-quality
training data, is designed to ensure ViTime can generalize to a wide range of time series patterns.

• Empirical Validation of Theoretical Advantages and SOTA Performance. The efficacy
of ViTime’s theoretically-grounded visual intelligence paradigm is extensively validated. ViTime
significantly outperforms existing foundation models and supervised benchmarks in both zero-shot
point forecasting (e.g., 9-15% improvement over TimesFM) and zero-shot probabilistic forecasting,
few-shot fine-tuning, and robustness against diverse data perturbations (e.g., 20-30% better than
TimesFM with missing data/perturbations), confirming the practical benefits of our theoretical
contributions.

2 Related Work

2.1 Problem-specific Model for TSF

The problem-specific TSF methods adopt a fully supervised learning paradigm, where specific models are
trained on particular datasets. Early discussions on problem-specific TSF modeling were mainly conducted
on classical statistical and machine learning models, such as autoregressive (AR) models and AR variants
(Vu, 2007), Splines and their extensions (Lewis & Stevens, 1991), linear regressors (Montgomery et al., 2015),
support vector regressor (Montgomery et al., 2015), neural network based regressor (Montgomery et al.,
2015), etc. In comparison, the latest TSF studies have shed light on modern deep learning methods, such
as recurrent neural network (RNN) and RNN variants (Hewamalage et al., 2021), transformer and various
transformer-based models (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2022; Liu et al., 2023), Dlinear (Zeng
et al., 2023), TimeMixer (Wang et al., 2024), Mamba based method (Patro & Agneeswaran, 2024) etc.

2.2 Foundation Model for TSF

Inspired by recent breakthroughs of pretrained foundation models in natural language processing and computer
vision, the TSF community has actively explored developing domain-general foundation models capable of
forecasting across diverse datasets and scenarios. Current TSF foundation model studies in general fall into
three categories: LLM-based, numerical-data-based, and the emerging vision-based approaches.

LLM-based Models: Several recent studies have directly adapted LLMs to forecasting tasks. Methods
such as PromptCast (Xue & Salim, 2023), TIME-LLM (Jin et al., 2023), GPT4TS (Zhou et al., 2023b),
TimeGPT-1 (Garza & Mergenthaler-Canseco, 2023), and LLM4TS (Chang et al., 2025) recast numerical
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forecasting into text-based prompting or embedding alignment tasks. Despite their promising zero-shot
forecasting capabilities, these models suffer from inherent limitations, including high computational costs,
inefficiency, and domain adaptation complexity arising from fundamental discrepancies between linguistic
structures and numerical temporal patterns (Tan et al., 2024).

Numerical-data-based Models: To address these limitations, another prevalent research direction exploits
large-scale collections of real-world numerical time series to train foundation models. Representative methods
include TimesFM (Das et al., 2024), Moirai (Woo et al., 2024), Chronos (Ansari et al., 2024), Moment
(Goswami et al., 2024), Lag-Llama (Rasul et al., 2023), GTT (Feng et al., 2024), and TSMamba (Ma et al.,
2024). Although these real-data-based models significantly enhance zero-shot generalization, their performance
heavily depends on the quality, diversity, and representativeness of available real datasets. Moreover, they
typically suffer substantial performance degradation when encountering data perturbations, missing values,
or unseen temporal patterns. Furthermore, the reliance on extensive real-world datasets inherently risks
test set leakage, as partial segments of test data may inadvertently appear during training, undermining
true generalization evaluation. Recognizing these inherent limitations of real-world numerical data, recent
work has explored alternative data sources. ForecastPFN (Dooley et al., 2024) trains Transformer-based
models purely on synthetic numerical data generated from predefined trend and seasonality components,
demonstrating limited but promising zero-shot forecasting abilities. However, due to the uncontrolled or
oversimplified synthesis patterns, these synthetic-data-based methods often fail to capture the richness and
complexity of real-world scenarios, thereby limiting forecasting accuracy and robustness.

Vision-based Models: The idea of representing time series as images to leverage powerful vision models
has been explored, but its application as a primary forecasting paradigm is an area of growing interest. Early
methods, such as Gramian Angular Fields (GAF) (Wang & Oates, 2015), Markov Transition Fields (MTF),
and Recurrence Plots (Eckmann et al., 1987), transformed time series into images primarily for classification
tasks, demonstrating the potential of image representations to reveal patterns not obvious in the 1D domain.
Recently, this concept has been extended to forecasting. One intuitive approach is direct plotting, e.g.,
VisualAE (Sood et al., 2021) pioneered this by treating TSF as an image-to-image regression task, where a
line plot is converted by a convolutional autoencoder. Other works focus on adapting vision architectures,
e.g., Swin4TS (Du et al., 2024) reshaped the time series into 2D patches to apply the Swin Transformer.
To enrich the input, models like LDM4TS (Ruan et al., 2025) employed a multi-view strategy, converting a
time series into multiple images using techniques like segmentation and GAFs. Recently, VisionTS (Chen
et al., 2024) proposed repurposing pretrained vision models (specifically, masked autoencoders trained on
ImageNet) for TSF by reformulating forecasting as an image reconstruction problem. Nevertheless, directly
reusing models pretrained on natural images introduces a significant domain mismatch that the visual features
learned from natural images may not optimally represent temporal structures inherent in numerical time
series. Furthermore, all these existing vision-based methods still fundamentally rely on numerical-space
analyses and empirical mappings (e.g., standard plotting libraries or heuristic reshaping), lacking a rigorous
theoretical framework explicitly tailored for visual representation and quantization of numerical sequences.

Our Contribution in Context: In contrast to aforementioned paradigms, our proposed ViTime framework
introduces two fundamental shifts in the TSF foundation model design:

Firstly, recognizing intrinsic limitations of numerical-space-based forecasting, such as limited generalization
across scales and sensitivity to data perturbations, ViTime explicitly advocates modeling time series directly
in a principled visual representation space. Where prior visual methods use heuristic transformations, ViTime
pioneering in rigorously defining a dedicated visual metric space for numerical time series, providing theoretical
analysis of quantization-induced errors, and offering principled guidance for optimal parameter selection. We
also proved that this rigorous visual modeling framework can significantly enhance the signal-to-noise ratio
(SNR) of time series and improve forecasting accuracy and interpretability.

Secondly, given the inherent challenges of relying on real-world numerical datasets (limited diversity, data
leakage risks), we propose, RealTS, a controlled data synthesis strategy focusing on fundamental time series
components (trend, periodicity) to generate structurally sound training data. The RealTS substantially
mitigates data leakage risks and enriches training data diversity, enabling ViTime to generalize robustly
across diverse real-world scenarios. As demonstrated by extensive experiments, ViTime sets new SOTA
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zero-shot and limited-data forecasting benchmarks, significantly outperforming existing foundation models
across diverse evaluation settings.

3 Method

Figure 1: ViTime architecture overview. (a) Pipeline comparison between ViTime and traditional numerical
TSF models, showing ViTime’s paradigm shift to binary image space processing. (b) ViTime network with
three modules: Visual Time Tokenizer, Decoder, and Refining Module. (c) Complete architecture: RealTS
synthesis for diverse training samples, mapping function for numerical-to-binary conversion, ViTime model
for visual pattern learning, and inverse mapping for prediction output, enabling zero-shot generalization
across real-world time series tasks.

3.1 Overall Architecture

The overall framework of ViTime, schematically illustrated in Fig. 1 (c), comprises four key modules: the
RealTS synthesis module, the mapping function, the proposed ViTime model, and the inverse mapping
function. To address the dataset challenge of training a robust TSF foundation model, RealTS synthesizes
a vast and diverse set of training samples by categorizing foundational knowledge of time series analysis
into "trend" and "periodicity" patterns, which ensures ViTime captures essential time series characteristics
across a wide range of scenarios. The core innovation of ViTime lies in its computational principle of
mapping numerical time series into binary images. This approach allows ViTime to remember temporal
pattern correlations through ordered pixel coordinates while maintaining the ability to convert results back
to numerical format. The visual modeling process of ViTime learns to extract relevant features and patterns
from the time series visual representation, utilizing the historical distributions of the generated binary images
to predict future trends. Finally, the inverse mapping function is employed to convert the predicted image
back into numerical time series data for further analysis.
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In the following sections, we will introduce each component of ViTime in detail: RealTS, mapping & inverse
mapping function, and ViTime Model.

3.2 Real-Time Series Synthesis

In this paper, we hypothesize that a robust foundation model for TSF should integrate two essential types of
time series fluctuation knowledge, the periodic and trend patterns, which encompass the inherent patterns
and directional changes in time series data. Real-world datasets, however, often lack representation of the
full spectrum of these periodic and trend-based fluctuations, limiting the ability of the model to generalize
across different scenarios and effectively learn underlying dynamics.

To address this challenge, we propose a novel time series generation algorithm, RealTS. RealTS systematically
generates a large volume of synthetic time series data that exhibit diverse periodic and trend characteristics.
The proposed RealTS can facilitate more comprehensive training of foundation models, exposing them to
various patterns and improving their ability to generalize to unseen real-world data.

The RealTS algorithm probabilistically selects between generating periodic or trend-based time series. Given
the total length L of the synthesized time series, the algorithm determines the data prior hypothesis between
periodic φp and trend-based φt patterns with probability (α). The distribution of generated time series P (D)
is defined as follows:

sL ∼ P (D) = P (sL|L)

= α

∫
P (sL|L, Bp) P (Bp|φp) P (φp) dφp + (1 − α)

∫
P (sL|L, Bt) P (Bt|φt) P (φt) dφt

(1)

where sL is the synthesized time series with length L; P (φ) represents the prior probability of hypothesis φ;
P (B|φ) is the likelihood of observing the data behavior B under hypothesis φ. Data behavior B is introduced
to further detail the generation behavior within different data modes. RealTS employs two data behavior
modes for periodic hypothesis and three for trend hypothesis as follows:

• Periodic Hypothesis: Inverse Fast Fourier Transform Behavior (IFFTB) and Periodic Wave
Behavior (PWB).

• Trend Hypothesis: Random Walk Behavior (RWB), Logistic Growth Behavior (LGB) and Trend
Wave Data Behavior (TWDB)

Detailed formulas for each behavior mode and illustrative examples are provided in Supplementary Section A.

3.3 Binary Image-based Time Series Metric Space

In ViTime, time series are fed and operated with a binary image form, leveraging a binary image-based time
series metric space, as described in Definition 3.1.
Definition 3.1 (Binary image-based time series metric space). The binary image-based time series metric
space is defined as a group (V, d), where V is a set of elements defined in Equation (2):

V =
{

v ∈ Rc×h×L

∣∣∣∣ vi,j,k ∈ {0, 1}, i ∈ [c], j ∈ [h], k ∈ [L],
h∑

j=1
vi,j,k = 1

}
(2)

where d : V × V → R is a distance function based on the Earth Mover’s Distance (EMD), as defined in
Equation (3):

d (v1, v2) =
∫ c

i=1

∫ L

k=1
inf

γ∈
∏

(vi,1:h,k
1 ,vi,1:h,k

2 )
Ex,y∼γ ∥x − y∥1 dkdi (3)

where c represents the number of variates, L is the length of the time series, and h is the resolution of V .
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To enable the transition from numerical time-series values to the binary image-based metric space, we
introduce mapping and inverse mapping functions as follows. Let S =

{
s ∈ Rc×L | si,k ∈ R

}
represent

the numerical value space of time series. The Time-Series-to-Image mapping function f : S → V and the
Image-to-Time-Series inverse mapping function f−1 : V → S can be defined as follows:

vi,1:h,k = f (si,k) = ⟨f1 (si,k) , f2 (si,k) , . . . fh (si,k)⟩

fj (si,k) =


1, if si,k ≥ MS, j = h

1, if si,k ≤ −MS, j = 1
1, if j =

⌊
si,k+MS

2MS
h

⌋
0, otherwise.

, j ∈ [h]
(4)

The Image-to-Time-Series inverse mapping function f−1 : V → S can be defined as follows:

si,k = f−1 (vi,1:h,k) =
h∑

j=1

(
(j − 0.5)2MS

h
− MS

)
vi,j,k (5)

where MS > 0 denotes the maximum scale of V . Before mapping, zero-score normalization is typically applied
to the numerical time series si,k to standardize the scale.

Given that the numerical data synthesized by RealTS are one-channel time series, i.e., sL ∈ R1×L, thus the
corresponding vL ∈ R1×h×L is obtained via

vL = f (sL) . (6)

3.3.1 System Error Analysis

The system error (SE) emerges from the bidirectional mapping between discrete space V and continuous space
S, which inherently impacts prediction fidelity. A rigorous analysis of SE is essential for ensuring reliable
and robust predictions in image space V. We begin our theoretical analysis of SE with Assumption 3.2 and
Theorem 3.3.
Assumption 3.2. After applying zero-score normalization, the continuous space follows a standard normal
distribution:

S ∼ N(0, I)

Theorem 3.3 (System Error Upper Bound). Given a tensor ŝ ∈ S ⊂ Rc×L, the system error defined as∥∥f−1 (f (ŝ)) − ŝ
∥∥

1 satisfies the following bound:

SE := E
∥∥f−1 (f (ŝ)) − ŝ

∥∥
1 ≤ g(h, MS)

= cL

[
MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

]
(7)

where Φ denotes the cumulative distribution function of N(0, I).

Denote MS
( 1

h (Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π e

−MS2
2 in Equation (7) as the upper bound of SE,

whose convergence is guaranteed by Proposition 3.4.
Proposition 3.4 (Asymptotic Convergence with h). For any ε > 0, there exists δ > 0 such that when
h → +∞ and MS ≥ δ, the SE upper bound converges to zero:

lim
h→+∞

∣∣∣MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

∣∣∣ = 0 (8)
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The Proposition 3.4 reveals that when we fix MS and increase the spatial resolution h, the upper bound
|g(h, MS)| of SE will reduce accordingly. On the other hand, when h increases, the tensor sizes in V will
increase exponentially, leading to higher computational costs. As such, the selection of h must strike a balance
between the accuracy of the estimation and the computational feasibility. Since the upper bound of SE
decreases with an increase in h, it is generally preferable to choose the largest possible value of h based on
available computational resources, resulting in a fixed value of h for a particular computational budget.

3.3.2 Theoretical Analysis of Optimal MS

MS determines the upper and lower limits of numerical truncation in the binary image-based time series metric
space. Thus, it is necessary to conduct a detailed theoretical analysis of the selection of MS. Proposition
3.5 investigates how the upper bound of SE varies with a MS given a fixed value of h, which provides a
theoretical guidance to choose the best MS under different computational budgets (h).

Proposition 3.5 (Optimal MS Selection). For fixed h, there exists a unique optimal threshold MS∗ minimizing
the SE upper bound, characterized by:

1
h

(Φ(MS∗) − Φ(−MS∗)) − 2 + 2Φ(MS∗) + MS∗

h

√
2
π

e− MS∗2
2 = 0 (9)

The fidelity of predictions in binary image space V heavily depends on the bidirectional mapping between
discrete space V and continuous latent space S. A key challenge arises from the SE, which quantifies the
discrepancy between the original continuous representation and its reconstructed version after discretization.
While Assumption 3.2 assumes S ∼ N(0, I), real-world scenarios often exhibit larger variance in the latent
space due to factors such as dataset shifts or model miscalibration. This motivates our analysis of SE under
the generalized assumption S ∼ N(0, kI), where k > 1 captures the variance scaling.

Proposition 3.6 (Optimal Threshold under Variance Scaling). Under the assumption S ∼ N(0, kI) with
k > 1, the optimal threshold MS∗ that minimizes the SE upper bound is characterized by the following
condition:

1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ MS∗

h

√
2

πk
e− (MS∗)2

2k = 0 (10)

Here, Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution, h is the spatial
resolution, and k is the variance scaling factor. This result generalizes Proposition 3.5 to scenarios where
the latent space exhibits larger variability. In practice, it is challenging to find an analytic solution for
Equation (10). Thus, the numerical method is employed to obtain solutions of Equation (10) in this work
and the corresponding results are reported in Table 1.

As shown in Table 1, the numerically computed optimal MS increases monotonically with both the spatial
resolution h and the variance scaling factor k. This trend indicates that higher-resolution settings and larger
latent variance require larger MS to satisfy Equation (10).

3.4 Theoretical Advantages of Visual Representation for Time Series Forecasting

Representing time series data visually, as explored by ViTime, is not merely an aesthetic or heuristic choice;
it is fundamentally advantageous from a signal-processing standpoint. Specifically, transforming numerical
signals into structured, image-like representations can significantly boost the effective signal-to-noise ratio
(SNR), thereby enhancing forecasting robustness. To formally capture and quantify this advantage, we first
establish conditions under which visual representation surpasses conventional numerical representation in
terms of SNR. Subsequently, we explore image-based processing techniques to further amplify these benefits.
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Table 1: Numerically Solved Optimal MS∗

Optimal MS∗

Resolution h k = 1 k = 1.5 k = 2
32 2.1 2.62 3.03
64 2.38 2.95 3.41
128 2.64 3.26 3.76
256 2.88 3.53 4.08
512 3.09 3.79 4.38

3.4.1 Visual Representation and SNR Enhancement.

Consider a noisy sinusoidal time series defined by:

sk = A sin(ω0k + ϕ) + ηk, k = 0, . . . , L − 1,

where the signal amplitude A > 0, angular frequency ω0 = 2π/Pperiod, phase ϕ, and Gaussian noise terms
ηk ∼ N(0, σ2) fully specify the system. Transforming this numerical series into a binary "stripe" image
v ∈ {0, 1}h×L via quantization yields notable theoretical advantages. The binary representation is defined by:

vj,k = 1
(

j =
⌊

sk + MS
δ

⌋)
, (11)

with quantization step δ = ∆/h and total quantization range ∆ = 2MS. By comparing the SNR in numerical
and visual domains, we obtain the following foundational result:
Theorem 3.7 (Stripe SNR Boost). Under mild assumptions that (i) the sinusoid amplitude spans at least
one quantization bin (δ ≤ A ≤ ∆ − δ) and (ii) noise is small relative to quantization resolution (σ < δ/4),
the visual representation yields an SNR at the fundamental frequency n0 = ⌊L/Pperiod⌋ satisfying:

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum, (12)

where the numerical SNR is SNRnum = A2/(2σ2).

Theorem 3.7 provides clear quantitative conditions for visual superiority. Specifically, visual representation
surpasses numerical representation (SNRvis > SNRnum) whenever:

L >
4A2

σ2 exp
(

− δ2

8σ2

)
. (13)

Practically, this condition is typically met for moderate sequence lengths when the quantization step is
comparable to or slightly larger than the noise standard deviation (e.g., δ ≈ 2σ). Under these realistic scenarios,
the exponential term strongly favors visual representation, making it advantageous even at manageable L.

3.4.2 SNR Enhancement via Image Processing.

Although the theoretical advantage above is compelling, practical scenarios often involve considerable noise
and subtle periodic signals. Furthermore, the binary quantization can introduce high-frequency artifacts that
obscure signal patterns. To mitigate such undesirable effects and leverage the structured nature of visual
representations, we propose employing image-processing operations, notably Gaussian blurring, to enhance
signal fidelity further.

Applying a Gaussian blur along the image’s quantization axis (the row or "value" dimension) effectively
smooths quantization noise while preserving meaningful temporal structures. This simple convolutional
operation yields significant amplification of the visual-domain SNR, formalized as follows:
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Theorem 3.8 (Gaussian Blur SNR Boost). Under the conditions of Theorem 3.7, consider applying a
one-dimensional Gaussian convolution kernel along the quantization dimension (rows) of the binary stripe
image v:

gj = 1
Z

exp
(

− j2

2σ2
b

)
, where Z =

∑
j

exp
(

− j2

2σ2
b

)
,

to obtain the blurred image w = g ∗j v. Denote the kernel’s nuclear energy by S =
∑

j g2
j ∈ (0, 1), and define

the visually blurred SNR at the fundamental frequency n0 = ⌊L/Pperiod⌋ as SNRblur
vis . Then, the following

lower bounds hold:

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
, (14)

SNRblur
vis ≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum, (15)

where the numerical-domain SNR is defined as SNRnum = A2/(2σ2).

Consequently, the blurred visual representation amplifies the numerical-domain SNR at least by a factor of:

SNRblur
vis

SNRnum
≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
. (16)

This result explicitly quantifies the advantage provided by Gaussian blurring in the visual representation.
Notably, this amplification advantage scales linearly with the time series length L and exponentially with the
squared ratio of quantization step δ to noise standard deviation σ. Moreover, a smaller kernel nuclear energy
S, corresponding to stronger blurring, yields a greater amplification of the visual-domain SNR relative to its
numerical counterpart.

In practical implementations, the choice of Gaussian kernel parameters directly influences the nuclear energy
S, and thus the SNR amplification factor. Typical examples include:

• 11 × 11 kernel (σb = 2): S ≈ 0.15, providing substantial SNR amplification.

• 21×21 kernel (σb = 4): S ≈ 0.08, approximately doubling the amplification compared to the previous
case.

• 31 × 31 kernel (σb = 6): S ≈ 0.05, further significantly enhancing the amplification factor.

In summary, even moderate Gaussian blurring substantially enhances the effective visual-domain SNR, enabling
significantly improved signal discernibility and forecasting accuracy compared to traditional numerical-domain
methods.

Generalization to Complex Time Series. While our theoretical analysis explicitly addresses a single
sinusoidal component, its implications readily extend to realistic time series composed of multiple periodic
components. Via linearity principles inherent in Fourier decomposition, observed visual-domain SNR
advantages apply component-wise, amplifying structured periodic signals relative to unstructured and
independent noise effects. Thus, real-world time series exhibiting intricate periodic behaviors benefit
significantly from visual transformations and subsequent image-processing enhancements.

The rigorous theoretical results presented here establish a robust mathematical foundation for employing visual
intelligence in time series analysis. Beyond aligning with human cognitive patterns, visual representations
structurally amplify signal fidelity through inherent quantization and subsequent image processing techniques,
such as Gaussian smoothing. Consequently, visual-domain methods provide a principled, theoretically justified
route toward achieving more robust, reliable, and accurate time series forecasting, especially under challenging
noise conditions.

Detailed proofs and supplementary details of the theorems presented in this section are provided in Supple-
mentary Section C.
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3.5 The Proposed ViTime Model

Figure 1 (b) presents the architecture of the ViTime network, which comprises three network modules: the
Visual Time Tokenizer, the Decoder, and the Refining Module. The time series binary image is first fed into
the Visual Time Tokenizer and outputs embedded latent representations. Next, the Decoder is developed to
decode latent representations and produce initial prediction results in the image-value axis. To improve the
generative quality of patch junctions, a Refining Module is designed to generate the final smooth prediction
results.

Visual Time Tokenizer. The primary role of the Visual Time Tokenizer is to segment masked binary images
into multiple patches and map these patches into the feature space. By leveraging the ViT (Dosovitskiy et al.,
2020) architecture, the module captures spatial relationships between patches, thereby transforming temporal
dependencies of the time series into spatial dependencies within the image space.

Decoder. The Decoder translates the tokenized patches back into the binary pixel metric space, providing
an initial prediction where the ViT architecture is also adopted. In practice, the Decoder’s prediction head
applies a softmax along the height dimension j to produce a probability tensor p ∈ P (defined later in
Section 3.6), which reduces to a one-hot vector along the height dimension v ∈ V if the mass collapses to a
single bin.

Refining Module. The transformer architecture in the Decoder can result in discontinuities at the patch
junctions, which may affect the accuracy of the inverse mapping process. To address this issue, the Refining
Module built with CNNs is employed. Initially, tokens decoded by Decoder are unpatched and fed into a
CNN-based backbone. Next, the ASPP (Chen et al., 2015) module expands the model receptive field. Finally,
the output is upsampled to the binary pixel metric space, generating the final image prediction result. The
Refiner preserves the probabilistic semantics by operating on the logits (before softmax) or on probability
maps to maintain consistency along the j-axis.

Modeling process and masking. The modeling process of ViTime is summarized as

v′
L = ViTime(vL ⊙ ML) , (17)

where ⊙ is the element-wise product and ML is a temporal mask that zeros out the time steps to be forecast.
Concretely, we use ML ∈ {0, 1}1×1×L (broadcast along c and h) with

(ML)1,1,k =
{

1, k ∈ observed (context) time indices,
0, k ∈ forecast horizon (to be predicted).

Thus, for all i ∈ [c], j ∈ [h], k ∈ [L],

(vL ⊙ ML)i,j,k =
{

vi,j,k, M1,1,k = 1,

0, M1,1,k = 0,

i.e., the mask sets the to-be-predicted time positions to all zeros across the j-axis, removing any target
information at those steps. Note that this masking operates on the input only. Although the masked columns
are no longer one-hot (and hence leave V at those k), the network outputs valid distributions p ∈ P over j for
every (i, k) (see Section 3.6). During training, we sample masked spans to simulate forecasting; at inference,
we set ML to zero precisely on the forecast horizon.

Loss function. The loss function employed in this study is defined as follows:

L = d (v′
L, vL) + α KLD (v′

L, vL) , (18)

where d denotes the distance function defined in Equation (3), KLD denotes Kullback–Leibler divergence, and
α is the hyperparameter balancing the two terms. The combined EMD and KLD loss addresses structural
and probabilistic alignment along the j-axis. EMD minimizes spatial discrepancies in V/P, counteracting
discretization-induced shift, while KLD refines distributional consistency to mitigate quantization artifacts.
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This dual objective balances geometric fidelity (via EMD/Wasserstein-1 along j) and statistical accuracy (via
KLD), which is crucial under the resolution-computation trade-off governed by h. In practice, to prevent
information leakage and trivial identity mapping, both d(·, ·) and KLD are accumulated only over the masked
time indices {k : M1,1,k = 0}, while the unmasked indices serve as conditioning context.

From model outputs to forecasts. The Decoder/Refiner produce a probability tensor p ∈ P over the
height j at each (i, k). For point forecasts, we apply the inverse mapping expectation (see Equation (5))
by replacing vi,j,k with pi,j,k to obtain µi,k; this coincides with the estimator in Equation (5). For proba-
bilistic forecasts, we retain p as a histogram distribution over bins and compute downstream summaries
(quantiles/intervals) as detailed in Section 3.6.

3.6 Point and Probabilistic Forecasting in ViTime

Building on the binary image-based time series metric space in Section 3.3, ViTime treats forecasting as
producing a distribution along the height (value) axis for each variate-time pair. This subsection details how
ViTime yields probabilistic forecasts and how point forecasts are recovered as expectations under the same
formulation.

From one-hot images to probability tensors. We relax the one-hot constraint vi,j,k ∈ {0, 1} to a
probability-simplex output pi,j,k ∈ [0, 1] with

∑h
j=1 pi,j,k = 1. Define

P ≜

p ∈ [0, 1]c×h×L

∣∣∣∣∣∣
h∑

j=1
pi,j,k = 1, ∀i ∈ [c], k ∈ [L]

 , (19)

so that V ⊂ P and a one-hot tensor v is a degenerate case of p ∈ P. In practice, the prediction head of
ViTime applies a softmax over the j-dimension to produce p ∈ P.

Let the bin width be ∆ ≜ 2MS/h, edges b0 = −MS, bj = −MS + j∆ for j = 1, . . . , h, bins Bj = [bj−1, bj),
and centers cj = (j − 0.5)∆ − MS.

Probabilistic forecast (distributional output). For each (i, k), ViTime interprets the h-way probability
vector pi,1:h,k as a histogram (mixture-of-uniforms) predictive distribution on [−MS, MS] with

fi,k(s) ≜
h∑

j=1

pi,j,k

∆ 1{s ∈ Bj} , Fi,k(s) ≜
j−1∑
m=1

pi,m,k + pi,j,k
s − bj−1

∆ , s ∈ Bj , (20)

where Fi,k(s) = 0 for s < −MS and Fi,k(s) = 1 for s ≥ MS. This continuous relaxation preserves the geometry
of the j-axis used by the EMD metric in Equation (3) and naturally supports uncertainty quantification.

Point forecast as expectation. Under Equation (20), the predictive mean recovers the inverse mapping
in Equation (5) by replacing vi,j,k with pi,j,k:

µi,k ≜ E[Si,k] =
h∑

j=1
cj pi,j,k =

h∑
j=1

(
(j − 0.5)2MS

h
− MS

)
pi,j,k. (21)

Thus, when only a point forecast is required, ViTime outputs µi,k, which coincides with Equation (5). The
predictive variance for uncertainty summaries is

Var[Si,k] =
h∑

j=1
pi,j,k

(
(cj − µi,k)2 + ∆2

12

)
. (22)
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Quantiles and prediction intervals. Define cumulative weights Ci,k(j) ≜
∑j

m=1 pi,m,k with Ci,k(0) = 0.
For τ ∈ (0, 1), let

Jτ ≜ min {j ∈ [h] | Ci,k(j) ≥ τ} , Qi,k(τ) = bJτ −1 + ∆ · τ − Ci,k(Jτ − 1)
pi,Jτ ,k

. (23)

Then a central (1 − α) prediction interval is [ Qi,k(α/2), Qi,k(1 − α/2) ].

3.7 Evaluation Metrics

Existing numerical fitting-based TSF foundation models, e.g., TimesFM, are typically pretrained on com-
prehensive real-world datasets. While the specific nomenclature of the testing set may not be explicitly
listed in the training data, there is a possibility that the real-world dataset encompasses similar data sources,
potentially leading to issues of test set leakage. To address this concern and ensure a more rigorous and
equitable experimental comparison, we propose novel metrics for zero-shot evaluation. For point forecasts,
we introduce the Rescale-Mean Absolute Error (ReMAE) and Rescale-Mean Squared Error (ReMSE). To
evaluate probabilistic forecasts, we extend this approach with the Rescale-Continuous Ranked Probability
Score (ReCRPS).

The fundamental principle underlying these metrics involves rescaling the test dataset across various time
resolutions, as illustrated in Equation (24). The time series interpolation (TSI) method is employed to rescale
the original test time series of length T to βT :

SβT = TSI (ST , rescaling factor = β) . (24)

For point forecasts, the formulas for ReMAE and ReMSE are based on the standard Mean Absolute Error
(MAE) and Mean Squared Error (MSE):

ReMSE =

∑
β∈U MSE

(
S

′

βT , SβT

)
len(U)

(25)

ReMAE =

∑
β∈U MAE

(
S

′

βT , SβT

)
len(U)

(26)

For probabilistic forecasts, the Continuous Ranked Probability Score (CRPS) is considered, which generalizes
the MAE by comparing the entire predictive distribution with the ground truth. The CRPS is defined as:

CRPS(F, y) =
∫ ∞

−∞

(
F (x) − 1{x≥y}

)2
dx (27)

where F is the predicted cumulative distribution function (CDF) and y is the observed value, with 1 being
the Heaviside step function. Following the same rescaling principle, we define ReCRPS as:

ReCRPS =
∑

β∈U CRPS (FβT , SβT )
len(U)

(28)

In Equation (24)-Equation (28), S
′

βT represents the point prediction, FβT is the predicted distribution for
the rescaled series, SβT is the rescaled ground truth, and U is the set of scaling factors:

U = [0.5, 0.66, 1, 1.5, 2] . (29)

The proposed ReMSE, ReMAE, and ReCRPS metrics address a critical challenge in evaluating time series
foundation models: mitigating test set leakage caused by overlapping data distributions between training and
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testing phases. By rescaling the test set across multiple resolutions (β ∈ U) via time series interpolation
(TSI, Equation (24)), these metrics introduce synthetic scale variations that disrupt exact temporal patterns,
thereby reducing the risk of evaluating models on memorized or overfitted data. This approach ensures a
leakage-resistant evaluation framework, as models must generalize to unseen scales rather than relying on
spurious correlations learned from the training set.

A key implication of this work is the necessity of scale-agnostic evaluation in time series forecasting. Traditional
single-scale metrics like MSE, MAE, and CRPS risk conflating memorization with true generalization,
particularly when training data encompasses diverse real-world sources. By averaging errors across β, our
rescaled metrics incentivize models to capture invariant temporal structures–such as periodicity, trends, and
noise resilience–that persist across resolutions. This applies to both the accuracy of point forecasts and the
calibration of predicted uncertainty. This aligns with recent theoretical insights in self-supervised learning,
where augmentation-induced invariance improves out-of-distribution robustness (Yao et al., 2022). It is worth
noting that in the fine-tuning study, i.e., Section 4.4, in order to ensure the consistency of the distribution
between the test data and the fine-tuning data, we still adopt the traditional MSE/MAE evaluation metrics.

4 Computational Experiments

4.1 Experimental Configuration

Datasets

Seven popular publicly accessible datasets: Electricity, Traffic, Weather, ETTh1, ETTh2, ETTm1, and
ETTm2 (Wu et al., 2021) are employed in computational experiments to validate the effectiveness of the
proposed ViTime.

Model setup

The ViTime model is developed using data sequences synthesized by RealTS. During each training epoch,
20,000 sequences are randomly generated. After training, zero-shot testing and fine-tuning are implemented
accordingly. For multivariate time series, a channel-independent strategy (Nie et al., 2022) is applied,
predicting each variable separately before combining them to form the final multivariate forecast.

The default parameters for the ViTime model are set as follows: h = 128, MS = 3.5, maximum lookback
window T = 512, and maximum prediction length l = 720. For a fair comparison, all considered models
employ a lookback length of 512 to forecast future sequences of lengths 96, 192, 336, 720. Additionally, we
adopt the Adam optimizer (Kingma, 2014) with a learning rate of 2x10-4 during the training process. More
details on training are available in Supplementary Section B.

To further enhance temporal resolution and information density practically, input sequences are initially
interpolated to twice their original length (2L) and the prediction results are interpolated back to the
original length. This interpolation increases temporal granularity, facilitating more precise pattern extraction.
Furthermore, Gaussian blurring with kernel size of 31 applied to the binary images before processing by ViTime
significantly reduces sparsity and increases local information density, thereby reinforcing the theoretical
advantages outlined in Section 3.4.1.

4.2 Comparison of ViTime to SOTA TSF Benchmarks Under Zero-shot Point Forecasting Setting

For zero-shot performance comparison, we consider four variants: (1) ViTime - our proposed TSF foundation
model, trained on generative data from RealTS and adopting a zero-shot paradigm; (2) ViTime-TFM - a
variant of ViTime, which is trained on the same public available dataset as TimesFM. (See Supplementary
Section B.3 for more information.) (3) PatchTST-ZS - trained on the same RealTS-generated data as ViTime,
using a numerical fitting paradigm to create a zero-shot version of PatchTST. (4) Moirai (Woo et al., 2024),
Moment (Goswami et al., 2024), VisionTS (Chen et al., 2024) and TimesFM (Das et al., 2024) - powerful
TSF foundation model pre-trained on extensive real-world datasets. All models employ a lookback length of
512 to ensure a fair comparison. Details of benchmark model configurations are reported in Supplementary
Section B.4.
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(a) Experimental Results With Metrics of MSE and MAE
Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Numerical Models
Moirai 0.434 0.439 0.346 0.382 0.382 0.388 0.272 0.321 0.188 0.274 1.779 0.766 0.238 0.261
Moment 0.691 0.585 0.341 0.350 0.845 0.580 0.257 0.317 0.837 0.763 1.375 0.788 0.348 0.429
VisionTS 0.390 0.414 0.333 0.375 0.374 0.372 0.282 0.321 0.207 0.294 0.443 0.284 0.269 0.292
TimesFM 0.442 0.430 0.356 0.389 0.424 0.419 0.328 0.347 0.151 0.245 0.369 0.245 0.229 0.255
PatchTST-ZS 1.237 0.831 0.903 0.710 1.356 0.825 0.839 0.622 1.311 0.885 1.873 0.945 0.907 0.588
Vision-Assisted Models
ViTime-TFM 0.398 0.387 0.321 0.350 0.382 0.377 0.295 0.312 0.136 0.221 0.332 0.221 0.206 0.229
ViTime 0.545 0.449 0.284 0.344 0.409 0.398 0.302 0.341 0.196 0.280 0.730 0.386 0.286 0.289

(b) Experimental Results With Metrics of ReMSE and ReMAE
Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE
Numerical Models
Moirai 1.144 0.722 0.754 0.467 1.448 0.849 0.455 0.397 0.859 0.676 1.416 0.894 0.706 0.414
Moment 1.089 1.240 0.498 0.321 0.894 0.618 0.542 0.582 0.907 0.743 1.138 0.69 0.545 0.349
VisionTS 0.988 1.016 0.524 0.350 0.873 0.559 0.773 0.516 0.851 0.669 1.173 0.669 0.519 0.327
TimesFM 0.490 0.467 0.374 0.396 0.671 0.503 0.355 0.359 0.367 0.404 0.744 0.519 0.284 0.306
PatchTST-ZS 1.477 0.903 1.097 0.775 1.295 0.798 0.805 0.613 1.414 0.921 2.054 1.002 0.911 0.584
Vision-Assisted Models
ViTime-TFM 0.481 0.451 0.314 0.354 0.519 0.455 0.276 0.325 0.301 0.350 0.718 0.460 0.237 0.261
ViTime 0.457 0.431 0.29 0.346 0.473 0.420 0.237 0.301 0.225 0.308 0.730 0.400 0.203 0.228

Table 2: Overall Experimental Results Comparison

Figure 2: Radar plots comparing the average MAE of ViTime and TimesFM across different rescale factors.
The radial axis represents MAE, with lower values (larger radius) indicating better performance. Each axis
corresponds to a specific rescale factor.

Table 2 summarizes the zero-shot performance of all models using traditional metrics (MSE, MAE) and
our proposed scale-invariant metrics (ReMSE, ReMAE). As shown in Table 2a, our vision-assisted models
demonstrate highly competitive performance. ViTime achieves the best results on the ETTh2, ETTm2, and
Weather datasets, while its variant, ViTime-TFM, secures the top performance on Electricity and Traffic
datasets. Notably, ViTime-TFM, which shares the same training data as TimesFM, consistently outperforms
it on most datasets, underscoring the inherent advantages of our vision-based modeling approach.

The superiority of ViTime becomes even more pronounced when evaluated with scale-invariant metrics, as
shown in Table 2b. ViTime demonstrates remarkable dominance by achieving the best ReMSE or ReMAE
on 11 out of 14 evaluation settings. This highlights its robust generalization ability across different temporal
resolutions in zero-shot scenarios. Furthermore, ViTime significantly outperforms PatchTST-ZS across all
datasets and metrics, confirming the effectiveness of visual intelligence strategies over numerical fitting for

15



Published in Transactions on Machine Learning Research (10/2025)

zero-shot forecasting. The strong performance of ViTime on ReMSE and ReMAE, compared to the still-strong
but less consistent performance of ViTime-TFM, suggests that the synthetic training data from RealTS is
crucial for enhancing zero-shot generalization across varying temporal scales.

To further assess robustness, Figure 2 presents the performance across different rescaling factors. TimesFM
exhibits optimal accuracy only at the original scale (β = 1), suffering significant degradation when evaluated at
other scales. Such behavior indicates sensitivity to scale-specific patterns and suggests potential data leakage
from the original resolution. In contrast, ViTime maintains consistently robust forecasting performance
across all rescaling factors, as evidenced by stable ReMSE and ReMAE metrics. This illustrates ViTime’s
ability to learn intrinsic temporal relationships independent of specific time resolutions, further reinforcing
the robustness and generalization benefits of vision-based modeling trained on RealTS data.

Large-scale benchmark note. A large-scale zero-shot evaluation on the community GIFT-EVAL bench-
mark (Aksu et al., 2024) is provided in Supplementary Section D.2.

4.3 Comparison of ViTime to SOTA TSF Benchmarks Under Zero-shot Probabilistic Forecasting
Settings

Table 3: Comparison of probabilistic forecasting performance. Within each scenario, the best results (lower is
better) for each dataset are bolded.

Method ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather
CRPS

Moirai 0.506 0.274 0.538 0.309 0.522 0.626 0.506
Lag-Llama 0.441 0.401 0.435 0.432 0.470 0.548 0.394
ViTime 0.356 0.319 0.344 0.286 0.267 0.327 0.244

ReCRPS
Moirai 0.537 0.382 0.631 0.329 0.609 0.684 0.620
Lag-Llama 0.478 0.442 0.463 0.420 0.514 0.629 0.377
ViTime 0.358 0.318 0.346 0.283 0.266 0.324 0.241

For zero-shot probabilistic forecasting, we evaluate three variants: (1) ViTime - our vision-assisted TSF
foundation model trained on generative data from RealTS and deployed in a zero-shot paradigm; (2) Moirai
(Woo et al., 2024) - a strong TSF foundation model pretrained on large-scale real data; and (3) Lag-Llama
(Rasul et al., 2023) - an LLM-based probabilistic forecaster. All models adopt a lookback length of 512 to
ensure a fair comparison. We report both CRPS and our rescaling-invariant metric, ReCRPS.

As summarized in Table 3, ViTime delivers state-of-the-art zero-shot probabilistic performance. Under the
standard CRPS metric, ViTime achieves the best results on 6 out of 7 datasets, with particularly substantial
gains on large multivariate benchmarks. For instance, compared to the strongest baseline, ViTime achieves
relative CRPS reductions of approximately 43% on Electricity, 40% on Traffic, and 38% on Weather. On
the ETTh2 dataset, while Moirai attains a slightly lower CRPS, this narrow advantage is reversed when
scale effects are controlled for. Using the ReCRPS metric, ViTime achieves the best performance on all 7
datasets, demonstrating superior distributional calibration across scales. These results indicate that ViTime
not only produces sharper forecasts but also maintains this accuracy and calibration robustness across diverse
temporal resolutions, establishing it as a highly reliable zero-shot probabilistic forecaster.

Overall, ViTime emerges as a robust, accurate, and reliable zero-shot time series forecasting model. The
effectiveness of ViTime stems from two key innovations: vision-assisted modeling and synthetic training data
generated by RealTS. Together, these features enable ViTime to generalize effectively across heterogeneous
datasets and varying temporal scales. The strengths of ViTime are evident in both point and probabilistic
forecasting settings. For point forecasts, ViTime delivers strong performance across diverse applications.
For probabilistic forecasts, ViTime demonstrates exceptional qualities—it maintains scale-robust calibration
and consistently achieves lower CRPS and ReCRPS scores across different datasets and resolutions. These
comprehensive results establish ViTime as a dependable zero-shot forecaster that excels in both point
estimation and distributional prediction tasks.
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4.4 Comparison of ViTime to SOTA TSF Benchmarks Under Fine-tuning Settings

Table 4: Comparisons of Fine-tuning forecasting results with MAE. FT is short for fine-tuning. The best
MAE results are bolded, and the second best are underlined. Standard deviations shown in the second row
for ViTime.

Method Data proportion ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather
TimesFM (FT) 10% 0.426 0.410 0.388 0.334 - - -
GPT4TS (FT) 10% 0.542 0.431 0.466 0.343 Not Reported
TIME-LLM (FT) 10% 0.522 0.394 0.426 0.323 - - -
ViTime (FT) 10% 0.422 0.370 0.376 0.312 0.250 0.251 0.252

(±0.034) (±0.007) (±0.003) (±0.008) (±0.008) (±0.008) (±0.005)
PatchTST 10% 0.542 0.431 0.466 0.343 0.268 0.286 0.283
PatchTST 100% 0.434 0.381 0.382 0.317 0.253 0.264 0.264
SiMBA 100% 0.433 0.392 0.396 0.328 0.274 0.291 0.281
TIMESNET 100% 0.450 0.427 0.406 0.333 0.295 0.336 0.286
iTransformer 100% 0.448 0.407 0.410 0.332 0.270 0.282 0.278
TimeMixer 100% 0.423 0.384 0.376 0.316 0.246 0.263 0.262
ViTime (FT) 100% 0.406 0.344 0.366 0.297 0.245 0.248 0.249

(±0.039) (±0.004) (±0.003) (±0.017) (±0.004) (±0.005) (±0.004)

Figure 3: Performance with different fine-tuning data
proportion.

Figure 4: Performance comparison of ViTime versus
TimesFM on TSF tasks under various data pertur-
bations: a. Original time series. b. Time series with
noises injected. c. Time series with harmonic added.
d. Time series with missing data.

While zero-shot results demonstrate the predictive capability of ViTime on unseen data, some high-precision
TSF tasks might require further fine-tuning studies to enhance prediction accuracy. Thus, this section focuses
on fine-tuning studies across various specialized datasets.

To comprehensively evaluate the fine-tuning performance of ViTime, we compare ViTime with other foundation
models and SOTA supervised TSF models. Foundational models including TimesFM (Das et al., 2024),
GPT4TS (Zhou et al., 2023a), and TIME-LLM (Jin et al., 2023) are fine-tuned using 10% of the training
data. Recent SOTA-supervised TSF models such as SiMBA (Patro & Agneeswaran, 2024), TIMESNET
(Wu et al., 2022), iTransformer (Liu et al., 2023), TimeMixer (Wang et al., 2024) and PatchTST (Nie et al.,
2022) use 100% of the training data, as reported in their respective papers. We also fine-tune ViTime using
between 10% to 100% of the training data to provide a comprehensive comparison.

Results of the fine-tuning study are provided in Table 4. ViTime fine-tuned with 10% of the training data can
outperform other foundational models and the latest supervised models updated on 100% of the training data.
Furthermore, as shown in Figure 3, when the fine-tuning data proportion approaches 100%, the prediction
accuracy of ViTime gradually increases and significantly surpasses all existing models, which suggests that
ViTime excels in both low-data-availability environments (10% fine-tuning) and full-data-availability scenarios
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(100% fine-tuning), consistently outperforming both other foundation models and specialized supervised
models.

4.5 Robust Inference and Generalizability Analysis

Table 5: Comparison of average ReMAE forecasting results.

Method ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather
GN standard deviations = 0.1

TimesFM 0.471±0.002 0.393±0.001 0.495±0.012 0.352±0.005 0.403±0.004 0.512±0.016 0.280±0.005
ViTime 0.449±0.002 0.360±0.001 0.429±0.001 0.329±0.002 0.340±0.006 0.402±0.014 0.279±0.007

GN standard deviations = 0.3
TimesFM 0.473±0.007 0.390±0.002 0.485±0.010 0.344±0.004 0.414±0.006 0.518±0.011 0.288±0.005
ViTime 0.455±0.005 0.363±0.001 0.434±0.002 0.333±0.003 0.355±0.007 0.426±0.016 0.288±0.009

GN standard deviations = 0.5
TimesFM 0.479±0.006 0.392±0.003 0.488±0.009 0.345±0.005 0.433±0.005 0.529±0.012 0.295±0.005
ViTime 0.466±0.003 0.370±0.002 0.445±0.003 0.337±0.003 0.371±0.007 0.461±0.013 0.294±0.013

GN standard deviations = 0.7
TimesFM 0.483±0.009 0.394±0.003 0.492±0.006 0.349±0.005 0.450±0.005 0.543±0.015 0.302±0.005
ViTime 0.484±0.004 0.394±0.003 0.443±0.003 0.346±0.005 0.377±0.006 0.510±0.021 0.301±0.014

GN standard deviations = 1.0
TimesFM 0.487±0.013 0.399±0.003 0.500±0.009 0.359±0.006 0.475±0.006 0.567±0.007 0.312±0.007
ViTime 0.487±0.006 0.408±0.005 0.471±0.004 0.358±0.005 0.415±0.010 0.546±0.022 0.305±0.010

DM P = 0.3
ViTime 0.453±0.002 0.378±0.001 0.432±0.001 0.337±0.003 0.343±0.006 0.417±0.014 0.281±0.013

Figure 5: Robustness analysis under increasing Gaussian noise levels.

To rigorously assess the robustness and generalizability of ViTime, we conducted comprehensive zero-shot
experiments comparing its performance against TimesFM under various data perturbation scenarios, including
original time series, Gaussian noise (GN), harmonic augmentation, and missing data (DM). These scenarios
represent challenges often encountered in practical forecasting tasks, evaluating the capabilities of models in
maintaining predictive accuracy amidst compromised data quality.

In our analysis of robustness against noise, we consider two complementary dimensions:

1. Absolute Robustness, defined as the ability of a model to maintain a superior absolute performance
(i.e., lower prediction error) across varying levels of noise.

2. Relative Robustness, which refers to the rate of performance degradation as the noise intensity
increases. A model with higher relative robustness exhibits a smaller increase in error for a given
increase in noise.
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Figure 6: Average ReMAE of ViTime across different DM rates.

Our extended experimental results as depicted in Figure 5 and detailed in Table 5, provide a nuanced view of
the behavior of models. In terms of absolute robustness, Figure 5 (a) clearly shows that the ReMAE of
ViTime is consistently and significantly lower than that of TimesFM across all tested Gaussian noise levels,
from a standard deviation of 0.1 to 1.0. This demonstrates that ViTime reliably delivers more accurate
predictions in both low- and high-noise environments. We argue that this sustained performance advantage is
a critical aspect of robustness for real-world applications, where the primary goal is to achieve the highest
possible accuracy under given conditions.

Regarding relative robustness, the analysis of the performance degradation rate as shown in Figure 5 (b),
confirms the observation that the performance of ViTime is more sensitive to increasing noise. The slope of
ViTime’s ReMAE curve is generally steeper than that of TimesFM, indicating a lower relative robustness.
We posit that this is an expected phenomenon; as noise approaches an infinite magnitude, the predictive
power of any model should diminish, and their error rates will converge towards a high value determined by
the inherent scale of data.

In summary, while ViTime is more sensitive to increases in noise (lower relative robustness), its foundational
performance is so strong that its absolute prediction accuracy remains superior to TimesFM across the
entire spectrum of tested noise levels. For instance, as shown in Table 5, even at a high noise level of 0.7,
ViTime outperforms or matches TimesFM on all datasets. In practice, an end-user is more concerned with
which model provides a more reliable result (lower ReMAE) in a given noisy environment, rather than which
model’s performance curve is flatter. Therefore, ViTime’s exceptional absolute robustness makes it a more
dependable and effective choice for forecasting in the presence of noise.

The most distinctive performance disparity emerges under the scenario of data missing (DM). As shown
for the DM P=0.3 case in Table 5, ViTime decisively outperforms the baseline across all tested datasets.
TimesFM, being reliant on numerical fitting, would necessitate explicit imputation strategies to handle such
data gaps. Conversely, ViTime robustly accommodates missing values by interpreting them as zero-valued
pixels within its visual representations. Consequently, ViTime leverages spatial dependencies among available
data points effectively, maintaining high prediction accuracy even amidst substantial data sparsity.

To further validate the robustness of ViTime to varying degrees of missing data, we systematically evaluate
its forecasting accuracy across data missing ratios ranging from 10% to 90% (Figure 6). Results reveal
that ViTime sustains remarkable forecasting performance with minimal degradation until data missingness
surpasses 50%, underscoring its exceptional resilience to incomplete data scenarios.

Collectively, these extensive evaluations substantiate the superior robustness of ViTime and generalizability
compared to traditional numerical fitting-based methods. Its inherent capability to effectively mitigate
perturbations through visual representation learning positions it as a highly promising approach for real-world
forecasting applications, where consistent data quality cannot always be guaranteed.
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Table 6: Empirical Forecasting Performance under Different MS Values

MS
2.38 2.64 2.88 3.09 3.50 5.00 6.00

ReMSE 0.4423 0.4404 0.4400 0.4348 0.4178 0.4780 0.4724
ReMAE 0.3818 0.3812 0.3811 0.3788 0.3759 0.3990 0.3959

4.6 Ablation Study

4.6.1 Ablation of MS

Proposition 3.6 establishes the theoretical relationship between the optimal MS threshold and the variance
scaling factor k in the latent space. For stationary data (S ∼ N(0, I), i.e., k = 1), Proposition 3.6 reveals that
with h = 128, the optimal MS should be 2.64. However, real-world time series often exhibit non-stationary
characteristics. Our pre-analysis of the target variable’s variance after input-based standardization (see
Supplementary Section B.2) demonstrates that the effective k value for the prediction horizon falls within
[1.5, 2] across all benchmark datasets.

Table 1 provides numerically solved optimal MS∗ values under different k and h configurations. For h = 128
(our experimental setting) and k ∈ [1.5, 2], the theoretical optimal MS ranges between 3.26-3.76. This
motivates our selection of MS = 3.5 as a balanced configuration within this interval.

To validate this choice, Table 6 presents the average relative ReMSE and ReMAE across six benchmark
datasets under zero-shot setting. The results demonstrate that MS = 3.5 achieves the minimum forecasting
error, reducing ReMSE by 4.1% and ReMAE by 1.8% compared to the stationary optimal MS = 2.64. This
strong alignment between theoretical predictions (Table 1) and empirical performance (Table 6) confirms
that our MS selection strategy effectively minimizes system error while accommodating real-world data
characteristics.

4.6.2 Ablation of Loss Function

Table 7: Ablation study of loss function components on prediction performance.

Metric Loss Configuration
EMD Only JSD+EMD (Ours) JSD Only

Average ReMAE 0.3941 0.3759 0.3956
Average ReMSE 0.4586 0.4178 0.4637

In this section, we conducted ablation studies on the loss function components of ViTime under zero-shot
setting. Table 7 compares model performance under three configurations: (1) EMD alone, (2) our proposed
loss function in Equation (18),where α = 0.2 to balance the quantity level, and (3) JSD alone. The results
demonstrate that our dual-objective loss achieves optimal performance on both ReMSE and ReMAE.

4.6.3 Ablation of Other Configuration

In this section, we perform several ablation studies to gain deeper insights into ViTime model configuration.
The results are reported in Figure 7. Figure 7 a depicts the influence of varying spatial resolutions (h) on
model accuracy. Although increasing h slightly improves the prediction results, the associated computational
cost increases exponentially. Thus, setting h to 128 is more economical and efficient. Figure 7 b illustrates the
effect of different lookback window lengths (T ) on prediction accuracy. It is evident that a longer lookback
window length significantly enhances the model’s prediction accuracy. Figure 7 c reports the prediction
accuracy across different model sizes. The data shows that models with more parameters tend to perform
better. Moreover, the proposed ViTime achieves superior performance with only 93M parameters compared
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(a) Forecasting performance varying
with h

(b) Forecasting performance varying
with the length of lookback window

(c) Forecasting performance across
different model sizes

Figure 7: Ablation studies with zero-shot forecasting.
Note: The model size of ViTime used in computational experiments is 93M parameters version.

(a) Grad-CAM heatmap showing attention on key trend
changes.

(b) Attention maps at different prediction positions demon-
strating temporal dependencies.

Figure 8: Visualization of ViTime’s attention mechanism. Despite not using an autoregressive paradigm,
ViTime exhibits sequential processing patterns through its multi-layer self-attention modules.

with TimesFM, which is over 200M parameters, further demonstrating the efficiency and effectiveness of
ViTime.
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4.7 Interpretation of ViTime

Figure 8 illustrates the attention mechanism of ViTime through Grad-CAM (Selvaraju et al., 2017) heatmaps
and position-specific attention maps. The Grad-CAM results demonstrate that ViTime focuses strongly
on periods of fundamental trend changes. Further analysis through attention maps at different prediction
positions reveals an interesting pattern: despite not adopting an autoregressive paradigm, ViTime’s multi-layer
self-attention modules process information in a temporal sequence. The input data and the predicted results
from previous time steps determine the spatiotemporal distribution of predictions at each time step. This
aligns with human cognitive patterns, where information is processed from the recent to the distant past
while maintaining awareness of known information.

(a) MS=3.5 (b) MS=3.5

(c) MS=7 (d) MS=7

Figure 9: Resolution analysis for explosive growth patterns: (a-b) With MS=3.5, ViTime incorrectly predicts
peak decline due to spatial constraints. (c-d) Doubling MS to 7 enables accurate growth trend capture.

5 Discussion

While ViTime demonstrates state-of-the-art performance in accuracy and robustness, two key challenges
warrant further investigation.

5.1 Resolution Constraints & Adaptive Enhancement.

The mapping function’s truncation imposes resolution limits, particularly evident in explosive growth patterns
(Figure 9 a-b). A key limitation of ViTime arises from its assumption of S ∼ N(0, I), which fails to capture
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the high-variance nature of explosive growth data that typically follows S ∼ N(0, kI) with k ≫ 1. As shown in
Proposition 3.6, the optimal threshold MS∗ scales as

√
k, implying that fixed thresholds (e.g., MS = 3.5 for

k = 1.5) become suboptimal for high-variance scenarios, introducing significant system errors and degrading
prediction accuracy.

Our empirical analysis reveals that doubling the MS parameter from 3.5 to 7 significantly improves prediction
fidelity for explosive growth patterns (Figure 9c-d). However, excessively large MS values increase system
error, as demonstrated in Theorem 3.3, leading to computational inefficiency. This trade-off suggests two
complementary research directions:

• Elastic Resolution Enhancement: Techniques to dynamically adjust spatial resolution h based
on data variance, ensuring sufficient granularity for high-variance regions without unnecessary
computational overhead.

• Adaptive MS Estimation: Algorithms to estimate the variance scaling factor k and compute the
optimal MS∗ in real-time, balancing prediction fidelity with spectral efficiency.

These enhancements would enable ViTime to handle explosive growth patterns more effectively while
maintaining computational tractability.

5.2 Future Directions for Synthetic Data Generation in ViTime

RealTS, our synthetic data generation algorithm, plays a crucial role in performance of ViTime by creating
diverse and realistic training samples that significantly enhance model generalizability. The algorithm enriches
the training data through sophisticated pattern synthesis, enabling ViTime to achieve superior zero-shot and
few-shot learning capabilities as demonstrated in our experiments.

While RealTS has proven effective in the current framework, several enhancements could further improve
ViTime’s predictive quality: 1) More advanced pattern injection mechanisms to capture complex real-world
dynamics such as non-stationary processes and regime-switching scenarios. 2) Development of quantitative
metrics for assessing simulation fidelity across different temporal regimes. 3) Extension to multivariate
time series generation. Although theoretically feasible by incorporating additional channels in RealTS, this
extension presents practical challenges in computational demand and in generating synthetic data that
preserves realistic inter-variable correlations. These represent important directions for strengthening ViTime’s
data generation capabilities.

6 Conclusions

This work developed a vision intelligence-powered computational paradigm, ViTime, for developing the
TSF foundation model, as compared with the numerical data fitting principles prevalently considered in
literature. ViTime was inspired by human visual cognitive processes in understanding and analyzing time
series. By introducing a paradigm of operating numerical data in image space and a unique deep network
based computing pipeline, ViTime is capable of handling both point and probabilistic forecasting, elevating the
SOTA performance on zero-shot/fine-tuning TSF without relying on prior data samples. This demonstrates
the great potential for reshaping the computational mechanism in TSF foundation model development.
Moreover, as data often suffer from diverse contamination and variability in reality, ViTime’s visual approach
enables robust performance under various real-world data perturbations and alterations, showcasing its
superior resilience.
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A Details of RealTS

We present RealTS, a versatile framework for synthesizing realistic time series data. RealTS employs multiple
data behavior modes under two main hypotheses: periodic (φp) and trend (φt). This section details the
various behavior modes, their configurations, and provides visual examples.

A.1 Periodic Hypothesis Behaviors

Under the periodic hypothesis φp, we employ two distinct data behavior modes:

A.1.1 Inverse Fast Fourier Transform Behavior (IFFTB)

To ensure the synthesized data adequately reflects the variation paradigms of real-world time series, we utilize
IFFT as expressed in Equation (30) to simulate the underlying behavior of real-world periodic time series:

P (sL|L, Bp) |Bp=IFFT =
∫∫ ∞

−∞
N
(
Am; µAm , σ2

Am

)
· N
(
ϕ; µP, σ2

P
)

× δ (sL − IFFT (Am, ϕ, L)) dϕdAm (30)

where two empirical distributions of Fourier transform amplitudes and phases, N(Am; µAm
, σ2

Am
) and

N(ϕ; µP , σ2
P ), are maintained, and δ denotes the Dirac delta function. By sampling from empirical distributions,

we can obtain the amplitude and Phase vector, which is then inversely transformed back to the time domain
via IFFT.

Figure 10: Empirical distribution I employed in IFFTB.

The empirical distributions utilized in Am and ϕ are illustrated in Figure 10-Figure 11. During experiments,
we randomly select one of two empirical distributions for generating Am and ϕ. Figure 12 shows examples of
time series generated using IFFTB.
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Figure 11: Empirical distribution II employed in IFFTB.

Figure 12: Examples of time series generated using IFFTB.

28



Published in Transactions on Machine Learning Research (10/2025)

A.1.2 Periodic Wave Behavior (PWB)

This behavior generates data by superimposing multiple periodic waves, which is modeled as a sum of sin,
cos, and other periodic functions, fperiodic, with different frequencies and amplitudes:

P (sL|L, Bp) |Bp=PWB =
∫∫ ∞

−∞
N
(

sL;
kPWB∑
i=1

Aifperiodic (ωit) , σ2
ϵ

)
× P (A) P (ω) dωdA (31)

where P(A) and P(ω) denote predefined prior distributions of amplitudes and frequency; kP W B denotes the
number of mixed periodic functions.

For PWB, we define the prior distributions for amplitude and frequency as:

A ∼ U(0.5, 5) (32)

ln(ω) ∼ U(ln(11), ln(2L)) (33)

The parameter kP W B is modeled as:

P (kP W B = k) = 1
8 , for k = 1, 2, . . . , 8 (34)

Figure 13 shows examples of time series generated using PWB.

Figure 13: Examples of time series generated using PWB.

A.2 Trend Data Hypothesis Behaviors

Under the trend data hypothesis φt, we employ three distinct data behavior modes:

A.2.1 Random Walk Behavior (RWB)

The RWB models data as a stochastic process where each value is the previous value plus a random step:

P (si|si−1, L, Bp) |Bp=RWB = N
(
0, σ2) (35)

Figure 14 shows examples of time series generated using RWB.

A.2.2 Logistic Growth Behavior (LGB)

The LGB models data with a logistic growth function, capturing the S-shaped growth pattern:
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Figure 14: Examples of time series generated using RWB.

P (sL|L, Bp) |Bp=LGB

=
∫∫ ∞

−∞
N
(

sL; K

1 + e−r(L−L0) , σ2
ϵ

)
P (K)P (r)dKdr

(36)

where P (K) and P (r) denote predefined prior distributions of S-shaped function hyperparameters.

For LGB, we define the probability densities for Carrying Capacity K and Growth Rate r as:

ln(K) ∼ U(ln(1), ln(10)) (37)

ln(r) ∼ U(ln(0.001), ln(0.1)) (38)

Figure 15 shows examples of time series generated using LGB.

Figure 15: Examples of time series generated using LGB.

A.2.3 Trend Wave Data Behavior (TWDB)

TWDB combines linear trends with periodic fluctuations:

P (sL|L, Bp) |Bp=TWDB =
∫∫ ∞

−∞
N
(

sL; aL + b +
kTWDB∑

i=1
Aifperiodic (ωit) , σ2

ϵ

)
× P (a)P (b)P (A) P (ω) dadbdAdω

(39)

where P (a), P (b), P (A) and P (ω) are predefined prior distributions of hyperparameters.

In the TWDB, we define the probability densities for linear function random variables P (a) and P (b), as
well as for the superimposed periodic wave components P (A) and P (ω). The settings for P (A), P (ω), and
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kT W DB are consistent with those used in the PWB module. The probability densities for P (a) and P (b) are
detailed below:

a ∼ U(−1, 1) (40)

b ∼ U(−10, 10) (41)

Figure 16 shows examples of time series generated using TWDB.

Figure 16: Examples of time series generated using TWDB.

A.3 Data Augmentation Techniques

We sample IFFTBI, IFFTBII, PWB, RWB, LGB, and TWDB included in RealTS according to the following
probability distribution: P (IFFTBI) = 0.3, P (IFFTBII) = 0.3, P (PWB) = 0.16, P (RWB) = 0.08, P (LGB) =
0.08, P (TWDB) = 0.08. To enhance the diversity and robustness of synthetic data, we employ various data
augmentation techniques, such as:

• Multiple period replication - repeating the generated periodic data over multiple cycles to capture
long-term periodic patterns.

• Data flipping - reversing the time series to create new patterns while preserving underlying charac-
teristics.

• Convolution smoothing and detrending - removing underlying trends from the data to isolate periodic
components, making it easier for the model to learn these patterns.

• Data perturbation - introducing sudden changes or anomalies into the data, simulating real-world
disturbances and improving the ability of the model to handle unexpected variations.

More details of RealTS are offered in the code part of the Supplementary Material.

B Training Configuration

B.1 ViTime Model Structure

The detailed network configuration of the proposed ViTime is reported in Table 8.

B.2 Data Normalization

To ensure ViTime can effectively capture patterns involving sudden changes, an in-sequence data normalization
based on L2 normalization is implemented. By normalizing each sequence within the data sequence, the
model can pay more attention to abrupt variations. The normalization process is defined as follows:
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Table 8: Details of model architecture

Module Embed_dim Depth Patch size Num_heads
Visual Time Tokenizer 768 9 (4,32) 12
Decoder 384 4 \ 12

Refining Module
Component Configuration Details
Backbone MobileNetV2 Downsample factor: 16
ASPP 5 branches Dilation rates: 1,6,12,18,GAP
Low-level features Conv1x1 24→48 channels
Feature fusion Conv3x3×2 256 channels
Upsampling DeconvASPP 6 branches with SE attention

SL =
SL − mean (∥S1:T∥2)

std (S1:T) (42)

B.3 Training Set of ViTime-TFM

The complete training datasets of ViTime-TFM are detailed in Table 9.

Table 9: Training dataset composition for ViTime-TFM

Dataset Granularity Time series Time points
Synthetic Hourly 3,000,000 6,144,000,000
Electricity Hourly 321 8,443,584
Traffic Hourly 862 15,122,928
Weather 10 Min 42 2,213,232
Favorita Sales Daily 111,840 139,179,538
LibCity 15 Min 6,159 34,253,622
M4 hourly Hourly 414 353,500
M4 daily Daily 4,227 9,964,658
M4 monthly Monthly 48,000 10,382,411
M4 quarterly Quarterly 24,000 2,214,108
M4 yearly Yearly 22,739 840,644

B.4 Benchmark Model Configurations

To ensure full transparency and reproducibility, this section details the configurations for the baseline models
used in our comparisons.

1. Zero-Shot Forecasting (Table 2): For the zero-shot forecasting results, we used the following publicly
available pre-trained models:

• TimesFM: timesfm-1.0-200m

• Moirai: moirai-1.1-R-large

• Moment: MOMENT-1-large

• VisionTS: mae_base
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• PatchTST: PatchTST/64

2. Fine-Tuning (Table 4): The performance scores reported for the fine-tuning experiments are the official
results cited directly from the original publications of the respective baseline models.

3. Probabilistic Forecasting (Table 3): For the probabilistic forecasting experiments, we configured the
baseline models as follows:

• Moirai: We used the pre-trained model moirai-1.1-R-large.

• Lag-Llama: We utilized the publicly available implementation from the original Lag-Llama paper
and its provided checkpoint, lag-llama.ckpt.

C Proofs

This section provides the detailed proofs for the theorems and propositions presented in the main text.

C.1 Proof of Theorem 3.3 (System Error Upper Bound)

Theorem C.1 (Theorem 3.3 restated). Given a tensor ŝ ∈ S ⊂ Rc×L, where S follows N(0, I) as per
Assumption 3.2, the system error (SE) from mapping to V and back, defined as

∥∥f−1 (f (ŝ)) − ŝ
∥∥

1, satisfies
the following expectation bound:

SE := E
∥∥f−1 (f (ŝ)) − ŝ

∥∥
1 ≤ cL

[
MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

]
, (43)

where Φ is the cumulative distribution function (CDF) of N(0, 1), c is the number of variates, L is the time
series length, h is the image height (resolution), and MS is the maximum scale.

Proof. The proof considers the error for a single element s of ŝ and then scales by cL. Let P (s) be the PDF of
N(0, 1). The expected absolute error for a single element is E|f−1(f(s)) − s|. This error can be decomposed
into two parts: quantization error for |s| ≤ MS and truncation error for |s| > MS.

1. Quantization Error (|s| ≤ MS):

When |s| ≤ MS, the value s is mapped to a bin j = ⌊(s + MS)/(2MS/h)⌋. The inverse mapping f−1(f(s))
reconstructs this as the midpoint of the bin, (j − 0.5)(2MS/h) − MS. The maximum error in this case is
half the bin width, δ/2 = (2MS/h)/2 = MS/h.

The expected quantization error is:

EQ =
∫ MS

−MS

|f−1(f(s)) − s|P (s)ds (44)

≤
∫ MS

−MS

MS

h
P (s)ds = MS

h

∫ MS

−MS

P (s)ds (45)

= MS

h
[Φ(MS) − Φ(−MS)] . (46)

2. Truncation Error (|s| > MS):

If s > MS, f(s) maps to the highest bin h, and f−1(f(s)) = MS − (MS/h). The error is s − (MS − MS/h).

If s < −MS, f(s) maps to the lowest bin 1, and f−1(f(s)) = −MS+(MS/h). The error is (−MS+MS/h)−s.
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For simplicity in bounding, we consider the error magnitude as |s| − MS when |s| > MS. The expected
truncation error is:

ET =
∫ ∞

MS

(s − MS)P (s)ds +
∫ −MS

−∞
(−MS − s)P (s)ds (47)

= 2
∫ ∞

MS

(s − MS)P (s)ds (by symmetry of P (s)) (48)

= 2
[∫ ∞

MS

sP (s)ds − MS

∫ ∞

MS

P (s)ds

]
. (49)

We know
∫∞

MS
sP (s)ds =

∫∞
MS

s 1√
2π

e−s2/2ds = 1√
2π

e−MS2/2.

And
∫∞

MS
P (s)ds = 1 − Φ(MS).

So,

ET = 2
[

1√
2π

e−MS2/2 − MS(1 − Φ(MS))
]

(50)

=
√

2
π

e−MS2/2 − 2MS(1 − Φ(MS)). (51)

3. Total Expected Error per Element:

The total expected absolute error for one element is EQ + ET :

E|f−1(f(s)) − s| ≤ MS

h
[Φ(MS) − Φ(−MS)] +

√
2
π

e−MS2/2 − 2MS(1 − Φ(MS)) (52)

= MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2(1 − Φ(MS))
)

+
√

2
π

e− MS2
2 (53)

= MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2 . (54)

Multiplying by cL (number of elements) gives the bound for E∥f−1(f(ŝ)) − ŝ∥1.

C.2 Proof of Proposition 3.4 (Asymptotic Convergence with h)

Proposition C.2 (Proposition 3.4 restated). For any ε > 0, there exists δ0 > 0 such that when h → +∞
and MS ≥ δ0, the per-element SE upper bound

g1(h, MS) = MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2 (55)

converges to zero.

Proof. Let g1(h, MS) be the per-element upper bound from Theorem 3.3:

g1(h, MS) = MS

h
(Φ(MS) − Φ(−MS)) − 2MS(1 − Φ(MS)) +

√
2
π

e− MS2
2 . (56)

As h → +∞, the term MS
h (Φ(MS) − Φ(−MS)) → 0 since Φ(MS) − Φ(−MS) ≤ 1.

The remaining terms are R(MS) = −2MS(1 − Φ(MS)) +
√

2
π e− MS2

2 .
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We use Mill’s ratio for the tail probability of a standard normal distribution: for MS > 0,

1 − Φ(MS) ∼ ϕ(MS)
MS

= 1
MS

√
2π

e−MS2/2 as MS → ∞. (57)

So,

−2MS(1 − Φ(MS)) ∼ −2MS

(
1

MS
√

2π
e−MS2/2

)
(58)

= −
√

2
π

e−MS2/2. (59)

Thus, as MS → ∞,

R(MS) ∼ −
√

2
π

e−MS2/2 +
√

2
π

e−MS2/2 (60)

= 0. (61)

Therefore, for any ε > 0, we can find a δ0 such that for MS ≥ δ0, |R(MS)| < ε/2.

And for any MS ≥ δ0, we can find an H0 such that for h ≥ H0,∣∣∣∣MS

h
(Φ(MS) − Φ(−MS))

∣∣∣∣ < ε/2. (62)

This implies that limh→+∞,MS→∞ g1(h, MS) = 0. More precisely, for a fixed large enough MS, as h → ∞,
the limit is R(MS), which can be made arbitrarily small by choosing MS large.

The statement asks for convergence as h → ∞ for MS ≥ δ0.

Let MS ≥ δ0. Then

lim
h→+∞

g1(h, MS) = −2MS(1 − Φ(MS)) +
√

2
π

e−MS2/2. (63)

This limit itself tends to 0 as MS → ∞. The proposition asks for the expression to be small when h → ∞
AND MS ≥ δ0.

Taking the limit as h → ∞ first, we get:

lim
h→+∞

∣∣∣∣∣MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

∣∣∣∣∣ =

∣∣∣∣∣−2MS(1 − Φ(MS)) +
√

2
π

e− MS2
2

∣∣∣∣∣ .
(64)

This term goes to 0 as MS → ∞. So, for any ε > 0, there exists δ0 such that for MS ≥ δ0, the term is less
than ε.

C.3 Proof of Proposition 3.5 (Optimal MS Selection)

Proposition C.3 (Proposition 3.5 restated). For a fixed h, there exists a unique optimal threshold MS∗ > 0
that minimizes the per-element SE upper bound g1(h, MS). This MS∗ is the solution to:

1
h

(Φ(MS∗) − Φ(−MS∗)) − 2 + 2Φ(MS∗) + MS∗

h
· 2ϕ(MS∗) = 0, (65)

where ϕ(x) = 1√
2π

e−x2/2 is the PDF of N(0, 1). (Note: The original equation had
√

2/πe−MS∗2/2, which is
2ϕ(MS∗)).
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Proof. Let g1(MS) = MS
( 1

h (Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π e− MS2

2 .

We want to find MS∗ such that g′
1(MS∗) = 0.

Using Φ(−x) = 1 − Φ(x) and ϕ(−x) = ϕ(x), we have Φ(MS) − Φ(−MS) = 2Φ(MS) − 1.

So, g1(MS) = MS
( 1

h (2Φ(MS) − 1) − 2 + 2Φ(MS)
)

+ 2ϕ(MS).

Derivative with respect to MS:

dg1
dMS

=
(

1
h

(2Φ(MS) − 1) − 2 + 2Φ(MS)
)

+ MS

(
2ϕ(MS)

h
+ 2ϕ(MS)

)
+ 2ϕ′(MS) (66)

= 2Φ(MS) − 1
h

− 2 + 2Φ(MS) + 2MSϕ(MS)
h

+ 2MSϕ(MS) − 2MSϕ(MS) (since ϕ′(MS) = −MSϕ(MS))
(67)

= 2Φ(MS) − 1
h

− 2 + 2Φ(MS) + 2MSϕ(MS)
h

. (68)

Setting dg1/dMS = 0:
2Φ(MS∗) − 1

h
− 2 + 2Φ(MS∗) + 2MS∗ϕ(MS∗)

h
= 0. (69)

This matches the condition in the proposition since Φ(MS∗) − Φ(−MS∗) = 2Φ(MS∗) − 1.

To show uniqueness and minimality, we examine the second derivative or the behavior of the first derivative.

Let f(MS) = dg1/dMS.

f(0) = (0 − 1)/h − 2 + 2(0.5) + 0 = −1/h − 2 + 1 = −1 − 1/h < 0.

As MS → ∞, Φ(MS) → 1 and ϕ(MS) → 0.

So limMS→∞ f(MS) = 1/h − 2 + 2 + 0 = 1/h > 0 (assuming h > 0).

Since f(MS) is continuous and goes from negative to positive, there must be at least one root MS∗ > 0.

The second derivative:

d2g1
dMS2 = 2ϕ(MS)

h
+ 2ϕ(MS) + 2ϕ(MS) + 2MSϕ′(MS)

h
(70)

= 2ϕ(MS)
(

1
h

+ 1
)

+ 2ϕ(MS) − 2MS2ϕ(MS)
h

(71)

= 2ϕ(MS)
(

1 + 2
h

− MS2

h

)
. (72)

For small MS, d2g1/dMS2 > 0, indicating convexity. If 1 + 2/h − MS2/h > 0, i.e., MS2 < h + 2.

If MS∗ <
√

h + 2, then g1(MS) is convex at MS∗, ensuring a local minimum.

The function f(MS) starts negative, becomes positive, and its derivative d2g1/dMS2 is positive for MS <√
h + 2 and can become negative for MS >

√
h + 2. This structure ensures a unique minimum for MS > 0.

C.4 Proof of Proposition 3.6 (Optimal Threshold under Variance Scaling)

Proposition C.4 (Proposition 3.6 restated). Under the assumption S ∼ N(0, kI) with k > 1, the optimal
threshold MS∗ that minimizes the per-element SE upper bound is characterized by:

1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ MS∗

h

√
2

πk
e− (MS∗)2

2k = 0. (73)
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Proof. Let s ∼ N(0, k). Then s′ = s/
√

k ∼ N(0, 1).

The original values s are scaled by
√

k. The mapping function f operates on s. The bins are from −MS to
MS. Bin width δs = 2MS/h.

The SE upper bound for a single element is: gk(MS) = Es∼N(0,k)|f−1(f(s)) − s|.

This is equivalent to scaling the original problem. Let s =
√

kz where z ∼ N(0, 1). The function operates on
s. The effective range for z is −MS/

√
k to MS/

√
k.

The quantization error part:

s is in [−MS, MS]. The error is bounded by MS/h.∫ MS

−MS

MS

h
Pk(s)ds = MS

h

∫ MS

−MS

1√
2πk

e−s2/(2k)ds (74)

Let u = s/
√

k. Then ds =
√

kdu. Limits become −MS/
√

k to MS/
√

k.

= MS

h

∫ MS/
√

k

−MS/
√

k

1√
2π

e−u2/2du (75)

= MS

h

[
Φ
(

MS√
k

)
− Φ

(
−MS√

k

)]
(76)

The truncation error part:

2
∫∞

MS
(s − MS)Pk(s)ds.

= 2
[∫ ∞

MS

s
1√
2πk

e−s2/(2k)ds − MS

∫ ∞

MS

1√
2πk

e−s2/(2k)ds

]
(77)

The first integral: ∫ ∞

MS

s
1√
2πk

e−s2/(2k)ds =
√

k

∫ ∞

MS/
√

k

u
1√
2π

e−u2/2du (78)

=
√

k
1√
2π

e−(MS/
√

k)2/2 (79)

=
√

k

2π
e−MS2/(2k) (80)

The second integral: MS
(

1 − Φ
(

MS√
k

))
.

So,

ET,k = 2
[√

k

2π
e−MS2/(2k) − MS

(
1 − Φ

(
MS√

k

))]
(81)

The per-element SE bound g1,k(MS) is:

g1,k(MS) = MS

h
[Φk(MS) − Φk(−MS)] +

√
2k

π
e−MS2/(2k) − 2MS(1 − Φk(MS)) (82)

where Φk(x) = Φ(x/
√

k).
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This can be written as:

g1,k(MS) = MS

(
1
h

(Φk(MS) − Φk(−MS)) − 2 + 2Φk(MS)
)

+
√

2k

π
e− MS2

2k (83)

To find the optimal MS∗, we differentiate g1,k(MS) with respect to MS and set to zero.

Let ϕk(x) = 1√
k

ϕ(x/
√

k) be the PDF of N(0, k) in terms of ϕ.

d
dMS Φk(MS) = d

dMS Φ(MS/
√

k) = ϕ(MS/
√

k) · 1√
k

= ϕk(MS).

d
dMS

(√
2k
π e− MS2

2k

)
=
√

2k
π e− MS2

2k

(
− 2MS

2k

)
= − MS√

k

√
2
π e− MS2

2k = −2MSϕk(MS).

The derivative dg1,k

dMS is:

=
(

1
h

(Φk(MS) − Φk(−MS)) − 2 + 2Φk(MS)
)

+ MS

(
1
h

(ϕk(MS) − (−ϕk(MS))) + 2ϕk(MS)
)

− 2MSϕk(MS)

(84)

= Φk(MS) − Φk(−MS)
h

− 2 + 2Φk(MS) + 2MSϕk(MS)
h

(85)

Setting this to zero gives:
1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ 2MS∗

h

1√
k

ϕ

(
MS∗
√

k

)
= 0 (86)

Substituting 2ϕ(x/
√

k)/
√

k =
√

2/(πk)e−(MS∗)2/(2k), we get the stated condition.

The uniqueness follows a similar argument to Proposition 3.5.

C.5 Proof of Theorem 3.7 (Stripe SNR Boost)

Theorem C.5 (Theorem 3.7 restated). Let the length–L time series sk = A sin(ω0k+ϕ)+ηk, k = 0, . . . , L−1,
with amplitude A > 0, angular frequency ω0 = 2π/Pperiod (Pperiod ∈ N+) and i.i.d. Gaussian noise ηk ∼
N(0, σ2) be visualised as the binary stripe image v ∈ {0, 1}h×L defined through vj,k = 1(j = ⌊(sk + MS)/δ⌋),
where δ = ∆/h, ∆ = 2MS.

Denote SNRnum = A2/(2σ2) and SNRvis = E[|F2D(vclean)[0, n0]|2]/E[|F2D(vnoise)[0, n0]|2], with n0 =
⌊L/Pperiod⌋.

Assume (i) δ ≤ A ≤ ∆ − δ and (ii) σ < δ/4.

Then, for every L ≥ Pperiod:

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum (87)

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
(88)

Proof. Let vclean be the image from A sin(ω0k + ϕ) and v = vclean + vnoise where vnoise is the change due to
ηk.

1. Deterministic Signal Power in Visual Domain.

The 2D Discrete Fourier Transform (DFT) is

F2D(v)[m, n] =
L−1∑
k=0

h−1∑
j=0

vj,ke−i2π(mk/L+nj/h) (89)
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We are interested in the coefficient at (m, np) = (0, n0), where n0 = L/Pperiod (assuming L is a multiple of
Pperiod for simplicity, or ⌊L/Pperiod⌋ otherwise).

The transform of the clean signal component at (0, n0) is

F2D(vclean)[0, n0] =
L−1∑
k=0

h−1∑
j=0

(vclean)j,ke−i2π(n0j/h) (90)

Following the provided analysis, E[|F2D(vclean)[0, n0]|2] = L2.

2. Probability of Quantization Flip.

A flip means vj,k changes due to noise ηk. This occurs if sk = sk,clean + ηk crosses a quantization boundary
θj = jδ − MS.

The clean value sk,clean falls into bin j0. A flip occurs if sk falls into j0 ± 1, j0 ± 2, . . . .

The closest boundaries are j0δ − MS and (j0 + 1)δ − MS.

sk,clean is at least ϵ from any boundary. A flip to an adjacent bin occurs if |ηk| > ϵ.

The condition σ < δ/4 implies noise is small. A flip occurs if ηk moves sk to another bin. This primarily
happens if sk crosses sk,clean ± δ/2 (approximately).

So, pflip = Pr(|ηk| > δ/2). Using Gaussian tail bound Pr(|X| > t) ≤ 2e−t2/(2σ2):

pflip ≤ 2 exp
(

− (δ/2)2

2σ2

)
= 2 exp

(
− δ2

8σ2

)
(91)

3. Energy of the Noise Image vnoise.

vnoise has entries 1, −1, 0. If sk flips from bin j0 to j1: (vnoise)j0,k = −1, (vnoise)j1,k = 1.

∥vnoise∥2
F =

∑
k,j(vnoise)2

j,k. Each flip changes two pixels, so contributes 12 + (−1)2 = 2 to this sum.

E[∥vnoise∥2
F ] =

∑
k E[contribution at k] = L · (2 · pflip).

4. Bound on a Single DFT Coefficient of Noise.

By Parseval’s identity for 2D DFT:
∑

m,n |F2D(vnoise)[m, n]|2 = ∥vnoise∥2
F (with appropriate normalization).

Thus, for any specific (m, n), |F2D(vnoise)[m, n]|2 ≤ ∥vnoise∥2
F .

Therefore, E[|F2D(vnoise)[0, n0]|2] ≤ E[∥vnoise∥2
F ] = 2Lpflip.

5. Visual SNR Bound.

SNRvis = L2

E[|F2D(vnoise)[0, n0]|2] (92)

≥ L2

2Lpflip
(93)

= L

2pflip
(94)
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Using pflip ≤ 2 exp(−δ2/(8σ2)):

SNRvis ≥ L

2 · 2 exp(−δ2/(8σ2)) (95)

= L

4 exp
(

δ2

8σ2

)
(96)

This is the second part of the result.

6. Relation to Numerical SNR.

SNRnum = A2/(2σ2).

SNRvis
SNRnum

= SNRvis
2σ2

A2 (97)

≥ L

4 exp
(

δ2

8σ2

)
2σ2

A2 (98)

This yields

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum (99)

Thus, both inequalities in the theorem statement are proven.

C.6 Proof of Theorem 3.8 (Gaussian-Blur SNR Boost)

Theorem C.6 (Theorem 3.8 restated). Under the assumptions of Theorem 3.7, apply a 1D normalized
Gaussian convolution gj = (1/Z) exp(−j2/(2σ2

b )) with
∑

j gj = 1 along the row direction of v to get w = g ∗j v.
Let S =

∑
j g2

j ∈ (0, 1) be the filter’s nuclear energy.

Define SNRblur
vis = E[|F2D(wclean)[0, n0]|2]/E[|F2D(wnoise)[0, n0]|2]. Then,

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
(100)

SNRblur
vis ≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum (101)

The visual SNR is amplified by at least 1/S > 1 compared to the unblurred case.

Proof. Let G(mv) be the DFT of the 1D filter gj with respect to the value-axis frequency mv.

F2D(w)[mt, mv] = G(mv)F2D(v)[mt, mv].

We are interested in the frequency (0, n0), where n0 is the time-axis frequency index.

1. Signal Power after Blurring.

Using the frequency index (nt, nj) for (time, value/row), we examine the coefficient F2D(w)[nt, nj ].

The specific coefficient in focus is F2D(wclean)[0, n0], where n0 is the time index.

Signal power:

E[|F2D(wclean)[n0, 0]|2] = |G(0)|2E[|F2D(vclean)[n0, 0]|2] (102)

Since
∑

j gj = 1, we have G(0) = 1. So signal power remains L2.
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2. Noise Power after Blurring.

The noise image is wnoise = g ∗j vnoise.

The total energy of wnoise:

∥wnoise∥2
F =

∑
k

∥g ∗ (vnoise):,k∥2
2 (103)

For each column k, (vnoise):,k is a vector. Convolution is along j.

∥g ∗ (vnoise):,k∥2
2 = S∥(vnoise):,k∥2

2 (104)

where S = ∥g∥2
2 =

∑
j g2

j .

So,

∥wnoise∥2
F = S∥vnoise∥2

F (105)
E[∥wnoise∥2

F ] = S · E[∥vnoise∥2
F ] (106)

= S · (2Lpflip) (107)

3. Bound on Single DFT Coefficient of Blurred Noise.

E[|F2D(wnoise)[n0, 0]|2] ≤ E[∥wnoise∥2
F ] (108)

= 2LSpflip (109)

4. SNR after Blurring.

SNRblur
vis = L2

E[|F2D(wnoise)[n0, 0]|2] (110)

≥ L2

2LSpflip
(111)

= L

2Spflip
(112)

Using pflip ≤ 2 exp(−δ2/(8σ2)):

SNRblur
vis ≥ L

2S · 2 exp(−δ2/(8σ2)) (113)

= L

4S
exp

(
δ2

8σ2

)
(114)

This means SNRblur
vis ≥ (1/S) · SNRvis (unblurred).

For the relation to numerical SNR:

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
(115)

≥ L

4S
exp

(
δ2

8σ2

)
2σ2

A2 · A2

2σ2 (116)

= Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum (117)

Since S < 1, the factor 1/S > 1 provides an amplification of the SNR compared to the unblurred case.
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D Additional Results of Computational Experiments

D.1 Zero-shot Study

The full results of the zero-shot study are reported in Table 10 - Table 14. We also illustrate zero-shot TSF
examples with prediction length equals 720 of the proposed ViTime versus TimesFM in Figure 19 - Figure 24.
It is observable that ViTime consistently demonstrates superior zero-shot prediction performance compared
to TimesFM across a range of rescale factors.

D.2 Additional Zero-Shot Results on the GIFT-EVAL Benchmark

To rigorously assess cross-domain generalization under a truly zero-shot setup, we evaluate ViTime on the
community-adopted GIFT-EVAL benchmark (Aksu et al., 2024), which provides a standardized protocol
and strong baselines, including TimesFM (Das et al., 2024). We report Mean Absolute Scaled Error (MASE;
lower is better) across short-, medium-, and long-horizon settings. TimesFM results are taken from the official
GIFT-EVAL repository1.

As shown in Table 15, ViTime achieves substantial gains on medium- and long-horizon forecasting, improving
MASE by 38.3% and 28.9%, respectively. The short-horizon result is comparable but slightly weaker than
TimesFM, which motivates a more careful analysis of potential training–test overlaps in baseline data.

Leakage-controlled analysis. We hypothesize that short-horizon performance of TimesFM may benefit
from latent overlap with the M4 dataset family, since its large-scale pre-training includes extensive Google
Trends data that is plausibly correlated with M4 categories. Because M4 contributes substantially to
short-horizon tasks within GIFT-EVAL, such overlap could compromise a strictly zero-shot comparison. To
mitigate this risk, we conduct a leakage-controlled evaluation by excluding all M4 datasets from GIFT-EVAL
and recomputing metrics for both models.

The controlled results in Table 16 are consistent: after excluding M4, ViTime outperforms TimesFM across
short, medium, and long horizons. This substantiates ViTime’s robustness under strict zero-shot conditions
and clarifies the discrepancy on short-horizon tasks.

Reproducibility. To facilitate transparency and reproducibility, we release complete evaluation logs and
full GIFT-EVAL results in our repository2.

D.3 Probabilistic Forecasting Study

The complete results of the study on zero-shot probabilistic forecasting are detailed in Table 17 and Table 18.
Furthermore, we present sample zero-shot TSF generated by our proposed ViTime model for a prediction
horizon of 720 in Figure 25–Figure 36. These visualizations include both 90% and 50% prediction intervals.
As shown in Figure 25–Figure 36, ViTime consistently demonstrates superior performance across a range of
scaling factors.

D.4 Fine-tuning study

Complete results of the fine-tuning study are reported in Table 19.

D.4.1 Analysis of Fine-Tuning on Limited and Noisy Data

An intriguing observation from our fine-tuning experiments is that, under certain conditions, zero-shot (ZS)
performance can surpass that of models fine-tuned on small data subsets. For instance, on the ETTh2 dataset,
the ZS MAE for ViTime is 0.344, which is superior to the 0.370 MAE achieved after fine-tuning on 10% of
the data. This counterintuitive phenomenon warrants a deeper investigation.

1https://github.com/SalesforceAIResearch/gift-eval/tree/main/results/timesfm
2https://github.com/IkeYang/ViTime
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Table 15: Zero-shot performance on the full GIFT-EVAL benchmark (MASE; lower is better). TimesFM
results from the official repository.

Forecast Horizon TimesFM (MASE) ViTime (MASE) Relative Improvement
Long 2.3706 1.4636 38.3%
Medium 1.9621 1.3939 28.9%
Short 2.3548 2.4557 −4.3%

Table 16: Zero-shot performance on GIFT-EVAL with M4 datasets excluded (MASE; lower is better).

Forecast Horizon TimesFM (MASE) ViTime (MASE) Relative Improvement
Long 2.3706 1.4636 38.3%
Medium 1.9621 1.3939 28.9%
Short 2.6148 2.5687 1.8%

We hypothesize that this performance degradation is attributed to a combination of data-specific challenges
and the behavior of full-parameter fine-tuning.

• Data Characteristics: The ETT datasets, particularly ETTh2, present significant challenges with
their low signal-to-noise ratio. In long-horizon forecasting tasks (e.g., 720 steps), while the data
shows clear seasonal cycles, it lacks other predictable patterns that models can reliably use. Most
variations outside of seasonality appear random or too noisy for effective learning.

• Overfitting and Forgetting: When fine-tuning the entire model on a small (e.g., 10%) and
potentially non-representative slice of the data, the model is prone to overfitting to short-term noise
and atypical seasonal variations presenting in that specific subset. This process can lead to a form of
catastrophic forgetting, where the robust and generalized seasonal priors learned during large-scale
pre-training are partially overwritten.

To validate this hypothesis, we conducted an extended analysis on the ETTh2 dataset, comparing three
different fine-tuning strategies across varying data proportions, full fine-tuning (Full FT), as well as parameter-
efficient fine-tuning (PEFT) using LoRA with 10% and 1% of trainable parameters. The results are visualized
in Figure 17.

As depicted in Figure 17, the performance of full fine-tuning exhibits a "U-shaped" trajectory: the MAE first
increases, surpassing the ZS baseline, and then gradually decreases as more data becomes available, eventually
outperforming the ZS model only when fine-tuned on the full dataset. This confirms our hypothesis that full
fine-tuning on limited data is detrimental.

In stark contrast, the LoRA-based methods significantly alleviate this issue. The 10% LoRA strategy shows a
much smaller initial performance dip, while the 1% LoRA strategy consistently improves upon or matches
the ZS baseline across all data ratios. This demonstrates that by updating only a small fraction of the
parameters, PEFT methods are less susceptible to overfitting on noisy - small-scale data and are more effective
at preserving the valuable priors acquired during pre-training.

This analysis not only explains the initially counterintuitive results but also yields a crucial insight: for
adapting large pre-trained models to downstream tasks with limited or noisy data, parameter-efficient
fine-tuning methods like LoRA represent a more robust and reliable strategy than conventional full-model
fine-tuning.

D.5 Robust Inference Study

Complete results of the robust inference study are reported in Table 20-Table 22.
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Figure 17: Performance comparison of different fine-tuning strategies on the ETTh2 dataset with varying
data ratios. The zero-shot (ZS) performance is shown as a dashed line for reference. Full fine-tuning (Full FT)
initially degrades performance on small data subsets before improving. In contrast, parameter-efficient LoRA
methods, especially with fewer parameters (1% LoRA), effectively mitigate this degradation by preserving
pre-trained knowledge.

D.5.1 Analysis on Pre-Denoising Methods

To examine the effectiveness of pre-denoising algorithms in improving numerical model accuracy under
moderate noise interference, we conducted a series of experiments evaluating standard denoising techniques
applied to time series data before model input. The experiments were performed on the Electricity dataset, to
which we added Gaussian noise with a variance of σ2 = 0.5 to simulate moderate noise conditions. We then
applied three common pre-processing denoising methods before feeding the data into the baseline TimesFM
model. The methods evaluated are:

• 3-Sigma Rule: A simple outlier detection and removal method.

• Moving Average: A smoothing filter with a window size of 5.

• Savitzky-Golay Filter: A polynomial-based smoothing filter (polyorder=3).

The results as shown in Figure 18, illustrate the performance improvements and trade-offs associated with
these pre-processing denoising steps under moderate noise conditions.

As depicted in the figure, under moderate noise interference, the effectiveness of pre-denoising algorithms in
improving model accuracy varies significantly depending on both the method and the prediction horizon.
The 3-sigma method demonstrates modest accuracy improvements for short prediction lengths (96 and
192), achieving positive ReMAE improvement rates. However, its performance degrades and even becomes
detrimental for longer horizons. This limitation arises because the method only removes extreme outliers
but fails to address the underlying noise distribution that significantly impacts long-term trend forecasting
accuracy.

Smoothing-based denoising methods like moving average and Savitzky-Golay (savgol) show contrasting
results for numerical model accuracy under moderate noise. These methods exhibit poor performance for
short-term predictions, showing negative improvement rates and actually reducing model accuracy. This
degradation occurs because smoothing techniques inherently average out recent fluctuations and introduce
temporal lag in the data. While this characteristic helps reveal long-term trends and improves accuracy for
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Figure 18: Performance comparison of TimesFM combined with various pre-denoising methods on the
Electricity dataset under moderate Gaussian noise (σ2 = 0.5). The y-axis represents the ReMAE improvement
rate (%) compared to the baseline TimesFM without any denoising. Our proposed method, ViTime, is
included as a reference to showcase its superior performance.

extended horizons (as evidenced by the moving average’s positive performance at the 720-step horizon), it
corrupts the fine-grained, high-frequency patterns essential for accurate short-term forecasting.

In stark contrast, our proposed ViTime method, serving as a reference line in the chart, consistently achieves
significant ReMAE improvements across all prediction lengths under moderate noise conditions. This superior
performance demonstrates that ViTime’s intrinsic architecture for handling time series data provides inherent
robustness against moderate noise interference. Unlike traditional pre-processing denoising pipelines that
often involve accuracy trade-offs between different prediction horizons, ViTime successfully denoises and
extracts meaningful features while maintaining high numerical precision, thereby establishing its superior
robustness in moderately noisy environments.

D.6 Computational Complexity Analysis

We conduct extensive experiments to analyze the computational complexity and prediction accuracy of our
proposed models. All experiments are performed with batch size 4, input sequence length 512, and prediction
horizon 720 on a single Nvidia 3090 GPU.

Table 23: Model Performance and Computational Resource Requirements

Model GPU Mem. Inference Time (s/batch) Params Avg. ReMAE
(MB) Total Map. & Inv. Map. (M)

TimesFM 18,154 0.130 - 200 0.423
ViTime w/ Refining 3,120 2.890 0.0068 95 0.376
ViTime w/o Refining 667 0.082 0.0068 74 0.381
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The results are reported in Table 23. The baseline TimesFM model requires substantial computational
resources with 18.1GB GPU memory and 200M parameters, while achieving an average ReMAE of 0.423. In
contrast, our proposed ViTime architecture demonstrates remarkable improvements in both efficiency and
accuracy. The basic version without the refining module strikes an optimal balance between computational
efficiency and performance - it requires only 667MB GPU memory (27× reduction), achieves faster inference
at 0.082s per batch, uses 63% fewer parameters (74M), while maintaining competitive accuracy with an
average ReMAE of 0.381.

For applications prioritizing prediction accuracy, the ViTime variant with refining module achieves the best
performance with an average ReMAE of 0.376, representing an 11.1% improvement over TimesFM. This
comes at the cost of increased computational overhead - 3.1GB GPU memory and 2.89s inference time per
batch, though still maintaining a 5.8× reduction in memory compared to TimesFM. Notably, the mapping
& inverse mapping between image space and numerical space in ViTime variants consume only 0.0068s,
representing 8.3% and 0.24% of the total inference time for the basic and refined versions, respectively.

These results demonstrate that our proposed architecture offers flexible deployment options: the basic version
for resource-constrained scenarios requiring good accuracy and computational efficiency, and the refined
version for applications where prediction accuracy is paramount. Both variants significantly outperform the
baseline in terms of the computation-accuracy trade-off.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 19: Illustrative example of Electricity dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 20: Illustrative example of Traffic dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 21: Illustrative example of ETTh1 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 22: Illustrative example of ETTh2 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 23: Illustrative example of ETTm1 dataset.

62



Published in Transactions on Machine Learning Research (10/2025)

(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 24: Illustrative example of ETTm2 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 25: Illustrative example of dataset electricity (Part 1).

64



Published in Transactions on Machine Learning Research (10/2025)

(a) Rescale factor=2

Figure 26: Illustrative example of dataset electricity (Part 2).
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 27: Illustrative example of dataset traffic (Part 1).
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(a) Rescale factor=2

Figure 28: Illustrative example of dataset traffic (Part 2).
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 29: Illustrative example of dataset ETTh1 (Part 1).
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(a) Rescale factor=2

Figure 30: Illustrative example of dataset ETTh1 (Part 2).
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 31: Illustrative example of dataset ETTh2 (Part 1).
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(a) Rescale factor=2

Figure 32: Illustrative example of dataset ETTh2 (Part 2).
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 33: Illustrative example of dataset ETTm1 (Part 1).
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(a) Rescale factor=2

Figure 34: Illustrative example of dataset ETTm1 (Part 2).
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(a) Rescale factor=0.5

(b) Rescale factor=1

Figure 35: Illustrative example of dataset ETTm2 (Part 1).
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(a) Rescale factor=2

Figure 36: Illustrative example of dataset ETTm2 (Part 2).
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