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Abstract

Time series forecasting (TSF) possesses great practical values in various fields, including
power and energy, transportation, etc. TSF methods have been studied based on knowledge
from classical statistics to modern deep learning. Yet, all of them were developed based on one
fundamental concept, the numerical data fitting. Thus, the models developed have been long
known for being problem-specific and lacking application generalizability. Practitioners expect
a TSF foundation model that serves TSF tasks in different applications. The central question
is then how to develop such a TSF foundation model. This paper offers one pioneering study
in the TSF foundation model development method and proposes a vision intelligence-powered
framework, ViTime, for the first time. ViTime fundamentally shifts TSF from numerical
fitting to operations based on a binary image-based time series metric space. We also provide
rigorous theoretical analyses of ViTime, including quantization-induced system error bounds
and principled strategies for optimal parameter selection. Furthermore, we propose RealTS,
an innovative synthesis algorithm generating diverse and realistic training samples, effectively
enriching the training data and significantly enhancing model generalizability. Extensive
experiments demonstrate ViTime’s SOTA performance. In zero-shot scenarios, ViTime
outperforms TimesFM by 9-15%. With just 10% fine-tuning data, ViTime surpasses both
leading foundation models and fully-supervised benchmarks, a gap that widens with 100%
fine-tuning. ViTime also exhibits exceptional robustness, effectively handling missing data
and outperforming TimesFM by 20-30% under various data perturbations, validating the
power of its visual space data operation paradigm.

1 Introduction

Time series forecasting (TSF) is a classic but challenging topic that has been vigorously discussed in various
application fields, including power and energy (Sharadga et al., 2020), environmental studies (Jacox et al.,
2022), transportation studies (Lei et al., 2022), weather forecasting (Yang et al., 2021), stock market analysis
(Lin et al., 2011), public healthcare (Liu et al., 2024). Although new heights of accuracies were repeatedly
refreshed by new studies (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2022; Zeng et al., 2023; Patro &
Agneeswaran, 2024; Wu et al., 2022), most reported methods predominantly relied on a numerical fitting
based modeling paradigm so that models were often dataset- or problem-specific and lack of application
generalizability. The need to repeatedly train models for various TSF tasks has been the critical barrier
of promoting applications of learning-based TSF methods in practice, especially ones with sophisticated
mechanisms. Developing a TSF foundation model capable of serving diverse TSF tasks across different
applications is thus of great practical value. The central question then becomes: how can we develop such a
TSF foundation model?

Studying the TSF foundation model is still in its early stages, and existing efforts observed in literature are
mainly devoted to exploring LLM-based and numerical fitting-based models. The LLM-based model leverages
the inference capabilities of LLMs for zero-shot TSF tasks, including TimeGPT-1 (Garza & Mergenthaler-
Canseco, 2023) and TIME-LLM (Jin et al., 2023). However, the prediction accuracy of LLM-based models
heavily depends on the underlying capabilities of LLM, and to achieve optimal performance, the competent
large language models, such as GPT-4 or Claude 3.5 (Zhou et al., 2023a), are usually employed. Meanwhile,
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in fine-tuning LLM-based TSF foundation models for handling various downstream tasks demanding higher
precision, the computational complexity becomes prohibitively expensive, resulting in a large, redundant, less
precise, and price-unfriendly paradigm for the TSF foundation model (Tan et al., 2024).

The numerical fitting-based models are trained by being directly fit into numerical time series data, which
manifests that the primary information concerned by these models is the numerical correlation along the
temporal dimension, e.g., TimesFM (Das et al., 2024), ForecastPFN (Dooley et al., 2024), etc. In contrast,
human cognition tends to conjecture trends through remembering correlations between visual representations
rather than processing numerical values directly. Studies have shown that the human brain processes visual
information more efficiently than numerical data. Pettersson (Pettersson, 1993) discovered that the human
brain is more adept at processing visual information than numerical data. Similarly, Dondis (Dondis, 1974)
demonstrated that the visual cortex rapidly identifies patterns, shapes, and colors, making processing images
and videos faster than texts and numbers. These findings lead to a hypothetical question: On the path toward
the TSF foundation model, might employing vision intelligence for time series modeling be a very effective
option besides conventional numerical methods?

In addition, training data of TSF tasks typically consist of large-scale real-world datasets (Das et al., 2024),
raising a critical question: Can real-world datasets comprehensively capture the diverse range of universal
time series patterns? Specifically, what kind of foundational capabilities should a TSF foundation model
possess to address a universal spectrum of time series problems?

To tackle these challenges, this paper develops a novel vision intelligence-based TSF foundation model, a
Visual Time Foundation Model (ViTime), aiming to pioneer a new computational paradigm of building the
TSF foundation model from the perspective of vision intelligence. Regarding the computational principle
innovation aspect, ViTime operates by transforming numerical time series into binary images, converting
numerical temporal correlations into pixel spatial patterns, and solving TSF tasks in binary image space. We
provide detailed theoretical analyses of quantization-induced errors and establish principled guidelines for
optimal parameter settings, ensuring precise control over the trade-off between computational complexity and
prediction accuracy. To offer a large volume of sufficiently diverse samples for training ViTime, an innovative
time-series-data generation method, Real-Time Series (RealTS), is proposed. RealTS categorizes foundational
knowledge of time series analysis into "trend" and "periodicity" and synthesizes training data during the
training of ViTime, ensuring it captures essential time series characteristics. Experimental results demonstrate
that ViTime can achieve SOTA performance across diverse scenarios, including zero-shot generalization,
fine-tuning with limited data, and robustness to data perturbations.

The main contributions of this work are listed as follows:

• Novel Theoretical Framework for Vision Intelligence Powered TSF. We introduce ViTime,
a pioneering TSF foundation model grounded in a novel theoretical framework that shifts from
conventional numerical fitting to operations within a formally defined binary image-based time
series metric space.

• RealTS: Advanced Data Generation and Augmentation for TSF Foundation Modeling.
To address the training-data sample diversity challenge in developing a TSF foundation model, the
RealTS, a sophisticated time-series data generation method that synthesizes diverse and high-quality
training data, is designed to ensure ViTime can generalize to a wide range of time series patterns.

• Empirical Validation of Theoretical Advantages and SOTA Performance. The efficacy
of ViTime’s theoretically-grounded visual intelligence paradigm is extensively validated. ViTime
significantly outperforms existing foundation models and supervised benchmarks in zero-shot gen-
eralization (e.g., 9-15% improvement over TimesFM), few-shot fine-tuning, and robustness against
diverse data perturbations (e.g., 20-30% better than TimesFM with missing data/perturbations),
confirming the practical benefits of our theoretical contributions.
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2 Related work

2.1 Problem-specific model for TSF

The problem-specific TSF methods adopt a fully supervised learning paradigm, where specific models are
trained on particular datasets. Early discussions on problem-specific TSF modeling were mainly conducted
on classical statistical and machine learning models, such as autoregressive (AR) models and AR variants
(Vu, 2007), Splines and their extensions (Lewis & Stevens, 1991), linear regressors (Montgomery et al., 2015),
support vector regressor (Montgomery et al., 2015), neural network based regressor (Montgomery et al.,
2015), etc. In comparison, the latest TSF studies have shed light on modern deep learning methods, such
as recurrent neural network (RNN) and RNN variants (Hewamalage et al., 2021), transformer and various
former-based models (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2022; Liu et al., 2023), Dlinear (Zeng
et al., 2023), TimeMixer Wang et al. (2024), Mamba based method Patro & Agneeswaran (2024) etc.

2.2 Foundation model for TSF

Inspired by recent breakthroughs of pretrained foundation models in natural language processing and computer
vision, the TSF community has actively explored developing domain-general foundation models capable of
forecasting across diverse datasets and scenarios. Current TSF foundation model studies in general fall into
three categories, LLM-based, real-data-based, and alternative-data-sources-based.

Several recent studies have directly adapted LLMs to forecasting tasks. Methods such as PromptCast
(Xue & Salim, 2023), TIME-LLM (Jin et al., 2023), GPT4TS (Zhou et al., 2023b), TimeGPT-1 (Garza
& Mergenthaler-Canseco, 2023), and LLM4TS (Chang et al., 2025) recast numerical forecasting into text-
based prompting or embedding alignment tasks. Despite their promising zero-shot forecasting capabilities,
these models suffer from inherent limitations, including high computational costs, inefficiency, and domain
adaptation complexity arising from fundamental discrepancies between linguistic structures and numerical
temporal patterns (Tan et al., 2024).

To address these limitations, another prevalent research direction exploits large-scale collections of real-world
numerical time series to train foundation models. Representative methods include TimesFM(Das et al., 2024),
Moirai (Woo et al., 2024), Chronos Ansari et al. (2024), Moment (Goswami et al., 2024), GTT (Feng et al.,
2024), and TSMamba (Ma et al., 2024). Although these real-data-based models significantly enhance zero-shot
generalization, their performance heavily depends on the quality, diversity, and representativeness of available
real datasets. Moreover, they typically suffer substantial performance degradation when encountering data
perturbations, missing values, or unseen temporal patterns. Furthermore, the reliance on extensive real-world
datasets inherently risks test set leakage, as partial segments of test data may inadvertently appear during
training, undermining true generalization evaluation.

Recognizing these inherent limitations of real-world numerical data, recent work has explored alternative data
sources to enhance generalization. ForecastPFN (Dooley et al., 2024) trains Transformer-based models purely
on synthetic numerical data generated from predefined trend and seasonality components, demonstrating
limited but promising zero-shot forecasting abilities. However, due to the uncontrolled or oversimplified
synthesis patterns, these synthetic-data-based methods often fail to capture the richness and complexity
of real-world scenarios, thereby limiting forecasting accuracy and robustness. Recently, VisionTS (Chen
et al., 2024) proposed repurposing pretrained vision models (specifically, masked autoencoders trained on
ImageNet) for TSF by reformulating forecasting as an image reconstruction problem. Nevertheless, directly
reusing models pretrained on natural images introduces a significant domain mismatch; the visual features
learned from natural images may not optimally represent temporal structures inherent in numerical time
series. Furthermore, VisionTS still fundamentally relies on numerical-space analyses and empirical mappings,
lacking a rigorous theoretical framework explicitly tailored for visual representation and quantization of
numerical sequences.

In contrast to aforementioned paradigms, our proposed ViTime framework introduces two fundamental shifts
in the TSF foundation model design:
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Firstly, recognizing intrinsic limitations of numerical-space-based forecasting—such as poor generalization
across scales and sensitivity to data perturbations—ViTime explicitly advocates modeling time series directly
in visual representation space. ViTime rigorously defines a dedicated visual space for numerical time series,
provides theoretical analysis of quantization-induced errors, and offers principled guidance for optimal
parameter selection. We also proved that this rigorous visual modeling framework can significantly enhance
signal-to-noise ratio (SNR) of time series and improve forecasting accuracy and interpretability.

Secondly, given the inherent challenges of relying on real-world numerical datasets (limited diversity, data
leakage risks), we propose, RealTS, a controlled data synthesis strategy focusing on fundamental time series
components (trend, periodicity) to generate structurally sound training data. The RealTS substantially
mitigates data leakage risks and enriches training data diversity, enabling ViTime to generalize robustly
across diverse real-world scenarios. As demonstrated by extensive experiments, ViTime sets new SOTA
zero-shot and limited-data forecasting benchmarks, significantly outperforming existing foundation models
across diverse evaluation settings.

3 Method

Figure 1: ViTime architecture overview. (a) Pipeline comparison between ViTime and traditional numerical
TSF models, showing ViTime’s paradigm shift to binary image space processing. (b) ViTime network with
three modules: Visual Time Tokenizer, Decoder, and Refining Module. (c) Complete architecture with
four components: RealTS synthesis for diverse training samples, mapping function for numerical-to-binary
conversion, ViTime model for visual pattern learning, and inverse mapping for prediction output, enabling
zero-shot generalization across real-world time series tasks.
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3.1 Overall architecture

The overall framework of ViTime, schematically illustrated in Fig. 1 (c), comprises four key modules: the
RealTS synthesis module, the mapping function, the proposed ViTime model, and the inverse mapping
function. To address the dataset challenge of training a robust TSF foundation model, RealTS synthesizes
a vast and diverse set of training samples by categorizing foundational knowledge of time series analysis
into "trend" and "periodicity" patterns, which ensures ViTime captures essential time series characteristics
across a wide range of scenarios. The core innovation of ViTime lies in its computational principle of
mapping numerical time series into binary images. This approach allows ViTime to remember temporal
pattern correlations through ordered pixel coordinates while maintaining the ability to convert results back
to numerical format. The visual modeling process of ViTime learns to extract relevant features and patterns
from the time series visual representation, utilizing the historical distributions of the generated binary images
to predict future trends. Finally, the inverse mapping function is employed to convert the predicted image
back into numerical time series data for further analysis.

In the following sections, we will introduce each component of ViTime in detail: RealTS, mapping & inverse
mapping function, and ViTime Model.

3.2 Real time series synthesis

In this paper, we hypothesize that a robust foundation model for TSF should integrate two essential types of
time series fluctuation knowledge, the periodic and trend patterns, which encompass the inherent patterns
and directional changes in time series data. Real-world datasets, however, often lack representation of the
full spectrum of these periodic and trend-based fluctuations, limiting the ability of the model to generalize
across different scenarios and effectively learn underlying dynamics.

To address this challenge, we propose a novel time series generation algorithm, RealTS. RealTS systematically
generates a large volume of synthetic time series data that exhibit diverse periodic and trend characteristics.
The proposed RealTS can facilitate more comprehensive training of foundation models, exposing them to
various patterns and improving their ability to generalize to unseen real-world data.

The RealTS algorithm probabilistically selects between generating periodic or trend-based time series. Given
the total length L of the synthesized time series, the algorithm determines the data prior hypothesis between
periodic φp and trend-based φt patterns with probability (α). The distribution of generated time series P (D)
is defined as follows:

sL ∼ P (D) = P (sL|L)

= α

∫
P (sL|L, Bp) P (Bp|φp) P (φp) dφp + (1 − α)

∫
P (sL|L, Bt) P (Bt|φt) P (φt) dφt

(1)

where sL is the synthesized time series with length L; P (φ) represents the prior probability of hypothesis φ;
P (B|φ) is the likelihood of observing the data behavior B under hypothesis φ. Data behavior B is introduced
to further detail the generation behavior within different data modes. RealTS employs two data behavior
modes for periodic hypothesis and three for trend hypothesis as follows:

• Periodic Hypothesis: Inverse Fast Fourier Transform Behavior (IFFTB) and Periodic Wave
Behavior (PWB).

• Trend Hypothesis: Random Walk Behavior (RWB), Logistic Growth Behavior (LGB) and Trend
Wave Data Behavior (TWDB)

Detailed formulas for each behavior mode and illustrative examples are provided in Appendix A.
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3.3 Binary image-based time series metric space

In ViTime, time series are fed and operated with a binary image form, leveraging a binary image-based time
series metric space, as described in Definition 3.1.
Definition 3.1 (Binary image-based time series metric space). The binary image-based time series metric
space is defined as a group (V, d), where V is a set of elements defined in Equation (2):

V =
{

v ∈ Rc×h×L

∣∣∣∣ vi,j,k ∈ {0, 1}, i ∈ [c], j ∈ [h], k ∈ [L],
h∑

j=1
vi,j,k = 1

}
(2)

where d : V × V → R is a distance function based on the Earth Mover’s Distance (EMD), as defined in
Equation (3):

d (v1, v2) =
∫ c

i=1

∫ t

k=1
inf

γ∈
∏

(vi,1:h,k
1 ,vi,1:h,k

2 )
Ex,y∼γ ∥x − y∥1 dkdi (3)

where c represents the number of variates, L is the length of the time series, and h is the resolution of V .

To enable the transition from numerical time-series values to the binary image-based metric space, we
introduce mapping and inverse mapping functions as follows. Let S =

{
s ∈ Rc×L | si,k ∈ R

}
represent

the numerical value space of time series. The Time-Series-to-Image mapping function f : S → V and the
Image-to-Time-Series inverse mapping function f−1 : V → S can be defined as follows:

vi,1:h,k = f (si,k) = ⟨f1 (si,k) , f2 (si,k) , . . . fh (si,k)⟩

fj (si,k) =


1, if si,k ≥ MS, j = h

1, if si,k ≤ −MS, j = 1
1, if j =

⌊
si,k+MS

2MS
h

⌋
0, otherwise.

, j ∈ [h]
(4)

The Image-to-Time-Series inverse mapping function f−1 : V → S can be defined as follows:

si,k = f−1 (vi,1:h,k) =
h∑

j=1

(
(j − 0.5)2MS

h
− MS

)
vi,j,k (5)

where MS > 0 denotes the maximum scale of V . Before mapping, zero-score normalization is typically applied
to the numerical time series si,k to standardize the scale.

Given that the numerical data synthesized by RealTS are one-channel time series, i.e., sL ∈ Rl ∈ R1×L, thus
the corresponding vL ∈ R1×h×L is obtained via

vL = f (sL) . (6)

3.3.1 System error analysis

The system error (SE) emerges from the bidirectional mapping between discrete space V and continuous space
S, which inherently impacts prediction fidelity. A rigorous analysis of SE is essential for ensuring reliable
and robust predictions in image space V. We begin our theoretical analysis of SE with Assumption 3.2 and
Theorem 3.3.
Assumption 3.2. After applying zero-score normalization, the continuous space follows a standard normal
distribution:

S ∼ N(0, I)
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Theorem 3.3 (System Error Upper Bound). Given a tensor ŝ ∈ S ⊂ Rc×t, the system error defined as∥∥f−1 (f (ŝ)) − ŝ
∥∥

1 satisfies the following bound:

SE := E
∥∥f−1 (f (ŝ)) − ŝ

∥∥
1 ≤ g(h, MS)

= ct

[
MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

]
(7)

where Φ denotes the cumulative distribution function of N(0, I).

Denote MS
( 1

h (Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π e

−MS2
2 in Equation (7) as the upper bound of SE,

whose convergence is guaranteed by Proposition 3.4.
Proposition 3.4 (Asymptotic Convergence with h). For any ε > 0, there exists δ > 0 such that when
h → +∞ and MS ≥ δ, the SE upper bound converges to zero:

lim
h→+∞

∣∣∣MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

∣∣∣ = 0 (8)

The Proposition 3.4 reveals that when we fix MS and increase the spatial resolution h, the upper bound
|g(h, MS)| of SE will reduce accordingly. On the other hand, when h increases, the tensor sizes in V will
increase exponentially, leading to higher computational costs. As such, the selection of h must strike a balance
between the accuracy of the estimation and the computational feasibility. Since the upper bound of SE
decreases with an increase in h, it is generally preferable to choose the largest possible value of h based on
available computational resources, resulting in a fixed value of h for a particular computational budget.

3.3.2 Theoretical analysis of optimal MS

MS determines the upper and lower limits of numerical truncation in the binary image-based time series metric
space. Thus, it is necessary to conduct a detailed theoretical analysis of the selection of MS. Proposition 3.5
investigates how the upper bound of SE varies with a MS given a fixed value of h, which provides a theoretical
guidance to choose the best MS under different computational budgets (h).
Proposition 3.5 (Optimal MS Selection). For fixed h, there exists a unique optimal threshold MS∗ minimizing
the SE upper bound, characterized by:

1
h

(Φ(MS∗) − Φ(−MS∗)) − 2 + 2Φ(MS∗) + MS∗

h

√
2
π

e− MS∗2
2 = 0 (9)

The fidelity of predictions in binary image space V heavily depends on the bidirectional mapping between
discrete space V and continuous latent space S. A key challenge arises from the SE, which quantifies the
discrepancy between the original continuous representation and its reconstructed version after discretization.
While Assumption 3.2 assumes S ∼ N (0, I), real-world scenarios often exhibit larger variance in the latent
space due to factors such as dataset shifts or model miscalibration. This motivates our analysis of SE under
the generalized assumption S ∼ N (0, kI), where k > 1 captures the variance scaling.
Proposition 3.6 (Optimal Threshold under Variance Scaling). Under the assumption S ∼ N (0, kI) with
k > 1, the optimal threshold MS∗ that minimizes the SE upper bound is characterized by the following
condition:

1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ MS∗

h

√
2

πk
e− (MS∗)2

2k = 0 (10)

Here, Φ(·) is the CDF of the standard normal distribution, h is the spatial resolution, and k is the variance
scaling factor. This result generalizes Proposition 3.5 to scenarios where the latent space exhibits larger
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Table 1: Numerically Solved Optimal MS∗

Optimal MS∗

Resolution h k = 1 k = 1.5 k = 2
32 2.1 2.62 3.03
64 2.38 2.95 3.41
128 2.64 3.26 3.76
256 2.88 3.53 4.08
512 3.09 3.79 4.38

variability. In practice, it is challenging to find an analytic solution for Equation (10). Thus, the numerical
method is employed to obtain solutions of Equation (10) in this work and the corresponding results are
reported in Table 1.

3.4 Theoretical Advantages of Visual Representation for Time Series Forecasting

Representing time series data visually, as explored by ViTime, is not merely an aesthetic or heuristic choice;
it is fundamentally advantageous from a signal-processing standpoint. Specifically, transforming numerical
signals into structured, image-like representations can significantly boost the effective signal-to-noise ratio
(SNR), thereby enhancing forecasting robustness. To formally capture and quantify this advantage, we first
establish conditions under which visual representation surpasses conventional numerical representation in
terms of SNR. Subsequently, we explore image-based processing techniques to further amplify these benefits.

3.4.1 Visual Representation and SNR Enhancement.

Consider a noisy sinusoidal time series defined by:

sk = A sin(ω0k + ϕ) + ηk, k = 0, . . . , L − 1,

where the signal amplitude A > 0, angular frequency ω0 = 2π/Pperiod, phase ϕ, and Gaussian noise terms
ηk ∼ N (0, σ2) fully specify the system. Transforming this numerical series into a binary "stripe" image
v ∈ {0, 1}h×L via quantization yields notable theoretical advantages. The binary representation is defined by:

vj,k = 1
(

j =
⌊

sk + MS
δ

⌋)
, (11)

with quantization step δ = ∆/h and total quantization range ∆ = 2MS. By comparing the SNR in numerical
and visual domains, we obtain the following foundational result:
Theorem 3.7 (Stripe SNR Boost). Under mild assumptions that (i) the sinusoid amplitude spans at least
one quantization bin (δ ≤ A ≤ ∆ − δ) and (ii) noise is small relative to quantization resolution (σ < δ/4),
the visual representation yields an SNR at the fundamental frequency n0 = ⌊L/Pperiod⌋ satisfying:

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum, (12)

where the numerical SNR is SNRnum = A2/(2σ2).

Theorem 3.7 provides clear quantitative conditions for visual superiority. Specifically, visual representation
surpasses numerical representation (SNRvis > SNRnum) whenever:

L >
4A2

σ2 exp
(

− δ2

8σ2

)
. (13)

Practically, this condition is typically met for moderate sequence lengths when the quantization step is
comparable to or slightly larger than the noise standard deviation (e.g., δ ≈ 2σ). Under these realistic scenarios,
the exponential term strongly favors visual representation, making it advantageous even at manageable L.

8



Under review as submission to TMLR

3.4.2 SNR Enhancement via Image Processing.

Although the theoretical advantage above is compelling, practical scenarios often involve considerable noise
and subtle periodic signals. Furthermore, the binary quantization can introduce high-frequency artifacts that
obscure signal patterns. To mitigate such undesirable effects and leverage the structured nature of visual
representations, we propose employing image-processing operations, notably Gaussian blurring, to enhance
signal fidelity further.

Applying a Gaussian blur along the image’s quantization axis (the row or "value" dimension) effectively
smooths quantization noise while preserving meaningful temporal structures. This simple convolutional
operation yields significant amplification of the visual-domain SNR, formalized as follows:
Theorem 3.8 (Gaussian Blur SNR Boost). Under the conditions of Theorem 3.7, consider applying a
one-dimensional Gaussian convolution kernel along the quantization dimension (rows) of the binary stripe
image v:

gj = 1
Z

exp
(

− j2

2σ2
b

)
, where Z =

∑
j

exp
(

− j2

2σ2
b

)
,

to obtain the blurred image w = g ∗j v. Denote the kernel’s nuclear energy by S =
∑

j g2
j ∈ (0, 1), and define

the visually blurred SNR at the fundamental frequency n0 = ⌊L/Pperiod⌋ as SNRblur
vis . Then, the following

lower bounds hold:

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
, (14)

SNRblur
vis ≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum, (15)

where the numerical-domain SNR is defined as SNRnum = A2/(2σ2).

Consequently, the blurred visual representation amplifies the numerical-domain SNR at least by a factor of:

SNRblur
vis

SNRnum
≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
. (16)

This result explicitly quantifies the advantage provided by Gaussian blurring in the visual representation.
Notably, this amplification advantage scales linearly with the time series length L and exponentially with the
squared ratio of quantization step δ to noise standard deviation σ. Moreover, a smaller kernel nuclear energy
S — corresponding to stronger blurring — yields a greater amplification of the visual-domain SNR relative
to its numerical counterpart.

In practical implementations, the choice of Gaussian kernel parameters directly influences the nuclear energy
S, and thus the SNR amplification factor. Typical examples include:

• 11 × 11 kernel (σb = 2): S ≈ 0.15, providing substantial SNR amplification.

• 21×21 kernel (σb = 4): S ≈ 0.08, approximately doubling the amplification compared to the previous
case.

• 31 × 31 kernel (σb = 6): S ≈ 0.05, further significantly enhancing the amplification factor.

In summary, even moderate Gaussian blurring substantially enhances the effective visual-domain SNR, enabling
significantly improved signal discernibility and forecasting accuracy compared to traditional numerical-domain
methods.

Generalization to Complex Time Series. While our theoretical analysis explicitly addresses a single
sinusoidal component, its implications readily extend to realistic time series composed of multiple periodic
components. Via linearity principles inherent in Fourier decomposition, observed visual-domain SNR
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advantages apply component-wise, amplifying structured periodic signals relative to unstructured and
independent noise effects. Thus, real-world time series exhibiting intricate periodic behaviors benefit
significantly from visual transformations and subsequent image-processing enhancements.

The rigorous theoretical results presented here establish a robust mathematical foundation for employing visual
intelligence in time series analysis. Beyond aligning with human cognitive patterns, visual representations
structurally amplify signal fidelity through inherent quantization and subsequent image processing techniques,
such as Gaussian smoothing. Consequently, visual-domain methods provide a principled, theoretically justified
route toward achieving more robust, reliable, and accurate time series forecasting, especially under challenging
noise conditions.

Detailed proofs and supplementary details of the theorems presented in this section are provided in Appendix C.

3.5 The proposed ViTime model

Figure 1 (b) presents the architecture of the ViTime network, which comprises three network modules: the
Visual Time Tokenizer, the Decoder, and the Refining Module. The time series binary image is first fed
into the Visual Time Tokenizer and outputs embedded latent representations. Next, the decoder network is
developed to decode latent representations and produce initial prediction results. To improve the generative
quality of patch junctions, a Refining Module is designed to generate the final smooth prediction results.

Visual Time Tokenizer. The primary role of the Visual Time Tokenizer is to segment masked binary images
into multiple patches and map these patches into the feature space. By leveraging the ViT (Dosovitskiy et al.,
2020) architecture, the module captures spatial relationships between patches, thereby transforming temporal
dependencies of the time series into spatial dependencies within the image space.

Decoder. The Decoder translates the tokenized patches back into the binary pixel metric space, providing
an initial prediction where the ViT architecture is also adopted.

Refining Module. The transformer architecture in the Decoder can result in discontinuities at the patch
junctions, which may affect the accuracy of the inverse mapping process. To address this issue, the Refining
Module building with CNNs is employed. Initially, tokens decoded by Decoder are unpatched and fed into a
CNN-based backbone. Next, the ASPP (Chen et al., 2015) module expands the model receptive field. Finally,
the output is upsampled to the binary pixel metric space, generating the final image prediction result.

The modeling process of ViTime is as follows:

v′
L = ViTime (vL ⊙ ML) (17)

where ML denotes temporal masks.

Loss function. The loss function employed in this study is defined as follows:

L = d (v′
L, vL) + αKLD (v′

L, vL) (18)

where d denotes the distance function defined in Equation (3), KLD denotes Kullback–Leibler divergence, and
α is the hyperparameter balance quantity between d and KLD. The combined EMD and KLD loss addresses
structural and probabilistic alignment in the binary image space. EMD minimizes spatial discrepancies in V,
counteracting SE from discretization, while KLD refines distributional consistency to mitigate quantization
artifacts. This dual approach balances geometric fidelity (via EMD) and statistical accuracy (via KLD),
crucial given the resolution-computation trade-off governed by h.

3.6 Evaluation metrics

Existing numerical fitting-based TSF foundation models, e.g., TimesFM, are typically pretrained on com-
prehensive real-world datasets. While the specific nomenclature of the testing set may not be explicitly
listed in the training data, there is a possibility that the real-world dataset encompasses similar data sources,
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potentially leading to issues of test set leakage. To address this concern and ensure a more rigorous and equi-
table experimental comparison, we propose two novel metrics for zero-shot evaluation, the Rescale-Mean
Absolute Error (ReMAE) and Rescale-Mean Squared Error (ReMSE). The fundamental principle underlying
ReMAE and ReMSE involves rescaling the test dataset across various time resolutions, as illustrated in
Equation (19). The time series interpolation (TSI) method is employed to rescale the original test time series
of length T to βT :

SβT = TSI (ST , rescaling factor = β) . (19)

The formulas for ReMAE and ReMSE are

ReMSE =

∑
β∈U MSE

(
S

′

βT , SβT

)
len(U)

(20)

ReMAE =

∑
β∈U MAE

(
S

′

βT , SβT

)
len(U)

U = [0.5, 0.66, 1, 1.5, 2] .

(21)

The proposed ReMSE and ReMAE metrics address a critical challenge in evaluating time series foundation
models: mitigating test set leakage caused by overlapping data distributions between training and testing
phases. By rescaling the test set across multiple resolutions (β ∈ U) via time series interpolation (TSI,
Equation (19)), these metrics introduce synthetic scale variations that disrupt exact temporal patterns,
thereby reducing the risk of evaluating models on memorized or overfitted data. This approach ensures a
leakage-resistant evaluation framework, as models must generalize to unseen scales rather than relying on
spurious correlations learned from the training set.

A key implication of this work is the necessity of scale-agnostic evaluation in time series forecasting. Traditional
single-scale metrics like MSE/MAE risk conflating memorization with true generalization, particularly when
training data encompasses diverse real-world sources. By averaging errors across β, ReMSE/ReMAE incen-
tivize models to capture invariant temporal structures—such as periodicity, trends, and noise resilience—that
persist across resolutions. This aligns with recent theoretical insights in self-supervised learning, where
augmentation-induced invariance improves out-of-distribution robustness (Yao et al., 2022). It is worth noting
that in the fine-tuning study, i.e., section 4.3, in order to ensure the consistency of the distribution between
the test data and the fine-tuning data, we still adopt the traditional MSE/MAE evaluation metrics.

4 Computational experiments

4.1 Experimental Configuration

Datasets

Seven popular publicly accessible datasets: Electricity, Traffic, Weather, ETTh1, ETTh2, ETTm1, and
ETTm2 (Wu et al., 2021) are employed in computational experiments to validate the effectiveness of the
proposed ViTime.

Model setup

The ViTime model is developed using data sequences synthesized by RealTS. During each training epoch,
20,000 sequences are randomly generated. After training, zero-shot testing and fine-tuning are implemented
accordingly. For multivariate time series, a channel-independent strategy (Nie et al., 2022) is applied,
predicting each variable separately before combining them to form the final multivariate forecast.

The default parameters for the ViTime model are set as follows: h = 128, MS = 3.5, maximum lookback
window T = 512, and maximum prediction length l = 720. For a fair comparison, all considered models
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employ a lookback length of 512 to forecast future sequences of lengths 96, 192, 336, 720. More details on
training are available in the Appendix B.

To further enhance temporal resolution and information density practically, input sequences are initially
interpolated to twice their original length (2L) and the prediction results are interpolated back to the
original length. This interpolation increases temporal granularity, facilitating more precise pattern extraction.
Furthermore, Gaussian blurring with kernel size of 31 applied to the binary images before processing by ViTime
significantly reduces sparsity and increases local information density, thereby reinforcing the theoretical
advantages outlined in Section 3.4.1.

4.2 Comparison of ViTime to SOTA TSF Benchmarks Under Zero-shot Setting

(a) Experimental Results With Metrics of MSE and MAE
Model ETTh1 ETTh2 ETTm1 ETTm2 electricity traffic weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Numerical Models
Moriai 0.434 0.439 0.346 0.382 0.382 0.388 0.272 0.321 0.188 0.274 1.779 0.766 0.238 0.261
Moment 0.691 0.585 0.341 0.350 0.845 0.580 0.257 0.317 0.837 0.763 1.375 0.788 0.348 0.429
VisionTS 0.390 0.414 0.333 0.375 0.374 0.372 0.282 0.321 0.207 0.294 0.443 0.284 0.269 0.292
TimesFM 0.442 0.430 0.356 0.389 0.424 0.419 0.328 0.347 0.151 0.245 0.369 0.245 0.229 0.255
PatchTST-ZS 1.237 0.831 0.903 0.710 1.356 0.825 0.839 0.622 1.311 0.885 1.873 0.945 0.907 0.588
Vision-Assisted Models
ViTime-TFM 0.398 0.387 0.321 0.350 0.382 0.377 0.295 0.312 0.136 0.221 0.332 0.221 0.206 0.229
ViTime 0.545 0.449 0.284 0.344 0.409 0.398 0.189 0.265 0.196 0.280 0.730 0.386 0.173 0.196

(b) Experimental Results With Metrics of ReMSE and ReMAE
Model ETTh1 ETTh2 ETTm1 ETTm2 electricity traffic weather

ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE ReMSE ReMAE
Numerical Models
Moriai 1.980 1.440 1.340 1.145 1.303 0.714 0.324 0.347 0.968 0.655 1.721 0.801 0.677 0.464
Moment 1.759 1.470 0.857 0.972 0.832 0.617 0.344 0.365 0.800 0.742 1.314 0.783 0.308 0.377
VisionTS 1.177 1.104 0.849 0.933 0.856 0.584 0.634 0.496 0.816 0.666 1.378 0.724 0.274 0.323
TimesFM 0.513 0.476 0.354 0.391 0.671 0.503 0.335 0.358 0.367 0.404 0.874 0.519 0.284 0.306
PatchTST-ZS 1.477 0.903 1.097 0.775 1.295 0.798 0.805 0.613 1.414 0.921 2.054 1.002 0.911 0.584
Vision-Assisted Models
ViTime-TFM 0.520 0.465 0.320 0.370 0.550 0.460 0.280 0.330 0.300 0.350 0.800 0.460 0.240 0.260
ViTime 0.514 0.455 0.289 0.349 0.474 0.420 0.237 0.301 0.225 0.308 0.730 0.400 0.203 0.228

Table 2: Overall Experimental Results Comparison

Figure 2: Radar plots comparing the average MAE of ViTime and TimesFM across different rescale factors.
The radial axis represents MAE, with lower values (larger radius) indicating better performance. Each axis
corresponds to a specific rescale factor.
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For zero-shot performance comparison, we consider four variants: (1) ViTime - our proposed TSF foundation
model, trained on generative data from RealTS and adopting a zero-shot paradigm; (2) ViTime-TFM - a
variant of ViTime, which is trained explicitly on the same dataset as TimesFM. . (3) PatchTST-ZS - trained
on the same RealTS-generated data as ViTime, using a numerical fitting paradigm to create a zero-shot
version of PatchTST. (4) Moriai (Woo et al., 2024), Moment (Goswami et al., 2024), VisionTS (Chen et al.,
2024) and TimesFM (Das et al., 2024) - powerful TSF foundation model pre-trained on extensive real-world
datasets.All models employ a lookback length of 512 to ensure a fair comparison.

Table 2 summarizes the zero-shot performance of all models using traditional metrics (MSE, MAE) and our
proposed scale-invariant metrics (ReMSE, ReMAE). ViTime consistently demonstrates excellent forecasting
performance, closely approaching or surpassing considered benchmarks. Particularly noteworthy is ViTime’s
exceptionally strong performance on the ReMSE and ReMAE metrics, highlighting its robust generalization
ability across different temporal resolutions in zero-shot settings. ViTime significantly outperforms PatchTST-
ZS across all datasets, underscoring the effectiveness of visual intelligence strategies in capturing complex
temporal patterns. Furthermore, when compared with TimesFM, ViTime achieves an average performance
improvement of approximately 9%, further accentuated to 15% in challenging long-sequence forecasting
scenarios.

Additionally, ViTime-TFM, which shares identical training data with TimesFM, demonstrates superior
performance in traditional metrics (MSE, MAE). This clearly indicates the inherent advantage of vision-based
modeling in capturing intricate temporal dynamics. However, its performance on ReMSE and ReMAE falls
short of ViTime, implying that the synthetic training data provided by RealTS substantially enhances the
zero-shot generalization capabilities across varying temporal resolutions.

To further assess robustness, Figure 2 presents the performance across different rescaling factors. TimesFM
exhibits optimal accuracy only at the original scale (β = 1), suffering significant degradation when evaluated at
other scales. Such behavior indicates sensitivity to scale-specific patterns and suggests potential data leakage
from the original resolution. In contrast, ViTime maintains consistently robust forecasting performance
across all rescaling factors, as evidenced by stable ReMSE and ReMAE metrics. This illustrates ViTime’s
ability to learn intrinsic temporal relationships independent of specific time resolutions, further reinforcing
the robustness and generalization benefits of vision-based modeling trained on RealTS data.

Overall, the empirical results clearly position ViTime as a robust, accurate, and reliable zero-shot TSF model,
substantially strengthened by vision-assisted modeling and synthetic training data that enhance generalization
across diverse temporal scales.

4.3 Comparison of ViTime to SOTA TSF Benchmarks Under Fine-tuning Settings

Table 3: Comparisons of Fine-tuning forecasting results with MAE. FT is short for fine-tuning. The best
MAE results are bolded, and the second best are underlined.

Method Data proportion ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

TimesFM (FT) 10% 0.426 0.410 0.388 0.334 - - -
GPT4TS (FT) 10% 0.525 0.421 0.441 0.335 Not Reported
TIME-LLM (FT) 10% 0.522 0.394 0.427 0.323 - - -
ViTime (FT) 10% 0.424 0.372 0.378 0.316 0.252 0.254 0.252
PatchTST 10% 0.542 0.431 0.466 0.343 0.268 0.286 0.283

PatchTST 100% 0.434 0.381 0.382 0.317 0.253 0.264 0.264
SiMBA 100% 0.433 0.393 0.396 0.327 0.274 0.291 0.281
TIMESNET 100% 0.450 0.427 0.406 0.332 0.295 0.336 0.267
iTransformer 100% 0.447 0.407 0.410 0.332 0.270 0.282 0.278
TimeMixer 100% 0.423 0.384 0.375 0.315 0.246 0.262 0.262
ViTime (FT) 100% 0.408 0.349 0.367 0.300 0.247 0.250 0.251

While zero-shot results demonstrate the predictive capability of ViTime on unseen data, some high-precision
TSF tasks might require further fine-tuning studies to enhance prediction accuracy. Thus, this section focuses
on fine-tuning studies across various specialized datasets.
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Figure 3: Performance with different fine-tuning data
proportion.

Figure 4: Performance comparison of ViTime versus
TimesFM on TSF tasks under various data pertur-
bations: a. Original time series. b. Time series with
noises injected. c. Time series with harmonic added.
d. Time series with missing data.

To comprehensively evaluate the fine-tuning performance of ViTime, we compare ViTime with other foundation
models and SOTA supervised TSF models. Foundational models including TimesFM (Das et al., 2024),
GPT4TS (Zhou et al., 2023a), and TIME-LLM (Jin et al., 2023) are fine-tuned using 10% of the training
data. Recent SOTA-supervised TSF models such as SiMBA (Patro & Agneeswaran, 2024), TIMESNET (Wu
et al., 2022), iTransformer (Liu et al., 2023), TimeMixer (Wang et al., 2024) and PatchTST (Nie et al., 2022)
use 100% of the training data, as reported in their respective papers. We also fine-tune ViTime using from
10% to 100% of the training data to provide a comprehensive comparison.

Results of the fine-tuning study are provided in Table 3. ViTime fine-tuned with 10% of the training data
can outperform other foundational models and the latest supervised models updated on 100% of the training
data. Furthermore, as shown in Fig. 3, when the fine-tuning data proportion approaches 100%, the prediction
accuracy of ViTime gradually increases and significantly surpasses all existing models, which suggests that
ViTime excels in both low-data-availability environments (10% fine-tuning) and full-data-availability scenarios
(100% fine-tuning), consistently outperforming both other foundation models and specialized supervised
models.

4.4 Robust Inference and Generalizability Analysis

Table 4: Comparison of average ReMAE forecasting results. Methods are grouped by scenario (separated by
horizontal lines). Within each scenario, the best MAE results for each dataset are bolded.

Method ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

GN standard deviations = 0.1
TimesFM 0.471 0.394 0.495 0.353 0.403 0.511 0.281
ViTime 0.454 0.382 0.442 0.340 0.348 0.412 0.280

GN standard deviations = 0.3
TimesFM 0.478 0.392 0.488 0.345 0.433 0.529 0.296
ViTime 0.472 0.391 0.457 0.344 0.381 0.477 0.292

DM P = 0.3
ViTime 0.453 0.378 0.432 0.337 0.343 0.417 0.281

To rigorously assess the robustness and generalizability of ViTime, we conducted comprehensive zero-shot
experiments comparing its performance against TimesFM under various data perturbation scenarios, including
original time series, Gaussian noise (GN), harmonic augmentation, and missing data (DM). These scenarios
represent realistic challenges often encountered in practical forecasting tasks, evaluating the models’ capacities
to maintain predictive accuracy amidst compromised data quality.
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Figure 4 visually summarizes the comparative performance of ViTime and TimesFM across these scenarios.
In the scenario involving original, unperturbed time series, ViTime consistently demonstrates superior
capabilities in capturing and modeling underlying periodicities and temporal patterns. For noise-augmented
series, while both models successfully extract meaningful insights, ViTime notably maintains stable forecasting
performance across extended sequences. In contrast, TimesFM tends to experience drift in periodic alignment,
particularly at higher noise intensities. For harmonic-augmented time series, ViTime excels by accurately
capturing both fundamental and harmonic wave patterns, while TimesFM struggles to disentangle these
complex periodic structures.

Further quantitative analysis under varying levels of Gaussian noise, summarized in Table 4 (the complete
numerical results are available in the Appendix D), highlights ViTime’s superior robustness. Even with
increased noise severity (GN std=0.3), ViTime consistently outperforms TimesFM across all tested datasets.
This resilience arises from ViTime’s distinct visual representation learning approach, which inherently filters
out irrelevant noise through spatial feature extraction, unlike numerical fitting-based models that are more
susceptible to noisy perturbations.

The most distinctive performance disparity emerges under the scenario of missing data. TimesFM, inherently
reliant on numerical fitting, necessitates explicit imputation strategies to address data gaps. Conversely,
ViTime robustly accommodates missing values by interpreting them as zero-valued pixels within its visual
representations. Consequently, ViTime leverages spatial dependencies among available data points effectively,
maintaining high prediction accuracy even amidst substantial data sparsity.

Figure 5: Average MAE of ViTime across different DM rates.

To further validate ViTime’s robustness to varying degrees of missing data, we systematically evaluated
its forecasting accuracy across data missing ratios ranging from 10% to 90% (Figure 5). Results reveal
that ViTime sustains remarkable forecasting performance with minimal degradation until data missingness
surpasses 50%, underscoring its exceptional resilience to incomplete data scenarios.

Collectively, these extensive evaluations substantiate ViTime’s superior robustness and generalizability
compared to traditional numerical fitting-based methods. Its inherent capability to effectively mitigate
perturbations through visual representation learning positions it as a highly promising approach for real-world
forecasting applications, where consistent data quality cannot always be guaranteed.

4.5 Ablation study

4.5.1 Ablation of MS

Proposition 3.6 establishes the theoretical relationship between the optimal MS threshold and the variance
scaling factor k in the latent space. For stationary data (S ∼ N (0, I), i.e., k = 1), Proposition 3.6 reveals that
with h = 128, the optimal MS should be 2.64. However, real-world time series often exhibit non-stationary
characteristics. Our pre-analysis of the target variable’s variance after input-based standardization (see
Appendix appendix B.2) demonstrates that the effective k value for the prediction horizon falls within [1.5, 2]
across all benchmark datasets.
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Table 5: Empirical Forecasting Performance under Different MS Values

MS
2.38 2.64 2.88 3.09 3.50 5.00 6.00

ReMSE 0.4423 0.4404 0.4400 0.4348 0.4178 0.4780 0.4724
ReMAE 0.3818 0.3812 0.3811 0.3788 0.3759 0.3990 0.3959

Table 1 provides numerically solved optimal MS∗ values under different k and h configurations. For h = 128
(our experimental setting) and k ∈ [1.5, 2], the theoretical optimal MS ranges between 3.26-3.76. This
motivates our selection of MS = 3.5 as a balanced configuration within this interval.

To validate this choice, Table 5 presents the average relative ReMSE and ReMAE across six benchmark
datasets under zero-shot setting. The results demonstrate that MS = 3.5 achieves the minimum forecasting
error, reducing ReMSE by 4.1% and ReMAE by 1.8% compared to the stationary optimal MS = 2.64. This
strong alignment between theoretical predictions (Table 1) and empirical performance (Table 5) confirms
that our MS selection strategy effectively minimizes system error while accommodating real-world data
characteristics.

4.5.2 Ablation of loss function

Table 6: Ablation study of loss function components on prediction performance.

Metric Loss Configuration
EMD Only JSD+EMD (Ours) JSD Only

Average ReMAE 0.3941 0.3759 0.3956
Average ReMSE 0.4586 0.4178 0.4637

In this section, we conducted ablation studies on the loss function components of ViTime under zero-shot
setting. Table 6 compares model performance under three configurations: (1) EMD alone, (2) our proposed
loss function in Equation (18),where α = 0.2 to balance the quantity level, and (3) JSD alone. The results
demonstrate that our dual-objective loss achieves optimal performance on both ReMSE and ReMAE.

4.5.3 Ablation of other configuration

(a) Forecasting performance varying
with h

(b) Forecasting performance varying
with the length of lookback window

(c) Forecasting performance across
different model sizes

Figure 6: Ablation studies with zero-shot forecasting.
Note: The model size of ViTime used in computational experiments is 93M parameters version.

In this section, we perform several ablation studies to gain deeper insights into ViTime model configuration.
The results are reported in Figure 6. Figure 6 a depicts the influence of varying spatial resolutions (h) on
model accuracy. Although increasing h slightly improves the prediction results, the associated computational
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(a) Grad-CAM heatmap showing attention on key trend
changes.

(b) Attention maps at different prediction positions demon-
strating temporal dependencies.

Figure 7: Visualization of ViTime’s attention mechanism. Despite not using an autoregressive paradigm,
ViTime exhibits sequential processing patterns through its multi-layer self-attention modules.

cost increases exponentially. Thus, setting h to 128 is more economical and efficient. Figure 6 b illustrates the
effect of different lookback window lengths (T ) on prediction accuracy. It is evident that a longer lookback
window length significantly enhances the model’s prediction accuracy. Figure 6 c reports the prediction
accuracy across different model sizes. The data shows that models with more parameters tend to perform
better. Moreover, the proposed ViTime achieves superior performance with only 93M parameters compared
with TimesFM, which is over 200M parameters, further demonstrating the efficiency and effectiveness of
ViTime.

4.6 Interpretation of ViTime

Figure 7 illustrates the attention mechanism of ViTime through grad-cam (Selvaraju et al., 2017) heatmaps
and position-specific attention maps. The grad-cam results demonstrate that ViTime focuses strongly on
periods of fundamental trend changes. Further analysis through attention maps at different prediction
positions reveals an interesting pattern: despite not adopting an autoregressive paradigm, ViTime’s multi-
layer self-attention modules process information in a temporal sequence. The input data and the predicted
results from previous time steps determine the spatiotemporal distribution of predictions at each time step.
This aligns with human cognitive patterns, where information is processed from the recent to the distant past
while maintaining awareness of known information.
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(a) MS=3.5 (b) MS=3.5

(c) MS=7 (d) MS=7

Figure 8: Resolution analysis for explosive growth patterns: (a-b) With MS=3.5, ViTime incorrectly predicts
peak decline due to spatial constraints. (c-d) Doubling MS to 7 enables accurate growth trend capture.

5 Discussion

While ViTime demonstrates state-of-the-art performance in accuracy and robustness, two key challenges
warrant further investigation:

5.1 Resolution Constraints & Adaptive Enhancement.

The mapping function’s truncation imposes resolution limits, particularly evident in explosive growth patterns
(Figure 8 a-b). A key limitation of ViTime arises from its assumption of S ∼ N (0, I), which fails to capture
the high-variance nature of explosive growth data that typically follows S ∼ N (0, kI) with k ≫ 1. As shown in
Proposition 3.6, the optimal threshold MS∗ scales as

√
k, implying that fixed thresholds (e.g., MS = 3.5 for

k = 1.5) become suboptimal for high-variance scenarios, introducing significant system errors and degrading
prediction accuracy.

Our empirical analysis reveals that doubling the MS parameter from 3.5 to 7 significantly improves prediction
fidelity for explosive growth patterns (Figure 8c-d). However, excessively large MS values increase system
error, as demonstrated in Theorem 3.3, leading to computational inefficiency. This trade-off suggests two
complementary research directions:

18



Under review as submission to TMLR

• Elastic Resolution Enhancement: Techniques to dynamically adjust spatial resolution h based
on data variance, ensuring sufficient granularity for high-variance regions without unnecessary
computational overhead.

• Adaptive MS Estimation: Algorithms to estimate the variance scaling factor k and compute the
optimal MS∗ in real-time, balancing prediction fidelity with spectral efficiency.

These enhancements would enable ViTime to handle explosive growth patterns more effectively while
maintaining computational tractability.

5.2 Enhanced Data Generation.

ViTime’s predictive quality fundamentally depends on RealTS’s synthetic data generation capabilities. The
current methodology faces challenges in simulating complex real-world temporal dynamics, particularly for
non-stationary processes and regime-switching scenarios. Future work should develop 1) Advanced pattern
injection mechanisms for synthetic data generation, and 2) Quantitative metrics for simulation fidelity
assessment across different temporal regimes.

6 Conclusions

This work developed a vision intelligence-powered computational paradigm, ViTime, for developing the TSF
foundation model compared with numerical data fitting principles prevalently considered in literature. ViTime
was inspired by human visual cognitive processes understanding and analyzing time series. By introducing a
paradigm of operating numerical data in image space and the unique deep network based computing pipeline,
ViTime elevated the SOTA performance on zero-shot/fine-tuning TSF without relying on prior data samples,
demonstrating the great potential for reshaping the computational mechanism in TSF foundation model
development. Moreover, data often suffer from diverse contamination and variability in reality. ViTime
enabled robust performance under various real-world data perturbations and alterations.
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A Details of RealTS

We present RealTS, a versatile framework for synthesizing realistic time series data. RealTS employs multiple
data behavior modes under two main hypotheses: periodic (φp) and trend (φt). This section details the
various behavior modes, their configurations, and provides visual examples.

A.1 Periodic Hypothesis Behaviors

Under the periodic hypothesis φp, we employ two distinct data behavior modes:

A.1.1 Inverse Fast Fourier Transform Behavior (IFFTB)

To ensure the synthesized data adequately reflects the variation paradigms of real-world time series, we utilize
IFFT as expressed in Equation (22) to simulate the underlying behavior of real-world periodic time series:

P (sL|L, Bp) |Bp=IFFT =
∫∫ ∞

−∞
N
(
Am; µAm , σ2

Am

)
· N
(
ϕ; µP, σ2

P
)

× δ (sL − IFFT (Am, ϕ, L)) dϕdAm (22)

where two empirical distributions of Fourier transform amplitudes and phases, N(Am; µAm , σ2
Am

) and
N(ϕ; µP , σ2

P ), are maintained, and δ denotes the Dirac delta function. By sampling from empirical distributions,
we can obtain the amplitude and Phase vector, which is then inversely transformed back to the time domain
via IFFT.

Figure 9: Empirical distribution I employed in IFFTB.
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Figure 10: Empirical distribution II employed in IFFTB.
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The empirical distributions utilized in Am and ϕ are illustrated in Figure 9-Figure 10. During experiments,
we randomly select one of two empirical distributions for generating Am and ϕ. Figure 11 shows examples of
time series generated using IFFTB.

Figure 11: Examples of time series generated using IFFTB.

A.1.2 Periodic Wave Behavior (PWB)

This behavior generates data by superimposing multiple periodic waves, which is modeled as a sum of sin,
cos, and other periodic functions, fperiodic, with different frequencies and amplitudes:

P (sL|L, Bp) |Bp=PWB =
∫∫ ∞

−∞
N
(

sL;
kPWB∑
i=1

Aifperiodic (ωit) , σ2
ϵ

)
× P (A) P (ω) dωdA (23)

where P(A) and P(ω) denote predefined prior distributions of amplitudes and frequency; kP W B denotes the
number of mixed periodic functions.

For PWB, we define the prior distributions for amplitude and frequency as:

A ∼ U(0.5, 5) (24)

ln(ω) ∼ U(ln(11), ln(2L)) (25)

The parameter kP W B is modeled as:

P (kP W B = k) = 1
8 , for k = 1, 2, . . . , 8 (26)

Figure 12 shows examples of time series generated using PWB.

Figure 12: Examples of time series generated using PWB.
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A.2 Trend Data Hypothesis Behaviors

Under the trend data hypothesis φt, we employ three distinct data behavior modes:

A.2.1 Random Walk Behavior (RWB)

The RWB models data as a stochastic process where each value is the previous value plus a random step:

P (si|si−1, L, Bp) |Bp=RWB = N
(
0, σ2) (27)

Figure 13 shows examples of time series generated using RWB.

Figure 13: Examples of time series generated using RWB.

A.2.2 Logistic Growth Behavior (LGB)

The LGB models data with a logistic growth function, capturing the S-shaped growth pattern:

P (sL|L, Bp) |Bp=LGB

=
∫∫ ∞

−∞
N
(

sL; K

1 + e−r(L−L0) , σ2
ϵ

)
P (K)P (r)dKdr

(28)

where P (K) and P (r) denote predefined prior distributions of S-shaped function hyperparameters.

For LGB, we define the probability densities for Carrying Capacity K and Growth Rate r as:

ln(K) ∼ U(ln(1), ln(10)) (29)

ln(r) ∼ U(ln(0.001), ln(0.1)) (30)

Figure 14 shows examples of time series generated using LGB.

A.2.3 Trend Wave Data Behavior (TWDB)

TWDB combines linear trends with periodic fluctuations:

P (sL|L, Bp) |Bp=TWDB =
∫∫ ∞

−∞
N
(

sL; aL + b +
kTWDB∑

i=1
Aifperiodic (ωit) , σ2

ϵ

)
× P (a)P (b)P (A) P (ω) dadbdAdω

(31)

where P (a), P (b), P (A) and P (ω) are predefined prior distributions of hyperparameters.
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Figure 14: Examples of time series generated using LGB.

In the TWDB, we define the probability densities for linear function random variables P (a) and P (b), as
well as for the superimposed periodic wave components P (A) and P (ω). The settings for P (A), P (ω), and
kT W DB are consistent with those used in the PWB module. The probability densities for P (a) and P (b) are
detailed below:

a ∼ U(−1, 1) (32)

b ∼ U(−10, 10) (33)

Figure 15 shows examples of time series generated using TWDB.

Figure 15: Examples of time series generated using TWDB.

A.3 Data Augmentation Techniques

To enhance the diversity and robustness of synthetic data, we employ various data augmentation techniques,
including:

• Multiple period replication: Repeats the generated periodic data over multiple cycles to capture
long-term periodic patterns.

• Data flipping: Reverses the time series to create new patterns while preserving underlying character-
istics.

• Convolution smoothing and detrending: Removes underlying trends from the data to isolate periodic
components, making it easier for the model to learn these patterns.

• Data perturbation: Introduces sudden changes or anomalies into the data, simulating real-world
disturbances and improving the model’s ability to handle unexpected variations.

More details of RealTS are offered in the code part of the Supplementary Material.
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B Training configuration

B.1 ViTime model structure

Table 7: Details of model architecture

Module Embed_dim Depth Patch size Num_heads
Visual Time Tokenizer 768 9 (4,32) 12
Decoder 384 4 \ 12

The detailed network configuration of the proposed ViTime is reported in Table 7.

B.2 Data normalization

To ensure ViTime can effectively capture patterns involving sudden changes, an in-sequence data normalization
based on L2 normalization is implemented. By normalizing each sequence within the data sequence, the
model can pay more attention to abrupt variations. The normalization process is defined as follows:

SL =
SL − mean (∥S1:T∥2)

std (S1:T) (34)

C Proofs

This section provides the detailed proofs for the theorems and propositions presented in the main text.

C.1 Proof of Theorem 3.3 (System Error Upper Bound)

Theorem C.1 (Theorem 3.3 restated). Given a tensor ŝ ∈ S ⊂ Rc×t, where S follows N (0, I) as per
Assumption 3.2, the system error (SE) from mapping to V and back, defined as

∥∥f−1 (f (ŝ)) − ŝ
∥∥

1, satisfies
the following expectation bound:

SE := E
∥∥f−1 (f (ŝ)) − ŝ

∥∥
1 ≤ ct

[
MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

]
, (35)

where Φ is the cumulative distribution function (CDF) of N (0, 1), c is the number of variates, t is the time
series length, h is the image height (resolution), and MS is the maximum scale.

Proof. The proof considers the error for a single element s of ŝ and then scales by ct. Let P (s) be the PDF of
N (0, 1). The expected absolute error for a single element is E|f−1(f(s)) − s|. This error can be decomposed
into two parts: quantization error for |s| ≤ MS and truncation error for |s| > MS.

1. Quantization Error (|s| ≤ MS):

When |s| ≤ MS, the value s is mapped to a bin j = ⌊(s + MS)/(2MS/h)⌋. The inverse mapping f−1(f(s))
reconstructs this as the midpoint of the bin, (j − 0.5)(2MS/h) − MS. The maximum error in this case is
half the bin width, δ/2 = (2MS/h)/2 = MS/h.

The expected quantization error is:

EQ =
∫ MS

−MS

|f−1(f(s)) − s|P (s)ds (36)

≤
∫ MS

−MS

MS

h
P (s)ds = MS

h

∫ MS

−MS

P (s)ds (37)

= MS

h
[Φ(MS) − Φ(−MS)] . (38)
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2. Truncation Error (|s| > MS):

If s > MS, f(s) maps to the highest bin h, and f−1(f(s)) = MS − (MS/h). The error is s − (MS − MS/h).

If s < −MS, f(s) maps to the lowest bin 1, and f−1(f(s)) = −MS+(MS/h). The error is (−MS+MS/h)−s.

For simplicity in bounding, we consider the error magnitude as |s| − MS when |s| > MS. The expected
truncation error is:

ET =
∫ ∞

MS

(s − MS)P (s)ds +
∫ −MS

−∞
(−MS − s)P (s)ds (39)

= 2
∫ ∞

MS

(s − MS)P (s)ds (by symmetry of P (s)) (40)

= 2
[∫ ∞

MS

sP (s)ds − MS

∫ ∞

MS

P (s)ds

]
. (41)

We know
∫∞

MS
sP (s)ds =

∫∞
MS

s 1√
2π

e−s2/2ds = 1√
2π

e−MS2/2.

And
∫∞

MS
P (s)ds = 1 − Φ(MS).

So,

ET = 2
[

1√
2π

e−MS2/2 − MS(1 − Φ(MS))
]

(42)

=
√

2
π

e−MS2/2 − 2MS(1 − Φ(MS)). (43)

3. Total Expected Error per Element:

The total expected absolute error for one element is EQ + ET :

E|f−1(f(s)) − s| ≤ MS

h
[Φ(MS) − Φ(−MS)] +

√
2
π

e−MS2/2 − 2MS(1 − Φ(MS)) (44)

= MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2(1 − Φ(MS))
)

+
√

2
π

e− MS2
2 (45)

= MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2 . (46)

Multiplying by ct (number of elements) gives the bound for E∥f−1(f(ŝ)) − ŝ∥1.

C.2 Proof of Proposition 3.4 (Asymptotic Convergence with h)

Proposition C.2 (Proposition 3.4 restated). For any ε > 0, there exists δ0 > 0 such that when h → +∞
and MS ≥ δ0, the per-element SE upper bound

g1(h, MS) = MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2 (47)

converges to zero.

Proof. Let g1(h, MS) be the per-element upper bound from Theorem 3.3:

g1(h, MS) = MS

h
(Φ(MS) − Φ(−MS)) − 2MS(1 − Φ(MS)) +

√
2
π

e− MS2
2 . (48)
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As h → +∞, the term MS
h (Φ(MS) − Φ(−MS)) → 0 since Φ(MS) − Φ(−MS) ≤ 1.

The remaining terms are R(MS) = −2MS(1 − Φ(MS)) +
√

2
π e− MS2

2 .

We use Mill’s ratio for the tail probability of a standard normal distribution: for MS > 0,

1 − Φ(MS) ∼ ϕ(MS)
MS

= 1
MS

√
2π

e−MS2/2 as MS → ∞. (49)

So,

−2MS(1 − Φ(MS)) ∼ −2MS

(
1

MS
√

2π
e−MS2/2

)
(50)

= −
√

2
π

e−MS2/2. (51)

Thus, as MS → ∞,

R(MS) ∼ −
√

2
π

e−MS2/2 +
√

2
π

e−MS2/2 (52)

= 0. (53)

Therefore, for any ε > 0, we can find a δ0 such that for MS ≥ δ0, |R(MS)| < ε/2.

And for any MS ≥ δ0, we can find an H0 such that for h ≥ H0,∣∣∣∣MS

h
(Φ(MS) − Φ(−MS))

∣∣∣∣ < ε/2. (54)

This implies that limh→+∞,MS→∞ g1(h, MS) = 0. More precisely, for a fixed large enough MS, as h → ∞,
the limit is R(MS), which can be made arbitrarily small by choosing MS large.

The statement asks for convergence as h → ∞ for MS ≥ δ0.

Let MS ≥ δ0. Then

lim
h→+∞

g1(h, MS) = −2MS(1 − Φ(MS)) +
√

2
π

e−MS2/2. (55)

This limit itself tends to 0 as MS → ∞. The proposition asks for the expression to be small when h → ∞
AND MS ≥ δ0.

Taking the limit as h → ∞ first, we get:

lim
h→+∞

∣∣∣∣∣MS

(
1
h

(Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π

e− MS2
2

∣∣∣∣∣ =

∣∣∣∣∣−2MS(1 − Φ(MS)) +
√

2
π

e− MS2
2

∣∣∣∣∣ .
(56)

This term goes to 0 as MS → ∞. So, for any ε > 0, there exists δ0 such that for MS ≥ δ0, the term is less
than ε.

C.3 Proof of Proposition 3.5 (Optimal MS Selection)

Proposition C.3 (Proposition 3.5 restated). For a fixed h, there exists a unique optimal threshold MS∗ > 0
that minimizes the per-element SE upper bound g1(h, MS). This MS∗ is the solution to:

1
h

(Φ(MS∗) − Φ(−MS∗)) − 2 + 2Φ(MS∗) + MS∗

h
· 2ϕ(MS∗) = 0, (57)
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where ϕ(x) = 1√
2π

e−x2/2 is the PDF of N (0, 1). (Note: The original equation had
√

2/πe−MS∗2/2, which is
2ϕ(MS∗)).

Proof. Let g1(MS) = MS
( 1

h (Φ(MS) − Φ(−MS)) − 2 + 2Φ(MS)
)

+
√

2
π e− MS2

2 .

We want to find MS∗ such that g′
1(MS∗) = 0.

Using Φ(−x) = 1 − Φ(x) and ϕ(−x) = ϕ(x), we have Φ(MS) − Φ(−MS) = 2Φ(MS) − 1.

So, g1(MS) = MS
( 1

h (2Φ(MS) − 1) − 2 + 2Φ(MS)
)

+ 2ϕ(MS).

Derivative with respect to MS:
dg1

dMS
=
(

1
h

(2Φ(MS) − 1) − 2 + 2Φ(MS)
)

+ MS

(
2ϕ(MS)

h
+ 2ϕ(MS)

)
+ 2ϕ′(MS) (58)

= 2Φ(MS) − 1
h

− 2 + 2Φ(MS) + 2MSϕ(MS)
h

+ 2MSϕ(MS) − 2MSϕ(MS) (since ϕ′(MS) = −MSϕ(MS))
(59)

= 2Φ(MS) − 1
h

− 2 + 2Φ(MS) + 2MSϕ(MS)
h

. (60)

Setting dg1/dMS = 0:
2Φ(MS∗) − 1

h
− 2 + 2Φ(MS∗) + 2MS∗ϕ(MS∗)

h
= 0. (61)

This matches the condition in the proposition since Φ(MS∗) − Φ(−MS∗) = 2Φ(MS∗) − 1.

To show uniqueness and minimality, we examine the second derivative or the behavior of the first derivative.

Let f(MS) = dg1/dMS.

f(0) = (0 − 1)/h − 2 + 2(0.5) + 0 = −1/h − 2 + 1 = −1 − 1/h < 0.

As MS → ∞, Φ(MS) → 1 and ϕ(MS) → 0.

So limMS→∞ f(MS) = 1/h − 2 + 2 + 0 = 1/h > 0 (assuming h > 0).

Since f(MS) is continuous and goes from negative to positive, there must be at least one root MS∗ > 0.

The second derivative:
d2g1

dMS2 = 2ϕ(MS)
h

+ 2ϕ(MS) + 2ϕ(MS) + 2MSϕ′(MS)
h

(62)

= 2ϕ(MS)
(

1
h

+ 1
)

+ 2ϕ(MS) − 2MS2ϕ(MS)
h

(63)

= 2ϕ(MS)
(

1 + 2
h

− MS2

h

)
. (64)

For small MS, d2g1/dMS2 > 0, indicating convexity. If 1 + 2/h − MS2/h > 0, i.e., MS2 < h + 2.

If MS∗ <
√

h + 2, then g1(MS) is convex at MS∗, ensuring a local minimum.

The function f(MS) starts negative, becomes positive, and its derivative d2g1/dMS2 is positive for MS <√
h + 2 and can become negative for MS >

√
h + 2. This structure ensures a unique minimum for MS > 0.

C.4 Proof of Proposition 3.6 (Optimal Threshold under Variance Scaling)

Proposition C.4 (Proposition 3.6 restated). Under the assumption S ∼ N (0, kI) with k > 1, the optimal
threshold MS∗ that minimizes the per-element SE upper bound is characterized by:

1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ MS∗

h

√
2

πk
e− (MS∗)2

2k = 0. (65)
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Proof. Let s ∼ N (0, k). Then s′ = s/
√

k ∼ N (0, 1).

The original values s are scaled by
√

k. The mapping function f operates on s. The bins are from −MS to
MS. Bin width δs = 2MS/h.

The SE upper bound for a single element is: gk(MS) = Es∼N (0,k)|f−1(f(s)) − s|.

This is equivalent to scaling the original problem. Let s =
√

kz where z ∼ N (0, 1). The function operates on
s. The effective range for z is −MS/

√
k to MS/

√
k.

The quantization error part:

s is in [−MS, MS]. The error is bounded by MS/h.∫ MS

−MS

MS

h
Pk(s)ds = MS

h

∫ MS

−MS

1√
2πk

e−s2/(2k)ds (66)

Let u = s/
√

k. Then ds =
√

kdu. Limits become −MS/
√

k to MS/
√

k.

= MS

h

∫ MS/
√

k

−MS/
√

k

1√
2π

e−u2/2du (67)

= MS

h

[
Φ
(

MS√
k

)
− Φ

(
−MS√

k

)]
(68)

The truncation error part:

2
∫∞

MS
(s − MS)Pk(s)ds.

= 2
[∫ ∞

MS

s
1√
2πk

e−s2/(2k)ds − MS

∫ ∞

MS

1√
2πk

e−s2/(2k)ds

]
(69)

The first integral: ∫ ∞

MS

s
1√
2πk

e−s2/(2k)ds =
√

k

∫ ∞

MS/
√

k

u
1√
2π

e−u2/2du (70)

=
√

k
1√
2π

e−(MS/
√

k)2/2 (71)

=
√

k

2π
e−MS2/(2k) (72)

The second integral: MS
(

1 − Φ
(

MS√
k

))
.

So,

ET,k = 2
[√

k

2π
e−MS2/(2k) − MS

(
1 − Φ

(
MS√

k

))]
(73)

The per-element SE bound g1,k(MS) is:

g1,k(MS) = MS

h
[Φk(MS) − Φk(−MS)] +

√
2k

π
e−MS2/(2k) − 2MS(1 − Φk(MS)) (74)

where Φk(x) = Φ(x/
√

k).

31



Under review as submission to TMLR

This can be written as:

g1,k(MS) = MS

(
1
h

(Φk(MS) − Φk(−MS)) − 2 + 2Φk(MS)
)

+
√

2k

π
e− MS2

2k (75)

To find the optimal MS∗, we differentiate g1,k(MS) with respect to MS and set to zero.

Let ϕk(x) = 1√
k

ϕ(x/
√

k) be the PDF of N (0, k) in terms of ϕ.

d
dMS Φk(MS) = d

dMS Φ(MS/
√

k) = ϕ(MS/
√

k) · 1√
k

= ϕk(MS).

d
dMS

(√
2k
π e− MS2

2k

)
=
√

2k
π e− MS2

2k

(
− 2MS

2k

)
= − MS√

k

√
2
π e− MS2

2k = −2MSϕk(MS).

The derivative dg1,k

dMS is:

=
(

1
h

(Φk(MS) − Φk(−MS)) − 2 + 2Φk(MS)
)

+ MS

(
1
h

(ϕk(MS) − (−ϕk(MS))) + 2ϕk(MS)
)

− 2MSϕk(MS)

(76)

= Φk(MS) − Φk(−MS)
h

− 2 + 2Φk(MS) + 2MSϕk(MS)
h

(77)

Setting this to zero gives:
1
h

(
Φ
(

MS∗
√

k

)
− Φ

(
−MS∗

√
k

))
− 2 + 2Φ

(
MS∗
√

k

)
+ 2MS∗

h

1√
k

ϕ

(
MS∗
√

k

)
= 0 (78)

Substituting 2ϕ(x/
√

k)/
√

k =
√

2/(πk)e−(MS∗)2/(2k), we get the stated condition.

The uniqueness follows a similar argument to Proposition 3.5.

C.5 Proof of Theorem 3.7 (Stripe SNR Boost)

Theorem C.5 (Theorem 3.7 restated). Let the length–L time series sk = A sin(ω0k+ϕ)+ηk, k = 0, . . . , L−1,
with amplitude A > 0, angular frequency ω0 = 2π/Pperiod (Pperiod ∈ N+) and i.i.d. Gaussian noise ηk ∼
N (0, σ2) be visualised as the binary stripe image v ∈ {0, 1}h×L defined through vj,k = 1(j = ⌊(sk + MS)/δ⌋),
where δ = ∆/h, ∆ = 2MS.

Denote SNRnum = A2/(2σ2) and SNRvis = E[|F2D(vclean)[0, n0]|2]/E[|F2D(vnoise)[0, n0]|2], with n0 =
⌊L/Pperiod⌋.

Assume (i) δ ≤ A ≤ ∆ − δ and (ii) σ < δ/4.

Then, for every L ≥ Pperiod:

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum (79)

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
(80)

Proof. Let vclean be the image from A sin(ω0k + ϕ) and v = vclean + vnoise where vnoise is the change due to
ηk.

1. Deterministic Signal Power in Visual Domain.

The 2D Discrete Fourier Transform (DFT) is

F2D(v)[m, n] =
L−1∑
k=0

h−1∑
j=0

vj,ke−i2π(mk/L+nj/h) (81)
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We are interested in the coefficient at (m, np) = (0, n0), where n0 = L/Pperiod (assuming L is a multiple of
Pperiod for simplicity, or ⌊L/Pperiod⌋ otherwise).

The transform of the clean signal component at (0, n0) is

F2D(vclean)[0, n0] =
L−1∑
k=0

h−1∑
j=0

(vclean)j,ke−i2π(n0j/h) (82)

Following the provided analysis, E[|F2D(vclean)[0, n0]|2] = L2.

2. Probability of Quantization Flip.

A flip means vj,k changes due to noise ηk. This occurs if sk = sk,clean + ηk crosses a quantization boundary
θj = jδ − MS.

The clean value sk,clean falls into bin j0. A flip occurs if sk falls into j0 ± 1, j0 ± 2, . . . .

The closest boundaries are j0δ − MS and (j0 + 1)δ − MS.

sk,clean is at least ϵ from any boundary. A flip to an adjacent bin occurs if |ηk| > ϵ.

The condition σ < δ/4 implies noise is small. A flip occurs if ηk moves sk to another bin. This primarily
happens if sk crosses sk,clean ± δ/2 (approximately).

So, pflip = Pr(|ηk| > δ/2). Using Gaussian tail bound Pr(|X| > t) ≤ 2e−t2/(2σ2):

pflip ≤ 2 exp
(

− (δ/2)2

2σ2

)
= 2 exp

(
− δ2

8σ2

)
(83)

3. Energy of the Noise Image vnoise.

vnoise has entries 1, −1, 0. If sk flips from bin j0 to j1: (vnoise)j0,k = −1, (vnoise)j1,k = 1.

∥vnoise∥2
F =

∑
k,j(vnoise)2

j,k. Each flip changes two pixels, so contributes 12 + (−1)2 = 2 to this sum.

E[∥vnoise∥2
F ] =

∑
k E[contribution at k] = L · (2 · pflip).

4. Bound on a Single DFT Coefficient of Noise.

By Parseval’s identity for 2D DFT:
∑

m,n |F2D(vnoise)[m, n]|2 = ∥vnoise∥2
F (with appropriate normalization).

Thus, for any specific (m, n), |F2D(vnoise)[m, n]|2 ≤ ∥vnoise∥2
F .

Therefore, E[|F2D(vnoise)[0, n0]|2] ≤ E[∥vnoise∥2
F ] = 2Lpflip.

5. Visual SNR Bound.

SNRvis = L2

E[|F2D(vnoise)[0, n0]|2] (84)

≥ L2

2Lpflip
(85)

= L

2pflip
(86)
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Using pflip ≤ 2 exp(−δ2/(8σ2)):

SNRvis ≥ L

2 · 2 exp(−δ2/(8σ2)) (87)

= L

4 exp
(

δ2

8σ2

)
(88)

This is the second part of the result.

6. Relation to Numerical SNR.

SNRnum = A2/(2σ2).

SNRvis

SNRnum
= SNRvis

2σ2

A2 (89)

≥ L

4 exp
(

δ2

8σ2

)
2σ2

A2 (90)

This yields

SNRvis ≥ L

4 exp
(

δ2

8σ2

)
σ2

A2 SNRnum (91)

Thus, both inequalities in the theorem statement are proven.

C.6 Proof of Theorem 3.8 (Gaussian-Blur SNR Boost)

Theorem C.6 (Theorem 3.8 restated). Under the assumptions of Theorem 3.7, apply a 1D normalized
Gaussian convolution gj = (1/Z) exp(−j2/(2σ2

b )) with
∑

j gj = 1 along the row direction of v to get w = g ∗j v.
Let S =

∑
j g2

j ∈ (0, 1) be the filter’s nuclear energy.

Define SNRblur
vis = E[|F2D(wclean)[0, n0]|2]/E[|F2D(wnoise)[0, n0]|2]. Then,

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
(92)

SNRblur
vis ≥ Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum (93)

The visual SNR is amplified by at least 1/S > 1 compared to the unblurred case.

Proof. Let G(mv) be the DFT of the 1D filter gj with respect to the value-axis frequency mv.

F2D(w)[mt, mv] = G(mv)F2D(v)[mt, mv].

We are interested in the frequency (0, n0), where n0 is the time-axis frequency index.

1. Signal Power after Blurring.

Using the frequency index (nt, nj) for (time, value/row), we examine the coefficient F2D(w)[nt, nj ].

The specific coefficient in focus is F2D(wclean)[0, n0], where n0 is the time index.

Signal power:

E[|F2D(wclean)[n0, 0]|2] = |G(0)|2E[|F2D(vclean)[n0, 0]|2] (94)

Since
∑

j gj = 1, we have G(0) = 1. So signal power remains L2.
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2. Noise Power after Blurring.

The noise image is wnoise = g ∗j vnoise.

The total energy of wnoise:

∥wnoise∥2
F =

∑
k

∥g ∗ (vnoise):,k∥2
2 (95)

For each column k, (vnoise):,k is a vector. Convolution is along j.

∥g ∗ (vnoise):,k∥2
2 = S∥(vnoise):,k∥2

2 (96)

where S = ∥g∥2
2 =

∑
j g2

j .

So,

∥wnoise∥2
F = S∥vnoise∥2

F (97)
E[∥wnoise∥2

F ] = S · E[∥vnoise∥2
F ] (98)

= S · (2Lpflip) (99)

3. Bound on Single DFT Coefficient of Blurred Noise.

E[|F2D(wnoise)[n0, 0]|2] ≤ E[∥wnoise∥2
F ] (100)

= 2LSpflip (101)

4. SNR after Blurring.

SNRblur
vis = L2

E[|F2D(wnoise)[n0, 0]|2] (102)

≥ L2

2LSpflip
(103)

= L

2Spflip
(104)

Using pflip ≤ 2 exp(−δ2/(8σ2)):

SNRblur
vis ≥ L

2S · 2 exp(−δ2/(8σ2)) (105)

= L

4S
exp

(
δ2

8σ2

)
(106)

This means SNRblur
vis ≥ (1/S) · SNRvis (unblurred).

For the relation to numerical SNR:

SNRblur
vis ≥ L

4S
exp

(
δ2

8σ2

)
(107)

≥ L

4S
exp

(
δ2

8σ2

)
2σ2

A2 · A2

2σ2 (108)

= Lσ2

2A2S
exp

(
δ2

8σ2

)
SNRnum (109)

Since S < 1, the factor 1/S > 1 provides an amplification of the SNR compared to the unblurred case.
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D Additional results of computational experiments

D.1 Zero-shot study

The full results of the zero-shot study are reported in Table 8 - Table 12. We also illustrate zero-shot TSF
examples with prediction length equals 720 of the proposed ViTime versus TimesFM in Figure 16 - Figure 21.
It is observable that ViTime consistently demonstrates superior zero-shot prediction performance compared
to TimesFM across a range of rescale factors.

D.2 Fine-tuning study

Complete results of the fine-tuning study are reported in Table 13.

D.3 Robust inference study

Complete results of the robust inference study are reported in Table 14.

D.4 Computational complexity analysis

We conduct extensive experiments to analyze the computational complexity and prediction accuracy of our
proposed models. All experiments are performed with batch size 4, input sequence length 512, and prediction
horizon 720 on a single Nvidia 3090 GPU.

Table 15: Model Performance and Computational Resource Requirements

Model GPU Mem. Inference Time (s/batch) Params Avg. ReMAE

(MB) Total Map. & Inv. Map. (M)

TimesFM 18,154 0.130 - 200 0.423
ViTime w/ Refining 3,120 2.890 0.0068 95 0.376
ViTime w/o Refining 667 0.082 0.0068 74 0.381

The results are reported in Table 15. The baseline TimesFM model requires substantial computational
resources with 18.1GB GPU memory and 200M parameters, while achieving an average ReMAE of 0.423. In
contrast, our proposed ViTime architecture demonstrates remarkable improvements in both efficiency and
accuracy. The basic version without the refining module strikes an optimal balance between computational
efficiency and performance - it requires only 667MB GPU memory (27× reduction), achieves faster inference
at 0.082s per batch, uses 63% fewer parameters (74M), while maintaining competitive accuracy with an
average ReMAE of 0.381.

For applications prioritizing prediction accuracy, the ViTime variant with refining module achieves the best
performance with an average ReMAE of 0.376, representing an 11.1% improvement over TimesFM. This
comes at the cost of increased computational overhead - 3.1GB GPU memory and 2.89s inference time per
batch, though still maintaining a 5.8× reduction in memory compared to TimesFM. Notably, the mapping
& inverse mapping between image space and numerical space in ViTime variants consume only 0.0068s,
representing 8.3% and 0.24% of the total inference time for the basic and refined versions, respectively.

These results demonstrate that our proposed architecture offers flexible deployment options: the basic version
for resource-constrained scenarios requiring good accuracy and computational efficiency, and the refined
version for applications where prediction accuracy is paramount. Both variants significantly outperform the
baseline in terms of the computation-accuracy trade-off.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 16: Illustrative example of Electricity dataset.

44



Under review as submission to TMLR

(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 17: Illustrative example of Traffic dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 18: Illustrative example of ETTh1 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 19: Illustrative example of ETTh2 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 20: Illustrative example of ETTm1 dataset.
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(a) Rescale factor=0.5

(b) Rescale factor=1

(c) Rescale factor=2

Figure 21: Illustrative example of ETTm2 dataset.
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