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Abstract
We study the error introduced by entropy regu-
larization of infinite-horizon discrete discounted
Markov decision processes. We show that this er-
ror decreases exponentially in the inverse regular-
ization strength both in a weighted KL-divergence
and in value with a problem-specific exponent.
We provide a lower bound matching our upper
bound up to a polynomial factor. Our proof relies
on the correspondence of the solutions of entropy-
regularized Markov decision processes with gradi-
ent flows of the unregularized reward with respect
to a Riemannian metric common in natural policy
gradient methods. Further, this correspondence
allows us to identify the limit of the gradient flow
as the generalized maximum entropy optimal pol-
icy, thereby characterizing the implicit bias of
the Kakade gradient flow which corresponds to
a time-continuous version of the natural policy
gradient method. We use this to show that for
entropy-regularized natural policy gradient meth-
ods the overall error decays exponentially in the
square root of the number of iterations.

1. Introduction
Entropy regularization plays an important role in reinforce-
ment learning and is usually employed to encourage explo-
ration thereby improving sample complexity and improv-
ing convergence of policy optimization techniques Ahmed
et al. (2019). One benefit of entropy regularization is that
it corresponds to a strictly convex regularizer in the space
of state-action distribution, where the reward optimization
problem is equivalent to a linear program. Employing this
hidden strong convexity, entropy-regularized vanilla and nat-
ural policy gradient methods have been shown to converge
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exponentially for discrete and continuous problems, for gra-
dient descent and gradient flows, and for tabular methods
as well as under function approximation Mei et al. (2020);
Cen et al. (2021); Çaycı et al. (2021); Müller & Montúfar
(2024); Kerimkulov et al. (2023).

Adding entropy regularization changes the optimization
problem thereby introducing an error for which a conclusive
analysis remains elusive. For general bounded regulariz-
ers and regularization strength τ ≥ 0 an O(τ) estimate
on the regularization error can be established Geist et al.
(2019), which was subsequently used in the overall error
analysis of entropy-regularized natural policy gradients Dai
et al. (2018); Lee et al. (2018). This result covers general
regularizers but neither uses the structure of Markov deci-
sion processes nor the entropic regularizer. Together with
the O(e−τkη) convergence of entropy-regularized natural
policy gradients this implies O( log k

ηk ) convergence of the

overall error with regularization strength τ = log k
ηk , where

k denotes the number of iterations, see Cen et al. (2021).

1.1. Contributions

The main contribution of this article is a sharp analysis of
the entropy regularization error in infinite-horizon discrete
discounted Markov decision processes. We summarize our
contributions as the following:

• Sharp analysis of entropy regularization. In Theo-
rem 2.4 and Theorem 2.5 we give essentially matching
upper and lower bounds on the entropy regularization
error and show exponential convergence Õ(e−∆τ−1

)
with a problem-dependent exponent ∆ > 0, where Õ
hides polynomial factors.

• Implicit bias. We show that the gradient flows corre-
sponding to natural policy gradients converge towards
the generalized maximum entropy optimal policy char-
acterizing their implicit bias, see Theorem 2.5.

• Overall error analysis. We show that for regularized
natural policy gradient methods the overall error de-
creases exponentially in the square-root of the number
of iterations Õ(e−

√
∆ηk/2), see Theorem 2.6.
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1.2. Related works

At the core of our argument lies the observation that the
optimal regularized policies solve the gradient flow of the
unregularized reward with respect to the Kakade metric,
which can be seen as the continuous time limit of unregu-
larized natural policy gradient methods for tabular softmax
policies. This correspondence uses the isometry between
the Kakade metric and the conditional Fisher-Rao metric
on the state-action distributions Müller & Montúfar (2024),
which allows us to use the theory of Hessian gradient flows
in convex optimization Alvarez et al. (2004).

Natural policy gradients are known to converge at a O( 1k )
rate Agarwal et al. (2021) which was used in Khodadadian
et al. (2022) to show assymptotic O(e−ck) convergence for
all c < ∆. Our continuous-time analysis uses similar argu-
ments, but we provide an anytime analysis, an essentially
matching lower bound, and show convergence towards the
generalized maximum entropy optimal policy.

A continuous-time analysis of gradient flows with respect
to the Kakade metric has been conducted for Markov deci-
sion processes with discrete and continuous state and action
spaces in Müller & Montúfar (2024); Kerimkulov et al.
(2023). For unregularized reward exponential convergence
was established in Müller & Montúfar (2024) without con-
trol over the exponent or the coefficient. Under the presence
of entropy regularization with strength τ > 0 exponential
O(e−τt) convergence was established in Müller & Montúfar
(2024); Kerimkulov et al. (2023). For gradient flows with
respect to the Fisher metric in state-action space exponential
convergence O(e−δt) with a problem specific exponent was
established, however, a lower bound is missing there, and
the exponent δ ≤ ∆ is dominated by the one for Kakade’s
gradient flows Müller et al. (2024).

For unregularized natural actor-critic methods a O(log k)
bound on the distance of the policies to the maximum en-
tropy optimal policy was established by Hu et al. (2021).
Working in continuous time allows us to show exponential
convergence towards the generalized maximum entropy opti-
mal policy. A similar algorithmic bias showing convergence
to the maximum entropy optimal policy was established for
natural policy gradient methods that decrease regularization
and increase step sizes during optimization Li et al. (2023).
In contrast to our implicit bias result, this approach consid-
ers an asymptotically vanishing but explicit regularization.

1.3. Notation

The probability simplex ∆X := {µ ∈ RX
≥0 :

∑
x∈X µ(x) =

1} over a finite set X denotes all probability vectors. Given
a second finite set Y we can identify the Cartesian product
∆Y

X = ∆X × · · ·∆X with the set of stochastic matrices or
the set of Markov kernels. We refer to ∆Y

X as the conditional

probability polytope and for P ∈ ∆Y
X we write P (x|y) for

the entries of the Markov kernel. Finally, for two vectors
µ, ν ∈ RX we denote the Hadamard product by µ⊙ν ∈ RX

with entries (µ⊙ ν)(x) := µ(x)ν(x).

2. Main results
We consider a state and action spaces S and A. The tran-
sition dynamics are described by a fixed Markov kernel
P ∈ ∆S×A

S , where P (s′|s, a) describes the probability of
transitioning from s to s′ under the action a. We consider
stochastic memoryless policies π ∈ ∆S

A and the discounted
infinite-horizon entropy-regularized reward, given by

Rτ (π) := (1− γ)Eπ

[∑
t∈N

γt

(
r(St, At)

− τDKL(π(·|St), π0(·|St)

)] (1)

where µ ∈ ∆S is an initial distribution over the states,
r ∈ RS×A, and γ ∈ [0, 1) is the discount factor. Here, the
states and actions are produced according to S0 ∼ µ,At ∼
π(·|St), St+1 ∼ P (·|St, At) and we refer to π0 ∈ ∆S

A

reference policy and to τ ≥ 0 as the regularization strength.
It is the goal of this article to understand the error induced
by entropy regularization.

Important concepts in Markov decision processes are the
state and state-action distributions

dπ(s) := (1− γ)
∑
t∈N

γtPπ,µ(St = s) and (2)

νπ(s, a) := (1− γ)
∑
t∈N

γtPπ,µ(St = s,At = a). (3)

Definition 2.1 (Kakade divergence). For two policies
π1, π2 ∈ ∆S

A we call

DK(π1, π2) :=
∑
s∈S

dπ1(s)DKL(π1(·|s), π2(·|s)) (4)

the Kakade divergence between π1 and π2.1

A direct computation shows Rτ (π) = R(π) + τDK(π, π0).
Note that the Kakade divergence is not a Bregman diver-
gence, see Remark A.2.
Assumption 2.2 (State exploration). For any π ∈ ∆S

A it
holds that dπ(s) > 0 for all s ∈ S.

Setting 2.3. Consider a finite discounted Markov decision
process (S,A, P, γ, r), an initial distribution µ ∈ ∆S and
fix a policy π0 ∈ int(∆S

A) and let Assumption 2.2 hold and
denote the optimal reward by R⋆ := max{R(π) : π ∈ ∆S

A}.

1Note that DK depends both on the initial distribution µ ∈ ∆S

as well as on the discount factor γ ∈ [0, 1).
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Further, let (πt)t≥0 denote the solutions of the entropy-
regularized problems

πt = argmax
π∈∆S

A

{
R(π)− t−1DK(π, π0)

}
. (5)

We denote the projection onto the optimal policies by

π⋆ = argmin
π∈Π⋆

DK(π, π0), (6)

where Π⋆ := {π ∈ ∆S
A : R(π) = R⋆} denotes the set of

optimal policies and set c := DK(π
⋆, π0). Finally, we set

∆ := −max {A⋆(s, a) ̸= 0 : s ∈ S, a ∈ A} , (7)

where A⋆ is the advantage function under an optimal policy.

Now we give essentially matching upper and lower bounds
on the entropy regularization error measured in value.

Theorem 2.4 (Convergence in value). Consider Setting 2.3.
There exist c1, c2 > 0 such that for t ≥ 1 it holds that

R⋆ −R(πt) ≤ c1e
−∆(t−1)+γc log t and (8)

R⋆ −R(πt) ≥ c2e
−∆(t−1)−c log t−2∥r∥∞ . (9)

We can give the constants in closed form, see Theorem C.2
The distance of the optimal entropy regularized policies
decays at the same rate as the suboptimality gap.

Theorem 2.5 (Convergence of policies). Consider Set-
ting 2.3. It holds that

DK(π
⋆, πt) ≤

e−∆(t−1)+γc log t

1− e−∆(t−1)+γc log t
, (10)

if e−∆(t−1)+γc log t < 1 which is satisfied for t > 0 large
enough. Further, for a suitable constant c3 > 0 we have

DK(π
⋆, πt) ≥ c3e

−∆(t−1)−c log t−2∥r∥∞ . (11)

As (πt)t≥0 solve a continuous version of the natural policy
gradient method, Theorem 2.5 describes the implicit bias
of these methods towards a generalized maximum entropy
optimal policy, see Remark B.9.

We can combine our improved estimate on the regularization
error with any guarantee for a regularized policy optimiza-
tion technique. In particular, for the popular natural policy
gradient method we can use the results of Cen et al. (2021)
and obtain the following guarantee.

Theorem 2.6 (Overall error analysis). Consider Setting 2.3
with t ≥ 1 and assume that (πk)k∈N are iterates produced
by natural policy ascent with a tabular softmax parametriza-
tion with stepsize η > 0. For t−1 =

√
2∆/ηk it holds that

R⋆ −R(πk) = O
((

ηk∆−1
)c/2 · e−√∆ηk/2

)
. (12)

In contrast, unregularized natural policy gradient methods
converge at a rate Õ(e−∆ηk) Khodadadian et al. (2022).

3. Proof structure
Our anlysis relies on the observation that the optimal regu-
larized policies (πt)t≥0 solve a gradient flow with respect
to a Riemannian metric proposed in the context of natural
policy gradients. The gradient of the reward with respect to
this metric admits an expression via the advantage function
which allows for an explicit convergence analysis.

3.1. Geometry of Kakade’s metric

The following Riemannian metric was proposed in the con-
text of natural gradients Kakade (2001).

The following expression of the gradient of the reward with
respect to the Kakade metric allows for an explicit conver-
gence analysis of the corresponding gradient flow later.
Theorem 3.1 (Gradient with respect to the Kakade metric).
Let Assumption 2.2 hold. Then for all π ∈ int(∆S

A) and
a ∈ A, s ∈ S it holds that

∇KR(π)(s, a) = Aπ(s, a)π(a|s), (13)

where Aπ ∈ RS×A denotes the advantage function of π.

Based on the expression of the Kakade gradient, we call

∂tπt(a|s) = Aπt(s, a)πt(a|s) (14)

the Kakade gradient flow.

The Fisher-Rao metric arises from the negative entropy Ay
et al. (2017), similarly, one can define a conditional version.
For ν ∈ RS×A

>0 we define the conditional entropy via

HA|S(ν) :=
∑

s∈S,a∈A

ν(s, a) log
ν(s, a)∑

a′∈A ν(s, a′)
. (15)

Definition 3.2 (Conditional Fisher-Rao metric). We call the
metric gA|S on int(D) given by

gA|S
ν (v, w) := v⊤∇2HA|S(ν)w for v, w ∈ TD (16)

the conditional Fisher-Rao metric and the denote the cor-
responding gradient by ∇A|S . We call the corresponding
Bregman divergence DA|S the conditional KL-divergence.

The maximization of the regularized reward Rτ subject to
π ∈ ∆S

A is equivalent to the regularized linear program

max r⊤ν − τDA|S(ν, ν0) subject to ν ∈ D , (17)

where ν0 = νπ0 , see Neu et al. (2017).

The Kakade metric has been characterized as the pullback
of the conditional Fisher-Rao metric.
Theorem 3.3 (Müller & Montúfar (2024)). Consider a finite
Markov decision process and let Assumption 2.2 hold. Then
the following mapping is an isometry

(int(∆S
A), g

K) → (int(D), gA|S), π 7→ νπ. (18)

3



Essentially Sharp Estimates on the Entropy Regularization Error in MDPs

As the reward is a linear function of the state-action distri-
butions we can apply results from Hessian gradient flows of
linear programs Alvarez et al. (2004).

Corollary 3.4. The following statements hold:

1. Well-posedness: The Kakade gradient flow (14) admits
a unique global solution (πt)t≥0.

2. Central path property: For all t ≥ 0 it holds that

πt = argmax
π∈∆S

A

{
R(π)− t−1DK(π, π0)

}
. (19)

3. Sublinear convergence: For all t ≥ 0 we have

0 ≤ R⋆ −R(πt) ≤ t−1 · min
π⋆∈Π⋆

DK(π
⋆, π0). (20)

4. Implicit bias: It holds that

lim
t→+∞

πt = π⋆ = argmin
π∈Π⋆

DK(π, π0). (21)

Importantly, (19) provides an equivalence between Kakade
gradient flows and the solutions of the regularized problems.

3.2. Tight analysis

A central step in our proof is to show that the selection prob-
abilities of suboptimal actions decay exponentially fast in
t. This can be seen as a continuous time analogon to (Kho-
dadadian et al., 2022, Lemma 3.4).

Lemma 3.5. Consider Setting 2.3. Then for all t ≥ t0 > 0,
s ∈ S, and a ∈ A it holds that

πt(a|s) ≤ π0(a|s)eA
⋆(s,a)(t−1)+γc log t+2∥r∥∞ and

πt(a|s) ≥ π0(a|s)eA
⋆(s,a)(t−1)−c log t−2∥r∥∞ .

Proof. We consider the Kakade gradient flow (14). As a
consequence of the sublinear convergence (20) it holds that

∂tπt(a|s) ≤
(
A⋆(s, a) +

γc

t

)
πt(a|s) and

∂tπt(a|s) ≥
(
A⋆(s, a)− c

t

)
πt(a|s)

where c = D(π⋆, π0). Now, Grönwall’s inequality yields

πT (a|s) ≤ πt0(a|s)e
A⋆(s,a)(T−t0)+γc

∫ T
t0

t−1dt

= πt0(a|s)eA
⋆(s,a)(T−t0)+γc log T−γc log t0

and similarly for the lower bound. Further, note that
∥Aπ∥∞ ≤ 2∥r∥∞ and hence Grönwall yields

π0(a|s)e−2∥r∥∞t0 ≤ πt0(a|s) ≤ π0(a|s)e2∥r∥∞t0

and choosing t0 = 1 finishes the proof.

The proofs of the main results presented in Section 2 rely
on the following auxiliary results, which proofs we defer
to Appendix C. The combination of Lemma 3.5 and the
following lemma yields the proof of Theorem 2.4.

Lemma 3.6 (Sub-optimality gap). For any policy π ∈ ∆S
A

it holds that

R⋆ −R(π) ≤ 2∥r∥∞
1− γ

∑
s∈S,a/∈A⋆

s

dπ(s)π(a|s) and (22)

R⋆ −R(π) ≥ ∆

1− γ
·

∑
s∈S,a/∈A⋆

s

dπ(s)π(a|s). (23)

The following lemma underlies the proof of Theorem 2.5.

Lemma 3.7. Let π⋆ ∈ Π⋆ be the Kakade projection of
π ∈ int(∆S

A) onto Π⋆. Then it holds that

DK(π
⋆, π) ≤

max
s∈S

∑
a/∈A⋆

s
π(a|s)

1−max
s∈S

∑
a/∈A⋆

s
π(a|s)

and (24)

DK(π
⋆, π) ≥

∑
s∈S

d⋆(s)
∑
a/∈A⋆

s

π(a|s). (25)

To estimate the unregularized reward of a policy close to the
optimal regularized policy we use the following result.

Lemma 3.8. With c =
√
2|S|∥r∥∞
1−γ for any policy π ∈ ∆S

A

we have

R⋆ −R(π) ≤ R⋆ −R(π⋆
τ ) + c∥log π⋆

τ − log π∥
1
2∞, (26)

where π⋆
τ denotes the optimal regularized policy.

Entropy-regularized natural policy gradient methods with
step size η > 0 and regularization strength τ > 0 satisfy
∥log π⋆

τ − log π∥∞ = O(e−τηk) Cen et al. (2021). This
together with Lemma 3.8 yields Theorem 2.6.

4. Conclusion
We provide essentially sharp estimates on the error in-
troduced by entropy regularization in discrete discounted
Markov decision processes showing Õ(e−∆τ−1

) conver-
gence with a problem-dependent exponent ∆ > 0. At the
heart lies the observation that the optimal regularized poli-
cies solve a gradient flow with respect to a Riemannian
metric playing a central role in natural policy gradient meth-
ods. The tight estimate on the entropy regularization error
leads to an improved Õ(e−

√
∆ηk/2) overall error analysis

of natural policy gradient methods. However, this leaves a
gap to the Õ(e−∆ηk) convergence of unregularized natural
policy methods that can be addressed in future works.
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A. Preliminaries
In this section, we provide background material from the theory of Markov decision processes. We put an emphasis on
regularization and see that entropy-regularized Markov decision processes are equivalent to a regularized linear programming
formulation of the Markov decision process, where the regularizer is given by a conditional entropy term. We conclude with
a general discussion of regularized linear programs and revisit the central path property. This states that the solutions of
regularized linear programs with regularization strength t−1 solve the gradient flow of the linear program with respect to the
Riemannian metric induced by the convex regularizer. Our explicit analysis of the entropy regularization error is built on
this dynamic interpretation of the solutions of the optimizers of the regularized problems.

A.1. Markov decision processes and entropy regularization

We consider a finite set S of states of some system and a finite set A of actions that can used to control the state s ∈ S.
The transition dynamics are described by a fixed Markov kernel P ∈ ∆S×A

S , where P (s′|s, a) describes the probability
of transitioning from s to s′ under the action a. It is the goal in Markov decision processes and reinforcement learning to
design a policy π ∈ ∆S

A, where the entries π(a|s) of the stochastic matrix describe the probability of selecting an action a
when in state s. A common optimality criterion is the discounted infinite horizon reward given by

R(π) := (1− γ)EPπ,µ

[∑
t∈N

γtr(St, At)

]
, (27)

where µ ∈ ∆S is an initial distribution over the states and Pπ,µ denotes the law of the Markov process on S×A induced by
the iteration

S0 ∼ µ,At ∼ π(·|St), St+1 ∼ P (·|St, At), (28)

r ∈ RS×A is the instantaneous reward vector, and γ ∈ [0, 1) is the discount factor. To encourage exploration it is common
to regularize the reward with an entropy term which yields the entropy-regularized or KL-regularized reward

Rµ
τ (π) := (1− γ)EPπ,µ

[∑
t∈N

γt(r(St, At)− τDKL(π(·|St), π0(·|St))

]
(29)

for some reference policy π0 ∈ ∆S
A and regularization strength τ ≥ 0. The entropy or KL-regularized reward optimization

problem is given by

maxRτ (π) subject to π ∈ ∆S
A. (30)

The regularization can be interpreted as a convex regularization and consequently was used to show exponential conver-
gence (Mei et al., 2020; Cen et al., 2021; Çaycı et al., 2021; Lan, 2022), however, it introduces an error and leads to a new
optimal policy π⋆

τ , which might not be optimal with respect to the unregularized reward R. It is our goal to understand how
well the entropy-regularized reward optimization problem (30) approximates the unregularized reward optimization problem.
For this we provide an explicit analysis of the entropy regularization error R⋆ −R(π⋆

τ ) and minπ⋆∈Π⋆ D(π⋆, π⋆
τ ), where

R⋆ = maxπ R(π) denotes the optimal reward, Π⋆ the set of optimal policies, and D(·, ·) is some notion of distance.

A central role in theoretical and algorithmic approaches to Markov decision processes and reinforcement learning plays the
value function V π ∈ RS given by

V π
τ (s) := Rδs

τ (π) for all s ∈ S, (31)

which stores the reward obtained when starting in a deterministic state s ∈ S. The unregularized and regularized state-action
or Q-value functions are given by

Qτ (s, a) := (1− γ)r(s, a) + γ
∑
s′∈S

V π
τ (s′)P (s′|s, a) for all s ∈ S, a ∈ A. (32)

The advantage function of a policy π given by

Aπ
τ (s, a) := Qπ

τ (s, a)− V π
τ (s), (33)
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in words, Aπ
τ (s, a) describes how much better is it to select action a and follow the policy π afterwards compared to

following π. Finally, we define the optimal reward and optimal value functions via R⋆ := maxπ∈∆S
A
R(π) and

V ⋆
τ (s) := max

π∈∆S
A

V π
τ (s) and Q⋆

τ (s, a) := max
π∈∆S

A

Qπ
τ (s, a) for s ∈ S, a ∈ A (34)

and the optimal advantage function via

A⋆
τ (s, a) := Q⋆

τ (s, a)− V ⋆(s) for s ∈ S, a ∈ A. (35)

It is well known that there are optimal policies π⋆
τ ∈ ∆S

A satisfying V ⋆
τ = V π⋆

τ and Q⋆
τ = Qπ⋆

τ , which is known as
the Bellman principle, see Geist et al. (2019). In the unregularized case, the optimal advantage function A⋆ satisfies
A⋆(s, a) ≤ 0 for all s ∈ S, a ∈ A, and an action a ∈ A is optimal in a state s ∈ S if and only if A⋆(s, a) = 0. For s ∈ S,
we denote the set of optimal actions by A⋆

s := {a ∈ A : A⋆(s, a) = 0} and the set of optimal policies is given by

Π⋆ :=
{
π ∈ ∆S

A : R(π) = R⋆
}
=
{
π ∈ ∆S

A : supp(π(·|s)) ⊆ A⋆
s for all s ∈ S

}
. (36)

We denote the unregularized value and advantage functions by V π = V π
0 , Qπ = Qπ

0 , qπ = qπ0 , Aπ = Aπ
0 , and Bπ = Bπ

0 .
Note that Qπ = qπ and Aπ = Bπ .

Of central importance in the theory of Markov decision processes are the state distributions, which measure how much time
the process spends at the individual states for a given policy π ∈ ∆S

A. This is formalized by

dπ(s) = dπ,µγ (s) := (1− γ)
∑
t∈N

γtPπ,µ(St = s). (37)

Note that indeed dπ ∈ ∆S by the geometric series. Sometimes, the state distributions are called state frequencies, state
occupancy measures or (state) visitation distributions. We work with the following notion of distance between policies.

Definition A.1 (Kakade divergence). For two policies π1, π2 ∈ ∆S
A we call

DK(π1, π2) = Dµ
K(π1, π2) :=

∑
s∈S

dπ1(s)DKL(π1(·|s), π2(·|s)) (38)

the Kakade divergence between π1 and π2. Note that DK depends on the initial distribution µ ∈ ∆S and the discount factor
γ ∈ [0, 1).

The Kakade divergence arises naturally when studying entropy regularization since

Rτ (π) = R(π)− τDK(π, π0) for all π ∈ ∆S
A. (39)

Note that although DKL is a Bregman divergence, the Kakade divergence is not, which hinders the direct use of mirror
descent tools developed in the context of convex optimization (Bubeck et al., 2015).
Remark A.2 (Kakade divergence is not Bregman). Bregman divergences are well-studied in convex optimization (Alvarez
et al., 2004; Bubeck et al., 2015), however, the Kakade divergence does not fall into this class. Indeed, Bregman divergences
are convex in their first argument, which is not generally true for the Kakade divergence. To construct a specific example,
where DK(·, π) is not convex, we consider the Markov decision process with two states and actions shown in Figure 1.
Further, we choose the reference policy π to be the uniform policy and if we consider πp(a1|si) = p for i = 1, 2, then we

s1 s2

a1

a2

a1 a2

Figure 1. Transition graph of the Markov decision process.

obtain

g(p) := DK(πp, π) = (1− γ)ϕ(p) + γ2p2ϕ(p), (40)

8
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where ϕ(p) := −p log p− (1− p) log(1− p). Taking the second derivative yields

∂2
pg(p) = −(1− γ)

(
1

1− p
− 1

p2

)
− γ2

(
1

1− p
+

1

p

)
p− 2γ2(log p− log(1− p)). (41)

Taking p → 1 yields ∂2
pg(p) → −∞ showing the non-convexity of g and therefore DK(·, π).

As we discuss later, the Kakade divergence is the pullback of the conditional KL divergence on the space of state-action
distributions, which renders the entropy-regularized reward optimization problem equivalent to a linear program with a
Bregman regularizer, see Proposition A.6.

The following sublinear estimate on the regularization error is well known and commonly applied when approximating
unregularized Markov decision processes via regularization, see Geist et al. (2019); Cen et al. (2021). Here, we follow
the terminology common in optimization theory, where linear convergence refers to exponential convergence O(e−ct) and
sublinear to an algebraic convergence rate O(t−κ) (Nesterov et al., 2018).

Proposition A.3 (Sublinear estimate on the regularization error). Let π⋆
τ denote an optimal policy of the regularized reward

Rτ (π) := R(π)− τDK(π, π0) for some π0 ∈ ∆S
A and denote the set of optimal policies by Π⋆. Then we have

0 ≤ R⋆ −R(π⋆
τ ) ≤ τ inf

π⋆∈Π⋆
DK(π

⋆, π0), (42)

where infπ∈Π⋆ DK(π, π0) < +∞ for π0 ∈ int(∆S
A).

Proof. For any π⋆ ∈ Π⋆ we have

R⋆ − τDK(π
⋆, π0) = Rτ (π

⋆) ≤ Rτ (π
⋆
τ ) ≤ R(π⋆

τ ).

Rearranging and taking the infimum over Π⋆ yields the claim.

Note that Proposition A.3 holds for general regularizers and uses neither the reward nor the regularizer. In the remainder, we
will improve this sublinear estimate O(τ) on the suboptimality of the entropy optimal regularized policy π⋆

τ to a linear esti-
mate Õ(e−∆τ−1

), establish an essentially matching lower bound, and provide a similar estimate on minπ⋆∈Π⋆ DK(π
⋆, π⋆

τ ).

A.2. State-action geometry of entropy regularization

Similarly to the state-distributions, we define the state-action distribution of a policy π ∈ ∆S
A via

νπ(s, a) = νπ,µγ (s, a) := (1− γ)
∑
t∈N

γtPπ,µ(St = s,At = a). (43)

Note that by the geometric series and stationarity of the policy, we have νπ ∈ ∆S×A and it holds that νπ(s, a) = dπ(s)π(a|s).
The state and state-action distributions are also known as occupancy measures or state frequencies. An important property
of state-action distributions is given by

R(π) = r⊤νπ, (44)

which can be seen using the dominated convergence theorem (Müller, 2023). Moreover, we have the classic characterization
of the set of state-action distributions.

Proposition A.4 (State-action polytope, Derman (1970)). The set D = {νπ : π ∈ ∆S
A} of state-action distributions is a

polytope given by

D = ∆S×A ∩
{
ν ∈ RS×A : ℓs(ν) = 0 for all s ∈ S

}
, (45)

where

ℓs(ν) :=
∑
a∈A

ν(s, a)− γ
∑

a′∈A,s′∈S

P (s|s′, a′)ν(s′, a′)− (1− γ)µ(s). (46)
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In particular, the characterization of the state-action distributions of a Markov decision process as a polytope shows that the
reward optimization problem is equivalent to the linear program

max r⊤ν subject to ν ∈ D . (47)

Further, it is well known that for a state-action distribution ν ∈ D a policy π ∈ ∆S
A with νπ = ν can be computed by

conditioning, see for example (Kallenberg, 1994; Müller & Montufar, 2022; Laroche & Des Combes, 2023), and hence we
have

π(a|s) = ν(a|s) :=


ν(s,a)∑
a′ ν(s,a′) if

∑
a′ ν(s, a′) > 0 and

1
|A| otherwise.

(48)

The entropy-regularized reward optimization problem admits an interpretation as a regularized version of the linear
program (47), where the regularizer is given by the conditional entropy.

Definition A.5 (Conditional entropy and KL). For ν ∈ RS×A
>0 we define the conditional entropy via

HA|S(ν) :=
∑

s∈S,a∈A

ν(s, a) log
ν(s, a)∑
a′ ν(s, a′)

= H(ν)−H(d), (49)

where d(s) :=
∑

a∈A ν(s, a). For ν1, ν2 ∈ RS×A
>0 we call

DA|S(ν1, ν2) :=
∑

s∈S,a∈A

ν1(s, a) log
ν1(a|s)
ν2(a|s)

= DKL(ν1, ν2)−DKL(d1, d2). (50)

the conditional KL-divergence between ν1 and ν2, where di(s) =
∑

a∈A νi(s, a).

Direct computation shows that DA|S is the Bregman divergence induced by HA|S , see (Neu et al., 2017, Appendix A1).

Proposition A.6 (State-action geometry of entropic regularization). It holds that

DK(π1, π2) = DA|S(ν
π1 , νπ2) for all π1, π2 ∈ ∆S

A (51)

showing that DK is the pull back of the conditional KL-divergence DA|S . In particular, the entropy-regularized reward
optimization problem (30) is equivalent to the regularized linear program

max r⊤ν − τDA|S(ν, ν0) subject to ν ∈ D , (52)

where ν0 = νπ0 , meaning that there is a unique solution ν⋆τ ∈ int(D) and therefore a unique solution π⋆
τ ∈ int(∆S

A) of the
regularized problem and we have νπ

⋆
τ = ν⋆τ .

Proof. This is a direct consequence of Rτ (π) = r⊤νπ − τDA|S(ν, ν0), see also Neu et al. (2017).

The Pythagorean theorem can be generalized to Bregman divergences, which is well known in the field of information
and convex optimization (Csiszár & Matúš, 2012; Bubeck et al., 2015; Amari, 2016; Ay et al., 2017). As the Kakade
divergence is not a Bregman divergence, it is not included in those general results, but using the characterization of DK as
the pullback of a conditional KL-divergence DA|S allows us to provide a Pythagorean theorem for the Kakade divergence
and s-rectangular policy classes.

Theorem A.7 (Pythagoras for Kakade divergence). Consider a set of policies Π = ⊗s∈SΠs ⊆ ∆S
A given by the cartesian

product of polytopes Πs ⊆ ∆A. Further, fix π0 ∈ ∆S
A and consider the Kakade projection

π̂ = argmin
π∈Π

DK(π, π0) (53)

of π0 onto Π. Then for any π ∈ Π we have

DK(π, π0) ≥ DK(π, π̂) +DK(π̂, π0). (54)

If further Πs = ∆A ∩ Ls for affine spaces Ls ⊆ RA for all s ∈ S, then we have equality in (54).
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Proof. Consider the set D := {νπ : π ∈ Π} ⊆ D of state-action distributions arising from the policy class Π, which is
again a polytope (Müller & Montufar, 2022, Remark 55). In particular, D is convex and we can pass to the corresponding
state-action distributions ν0, ν̂, ν and apply the Pythagorean theorem for Bregman divergences, see Appendix E.2. If
further Πs = ∆A ∩ Ls, then we have D = D ∩ L for an affine subspace L (Müller & Montufar, 2022, Proposition 14).
Consequently, the Bregman projection ν̂ will always lie at the relative interior int(D) and we get equality in the Pythagorean
theorem.

A.3. Regularized linear programs and Hessian gradient flows

We have seen that the state-action distributions of the optimal regularized policies π⋆
τ solve the linear program associated

with the Markov decision process with a conditional entropic regularization. Here, we see that the solutions of regularized
linear programs solve the gradient flow of the unregularized linear objective with respect to the Riemannian metric induced
by the convex regularizer. We refer to Alvarez et al. (2004) for a more general discussion of Hessian gradient flows, where
slightly stronger assumptions on ϕ are made. We work in the following setting.
Setting A.8. We consider the linear program

max c⊤x subject to x ∈ P, (55)

with cost c ∈ Rd and feasible region given by a polytope P ⊆ Rd. Further, we consider a twice continuously differentiable
convex function ϕ defined on a neighborhood of int(P ) and assume that ∇2ϕ(x) is strictly positive definite on TP for
all x ∈ int(P ), where TP denotes the tangent space of the polytope P , which is given by the affine span. We define the
Riemannian Hessian metric gϕx(v, w) := v⊤∇2ϕ(x)w on int(P ) and denote the gradient of f with respect to gϕ by ∇ϕf .
By (xt)t∈[0,T ) ⊆ int(P ) we denote a solution of the Hessian gradient flow

∂txt = ∇ϕf(xt) (56)

with initial condition x0 ∈ int(P ) and potential f(x) = c⊤x, where T ∈ R≥0 ∪ {+∞}. Finally, we denote the Bregman
divergence induced by ϕ by Dϕ.

Note that (xt)t∈[0,T ) ⊆ int(P ) solves the Hessian gradient flow (56) if and only if we have

gϕxt
(∂txt, v) = ⟨∇2ϕ(xt)∂txt, v⟩ = ⟨∇f(xt), v⟩ for all v ∈ TP, t ∈ [0, T ). (57)

We can now formulate and prove the equivalence property between Hessian gradient flows of linear programs and solutions
of Bregman regularized linear programs.
Proposition A.9 (Central path property). Consider Setting A.8. Then the Hessian gradient flow (xt)t∈[0,T ) of the linear
program is characterized by

xt ∈ argmax
{
c⊤x− t−1Dϕ(x, x0) : x ∈ P

}
for all t ∈ (0, T ). (58)

Proof. Note that by the first-order stationarity conditions for equality-constrained optimization, a point x̂ ∈ int(P )
maximizes g(x) := c⊤x− t−1Dϕ(x, x0) over the feasible region P of the linear program if and only if ⟨∇g(x̂t), v⟩ = 0
for all v ∈ TP . Direct computation yields ∇g(x) = c− t−1(∇ϕ(x)−∇ϕ(x0)) and hence the maximizers x̂ of g over P
are characterized by

t⟨c, v⟩ = ⟨∇ϕ(x̂)−∇ϕ(x0), v⟩ for all v ∈ TP.

On the other hand, for the gradient flow, we can use (57) and compute for v ∈ TP

⟨∇ϕ(xt)−∇ϕ(x0), v⟩ =
∫ t

0

∂s⟨∇ϕ(xs), v⟩ds

=

∫ t

0

⟨∇2ϕ(xs)∂sxs, v⟩ds

=

∫ t

0

⟨∇f(xs), v⟩ds

=

∫ t

0

⟨c, v⟩ds = t⟨c, v⟩.

This shows xt maximizes g over P as claimed.
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Corollary A.10 (Sublinear convergence). Consider Setting A.8 and denote the face of maximizers of the linear program (55)
by F ⋆ and fix x⋆ ∈ argminx∈F⋆ Dϕ(x, x0). Then it holds that

c⊤x⋆ − c⊤xt ≤
Dϕ(x

⋆, x0)−Dϕ(xt, x0)

t
≤ Dϕ(x

⋆, x0)

t
for all t ∈ [0, T ). (59)

Proof. By the central path property, we have

c⊤xt − t−1Dϕ(xt, x0) ≥ c⊤x⋆ − t−1Dϕ(x
⋆, x0).

Rearranging yields the result.

Corollary A.11 (Implicit bias of Hessian gradient flows of LPs). Consider Setting A.8 and denote the face of maximizers of
the linear program (55) by F ⋆, assume that ϕ is strictly convex and continuous on its domain, and assume that the Hessian
gradient flow (xt)t≥0 exists for all times. Then it holds that

lim
t→+∞

xt = x⋆ = argmin
x∈F⋆

Dϕ(x, x0). (60)

In words, the Hessian gradient flow converges to the Bregman projection of x0 to F ⋆.

Proof. By compactness of P , the sequence (xtn)n∈N has at least one accumulation point for any sequence tn → +∞.
Hence, we can assume without loss of generality that xtn → x̂ and it remains to identify x̂ as the information projection
x⋆ ∈ F ⋆.

Surely, we have x̂ ∈ F ⋆ as c⊤x̂ = limn→∞ c⊤xtn = maxx∈P c⊤x by Corollary A.10. Further, by the central path property
we have for any optimizer x′ ∈ F ⋆ that

c⊤xt − t−1Dϕ(xt, x0) ≥ c⊤x′ − t−1Dϕ(x
′, x0)

and therefore
Dϕ(x

′, x0)−Dϕ(xt, x0) ≥ tc⊤(x′ − xt) ≥ 0.

Hence, we have

Dϕ(x̂, x0) = lim
n→∞

Dϕ(xtn , x0) ≤ Dϕ(x
′, x0)

and can conclude by minimizing over x′ ∈ F ⋆.

B. Geometry and Sublinear Convergence of Kakade Gradient Flows
Our goal is to study the solutions π⋆

τ of the entropy-regularized reward Rτ . For linear programs, we have seen in
Appendix A.3 that the solutions of the regularized problems solve the corresponding Hessian gradient flow. Recall, that the
entropy-regularized reward optimization problem is equivalent to a linear program in state-action space with a conditional KL
regularization. Hence, the state-action distributions solve a Hessian gradient flow and consequently, the optimal regularized
policies solve a gradient flow with respect to some metric. In this section, we study this Riemannian metric on the space of
policies and provide an explicit expression of the gradient dynamics.

B.1. The Kakade metric and policy gradient theorems

The following metric on the policy space was proposed in the context of natural gradients by Kakade (2001).

Definition B.1 (Kakade metric). We call the Riemannian metric gK on int(∆S
A) defined by

gKπ (v, w) :=
∑
s∈S

dπ(s)
∑
a∈A

v(s, a)w(s, a)

π(a|s)
for all v, w ∈ T∆S

A (61)

the Kakade metric. For differentiable f : ∆S
A → R, we denote the Riemannian gradient by ∇Kf(π).
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The Kakade metric has been referred to as the Fisher-Rao metric on ∆S
A as this reduces to the Fisher-Rao metric if |S| = 1,

see Kerimkulov et al. (2023). We choose the name Kakade metric here, as there exist multiple extensions of the Fisher-Rao
metric to products of simplicies. For example in a game-theoretic context, when considering independently chosen strategies
of the players, it might be more natural to work with the product metric, meaning, the sum of the Fisher-Rao metrics over
the individual factors, which corresponds to the pullback of the Fisher-Rao metric on the simplex of joint distributions
under the independence model (Montúfar et al., 2014; Boll et al., 2024). Other weightings of the Fisher-Rao metrics over
the individual factors are also possible, see Montúfar et al. (2014) for an in-depth discussion of different choices and their
invariance properties. Further, this specific Riemannian metric has been described as the limit of weighted Fisher-Rao
metrics on the finite-horizon path spaces (Bagnell & Schneider, 2003; Peters et al., 2003; Wolfer & Watanabe, 2023). Note
that although the Kakade metric is closely connected to the weighted entropy HK, it is not the Hessian metric of HK, in fact,
it is not a Hessian metric at all (Müller & Montúfar, 2024, Remark 13).

In general, the Kakade metric is only a pseudo-metric and the following assumption ensures positive definiteness and we
make it for the remainder of our analysis.

Assumption B.2 (State exploration). For any policy π ∈ int(∆S
A) the discounted state distribution is positive, meaning that

dπ(s) > 0 for all s ∈ S.

Kakade gradient flows are well-posed, meaning that they admit a unique solution (πt)t∈R≥0
, both in the unregularized

case (Alvarez et al., 2004; Müller & Montúfar, 2024) and the regularized case (Müller, 2023; Kerimkulov et al., 2023).

The policy gradient theorem states that

∂θiR(π) =
1

1− γ

∑
s∈S

dπθ (s)
∑
a∈A

∂θiπθ(a|s)Aπθ (s, a) (62)

and connects the gradient of the reward to the advantage function (Sutton et al., 1999; Agarwal et al., 2021). Inspired by this,
we provide an explicit formula for the gradient of the reward with respect to the Kakade metric.

Theorem B.3 (Gradient with respect to the Kakade metric). Let Assumption B.2 hold. Then for all π ∈ int(∆S
A) and a ∈ A,

s ∈ S it holds that

∇KR(π)(s, a) = (1− γ)−1Aπ(s, a)π(a|s). (63)

In the proof, we use the following auxiliary result.

Lemma B.4 (Derivatives of state-action distributions, Müller & Montufar (2022)). It holds that

∂νπ

∂π(a|s)
= dπ(s)(I − γPT

π )−1e(s,a), (64)

where Pπ ∈ ∆S×A
S×A is given by Pπ(s

′, a′|s, a) = π(a′|s′)P (s′|s, a).

Proof of Theorem B.3. First, note that Aπ ⊙ π ∈ T∆S
A where (Aπ ⊙ π)(s, a) = Aπ(s, a)π(a|s) and that R and gK can be

extended to a neighborhood of ∆S
A. It suffices to show

(1− γ)−1gKπ (A
π ⊙ π, v) = ∂vR(π) for all v ∈ T∆S

A.
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Since R(π) = r⊤νπ , we have ∂R(π)
∂π(a|s) = r⊤ ∂νπ

∂π(a|s) . For any tangent vector v ∈ T∆S
A we can use Lemma B.4 to compute

∂vR(π) =
∑

s∈S,a∈A

v(s, a) · ∂R(π)

∂π(a|s)

=
∑

s∈S,a∈A

dπ(s)v(s, a)
〈
(I − γPT

π )−1e(s,a), r
〉

=
∑

s∈S,a∈A

dπ(s)v(s, a)
〈
e(s,a), (I − γPπ)

−1r
〉

= (1− γ)−1
∑

s∈S,a∈A

dπ(s)v(s, a)Qπ(s, a)

= (1− γ)−1
∑

s∈S,a∈A

dπ(s)v(s, a)(Qπ(s, a)− V π(s))

= (1− γ)−1gKπ (A
π ⊙ π, v),

where we have used the Bellman equation Qπ = (1 − γ)(I − γPπ)
−1r as well as

∑
a∈A v(s, a) = 0, which holds for

tangent vectors v ∈ T∆S
A.

Note that the gradient of the reward with respect to the Kakade metric is independent of the initial distribution µ ∈ ∆S both
for the regularized and the unregularized reward.
Definition B.5 (Kakade gradient flow). We say that (πt)t∈[0,T ) ⊆ int(∆S

A) solves the Kakade gradient flow if

∂tπt = ∇KR(πt). (65)

By Theorem B.3, a solution of the Kakade gradient flow satisfies

∂tπt(a|s) = (1− γ)−1Aπt(s, a)πt(a|s). (66)

This explicit expression of the gradient flow allows us to provide essentially sharp convergence rates.

B.2. State-action geometry of Kakade gradient flows

Our goal is to use tools from Hessian gradient flows, but the Kakade metric is not a Hessian metric. However, it was shown
that the policy polytope ∆S

A endowed with the Kakade metric is isometric to the state-action polytope endowed with the
Hessian metric induced by the conditional entropy (Müller & Montúfar, 2024). This allows us to borrow from the results on
Hessian gradient flows.
Definition B.6 (Conditional Fisher-Rao metric). We call the metric gA|S on int(D) given by

gA|S
ν (v, w) := v⊤∇2HA|S(ν)w for v, w ∈ TD (67)

the conditional Fisher-Rao metric and the denote the corresponding gradient by ∇A|S .

It is elementary to check the convexity of HA|S on RA×S
>0 , but it also easily seen that ∇2HA|S has zero eigenvalues. However,

it can be shown that ∇2HA|S is strictly definite on TD and therefore induces a Riemannian metric on int(D), see Müller &
Montúfar (2024).

The following result relates the Kakade metric and Kakade divergence to the Hessian metric and Bregman divergence of the
conditional entropy HA|S .
Theorem B.7 (State-action geometry of the Kakade metric, Müller & Montúfar (2024)). Consider a finite Markov decision
process and let Assumption B.2 hold. Then the mapping

Ψ: (int(∆S
A), g

K) → (int(D), gA|S)

π 7→ νπ

ν(·|·) 7→ν
(68)

between policies and state-action distributions is an isometry.
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As isometries map gradient flows to gradient flows, Theorem B.7 implies that (πt)t≥0 solves the Kakade gradient flow
∂tR(πt) = ∇KR(πt) if and only if (νt)t≥0 = (νπt)t≥0 solves the conditional Fisher-Rao gradient flow ∂tνt = ∇A|Sf(νt)
if the following diagram commutes

∆S
A D

R

Ψ

R
f , where

π νπ

R(π).

(69)

The isometry property allows us to transfer the theory on Hessian gradient flows of linear programs to Kakade gradient
flows despite the Kakade metric not being Hessian.
Corollary B.8 (Implications from Hessian gradient flows). Let Assumption B.2 hold, denote the set of optimal policies by
Π⋆ := {π ∈ ∆S

A : R(π) = R⋆}, and fix an initial policy π0 ∈ int(∆S
A). Then the following statements hold:

1. Well-posedness: The Kakade gradient flow (65) admits a unique global solution (πt)t≥0.

2. Central path property: For all t ≥ 0 it holds that

πt = argmax
π∈∆S

A

{
R(π)− t−1DK(π, π0)

}
. (70)

3. Sublinear convergence: For all t ≥ 0 we have

0 ≤ R⋆ −R(πt) ≤
minπ⋆∈Π⋆ DK(π

⋆, π0)−DK(πt, π0)

t
≤ minπ⋆∈Π⋆ DK(π

⋆, π0)

t
. (71)

4. Implicit bias: The gradient flow (πt)t≥0 converges globally and it holds that

lim
t→+∞

πt = π⋆ = argmin
π∈Π⋆

DK(π, π0). (72)

Proof. First, note that both 2 and 3 hold on the maximal existence interval [0, T∞) of the gradient flow, which is a direct
consequence of Appendix A.3 and Theorem B.7. Further, 4 follows from Appendix A.3 and Theorem B.7 if T∞ = +∞,
hence, it remains to show well-posedness.

The well-posedness of the conditional Fisher-Rao gradient flow of linear programs has been established by Müller (2023),
which can be carried over to the Kakade gradient flow using the isometry. Here, we offer a different proof that utilizes
the central path property of the Kakade gradient flow. The local well-posedness of the gradient flow follows from the
Picard-Lindelöf theorem and it remains to show that T∞ := inf{t > 0 : infs∈[0,t) dist(πs, ∂∆

S
A) = 0} = +∞. Assume

that T∞ < +∞, then it is elementary to check that πt → πT∞ for t ↗ T∞, where πT∞ solves the entropy-regularized
problem with strength τ = T−1

∞ . Note that πT∞ ∈ int(∆S
A) contradicting inft∈[0,T∞] dist(πt, ∂∆

S
A) = 0.

Remark B.9 (Implicit and algorithmic bias). In the case of multiple optimal policies, the Kakade gradient flow will converge
towards the Kakade projection of the initial policy to the set of optimal policies. The selection of gradient schemes of a
particular optimizer in the case of multiple optima is commonly referred to as the implicit or algorithmic bias of the method.
In the context of reinforcement learning the implicit bias was studied for discrete time natural policy gradient and policy
mirror descent methods. First, for a natural actor-critic scheme in linear Markov decision processes the Kakade divergence of
the optimization trajectory (πk)k∈N to the maximum entropy policy π⋆ is bounded by DK(π

⋆, πk) ≤ log k+(1− γ)−2 (Hu
et al., 2021). This control on the Bregman divergence to the maximum entropy policy ensures that the probability of selecting
an optimal action a ∈ A⋆

s decays at most like πk(a|s) ≥ ck−1, but fails to identify the limiting policy.

On the other hand, a policy mirror descent scheme with decaying entropy regularization strength τk was studied by Li et al.
(2023). Here, it is shown that for several choices of regularization strengths and stepsizes the resulting policies πk converge
to the maximum entropy optimal policy thereby characterizing the algorithmic bias of this approach. Whereas this analysis
can characterize the limit of the optimization scheme it utilizes decaying explicit regularization.

In contrast, our implicit bias result works in continuous time and utilizes the correspondence between the gradient flows and
regularized problems. This allows us to show convergence towards the (generalized) maximum entropy optimal policies
without relying on explicit regularization.
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Where Corollary B.8 provides sublinear convergence with respect to the reward function, we use this to show sublinear
convergence of the advantage function.

Proposition B.10 (Sublinear convergence of advantage functions). Let Assumption B.2 hold, denote the set of optimal
policies by Π⋆ := {π ∈ ∆S

A : R(π) = R⋆}, and fix an initial policy π0 ∈ ∆S
A and denote the generalized maximum entropy

optimal policy by π⋆ = argminπ∈Π⋆ DK(π, π0). Then for all t ≥ 0, it holds that

0 ≤ V ⋆(s)− V πt(s) ≤ DK(π
⋆, π0)

t
for all s ∈ S. (73)

In particular for any s ∈ S and a ∈ A, it holds that

Aπt(s, a) ≤ A⋆(s, a) +
DK(π

⋆, π0)

t
and (74)

Aπt(s, a) ≥ A⋆(s, a)− γDK(π
⋆, π0)

t
. (75)

Proof. Let us fix s ∈ S. By Theorem B.3 the Kakade gradient flow (πt)t≥0 is independent of the initial distribution µ, as
long as it has full support. Let us pick some µn with full support and µn → δs, then Rµn(π) → V π(s) for any π. By
Corollary A.10 we have

0 ≤ (Rµn)⋆ −Rµn(πt) ≤
DK(π

⋆, π0)

t
for all t ≥ 0, n ∈ N,

which yields (73) for n → +∞. We use this to estimate

Q⋆(s, a)−Qπt(s, a) = r(s, a) + γ
∑
s′

V ⋆(s′)P (s′|s, a)− r(s, a)− γ
∑
s′

V πt(s′)P (s′|s, a)

= γ
∑
s′

(V ⋆(s′)− V πt(s′))P (s′|s, a)

≤ γDK(π
⋆, π0)

t
.

In particular, this implies

A⋆(s, a)−Aπt(s, a) = Q⋆(s, a)− V ⋆(s)−Qπt(s, a) + V πt(s) ≥ V πt(s)− V ⋆(s) ≥ −DK(π
⋆, π0)

t

and similarly

A⋆(s, a)−Aπt(s, a) ≤ Q⋆(s, a)−Qπt(s, a) ≤ γDK(π
⋆, π0)

t
.

C. Essentially Sharp Analysis of Entropy Regularization
We now improve the sublinear convergence guarantee from Proposition A.3 on the entropy regularization error. To this
end we work with the interpretation of the solutions of the regularized problems as solutions of the Kakade gradient flow
and employ the explicit expression (66) and the sublinear convergence guarantee from Proposition B.10 to establish linear
convergence of Kakade gradient flows. We complement this with a lower bound that matches the upper bound up to a
polynomial factor. We work in the following setting.

Setting C.1. Consider a finite discounted Markov decision process (S,A, P, γ, r), an initial distribution µ ∈ ∆S and fix a
policy π0 ∈ int(∆S

A), assume that Assumption B.2 holds and denote the optimal reward by R⋆ := max{R(π) : π ∈ ∆S
A}.

Further, let (πt)t≥0 be the unique global solution of the Kakade policy gradient flow (65) or equivalently the solutions of the
entropy-regularized problems

πt = argmax
π∈∆S

A

{
R(π)− t−1DK(π, π0)

}
. (76)
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We denote the generalized maximum entropy optimal policy by π⋆ = argminπ∈Π⋆ DK(π, π0), where Π⋆ := {π ∈ ∆S
A :

R(π) = R⋆} denotes the set of optimal policies. Finally, we set

∆ := −(1− γ)−1 max {A⋆(s, a) : A⋆(s, a) ̸= 0, s ∈ S, a ∈ A} . (77)

Note that ∆ > 0 unless every action is optimal in every state. We can interpret ∆ as the minimal suboptimality of a
suboptimal action under A⋆.

C.1. Convergence in value

First, we study the entropy regularization error in the objective function, meaning that we study the reward achieved by the
optimal regularized policies.

Theorem C.2 (Convergence in value). Consider Setting C.1 and set c := (1− γ)−1DK(π
⋆, π0). For any t ≥ 1 it holds that

R⋆ −R(πt) ≤
2∥r∥∞
1− γ

· e−∆(t−1)+c log t as well as (78)

R⋆ −R(πt) ≥ ∆ ·

min
s∈S

dπt(s)
∑
a/∈A⋆

s

π0(a|s)

 · e−∆(t−1)−γc log t−2∥r∥∞ . (79)

Note that the coefficient of the lower bound depends on t. However, the coefficient does not become arbitrarily small as
mins d

πt(s) → mins d
π⋆

(s) > 0 for t → +∞. Further, the policies (πt)t≥0 do not depend on µ, where dπt does. If we
choose µ to be the uniform distribution, then dπ(s) ≥ (1− γ)|S|−1, which yields a lower bound of

R⋆ −R(πt) ≥ (1− γ)∆|S|−1
∑
a/∈A⋆

s

π0(a|s) · e−∆(t−1)−γc log t−2∥r∥∞ ,

where the coefficient is independent of t.

The above result ensures that the probability πt(a|s) of selecting a suboptimal action a decays exponentially which implies
exponential convergence of the reward R(πt) achieved by the policies.

We combine the explicit expression (66) as well as the sublinear convergence of the advantage function towards the optimal
advantage function A⋆ to bound the individual entries of the policies along the gradient flow trajectory.

Lemma C.3. Consider Setting C.1. Then for all t ≥ t0 > 0, s ∈ S, and a ∈ A it holds that

πt(a|s) ≤ πt0(a|s) exp

(
A⋆(s, a)(t− t0) +DK(π

⋆, π0) log(
t
t0
)

1− γ

)
(80)

πt(a|s) ≥ πt0(a|s) exp

(
A⋆(s, a)(t− t0)− γDK(π

⋆, π0) log(
t
t0
)

1− γ

)
(81)

and for t ≥ 1 it holds that

πt(a|s) ≤ π0(a|s) exp
(
A⋆(s, a)(t− 1) +DK(π

⋆, π0) log t+ 2∥r∥∞
1− γ

)
(82)

πt(a|s) ≥ π0(a|s) exp
(
A⋆(s, a)(t− 1)− γDK(π

⋆, π0) log t− 2∥r∥∞
1− γ

)
. (83)

Proof. As the policies (πt)t≥0 solve the Kakade policy gradient flow in ∆S
A we have

∂tπt(a|s) = (1− γ)−1Aπt(s, a)πt(a|s). (84)

By Proposition B.10 it holds that

(1− γ)−1

(
A⋆(s, a)− γDK(π

⋆, π0)

t

)
πt(a|s) ≤ ∂tπt(a|s) ≤ (1− γ)−1

(
A⋆(s, a) +

DK(π
⋆, π0)

t

)
πt(a|s).
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Now, Grönwall’s inequality yields

πT (a|s) ≤ πt0(a|s) exp

(
A⋆(s, a)(T − t0) +DK(π

⋆, π0)
∫ T

t0
t−1dt

1− γ

)

= πt0(a|s) exp
(
A⋆(s, a)(T − t0) +DK(π

⋆, π0) log T −DK(π
⋆, π0) log t0

1− γ

)
as well as

πT (a|s) ≥ πt0(a|s) exp

(
A⋆(s, a)(T − t0)− γDK(π

⋆, π0)
∫ T

t0
t−1dt

1− γ

)

= πt0(a|s) exp
(
A⋆(s, a)(T − t0)− γDK(π

⋆, π0) log T + γDK(π
⋆, π0) log t0

1− γ

)
.

Further, note that ∥Aπ∥∞ ≤ ∥Qπ∥∞ + ∥V π∥∞ ≤ 2∥r∥∞ and hence Grönwall yields

π0(a|s)e−
2∥r∥∞t0

1−γ ≤ πt0(a|s) ≤ π0(a|s)e
2∥r∥∞t0

1−γ

and choosing t0 = 1 finishes the proof.

Lemma C.4 (Sub-optimality gap). Consider a discrete discounted Markov decision process. Then for any policy π ∈ ∆S
A it

holds that

∆ ·min
s∈S

∑
s∈S,a/∈A⋆

s

dπ(s)π(a|s) ≤ R⋆ −R(π) ≤ 2∥r∥∞
1− γ

∑
s∈S,a/∈A⋆

s

dπ(s)π(a|s), (85)

where As := {a ∈ A : A⋆(s, a) = 0} denotes the set of optimal actions in s ∈ S.

Proof. By the performance difference Lemma E.1, we have

(1− γ)(R⋆ −R(π)) = −
∑

s∈S,a/∈A⋆
s

dπ(s)π(a|s)A⋆(s, a) ≤ ∥A⋆∥∞
∑

s∈S,a/∈A⋆
s

dπ(s)π(a|s)

Further, note that |A⋆(s, a)| ≤ |Q⋆(s, a)|+ |V ⋆(s)| ≤ 2∥r∥∞. The lower bound follows with an analog argument as

(1− γ)(R⋆ −R(π)) = −
∑

s∈S,a/∈A⋆
s

dπ(s)π(a|s)A⋆(s, a) ≥ (1− γ)∆
∑

s∈S,a/∈A⋆
s

dπ(s)π(a|s).

Proof of Theorem C.2. We use Lemma C.4 together with Lemma C.3 and estimate∑
s∈S,a/∈A⋆

s

dπt(s)πt(a|s) ≤
∑

s∈S,a/∈A⋆
s

dπt(s)π1(a|s)e−∆(t−1)+γc log t ≤ e−∆(t−1)+γc log t,

which yields (78). For the lower bound, we fix s0 ∈ S and a0 ∈ A with (1− γ)−1A⋆(s0, a0) = −∆ and estimate∑
s∈S,a/∈A⋆

s

dπt(s)πt(a|s) ≥
∑

s∈S,a/∈A⋆
s

dπt(s)π0(a|s)e(1−γ)−1A⋆(s,a)(t−1)−c log t−2∥r∥∞

≥ dπt(s0)
∑

a/∈A⋆
s0

π0(a|s0)e−∆(t−1)−c log t−2∥r∥∞

≥ min
s∈S

dπt(s)
∑
a/∈A⋆

s

π0(a|s)

 · e−∆(t−1)−c log t−2∥r∥∞
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C.2. Convergence of policies

Having studied the decay of the suboptimality gap R⋆ −R(πt), we now give sharp bounds for convergence of the policies
measured in the Kakade divergence.

Theorem C.5 (Convergence of policies). Consider Setting C.1 and set c := (1− γ)−1DK(π
⋆, π0). For any t ≥ 1 it holds

that

DK(π
⋆, πt) ≤

e−∆(t−1)+c log t

1− e−∆(t−1)+c log t
as well as (86)

DK(π
⋆, πt) ≥ min

s∈S,a/∈A⋆
s

d⋆(s)π0(a|s) · e−∆(t−1)−γc log t−2∥r∥∞ , (87)

where the upper bound holds if e−∆(t−1)+c log t < 1 which is satisfied for t > 0 large enough.

Note that the denominator of the upper bound converges to 1 for t → +∞. We will use the following auxiliary result in the
proof of Theorem C.5.

Lemma C.6 (Information projection onto faces). Consider a finite set X and the face F := {µ ∈ ∆X : µx = 0 for all x /∈
X} of the simplex ∆X for some X ⊆ X. Then

min
µ∈F

DKL(µ, ν) = − log

(∑
x∈X

νx

)
. (88)

In particular, for any µ, ν ∈ ∆X we have

DKL(µ, ν) ≥ − log

 ∑
x∈supp(µ)

νx

 . (89)

Proof. We set g(µ) := DKL(µ, ν) and consider the information projection ν̂ = argminµ∈F DKL(µ, ν) of ν ∈ ∆X onto F ,
which is characterized by

v⊤∇g(ν̂) = 0 for all v ∈ TF = span{νx1
− νx2

: x1, x2 ∈ X}.

As ∂xg(µ) = log(µx

νx
) + 1 this is equivalent to

log

(
ν̂x1

νx1

)
= log

(
ν̂x2

νx2

)
for all x1, x2 ∈ X.

This implies ν̂x

ν̂x
is constant for x ∈ X and hence we obtain

ν̂x =

{
νx∑

x′∈X νx′
for x ∈ X

0 for x /∈ X.

Setting c−1 :=
∑

x∈X νx we obtain

min
µ∈F

DKL(µ, ν) = DKL(ν̂, ν) =
∑
x∈X

cνx log

(
cνx
νx

)
= log c.

To show (89), we choose X := supp(µ) and use DKL(µ, ν) ≥ minξ∈F DKL(ξ, ν).

Lemma C.7. Consider a finite MDP and let π⋆ ∈ Π⋆ be the Kakade projection of π ∈ int(∆S
A) onto the set of optimal

policies Π⋆. Then it holds that∑
s∈S

dπ
⋆

(s)
∑
a/∈A⋆

s

π(a|s) ≤ DK(π
⋆, π) ≤

maxs∈S

∑
a/∈A⋆

s
π(a|s)

1−maxs∈S

∑
a/∈A⋆

s
π(a|s)

, (90)

where As := {a ∈ A : A⋆(s, a) = 0} denotes the set of optimal actions in s ∈ S.
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Proof. We first prove the upper bound. To this end, we consider the state-wise information projection

π̂(·|s) = argmin
{
DKL(µ, π(·|s)) : µ ∈ ∆A, supp(µ) ⊆ A⋆

s

}
of the policy π to the set of optimal policies. By concavity we have − log(1− h) ≤ h

1−h for h < 1 and using Lemma C.6
we estimate

DK(π
⋆, π) ≤ DK(π̂, π)

= −
∑
s∈S

dπ̂(s)DKL(π̂(·|s), πt(·|s))

= −
∑
s∈S

dπ̂(s) log

∑
a∈A⋆

s

π(a|s)


= −

∑
s∈S

dπ̂(s) log

1−
∑
a/∈A⋆

s

π(a|s)


≤
∑
s∈S

dπ̂(s) ·
∑

a/∈A⋆
s
π(a|s)

1−
∑

a/∈A⋆
s
π(a|s)

.

≤
∑
s∈S

dπ̂(s) ·
maxs′∈S

∑
a/∈A⋆

s′
π(a|s′)

1−maxs′∈S

∑
a/∈A⋆

s′
π(a|s′)

.

=
maxs∈S

∑
a/∈A⋆

s
π(a|s)

1−maxs∈S

∑
a/∈A⋆

s
π(a|s)

.

Similar to the upper bound, we use − log(1− h) ≥ h for h < 1 and Lemma C.6 to estimate

DK(π
⋆, π) =

∑
s∈S

d⋆(s)DKL(π
⋆(·|s), π(·|s))

≥ −
∑
s∈S

d⋆(s) log

∑
a∈A⋆

s

π(a|s)


= −

∑
s∈S

d⋆(s) log

1−
∑
a/∈A⋆

s

π(a|s)


≥
∑
s∈S

d⋆(s)
∑
a/∈A⋆

s

π(a|s).

Proof of Theorem C.5. As expected, we work with Lemma C.7. By Lemma C.3 we have∑
a/∈A⋆

s

πt(a|s) ≤
∑
a/∈A⋆

s

π1(a|s)e−∆(t−1)+c log t ≤ e−∆(t−1)+c log t

and thus

maxs∈S

∑
a/∈A⋆

s
πt(a|s)

1−maxs∈S

∑
a/∈A⋆

s
πt(a|s)

≤ e−∆(t−1)+c log t

1− e−∆(t−1)+c log t
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if e−∆(t−1)+c log t < 1 and Lemma C.7 yields the upper bound. For the lower bound, we fix s0 ∈ S and a0 ∈ A with
A⋆(s, a) = −∆ and estimate∑

s∈S

d⋆(s)
∑
a/∈A⋆

s

πt(a|s) ≥
∑
s∈S

d⋆(s)
∑
a/∈A⋆

s

π0(a|a)eA
⋆(s,a)(t−1)−γc log t−2∥r∥∞

≥ d⋆(s0)π0(a0|s0)e−∆(t−1)−γc log t−2∥r∥∞

≥ min
s∈S,a/∈A⋆

s

d⋆(s)π0(a|s) · e−∆(t−1)−γc log t−2∥r∥∞ .

D. Overall Error Analysis for Regularized Natural Policy Gradients
Entropy regularization is commonly added to encourage exploration and accelerate the optimization process, however, the
unregularized objective is still the objective criterion one wishes to optimize. Hence, it is a natural question to ask what
accuracy one can achieve with a budget of k iterations with a method that aims to optimize the regularized reward. One way
to approach this is to use the error decomposition

0 ≤ R⋆ −R(πk) = R⋆ −R(π⋆
τ ) +R(π⋆

τ )−Rτ (π
⋆
τ ) +Rτ (π

⋆
τ )−Rτ (πk) +Rτ (πk)−R(πk), (91)

Applying the R(π)−Rτ (π) = O(τ) bound on the entropy regularization error gives

0 ≤ R⋆ −R(πk) = O(τ) +Rτ (π
⋆
τ )−Rτ (πk) = O(τ + e−τηk) = O

(
log k

ηk

)
(92)

for entropy-regularized natural policy gradients with stepsize η = log k
k > 0, see Cen et al. (2021). See also Sethi et al. (2024)

for an O( 1t ) guarantee of entropy-regularized natural policy gradient flows with τ = 1
t . In contrast, unregularized natural

policy gradient achieves an exponential convergence rate of Õ(e−∆ηk), see Khodadadian et al. (2022); Liu et al. (2024).
We use our tight estimate on the regularization error and obtain the following improved guarantee for entropy-regularized
natural policy gradients.

Theorem D.1 (Overall error analysis). Consider a regularization strength τ ∈ (0, 1] and consider the entropy-regularized
reward Rτ (π) = R(π)− τDK(π, πunif), πunif denotes the uniform policy, meaning πunif(a|s) = |A|−1 for all a ∈ A, s ∈ S.
We denote the optimal entropy regularized policy by π⋆

τ = argmaxπ∈∆S
A
Rτ (π) and the maximum entropy optimal policy

by π⋆, meaning π⋆(a|s) = |A⋆
s|−1 if a ∈ A⋆

s is an optimal action. Assume that (πk)k∈N be the iterates produced by natural
policy ascent with a log-linear tabular policy parametrization with stepsize η > 0. Then it holds that

R⋆ −R(πk+1) ≤
2∥r∥∞e∆

1− γ
· τ−ce−∆τ−1

+
2 · |S| · ∥r∥∞C

1
2

1− γ
· τ− 1

2 e−
ητ(k−1)

2 , (93)

where c = DK(π
⋆, πunif) =

∑
s∈S d

π⋆

(s) log |A|
|A⋆

s |
≤ log|A| and

C = ∥Qπ⋆
τ

τ −Qπ(0)

τ ∥∞ + 2τ

(
1− ητ

1− γ

)
∥log π⋆

τ − log π0∥∞. (94)

In particular, choosing τ =
√

2∆
ηk yields

R⋆ −R(πk) = O
((

(ηk)
c
2 + (ηk)

1
4

)
· e−

√
∆ηk
2

)
. (95)

In practice, one does not have access to the problem-dependent constant ∆ > 0 without solving the reward optimization
problem. However, setting τ = (αηk)−

1
2 for some α > 0 yields an overall error estimate of

R⋆ −R(πk) = O

((
ηk

α

) c
2

e−∆
√
αηk +

(
ηk

α

) 1
4

e−
√
αηk

)
. (96)

In our proof, we use the following stability result on the reward function.
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Proposition D.2 (Lipschitz-continuity of the reward Müller (2023)). It holds that

|R(π1)−R(π2)| ≤
∥r∥∞
1− γ

· ∥π1 − π2∥1 for all π1, π2 ∈ ∆S
A. (97)

Now we can upper bound the suboptimality gap R⋆ −R(π) of a policy in terms of R⋆ −R(π⋆
τ ) and the distance between π

and π⋆
τ .

Lemma D.3. For any policy π ∈ ∆S
A we have

0 ≤ R⋆ −R(π) ≤ R⋆ −R(π⋆
τ ) +

√
2 · |S| · ∥r∥∞

1− γ
· ∥log π⋆

τ − log π∥
1
2∞. (98)

Proof. First, note that R⋆ − R(π) = R⋆ − R(π⋆
τ ) + R(π⋆

τ ) − R(π). Using the Lipschitz continuity of the reward from
Proposition D.2 as well as Pinsker’s and Jensen’s inequality we estimate

R(π⋆
τ )−R(π) ≤ ∥r∥∞

1− γ
· ∥π⋆

τ − π∥1

=
∥r∥∞
1− γ

·
∑
s∈S

∥π⋆
τ (·|s)− π(·|s)∥1

≤
√
2·∥r∥∞
1− γ

·
∑
s∈S

DKL(π
⋆
τ (·|s), π(·|s))

1
2

=

√
2·∥r∥∞
1− γ

·
∑
s∈S

(∑
a∈A

π⋆
τ (a|s) log

π⋆
τ (a|s)
π(a|s)

) 1
2

≤
√
2·∥r∥∞
1− γ

·
∑
s∈S

(∑
a∈A

π⋆
τ (a|s)∥log π⋆

τ − log π∥∞

) 1
2

=

√
2 · |S| · ∥r∥∞

1− γ
· ∥log π⋆

τ − log π∥
1
2∞.

Lemma D.3 can by used in combination with any result bounding DK(π
⋆
τ , πk) for a policy optimization technique. If only

bounds on Rτ (π
⋆
τ )−Rτ (πk) are available, one can also use the local bound DK(π

⋆
τ , π) ≤ ωτ−1(Rτ (π

⋆
τ )−Rτ (π)), which

holds in a neighborhood of π⋆
τ that depends on ω ∈ (0, 1), see (Müller & Montúfar, 2024, Lemma 29). Here, we limit our

discussion to entropy-regularized natural policy gradient methods, which are known to converge linearly.

Theorem D.4 (Convergence of entropy-regularized NPG,Cen et al. (2021)). Consider natural policy gradient with a tabular
softmax policy parametrization, a fixed regularization strength τ > 0 and stepsize η > 0 and denote the iterates of the
natural policy gradient updates by (πk)k∈N. Then for any k ∈ N it holds that

∥Qπ⋆
τ

τ −Qπk+1
τ ∥∞ ≤ C(1− ητ)k and (99)

∥log π⋆
τ − log πk+1∥∞ ≤ 2Cτ−1(1− ητ)k, (100)

where C is defined in (94)

Now we can provide the following estimate on the performance of entropy-regularized natural policy gradients measured in
the unregularized reward.

Proof of Theorem D.1. Through a direct combination of Lemma D.3, Theorem C.2, and Theorem D.4 we obtain (93).

Recently, a sharp asymptotic analysis of entropy-regularized natural policy gradient methods has been conducted showing
R⋆

τ − R(πk) = O((1 + ητ)−2k) compared to the O((1 − ητ)k) convergence of Theorem D.4. However, an analogous
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estimate on the convergence of the policies as well as a control on the entry times after which the rate holds is missing, which
prevents us from using it in our analysis. Unregularized natural policy gradients essentially achieve O(e−∆ηk) convergence
rate (Khodadadian et al., 2022). Hence, although Theorem D.1 improves existing O( log k

k ) guarantees, the provided rate is
still asymptotically slower compared to unregularized natural policy gradients. Where we consider a fixed regularization
and step size, O(γk)-convergence was established when exponentially decreasing the regularization and increasing the step
size (Li et al., 2023), which can also be achieved by unregularized policy mirror descent, where the rate O(γk) is known to
be optimal (Johnson et al., 2024). For the small stepsize limit η → 0 the updates of the regularized natural policy gradient
scheme follow the regularized Kakade gradient flow recently studied by Kerimkulov et al. (2023). These results complement
the discrete-time analysis and ensure that DK(π

⋆
τ , πt) ≤ e−τtDK(π

⋆
τ , π0), see (Kerimkulov et al., 2023, Equation (61)). An

analog treatment to the discrete-time case yields an overall estimate of O(e−
√
2−1∆t) for the regularized flow with strength

τ =
√
2∆t−1, compared to the existing O(t−1) guarantee by Sethi et al. (2024).

E. Auxiliary Results
E.1. Performance difference lemma

We recall an expression of the difference between the rewards of two policies in terms of the advantage function and the
state-action distribution and for a proof we refer to (Agarwal et al., 2021, Lemma 2).

Lemma E.1 (Performance difference). For any two policies π1, π2 ∈ ∆A
S it holds that

R(π1)−R(π2) =
⟨νπ1 , Aπ2⟩S×A

1− γ
. (101)

E.2. Pythagorean theorem in Bregman divergences

For the sake of completeness, we provide the proof of a generalized Pythagorean theorem.

Proposition E.2 (Pythagoras for Bregman divergences). Consider a convex differentiable function ϕ : Ω → R defined on a
convex set Ω ⊆ Rd. Further, consider a convex and closed subset X ⊆ Ω, fix y ∈ Ω as well as a Bregman projection

ŷ ∈ argmin
x∈X

Dϕ(x, y). (102)

Then for any x ∈ X we have

Dϕ(x, y) ≥ Dϕ(x, ŷ) +Dϕ(ŷ, y) (103)

If further X = Ω ∩ L for some affine space L ⊆ Rd and if ŷ ∈ int(X) we have

Dϕ(x, y) = Dϕ(x, ŷ) +Dϕ(ŷ, y) (104)

Proof. Set g(x) := Dϕ(x, y), then by the first order stationarity condition for constrained convex optimization, it holds that

0 ≥ ∇g(ŷ)⊤(ŷ − x) = (∇ϕ(ŷ)−∇ϕ(y))⊤(ŷ − x) for all x ∈ X, (105)

where we used the definition of the Bregman divergence. We use this to estimate

Dϕ(x, ŷ) +Dϕ(ŷ, y) = ϕ(x)− ϕ(ŷ)−∇ϕ(ŷ)⊤(x− ŷ) + ϕ(ŷ)− ϕ(y)−∇ϕ(y)⊤(ŷ − y)

≤ ϕ(x)−∇ϕ(y)⊤(x− ŷ)− ϕ(y)−∇ϕ(y)⊤(ŷ − y)

= ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y)

= Dϕ(x, y).

(106)

If X = Ω ∩ L for an affine L ⊆ Rd and ŷ ∈ int(X), then equality holds in (105) and thus in (106).
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