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ABSTRACT

Human conversation is organized by an implicit chain of thoughts that manifests
as timed speech acts. Capturing this causal pathway is key to building natural
full-duplex interactive systems. We introduce a framework that enables reason-
ing over conversational behaviors by modeling this process as causal inference
within a Graph-of-Thoughts (GoT). Our approach formalizes the intent-to-action
pathway with a hierarchical labeling scheme, predicting high-level communicative
intents and low-level speech acts to learn their causal and temporal dependencies.
To train this system, we develop a hybrid corpus that pairs controllable, event-rich
simulations with human-annotated rationales and real conversational speech. The
GoT framework structures streaming predictions as an evolving graph, enabling a
multimodal transformer to forecast the next speech act, generate concise justifica-
tions for its decisions, and dynamically refine its reasoning. Experiments on both
synthetic and real duplex dialogues show that the framework delivers robust be-
havior detection, produces interpretable reasoning chains, and establishes a foun-
dation for benchmarking conversational reasoning in full duplex spoken dialogue
systems. Project page: https://got-duplex.github.io/

1 INTRODUCTION

Recent advances in spoken dialogue systems have shifted from turn-based, half-duplex models to
full-duplex systems capable of simultaneous listening and speaking (Arora et al., 2025b; Nguyen
et al., 2022b; Inoue et al., 2025). As illustrated in Figure 1 (left), the dominant paradigms frame this
task as prediction. The first approach, Next Segment Prediction, models the agent’s response as a
complete turn (Hara et al., 2018; Li et al., 2022; Lee & Narayanan, 2010). A more recent approach,
Next Dual-Token Prediction, generates simultaneous token streams for both speakers to better handle
overlap and real-time interaction (Nguyen et al., 2022a; Défossez et al., 2024). While these methods
have improved system responsiveness, they treat conversation as a sequence generation problem,
bypassing the cognitive layer of reasoning that governs human interaction.

Human conversation, however, operates on a more abstract and causal level. We argue for a paradigm
shift from black-box prediction to an explicit process of Next Behavior Perception and Prediction,
as depicted in Figure 1 (right). When Speaker 1 produces an utterance, Speaker 2 does not simply
predict the next sequence of words. Instead, they first perceive the behavior (e.g., recognizing a con-
stative speech act), which triggers an internal chain of thought (e.g., deciding not to interrupt and to
remain silent). This reasoning process culminates in a generated action (e.g., an acknowledgement).
This gap between pattern matching and causal reasoning is a fundamental barrier to creating truly
natural AI agents. Our work addresses the core scientific question: How can a machine model this
perception-reasoning-generation loop to make principled, interpretable decisions in real time?

To tackle this challenge, we introduce a framework that operationalizes the process. Our approach is
twofold. First, we formalize the Perception stage with a hierarchical conversational behavior detec-
tion model. This module learns to identify conversational behaviors at two dimensions: high-level
speech acts (e.g., constative, directive) (Jurafsky & Martin, 2025) that capture communicative intent,
and low-level acts (e.g., turn-taking, backchannel) that describe interaction mechanics (Schegloff,
1982; Gravano & Hirschberg, 2011; Duncan, 1972; Raux & Eskenazi, 2012; Khouzaimi et al., 2016;
Marge et al., 2022; Lin et al., 2025; Arora et al., 2025b; Nguyen et al., 2022b). This provides the
system with a structured understanding of the ongoing dialogue. Second, we model the explicit rea-
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Figure 1: Comparison of dialogue paradigms. (Left) Traditional duplex systems frame conversa-
tion as a direct sequence prediction task. (Right) We propose a framework based on next-behavior
perception and reasoning, where an agent perceives the speaker’s act, reasons using a Graph-of-
Thoughts, and then generates a response.

soning process with a Graph-of-Thoughts (GoT) system (Yao et al., 2024). This system constructs
a dynamic causal graph from the sequence of perceived speech acts, capturing the evolving chain
of thought within the conversation. By performing inference over this graph, our model can not
only predict the most appropriate subsequent behavior but also generate a natural language rationale
explaining its decision. This transforms the opaque prediction task into an auditable reasoning pro-
cess, which provides a unified benchmark for evaluating conversational behavior in duplex speech
systems.

To train our framework, we developed a hybrid corpus that combines behavior-rich simulated dia-
logues with real-world conversational data annotated with human rationales. Our analysis confirms
that the synthetic data reproduces key interactional structures of human conversation, such as turn-
taking dynamics.

In summary, our contributions are:

• A conceptual reframing of full-duplex interaction from next-token prediction to next-behavior rea-
soning, arguing that modeling the causal chain from intent to action is critical for natural dialogue.

• A hierarchical speech act detection model that perceives conversational behaviors at both high
(intent) and low (action) levels, serving as a foundational module for reasoning-driven dialogue
systems.

• A GoT framework for conversational reasoning that models intent-act dynamics as a causal graph,
enabling real-time, interpretable decision-making and rationale generation.

• A comprehensive empirical validation demonstrating that our system effectively detects conversa-
tional behaviors, generates plausible rationales, and successfully transfers its reasoning capabili-
ties from simulated to real-world full-duplex audio.

2 RELATED WORK

Duplex Models. Recent work in spoken dialogue systems (SDMs) increasingly draws on human
conversational behaviors. Building on insights from human conversation, recent SDMs have pro-
gressed toward duplex capabilities—systems that listen and speak concurrently. SDMs are com-
monly built in two modes. Half-duplex models follow a turn-by-turn protocol, waiting for explicit
end-of-turn signals (e.g., end-pointing/VAD) before responding, which simplifies streaming but adds
latency and suppresses natural overlap. They commonly adopt next segment prediction (Hara et al.,
2018; Li et al., 2022; Lee & Narayanan, 2010) where the system predicts the agent’s response as a
segment. Full-duplex models listen and speak simultaneously, modeling overlapping speech, micro-
pauses, and background noise to sustain context and deliver timely cues (e.g., continuers, barge-in
handling). They either employ the next segment prediction paradigm (Arora et al., 2025b; Nguyen
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Figure 2: Conversational Behavior Detection and Reasoning Framework. When an audio clip
is fed into the Conversational Detection System, the model segments the entire clip into 1-second
chunks. For example, for the chunk shown in the figure, the Conversational Detection System labels
the high-level behavior as Directive and the low-level speech act as Continuation. These two nodes,
together with the context nodes extracted via OpenIE, constitute the primary GoT. In the Graph-of-
Thought (GoT) Behavior-Reasoning System, the primary GoT, the transcript, and the raw audio are
processed by separate encoders and then combined via gated fusion, producing the rationale text for
this chunk as well as an updated GoT graph.

et al., 2022b; Inoue et al., 2025) or introduce the next dual token prediction (Nguyen et al., 2022a;
Défossez et al., 2024) scheme to incorporate the listener’s branch.

Conversational Behaviors. Interactive behaviors in SDMs have been extensively examined to fos-
ter mutual understanding, user engagement, and social connection between human and computer.
However, recent studies in SDMs only focus on low-level behaviors (backchannel (Schegloff, 1982;
Lin et al., 2025), turn-taking (Gravano & Hirschberg, 2011; Duncan, 1972; Raux & Eskenazi, 2012),
interruption (Khouzaimi et al., 2016; Marge et al., 2022), and continuation (Lin et al., 2025; Arora
et al., 2025b; Nguyen et al., 2022b)), which overlook the importance of discourse-level intent that
drives these phenomena. To resolve this, we also introduce high-level speech acts (constative, direc-
tive, commissive, acknowledgment) (Jurafsky & Martin, 2025) to restore this layer, enabling more
interpretable modeling and evaluation for conversational behaviors.

Graph of Thought Reasoning. Reasoning techniques such as Chain-of-Thought (Wei et al., 2022),
Tree of Thought (Yao et al., 2023), and Graph of Thought (Besta et al., 2024) have help guide LLMs
through intermediate steps to boost reasoning accuracy. Particularly, Graph of Thought enables
arbitrary reasoning dependencies by modeling an LLM thought as a vertex, and dependencies among
thoughts as edges, offering increased reasoning capabilities while reducing inference cost (Besta
et al., 2024; 2025). Yao et al. (2024) adopts a two-stage framework: the first stage contains a
GoT encoder for thought graph representation and a gated fusion to combine multimodal inputs and
generate rationales, and the second stage generates text answers based on the rationale. GoT has also
been used to solve math problems (Bai et al., 2025), real-world external graph question answering
(Jin et al., 2024), and fact-retrieval and reasoning (Fang et al., 2024). This work is the first to use
GoT to infer conversational behaviors in speech duplex systems.

3 CONVERSATIONAL BEHAVIORS DETECTION SYSTEM

Human-to-human spoken conversations involve both the perception and prediction of conversational
behaviors. A key prior is that humans rely on the perception of historical conversational behaviors,
which serves as the foundation of our duplex conversational behavior reasoning pipeline. Moreover,
conversational behaviors unfold at multiple hierarchical levels: high-level acts such as constatives,
directives, commissives, and acknowledgments (Jurafsky & Martin, 2025), and low-level acts such

3
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as turn-taking, backchannels, interruptions, and pauses. Motivated by this structure, we propose a
hierarchical conversational behavior detection system.

3.1 SYSTEM DESCRIPTION

As shown in Fig. 2, two-channel speech input X = {xt}Tt=1 ∈ R2×T is processed to predict
hierarchical labels at the segment level in a streaming manner. The speech signal is downsampled
to 16 kHz and segmented into 1-second chunks U = {Ui}Ni=1, where Ui = xBi−1+1:Bi

and Bi =

i · Nblock. We extract acoustic features hB
i ∈ R768 using HuBERT (Hsu et al., 2021) and semantic

features hE
i ∈ R768 from Whisper transcripts (Radford et al., 2023). The features are fused via

gating and processed by a causal Transformer to produce contextual representations zi, which feed
into parallel classification heads for high-level and low-level speech acts. Details can be checked at
Appendix A.3.

3.2 TRAINING AND INFERENCE

We maximize the likelihood of hierarchical label sequences L = {(lhii , lloi )}Ni=1 given the input:

P (L | X) =

N∏
i=1

P
(
lhii , lloi | U1:i−1

)
. (1)

To address class imbalance, we apply inverse-frequency weights (Cui et al., 2019) computed on the
training split:

L =

N∑
i=1

α∑
j

whi
j · 1yhi

i =j log p
hi
i,j + β

∑
k

wlo
k · 1ylo

i =k log p
lo
i,k

 , (2)

where α and β balance the contribution of high-level and low-level predictions, and phii,j and ploi,k are
the predicted probabilities for classes j and k respectively. During inference, we use a conditional
independence approximation and condition on a fixed-length causal window Ûi for computational
efficiency:

P (L | X) ≈
N∏
i=1

P
(
lhii | Ûi

)
· P

(
lloi | Ûi

)
. (3)

4 GRAPH-OF-THOUGHTS BEHAVIOR REASONING SYSTEM

To explain conversational behavior rationales, we construct a Graph-of-Thoughts (GoT) (Besta et al.,
2024) that performs causal inference over predicted speech acts. Each behavior is represented as a
node in a directed graph with edges denoting causal relationships, allowing the system to score
behavior chains and provide interpretable rationales.

4.1 PROBLEM FORMULATION

Given a causal window Ûi of length W seconds ending at time i, let Si denote the incremental ASR
transcript and (ℓhi , ℓ

l
i) the predicted high/low-level speech–act labels. We extract OpenIE triples

Ti = {(sk, rk, ok)}mi

k=1 from Si and build a directed, integer–weighted graph

Gi = (Vi, Ai), Vi = uniq
(
{sk, ok}mi

k=1 ∪ {ℓhi , ℓli}
)
, ni = |Vi|.

Let {ev ∈ Rni : v ∈ Vi} be the standard basis indexed by Vi. The adjacency counts subject→object
co-occurrences and adds self–loops:

Ai = Ini
+

∑
(sk,rk,ok)∈Ti

esk e
⊤
ok

∈ Nni×ni
0 , (Ai)uv = #{k : sk = u, ok = v}+ δuv.

Each node v ∈ Vi has a type τ(v) ∈ {text, sa-h, sa-l} and a d-dimensional embedding provided by
the corresponding encoder:

ϕ(v) =

{
Etext(v), τ(v) = text,

Esa(v), τ(v) ∈ {sa-h, sa-l},
Fi =

[
ϕ(v1); . . . ;ϕ(vni)

]
∈ Rni×d.

4
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4.2 SYSTEM DESCRIPTION

Given audio input X = {xt}Tt=1, we process 1-second segments using a causal window Ûi of
size W = 30s. For each timestep i, we extract text nodes V text

i (subject-relation-object triples
from incremental ASR using OpenIE) and speech-act nodes V sa

i (predicted high/low-level labels
(ℓhii , ℓloi )). The complete graph Gi = (Vi,Ai) combines both node types with adjacency matrix Ai

encoding co-occurrence relationships. We encode the multimodal context using frozen encoders:
HuBERT (Hsu et al., 2021) for audio (ha

i ∈ Rd), T5 (Raffel et al., 2020) for text (ht
i ∈ Rd), and

GAT (Chen & Yang, 2021) for graphs (hg
i ∈ Rd). Features are fused via gating and processed

by a causal Transformer to produce contextual representations zi. More details can be checked in
Appendix A.4.

4.3 TRAINING OBJECTIVE

The model learns to produce natural–language rationales ri that explain the predicted behavior at
each timestep i given the causal window Ûi and the per–second graph Gi. We maximize the condi-
tional likelihood of the rationale set R = {ri}Ni=1 given the input X by factorizing over timesteps
and a T5 (Raffel et al., 2023) decoder generates each rationale sequence ri = (yi,1, . . . , yi,Ti

) au-
toregressively from the fused representation zi:

P (R | X) =

N∏
i=1

P
(
ri | Ûi,Gi

)
, P

(
ri | Ûi,Gi

)
=

Ti∏
t=1

Pθ(yi,t | yi,<t, zi)

We train with teacher forcing by minimizing the token–level negative log–likelihood

L(θ) = −
N∑
i=1

Ti∑
t=1

logPθ

(
y⋆i,t | y⋆i,<t, zi

)
,

where y⋆i,t denotes the gold token and y⋆i,<t its prefix. Encoders for audio/text/graph are frozen;
gradients update the fusion module that produces zi and the T5 decoder parameters θ. We use
standard subword tokenization, an EOS token to terminate ri, and early stopping on validation NLL.

5 EXPERIMENTS

5.1 DATASET

Both synthetic and real conversational speech are used to train and evaluate the behavior detection
and GoT-based reasoning model, with train/validation/test sets partitioned into in an 8:1:1 ratio.

Synthetic Dataset. We generate dialogues from narrative prompts in ExploreToM (Sclar et al.,
2024a) using GPT-4o (Hurst et al., 2024). The same model marks candidate backchannel and in-
terruption points for event labels. Speech waveforms are synthesized with CosyVoice2 (Du et al.,
2024), conditioned on timbre reference clips from LibriSpeech (Panayotov et al., 2015) to ensure
voice consistency. For backchannel and interruption cases, we deliberately introduce controlled
overlap between speakers. The resulting corpus comprises 28,000 clips totaling 192 hours. Event
distribution shows turn-taking (11.4%), interruption (17.6%), backchannel (6.4%), and continuation
(64.6%). In contrast to the Talking-Turns benchmark (Arora et al., 2025b), which reports lower
proportions (≈ 0.4% each) for interruptions and backchannels in natural dialogue, we deliberately
increase these events to provide stronger supervision signals. For Graph-of-Thoughts supervision,
we generate per-second rationales using the OpenAI API (Achiam et al., 2023): for each second t,
the model sees only text up to time t and produces a rationale for that slice. All generated rationales
were manually validated and corrected, yielding 37,100 rationale entries.

Data Quality Check. We analyzed turn-taking statistics of our simulation corpus and compared
them against human reference dialogues and model baselines (dGSLM (Nguyen et al., 2022b) and
Moshi (Défossez et al., 2024)). As shown in Table 1, our simulation data exhibit denser micro-
segmentation than human dialogues, with higher IPU and pause counts per minute but comparable
gap and overlap rates. Cumulative durations further suggest shorter overlaps and more within-
speaker pauses, indicating frequent short backchannels or clause-internal hesitations rather than

5
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Table 1: Turn-taking event frequencies (per minute) and cumulative durations (%) for the simulation
dataset, a human reference, and model baselines.Human, dGSLM, and Moshi values are reproduced
from Fig. 2 of (Arora et al., 2025b).

Number of events per minute Cumulative duration (% of time)
Event type Simulation Human dGSLM Moshi Simulation Human dGSLM Moshi

IPU 23.06 15.7 24.2 21.6 84.7 97.3 99.0 81.0
Pause 10.7 3.8 5.4 10.2 9.6 5.7 6.0 10.3
Gap 7.3 5.5 7.2 6.7 1.6 3.7 4.8 11.8
Overlap 6.7 6.6 10.9 4.8 4.2 6.7 9.7 3.1

Table 2: Speaking style metrics for the simulation dataset and a dGSLM baseline.

Method WPM FWR

dGSLM (DLM-5) (Nguyen et al., 2022b) 211.98 5.5
Simulation Data 240.8 6.89

long monologic turns. This pattern not only aligns with established observations of conversational
floor management (Sacks et al., 1974; Stivers et al., 2009), but also indicates that our simulated
data closely approximate the interactional structure of genuine full-duplex conversations. Addi-
tional quality measures, including speaking rate, noise level, and naturalness, are reported in Ap-
pendix A.9.1.

We also analyzed the speaking style of our simulation corpus. We align with dGSLM’s speaking-
style descriptors by reporting Words-Per-Minute (WPM) and Filler-Word Rate (FWR; per 100 to-
kens). Our simulation corpus shows WPM = 240.8 and FWR = 6.89. For reference, the strongest
dGSLM variant (DLM-5) reports WPM = 211.98 and FWR = 5.5 under the same measurement
recipe. The higher WPM indicates faster delivery than dGSLM generations, which can make inter-
actions feel more responsive but also risks compressing IPUs (consistent with our elevated IPU/min).
Meanwhile, a higher FWR suggests richer backchannel/hedge behavior (“uh-huh”, “yeah”, “okay”),
which typically supports floor-keeping without taking the floor—again consistent with shorter over-
laps and fewer/shorter gaps in our corpus statistics. Together, these style cues show that the simula-
tion corpus is aligned with the conversational analysis tradition in which fillers and micro-overlaps
serve as continuous grounding signals rather than overt turn grabs.

Real Dataset. We evaluate on real conversational speech from the Candor corpus (Reece et al.,
2023). We curate a subset of 118 hours with existing timestamp annotations for backchannels, turn-
taking, and continuation. Manual rationale annotations are added to assess model adaptability to
real conversational data. In Candor, we implement the same process of annotating rationale text in
the simulation dataset.

5.2 EXPERIMENTAL SETUP

We train the behavior prediction model and the GoT reasoning model separately on the same dataset
but different annotations; the GoT model additionally leverages human-annotated rationales.

Prediction Model Training. We freeze all encoders and jointly train high- and low-level classi-
fiers with missing annotations masked. For CANDOR, the low-level head uses three classes (no
interruption labels). Class imbalance is handled with inverse-frequency loss reweighting.

GoT Model Training. We enforce strict causality using past-only windows (W = 30s). Whisper
transcripts and OpenIE-based node extraction are completed during preprocessing to avoid runtime
latency. Human-annotated rationales provide supervision signals during training.

Both models use AdamW optimizer with learning rate 3 × 10−4, weight decay 10−2, linear decay
with 1,000 warmup steps, and gradient clipping at 1.0. Training uses batch size 8 per GPU for 10
epochs with automatic mixed precision (fp16). Audio is resampled to 16 kHz and segmented into
1-second frames. Training takes approximately 48 hours for speech-act prediction and 7 hours for
GoT generation on a single A6000 GPU. Results use random seed 42, with mean ± std computed
over five independent runs for statistical analysis. More details can be checked at Appendix A.5.
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Table 4: Performance on Synthetic Dataset: Per-class and Overall Metrics, which aggregate perfor-
mance across all classes within each hierarchy level.

High-level Speech Acts Overall (High) Low-level Speech Acts Overall (Low)

Class F1 (↑) AUC (↑) Metric Score (↑) Class F1 (↑) AUC (↑) Metric Score (↑)

Constatives 0.705 0.833 Macro F1 0.546 Turn-taking 0.710 0.953 Macro F1 0.660
Directives 0.471 0.781 Micro F1 0.585 Interruption 0.515 0.857 Micro F1 0.768
Commissives 0.474 0.832 Weighted F1 0.594 Backchannel 0.536 0.914 Weighted F1 0.776
Acknowledgments 0.533 0.844 Macro AUC 0.822 Continuation 0.878 0.937 Macro AUC 0.915

5.3 EVALUATION METRICS

We report classification accuracy for the speech act prediction and the generation accuracy for the
GoT. We also report turn-taking event statistics for both the real and the synthetic datasets.

Classification Accuracy. Following prior work on turn-level event prediction, we evaluate speech
act prediction with F1 (Manning et al., 2008) and ROC–AUC (Fawcett, 2006). The task is single-
label multiclass; for each class, we use a one-vs-rest (OvR) scheme (Rifkin & Klautau, 2004). We
report per-class F1 and per-class AUC in Table 4. We also report aggregated averages: macro F1
(Sebastiani, 2002), weighted-F1 (Sokolova & Lapalme, 2009), micro-F1 (Sebastiani, 2002), and
macro-AUC-OvR (Hand & Till, 2001) in Table 4.

Generation Accuracy. We evaluate generated rationales in the GoT model against human refer-
ences on the validation set using BLEU-1 (Papineni et al., 2002), ROUGE-1/ROUGE-L (Lin, 2004),
and the semantic SIMILARITY score (cosine similarity), shown in Table 5. For Moshi- and GPT-
4–generated speech (no references), we rely on human ratings. We report 95% confidence intervals
over multiple seeds for statistical reliability.

Event Statistics. We evaluate our simulation corpus with the standard corpus-level turn-taking
statistics used by prior work: counts per minute of Inter-Pausal Units (IPU), Pauses, Gaps, and
Overlaps, and the cumulated duration (percentage of the dialogue) for each event. All quantities
are computed from VAD activity on the two channels, following the Talking-Turns protocol (Arora
et al., 2025a). We adopt the dGSLM conventions (Nguyen et al., 2023). We report our dataset
alongside the human reference used by Talking-Turns and dGSLM baselines and concrete values
(including reproduced comparators) in Appendix A.9.1.

5.4 BASELINES

Table 3: Detection Results on CANDOR.

Class AUC (↑)

Turn-taking 0.796
Backchannel 0.701
Continuation 0.720

For corpus-level baselines, we follow the Talking-
Turns protocol and dGSLM conventions to compute
corpus-level turn-taking statistics (IPU, Pause, Gap,
Overlap). We compare our simulation data against
Human performance, dGSLM, and Moshi. For con-
versational detection baselines, we compared the
performance of our Conversational Behavior Detec-
tion System on the Candor dataset and our simulation dataset. For its transferability we manu-
ally score its inference results of GPT4 and Moshi.For GoT behavior reasoning baselines, under a
strictly-causal streaming regime with window W ∈{10, 20, 30, 40} s and look-ahead L∈{0, 5, 10}
seconds, we benchmark three modality configurations: A (Audio-only), A+T (Audio+Text), and
A+T+GAT (Audio+Text+Graph). We keep L=0 as a strict-causal baseline and include small L as
a latency-controlled reference.

6 RESULTS

6.1 CONVERSATIONAL BEHAVIOR DETECTION RESULTS

Detection results on synthetic data are presented in Table 4. Our model demonstrates strong rank-
ing performance (AUC 0.78-0.95) but exhibits more variable classification accuracy (F1 0.47-0.88).
Performance varies substantially across categories: constatives (F1: 0.705) and continuation (F1:

7
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Figure 3: Window size W × look-ahead L ablations under strict-causal streaming. Columns vary
modality (A = Audio; A+T = Audio+Text; A+T+GAT = Audio+Text+Graph), and rows report
BLEU-1, ROUGE-1, ROUGE-L, and cosine similarity (SIM). Curves show mean scores and shaded
bands indicate 95% confidence intervals across seeds.

0.878) achieve the highest performance, while directives (F1: 0.471), commissives (F1: 0.474), in-
terruption (F1: 0.515), and backchannel (F1: 0.536) show considerably lower scores. This pattern
suggests that certain speech acts may be inherently more challenging to classify than others, poten-
tially due to imbalanced data generation processes. Results on real speech data from CANDOR are
shown in Table 3, where consistently high AUC scores are observed across categories. These results
establish a foundation for the subsequent GoT-based graph reasoning stage.

6.2 CONVERSATIONAL BEHAVIOR REASONING RESULTS

Table 5: GoT pipeline results.

Synthetic CANDOR

BLEU-1 (↑) 0.480 0.580
ROUGE-1 (↑) 0.470 0.560
ROUGE-L (↑) 0.420 0.490
Similarity (↑) 0.520 0.660

We apply GoT to both simulated speech and real
CANDOR data and evaluate the generated ratio-
nales, with results summarized in Table 5. The
GoT pipeline achieves medium-to-high readability
across datasets: BLEU-1 and ROUGE-1/L scores
fall within the 0.42–0.58 range, while semantic sim-
ilarity improves from 0.52 on synthetic data to 0.66
on CANDOR. All four metrics show improvements
on CANDOR, with absolute gains of +0.07–0.14 (17–27% relative), the largest observed in semantic
similarity. We attribute these improvements to more natural conversational structures and discourse
cues in real dialogues, which enhance the reliability of reasoning chains captured by GoT.

Ablations: Steaming and Multimodal Setup As joint behavior detection and reasoning operating
in a streaming manner, we conduct ablations by varying the sliding window W ∈ {10, 20, 30, 40} s,
the look-ahead L ∈ {0, 5, 10} s, and the input modalities (audio, text, graph), and report GoT scores
in Figure 3. Results show that (i) small look-ahead (L = 5–10 s) stabilizes tokenization and im-
proves accuracy without violating causality, (ii) medium windows (W = 20–30 s) best trade off
recency and context, and (iii) naı̈ve text addition can hurt performance, while incorporating the GoT
graph with conservative gating recovers stability at low latency. Details can be checked at A.7.

6.3 CONVERSATIONAL BEHAVIOR REASONING ON FULL DUPLEX MODELS

We conduct a human evaluation of GoT’s prediction rationales on full-duplex conversational audio,
comparing our simulation corpus, GPT-4, and Moshi. Human raters judged whether rationales (i)

8
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identified the correct speech act, (ii) inferred a plausible intent, and (iii) maintained discourse-level
coherence, with scores given on a 1–10 scale. Results in Table. 6 show simulation achieves the
highest mean score (8.93) > GPT-4 (7.06) > Moshi (4.25). Simulation rationales, though more
abstract, consistently hit the correct acts and stabilize early. GPT-4 produces more concrete, locally
grounded rationales but with slightly higher error, while Moshi underperforms due to omission
of key local cues and greater temporal volatility. Overall, simulation provides stable abstraction,
GPT-4 balances concreteness with robustness, and Moshi exhibits coherence drift. Overall, GoT
rationales trained on simulated dialogues transfer effectively to real audio. Details can be checked
at Appendix. A.8.

7 CONCLUSION AND LIMITATIONS

Table 6: Human ratings (1–10) of GoT predic-
tion rationales across audio sources. Higher is
better. Rubric: 1–3 unhelpful/incorrect; 4–6 par-
tially correct; 7–8 correct and useful; 9–10 precise
and causally grounded. We report de-normalized
means across items.

Audio Source Mean Rating (1–10)

GPT-4 (full-duplex) 7.07
Moshi (full-duplex) 6.85
Simulation dataset audio 6.30

In this paper, we explored an approach to full-
duplex conversation centered on causal rea-
soning rather than direct sequence prediction.
We presented a framework that first perceives
conversational behaviors at both an intentional
and mechanical level, and then uses a Graph-
of-Thoughts model to reason about this infor-
mation. Our experiments on a hybrid corpus
of simulated and real-world data demonstrate
that our framework effectively detects conver-
sational behaviors, generates plausible ratio-
nales, and successfully transfers its reasoning
capabilities to audio from current dialogue models. We hope this work not only advances the devel-
opment of interpretable dialogue systems but also inspires further research into the causal structure
of human conversation. We will release our code, models, and dataset upon acceptance.

Limitations. Our approach, while demonstrating potential, has several important limitations that
highlight open research questions. A primary challenge lies in our use of discrete speech-act labels,
as real-world conversational cues are often ambiguous and continuous. Future work could explore
probabilistic or fuzzy representations to better capture this nuance. Furthermore, the system’s per-
formance is sensitive to upstream errors from ASR, and improving its robustness in noisy conditions
is a critical next step. Finally, while our synthetic data is effective for training, it may not capture
the full diversity of speaking styles, accents, or cultural norms present in human dialogue.

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. Our goal is to advance full-duplex conversation
systems by making the decision process more interpretable via predicting speaker behavior. Our
hybrid corpus mixes simulated dialogues with real recordings gathered under license consent, with
IRB/ethics review or exemption where applicable. No minors or vulnerable populations were in-
volved. We use deidentified or synthesized speaker data. All experiments were conducted on pub-
licly available datasets, ensuring data privacy and consent. Our research is intended for positive
applications, and we do not intend for any surveillance or manipulative purposes.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make our source code, including implemen-
tation, training, and evaluation scripts, publicly available. All datasets used are public and cited
accordingly. The main experimental setup is described in Sec 5.2. For a more detailed break-
down of the model architecture, hyperparameters, and implementation specifics, please refer to Ap-
pendix A.3, A.4, andA.5.
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Gorkem Polat, Ümit Mert Çağlar, and Alptekin Temizel. Class distance weighted cross entropy loss
for classification of disease severity. Expert Systems with Applications, 269:126372, 2025.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Antoine Raux and Maxine Eskenazi. Optimizing the turn-taking behavior of task-oriented spoken
dialog systems. ACM Transactions on Speech and Language Processing (TSLP), 9(1):1–23, 2012.

Andrew Reece, Gus Cooney, Peter Bull, Christine Chung, Bryn Dawson, Casey Fitzpatrick, Tamara
Glazer, Dean Knox, Alex Liebscher, and Sebastian Marin. The candor corpus: Insights from a
large multimodal dataset of naturalistic conversation. Science Advances, 9(13):eadf3197, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 2019.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, 2004.

Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson. A simplest systematics for the organization
of turn-taking for conversation. Language, 50(4):696–735, 1974.

Emanuel A Schegloff. Discourse as an interactional achievement: Some uses of ‘uh huh’and other
things that come between sentences. Analyzing discourse: Text and talk, 71(93), 1982.

12

https://arxiv.org/abs/2203.16502
https://arxiv.org/abs/2203.16502
https://arxiv.org/abs/2203.16502
https://arxiv.org/abs/2203.16502
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/1910.10683


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, and Asli
Celikyilmaz. Explore theory of mind: Program-guided adversarial data generation for theory of
mind reasoning. arXiv preprint arXiv:2412.12175, 2024a.

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, and Asli
Celikyilmaz. Explore theory of mind: Program-guided adversarial data generation for theory of
mind reasoning, 2024b. URL https://arxiv.org/abs/2412.12175.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys,
34(1):1–47, 2002.

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classifica-
tion tasks. Information Processing & Management, 45(4):427–437, 2009.

Tanya Stivers, N. J. Enfield, Penelope Brown, Christina Englert, Makoto Hayashi, Trine Heinemann,
Gertie Hoymann, Federico Rossano, Jan Peter de Ruiter, Kyung-Eun Yoon, and Stephen C. Levin-
son. Universals and cultural variation in turn-taking in conversation. Proceedings of the National
Academy of Sciences, 106(26):10587–10592, 2009.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
in language models, 2024. URL https://arxiv.org/abs/2305.16582.

Victor H. Yngve. On getting a word in edgewise. In Papers from the Sixth Regional Meeting of the
Chicago Linguistic Society, pp. 567–578, 1970.

A APPENDIX

A.1 GOT DATA PROCESSING

For each one-second audio segment, we first extract context nodes from the preceding window using
an ASR model (Whisper) OpenIE (Angeli et al., 2015). Next, we apply the speech-acts prediction
model’s inference method to obtain two speech-acts nodes (one high-level and one low-level) for
that segment. We merge these two sets of nodes to form an primary Graph of Thoughts (GoT),
which can be represented by an adjacency matrix (Figure 4).

The ground-truth rationale text for the segment is provided in Figure 5. During training, this ground-
truth rationale is used as the supervision signal. At inference time, we use the pre-trained model to
generate a predicted rationale text for the segment (also shown in Figure 5). We illustrate the en-
coder’s attention weights to provide a more intuitive view of how GoT performs deductive reasoning
(Figure 4).

A.2 SIMULATION DATASET PIPELINE

We first obtain story narratives from ExploreToM (for use with the LLaMA-3.1-70B-Instruct model).
ExploreToM (Sclar et al., 2024b) is a large-scale framework for generating diverse, adversarial
theory-of-mind (Brüne & Brüne-Cohrs, 2006) story data, which provides broad coverage of nar-
rative scenarios. These narratives help ensure the plausibility of the stories and the soundness of
subsequent rationale reasoning under the GoT framework. We then prompt GPT-4o to convert each
narrative into a two-speaker dialogue, using the prompt shown in Table 7. In this task, we require
the AI (as the listener) to be proactive about backchannels and interruptions, so we focus on those
events and ignore silence.
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Figure 4: An example primary GoT representation for a one-second audio segment (Appendix A).
The left panel shows the adjacency matrix (zeros initially), and the right panel the corresponding
visualized representation of encoder’s attention weight. Nodes represent context and speech-act
concepts.

Figure 5: An example of rationale text ground truth and predicted rationale generated by our GoT
model.For overall accuracy statistics, see Sec 6.2

Next, we generate audio for each dialogue using CosyVoice2’s (Du et al., 2024)
inference instruct2 engine. Based on our experiments, TTS output is more stable when
provided with a reference audio (i.e., conditioning on a sample utterance). Therefore, for each
generated utterance, we select a single-speaker recording (from a separate dataset) to serve as a tim-
bre/style reference; this reference is not part of the text prompt. Our pipeline introduces a novel
overlap-based dialogue-stitching mechanism: we first synthesize each utterance independently with
TTS, then use the [backchannel] and [interruption] markers to compute timestamps and insert each
subsequent utterance into the previous one at the corresponding time, ensuring overlap for interrup-
tions and backchannels. Finally, we place the first speaker’s audio on the left channel and the second
speaker’s audio on the right channel, yielding a two-channel overlapped speech dataset.

With this design, our dataset emphasizes overlapping dialogue events. Compared to human–human
conversations in the Talking-Turns (Arora et al., 2025a) benchmark (see Table 8), our simulation
has a higher proportion of backchannels and interruptions and avoids extreme class imbalance. This
helps mitigate class-imbalance issues when training the speech-acts prediction model. Simultane-
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Task: Write a natural dialogue between two speakers and label each utterance with one behavior tag.
Rules:

• Speakers: exactly two.

• Use the provided {narrative}.

• Length: 5–8 utterances total.

• Include at least one interruption event and one backchannel event.

– Interruption: put “[interruption]” inside the cut-off utterance. Mark the interrupter by
adding “(interruption)” after their name on the next line.

– Backchannel: create a separate backchannel utterance (1–3 words) and mark that speaker
with “(backchannel)”; also insert “[backchannel]” inside the other speaker’s ongoing utter-
ance at the exact insert point.

• After every utterance, append exactly one tag in braces from {Constatives, Directives, Commis-
sives, Acknowledgments}.

Narrative: {narrative}
Output Format:

(1) speaker1: utterance {Intent}
(2) speaker2: utterance {Intent}
(i) speaker1: ... [interruption] ... {Intent}
(i+1) speaker2(interruption): ... {Intent}
(j) speaker1: ... [backchannel] ... {Intent}
(j+1) speaker2(backchannel): ... {Intent}
. . .

(N) speakerX: utterance {Intent}

Table 7: Prompt template for generating simulated dialogues from each narrative. Numbers in
parentheses denote utterance indices; speaker names and utterances are labeled with an intent tag.

ously, we generate per-second labels for both high-level and low-level speech acts. For the low-level
label, we assign priorities: backchannel > interruption > turn-taking > continuation. For the high-
level label, we use the {Intent} tag of the corresponding utterance.

(a) % Turn Change (b) % Backchannel (c) % Interruption
Human Ref (in-domain) 15.9 0.30 0.40
Speech-Acts Simulation Data 11.4 6.4 17.6

Table 8: Event distribution (%) in dialogue: (a) turn changes, (b) backchannels, (c) interruptions.
“Human Ref” is the in-domain human conversation reference; “Simulation” is our generated dataset.

A.3 SPEECH ACTS PREDICTION MODEL

Figure 6: Speech Acts Prediction Model framework
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A.3.1 INPUT AND SEGMENTATION.

Let X = {xt}Tt=1 be a single–channel waveform at 16kHz. We split X into a sequence of
non–overlapping 1-second chunks U = {Ui}Ni=1 with Ui = xBi−1+1:Bi

and Bi = i ·Nblock, where
Nblock is the number of samples per second. The model is causal: it predicts the speech–act labels
for chunk i using only past context U1:i−1.

A.3.2 PREDICTION OBJECTIVE.

We estimate the label sequence L = {(lhii , lloi )}Ni=1 by maximizing the posterior

P (L | X) =

N∏
i=1

P
(
lhii , lloi | U1:i−1

)
. (4)

Under a conditional–independence approximation of the two heads given semantic context,

P
(
lhii , lloi | U1:i−1

)
≈ P

(
lhii | Ûi

)
· P

(
lloi | Ûi

)
, (5)

where we further condition only on a fixed–length causal window Ûi = x(Bi−1−W ):Bi−1
of size W :

P (L | X) ≈
N∏
i=1

P
(
lhii | Ûi

)
P
(
lloi | Ûi

)
. (6)

A.3.3 SPEECH & TEXT ENCODERS.

Each chunk Ui is encoded by two frozen off–the–shelf encoders: a HuBERT speech encoder pro-
ducing hB

i ∈ R768 and an ASR→Text stack that first transcribes Ui with Whisper and then encodes
the transcript by a T5 encoder to yield hE

i ∈ R768 (layer weights in both stacks are fixed). The two
streams are fused by a gated residual:

λi = σ
(
WBh

B
i +WEh

E
i

)
, hi = (1− λi)h

B
i + λi h

E
i . (7)

A.3.4 CAUSAL TEMPORAL ENCODER.

We apply a causal Transformer over time on {h1, . . . , hi} with a standard triangular mask that
forbids access to future chunks, and take the i-th output as contextual state zi:

zi = Transfcausal(h1:i)[i]. (8)

A.3.5 CLASSIFICATION HEADS AND TRAINING LOSS.

Two linear heads followed by softmax produce the distributions

phii = Softmax
(
W hizi

)
, ploi = Softmax

(
W lozi

)
. (9)

The high–level head is 4-way (task–specific taxonomy), and the low–level head is also 4-way over
speech–act events {TURNCHANGE, INTERRUPTION, BACKCHANNEL, CONTINUATION} (one la-
bel per second). We optimize the sum of weighted cross–entropy losses with standard padding
masks:

L =

N∑
i=1

[
α · CE(yhii , phii ) + β · CE(yloi , ploi )

]
, (10)

where class–imbalance is handled by inverse–frequency weights absorbed into coefficients (α, β)
per class, and masked positions use the ignore index.

A.3.6 OPTIMIZATION AND RUNTIME.

Unless otherwise noted, we use AdamW (lr = 3×10−4, weight decay = 10−2) with a linear warmup
of 1,000 steps, batch size 8, and 10 epochs. Training is mixed–precision (AMP) and data–parallel
via DDP. Encoders are frozen; only the fusion module (equation 7), the causal Transformer, and
both classification heads are updated. Inference supports both offline and streaming (online–cached)
modes with the same causal window Ûi and one–second latency per step.
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A.3.7 OUTPUT FORMAT.

For each chunk i, the model emits (l̂hii , l̂loi ) along with per–class posterior vectors. The low–level
head strictly outputs the four speech–act categories above; high–level outputs follow the 4-class
taxonomy used in our datasets. All labels align exactly to the 1 s grid used by the segmentation.

A.4 GOT REFERENCE GENERATION MODEL

A.4.1 PROBLEM SETUP AND CAUSALITY.

Given a single–channel conversation waveform X = {xt}Tt=1 at 16kHz, we form a sequence of
non–overlapping 1 s decision steps and, for each step i, condition only on a fixed left context window
Ûi = x(Bi−1−W ):Bi−1

with Bi = i·Nblock (samples per second Nblock; default W=30s). The goal is
to generate a reference rationale ri (a short natural–language explanation of what happens around
second i) using only past information. Under this causal assumption we maximize

P (R | X) =

N∏
i=1

P
(
ri | Ûi, Gi

)
, (11)

where Gi = (Vi, Ei) is a symbolic Graph-of-Thought context extracted from the same window
(defined next).

A.4.2 WINDOWED ASR AND TEXTUAL CONTEXT.

We run an incremental ASR on Ûi (Whisper–style backend; word timestamps on) to obtain the
cumulative text visible at second i, denoted Si. We keep only words whose end–time ≤ W to
respect causality. This Si is the sole textual evidence later consumed by the text encoder and by the
IE step below.

A.4.3 OPENIE → CONTENT GRAPH.

From Si we apply OpenIE (CoreNLP) to extract predicate–argument triples and collapse them into
a node list V text

i = {spank} and an undirected adjacency Atext
i ∈ {0, 1}|V text

i |×|V text
i | (self–loops on

the diagonal). Nodes are unique surface spans (deduplicated by string match), and edges mark
co–occurrence within the same triple.

A.4.4 SPEECH–ACT AUGMENTATION.

In parallel we run the supervised speech–acts model on the raw audio to obtain per–second low/high
labels (ℓloi , ℓ

hi
i ) (see App. A.3). We append two categorical nodes that summarize these labels,

V sa
i =

{
SA High=ℓhii , SA Low=ℓloi

}
,

and expand the adjacency to Ai by block–diagonal padding with identity on the new nodes (link
edge ). The final GoT context is Gi = (Vi,Ai) with Vi = V text

i ∪ V sa
i .

A.4.5 MULTI–MODAL ENCODERS AND FUSION.

Each window forms a triplet (Ûi, Si,Gi). (i) Audio encoder: a frozen HuBERT stack yields ha
i ∈Rd

from Ûi (last frame of the window). (ii) Text encoder: a frozen T5 encoder yields ht
i ∈Rd from Si

(layer–weighted pooling). (iii) Graph encoder: a GAT processes (Vi,Ai) to produce hg
i ∈Rd (mean

over node embeddings). We compute a gated residual fusion

λi = σ(Wah
a
i +Wth

t
i +Wgh

g
i ), hi = (1− λi)h

a
i + λi (h

t
i + hg

i ), (12)

and pass {h1, . . . , hi} through a causal Transformer with a triangular mask to obtain the contextual
state zi.
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Table 9: Encoder combinations

Combination B-1 R-1 R-L SIM PARAM
HuBERTlarge + T5base 0.42 0.31 0.35 0.46 791.6M
HuBERTbase + T5large 0.54 0.52 0.48 0.57 1.1B
HuBERTlarge + T5large 0.50 0.48 0.43 0.52 1.3B

A.4.6 SEQ2SEQ GENERATION AND TRAINING.

A T5 decoder conditions on zi to generate the rationale tokens ri = {yi,1, . . . , yi,Ti} with the
standard left–to–right factorization

P (ri | Ûi,Gi) =

Ti∏
t=1

P (yi,t | yi,<t, zi) . (13)

Training uses teacher forcing with cross–entropy over the target rationales (max length 96 tokens),
masking padded positions. All encoders are frozen; we update the fusion (12), the causal Trans-
former, the graph encoder, and the decoder. Optimization follows App. A.3 (AdamW, warmup,
AMP, DDP).

A.4.7 PREPROCESSING & ARTIFACTS.

For each audio we emit, at every second i, a JSON record with fields audio id, i, text window=
Si, nodes path, adj path, rationale gt. Per-audio indices are concatenated into a corpus
index preproc_index.jsonl. Inference reuses the same causal window and writes one JSONL
with fields audio id, t, and rationale; evaluation aligns predictions with ground truth by keys
(audio id, t) and reports BLEU/ROUGE metrics.

A.5 TRAINING DETAILS

We train models using AdamW (Loshchilov & Hutter, 2019) with learning rate 3×10−4 and weight
decay 10−2. The learning rate follows a linear decay schedule with 1,000 warm-up steps. We use
automatic mixed precision (fp16) and clip gradient norms at 1.0. Training is done with a batch
size of 8 per GPU (no accumulation) for 10 epochs, with a checkpoint saved each epoch and final
evaluation on the last epoch. We use PyTorch and DistributedDataParallel (Li et al., 2020) when
multiple GPUs are available (otherwise we train on a single 48-GB GPU).

For the speech-acts predictor, encoder weights are initialized from public pretrained checkpoints
and kept frozen; only the task-specific classification heads are trained. Audio is resampled to 16
kHz and segmented into contiguous 1-second frames, with frame-level supervision spanning each
utterance. To address class imbalance, we apply a class-reweighted cross-entropy loss (Polat et al.,
2025) using inverse-frequency weights computed from the training split. Training a single run on
one high-memory GPU takes about 48 hours.

For the GoT rationale generator, each example uses a strictly causal audio window (t −W, t] with
W = 30 s (no lookahead), at 16 kHz. Text inputs are tokenized with the T5 tokenizer , and graph
inputs (node features and adjacency) are padded to fixed size per batch. We use the same AdamW
schedule as above (same batch size and epochs). During sequence generation we apply teacher
forcing for stability. A single run takes about 7 hours on one 48-GB GPU. By default, we fix the
random seed to 42. For results reported as mean ± std, we perform at least five independent runs
with different seeds and compute statistics over those runs.

A.6 ENGINEERING METRICS

Referencing the encoder combinations in Table 9, the decoder scale (T5) is the main lever for
quality versus cost. The HuBERTbase + T5large configuration (1.1B parameters) achieves
optimal performance across most metrics: BLEU-1 (0.54), ROUGE-1 (0.52), ROUGE-L (0.48),
and SIMILARITY (0.57). Counterintuitively, this mid-scale approach outperforms the largest
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Table 10: Window size (W) × Look ahead (L) vs. metrics (A+T+GAT only)

L W A+T+GAT
B-1 R-1 R-L SIM

0

10 0.2829±0.0031 0.2626±0.0037 0.2136±0.0028 0.3178±0.0055
20 0.2863±0.0065 0.2669±0.0079 0.2187±0.0078 0.3220±0.0111
30 0.2899±0.0066 0.2709±0.0083 0.2216±0.0069 0.3299±0.0101
40 0.2899±0.0066 0.2709±0.0083 0.2216±0.0069 0.3299±0.0101

5

10 0.3197±0.0073 0.3005±0.0073 0.2463±0.0054 0.3569±0.0067
20 0.3203±0.0049 0.3037±0.0056 0.2497±0.0046 0.3615±0.0057
30 0.3246±0.0072 0.3081±0.0070 0.2515±0.0067 0.3665±0.0084
40 0.3246±0.0072 0.3081±0.0070 0.2515±0.0067 0.3665±0.0084

10

10 0.4121±0.0082 0.3988±0.0080 0.3485±0.0099 0.4519±0.0090
20 0.4042±0.0047 0.3897±0.0059 0.3434±0.0047 0.4401±0.0092
30 0.4094±0.0040 0.3948±0.0048 0.3477±0.0040 0.4453±0.0064
40 0.4094±0.0040 0.3948±0.0048 0.3477±0.0040 0.4453±0.0064

A+T+GAT = Audio + Text + Graph (GAT).

HuBERTlarge + T5large configuration (1.3B parameters), which scores lower, indicating di-
minishing returns when scaling both components simultaneously.

Upgrading from T5-base to T5-large consistently improves all four text metrics, with the trade-off
lying in increased decoding latency and memory. Empirically, decoding time increases by about
1.6–2.0×, but the quality-per-compute gain is strongest, especially for ROUGEL (Lin, 2004) and
SIMILARITY (Reimers & Gurevych, 2019). Whisper upgrades matter most in noisy settings: mov-
ing from small to large chiefly improves BLEU1/ROUGE1/SIMILARITY (fewer ASR errors →
higher lexical/semantic alignment) at a 2–4× cost on the ASR side; gains diminish on clean audio.
HuBERT (Hsu et al., 2021) upgrades mainly support coherence: base to large yields steady gains in
ROUGEL/SIMILARITY at a 1.2–1.5× feature-side cost—an inexpensive, reliable boost.

Across choices, modality > future peeking > blindly extending the window: under strict causality
(lookahead = 0), investing budget in audio+text+GAT offers better value than increasing looka-
head or window length, consistent with the causal analysis in Section 5.3. The performance
plateau between 1.1B and 1.3B parameters suggests that computational resources beyond the
mid-scale configuration should be allocated to other optimizations rather than further encoder
scaling. For low-latency, compute-constrained deployments, HuBERT-large + T5-large +
Whisper-small provides a good quality/latency balance, especially with W = 20–30 s and
L = 0.

A.7 CAUSAL AND MULTIMODAL FUSION

Streaming Setup. We operate in a strictly causal regime: at each 1 s hop t, the model conditions
only on the most recent W seconds of audio (t−W, t] and, optionally, a small look-ahead L admitting
information available by t+L.

Findings. The grid in Fig. 3 and Table 10 (W ∈{10, 20, 30, 40}, L∈{0, 5, 10}, modalities A, A+T ,
A+T+GAT) yields three consistent results:

(i) Look-ahead dominates. Increasing L from 0 to 10 improves audio-only by ≈ +0.14 absolute on
BLEU-1/ROUGE-1/ROUGE-L/SIM (averaged over W , indicating a small, deployable L stabi-
lizes tokenization without violating causality.

(ii) A window W ∈ [20, 30] is most effective across metrics. Shorter windows lack context while
longer ones dilute recency with stale evidence.

(iii) Under streaming, naı̈vely adding text hurts. A+T underperforms A by ≈ 0.02 on average, while
incorporating the GoT graph yields a small, consistent recovery over A+T (+0.002–+0.006) yet
remains below audio-only. We attribute this to noise from partial ASR and imperfect real-time
graph extraction; the causal gate downweights text streams when confidence is low. In practice,
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we adopt W = 30 and L = 10 with conservative gating, offering the best latency–accuracy
trade-off (reported as mean±sd with 95% CIs in Table 10).

Takeaways. Under strict causality and tight latency, the speech stream is the reliable backbone
while text streams help only when their reliability and temporal consistency are controlled. A small
L provides a practical stability gain, and the optimal W is governed by freshness of evidence rather
than sheer length. These observations motivate opportunistic multimodal fusion: anchor decisions in
audio, admit text/graph only when confidence is high, and regulate their influence via causal mask-
ing, temporal decay, and confidence-aware gating. This preserves streaming constraints, mitigates
noise-driven failures, and enables adaptive L/W policies with incremental, confidence-weighted
graph construction.

A.8 HUMAN STUDY ON GOT RATIONALES FOR FULL-DUPLEX AUDIO FMS

Models and setting. We assess whether GoT’s prediction rationales are plausible and action-
guiding when applied to full-duplex conversational audio from GPT-4, Moshi, and our simulation
corpus. The human study is explicitly scoped to content-level reasoning: raters judge (i) whether
the rationale identifies the correct speech act, (ii) whether it infers a sensible speaker intent, and
(iii) whether the discourse logic that links local evidence to the predicted action is coherent. We
do not require, evaluate, or match the underlying distribution of dialogue events (e.g., interruption
or backchannel frequencies) for any source; the comparison is strictly about the reasonableness of
GoT’s explanations given the audio context.

Under this rubric, the corpus-level means (1–10 scale) are:
Simulation = 8.93 > GPT-4 = 7.06 > Moshi = 4.25 .

Three qualitative patterns align with these scores. (1) Simulation achieves the top score even
though rationales are often more abstract in phrasing: training extracts higher-level regularities,
so explanations read rule-like yet consistently hit the correct speech act and polarity (affirma-
tion/negation). They stabilize early (from ≈3 s) with very low error and provide strong short-
horizon forecasting, aided by our prediction model. GPT-4 yields more concrete, locally
grounded rationales but with a slightly higher error rate than simulation—still squarely in the
“correct and useful” band. (3) Moshi trails due to omitting key local cues more frequently even
though equipped with stronger turn-taking capacity compared with GPT-4; raters note greater tem-
poral volatility, with coherence changing markedly as the clip progresses.

Inference based on scores. The simulation advantage reflects a trade-off: its rationales are less
colloquial but more systematically correct, especially for fine-grained polarity and moment-level act
detection, and they remain stable after the first few seconds. By contrast, GPT-4’s rationales are
rich in concrete references (prosody, pause structure, partner state) yet admit slightly more slips
than simulation. Moshi’s lower score is consistent with evidence omission and drift: salient turn-
management signals are not always surfaced, and the internal logic of the explanation can shift
substantially over time.

Transferability. Despite being trained on simulated dialogues, GoT’s rationales transfer well to
real full-duplex audio: performance on GPT-4 remains strong (7.06), while Moshi lags (4.25).
The pattern suggests that GoT captures domain-stable timing features (silence windows, overlap
context, prosodic shifts) that support explanation on real model audio without domain-specific fine-
tuning, while also benefiting from the high-coverage abstraction learned in simulation. Practically,
this endorses a two-step recipe: pre-train on simulation for robust, early-stabilizing predictions and
accurate polarity judgments; then validate and calibrate on real model audio to increase concrete-
ness and reduce residual errors, particularly for systems like Moshi where key-cue omission and
temporal variability are more pronounced.

A.9 SIMULATION DATASET QUALITY

A.9.1 TURN-TAKING CORPUS STATISTICS

We first briefly explain the terminologies: an IPU is a continuous stretch of speech on one channel
delimited by > 200 ms silence on both sides; silence splits into Pause (same speaker) vs Gap
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(across speakers); Overlap denotes simultaneous voice activity on both channels. Short within-turn
overlaps function as backchannels; longer overlaps indicate interruptions.

Counts per minute. Our corpus exhibits IPU 23.06 /min, Pause 10.7 /min, Gap 7.3 /min, Over-
lap 6.7 /min. Relative to the human reference (15.7, 3.8, 5.5, 6.6), we observe denser micro-
segmentation: more IPUs and more within-speaker Pauses per minute, while Gap and Overlap rates
are closer to human. This pattern suggests shorter, more frequent IPUs—likely driven by abundant
backchannels or clause-internal hesitations—rather than longer, monolithic turns, consistent with
established observations of conversational floor management (Sacks et al., 1974).

Cumulated duration. Our durations (percent of conversation time) are IPU 84.7%, Pause 9.6%,
Gap 1.6%, Overlap 4.2%, whereas the human reference shows 97.3%, 5.7%, 3.7%, 6.7%. Thus,
while we count overlaps nearly as often as humans, their mean length is shorter (4.2% vs. 6.7%),
and we spend more time in within-speaker pauses and less in cross-speaker gaps. Practically, the
corpus has more micro-breaks within a turn and less turn-exchange silence, which is consistent
with frequent short acknowledgments that do not wrest the floor, a phenomenon also highlighted in
cross-linguistic studies of overlap and backchanneling (Stivers et al., 2009).

Conclusions.

1. The high IPU/min + high Pause/min combination points to fine-grained intra-turn rhythm
(listeners or speakers insert many brief hesitations).

2. Overlap/min ≈ human but shorter overlaps indicates backchannel-style micro-overlaps
rather than long interruptions—useful for interactive feel but currently a bit under-
energized compared to human dialogues.

These interpretations align with how recent evaluation work distinguishes global distributions
(counts/durations) from the timing quality of turn-taking behavior.

A.9.2 ACOUSTIC QUALITY AND INTERACTION COUPLING

Beyond raw distributions, we examine whether acoustic quality correlates with turn-management
behavior (e.g., SNR quintiles vs Gap%, Overlap CPM vs F0 variance). The theory is simple: lower
SNR depresses the system’s confidence in floor-transfer cues, inflating gaps; higher prosodic vari-
ability (F0/RMS var.) invites micro-overlaps/backchannels.

These analyses connect the conditions of the channel to interactional outcomes—a relationship em-
phasized in recent timing-centric evaluations, where choices like when to speak up or when to
backchannel are modeled explicitly rather than inferred only from global rates.

A.9.3 SENTENCE LENGTH STATISTICS

At the text layer, our simulated dialogues have mean sentence length 10.11 tokens (σ = 1.29;
p10/p50/p90 = 8.61/10.00/11.71). This narrow band supports the picture painted by the audio-side
metrics: short IPUs and frequent within-turn breaks rather than long, syntactically heavy turns. For
downstream modeling, this implies dense turn opportunities and more frequent floor-keeping cues
to resolve.

Table 11: Sentence length statistics of the simulated dialogues.

Mean Std P10 P50 P90
Sentence length (tokens) 10.11 1.29 8.61 10.00 11.71

A.9.4 NOISE AND OVERLAP RATIOS

The ECDF1indicates a broad SNR coverage (p10 ≈ 23 dB, p50 ≈ 33 dB, p90 ≈ 41 dB), with a
modest low-SNR tail. The corpus is neither overly clean nor dominated by noisy outliers. Overlap
ratios are strongly left-skewed (mode < 2%, long tail up to ≈ 22%), consistent with brief, sup-
portive overlaps rather than sustained interruptions. Noise primarily affects gap formation rather
than overlap intensity, while overlap appears more tied to prosodic activity; we therefore stratify
evaluation by SNR bins and supplement high-overlap slices for robustness.
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Figure 7: (a) SNR cumulative distribution (ECDF), (b) Overlap ratio distribution, (c) Gap percentage
by SNR quantile, (d) Overlap count per minute vs. F0 variance.

A.9.5 NATURALNESS

Our results paint a picture of interactive yet micro-segmented exchanges. The system produces
a human-like rate of overlaps but those overlaps are shorter on average, while both IPU/min and
Pause/min are elevated. In conversational terms, this combination signals many brief acknowledg-
ments, clause-internal hesitations, and light cues that sustain the current floor, rather than the longer
cooperative overlaps humans often use to co-construct content (Schegloff, 1982). The effect is a
dialogue that feels responsive and attentive, yet parcels speech into smaller units than natural talk
would, creating a fine-grained turn rhythm with frequent re-entry points.

The speaking style metrics reinforce this reading. Higher WPM together with a higher filler-word
rate indicates fast, hedge-rich delivery: the system keeps the channel active and signals stance (“uh-
huh”, “yeah”, “okay”) while avoiding hard floor grabs. In duplex settings this is advantageous—
short backchannels and brief pauses allow the model to juggle listening and speaking without starv-
ing the partner—but it also compresses turns and can make the discourse feel punctuated rather
than smoothly interleaved. From a control perspective, fillers operate as a low-cost mechanism for
grounding and timing calibration; they maintain engagement without triggering a full turn transition,
a role consistent with prior findings on backchannels as coordination signals (Yngve, 1970).

These observations motivate timing-centric evaluation beyond corpus totals. Global distributions re-
veal how much of each event type we produce, but interaction quality is governed by when speak-up,
backchannel, and interruption actions are taken. A system can match human totals while still sound-
ing mechanical if the micro-decisions are misplaced by a few hundred milliseconds. Judge-based
protocols at frame-level resolution (e.g., 40 ms decisions) directly evaluate the hazard of taking
the floor given local cues—silence duration, prosody, and partner state—and let us verify that our
short overlaps behave as supportive backchannels rather than butting in. In practice this amounts
to checking conditional timing curves (e.g., the probability of speaking as a function of recent si-
lence or pitch movement) and calibrating thresholds so that the induced dwell-time distributions (for
overlaps, pauses, and gaps) match human ranges.

Putting it together, our corpus is fast, hedge-rich, and highly segmented, with short supportive over-
laps and many within-turn micro-pauses. To move closer to human conversational texture, we should
slightly lengthen supportive overlaps (nudging their dwell time upward without increasing interrup-
tion rate) and smooth within-turn micro-breaks so IPUs aggregate into more natural chunks. The
recommended next step is to couple these policy adjustments with a judge model that scores tim-

1ECDF: empirical cumulative distribution function; SNR: signal-to-noise ratio; CPM: counts per minute;
F0: fundamental frequency.
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ing decisions in context; passing that test would confirm that our short overlaps function as in-
tended—lightweight grounding signals that enhance, rather than disrupt, the flow of conversation.

A.10 THE USE OF LARGE LANGUAGE MODELS

During the writing of this paper, we leveraged GPT-5 to aid in polishing the writing. Its use was
exclusively limited to improving grammar, phrasing, and overall readability. The core scientific
contributions, experimental results, and intellectual content are entirely our own.
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