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a b s t r a c t

Background: Transcranial magnetic stimulation (TMS) plays an important role in treatment of mental
and neurological illnesses, and neurosurgery. However, it is difficult to target specific brain regions
accurately because the complex anatomy of the brain substantially affects the shape and strength of the
electric fields induced by the TMS coil. A volume conductor model can be used for determining the
accurate electric fields; however, the construction of subject-specific anatomical head structures is time-
consuming.
Objective: The aim of this study is to propose a method to estimate electric fields induced by TMS from
only T1 magnetic resonance (MR) images, without constructing a subject-specific anatomical model.
Methods: Very large sets of electric fields in the brain of subject-specific anatomical models, which are
constructed from T1 and T2 MR images, are computed by a volume conductor model. The relation be-
tween electric field distribution and T1 MR images is used for machine learning. Deep neural network
(DNN) models are applied for the first time to electric field estimation.
Results: By determining the relationships between the T1 MR images and electric fields by DNN models,
the process of electric field estimation is markedly accelerated (to 0.03 s) due to the absence of a
requirement for anatomical head structure reconstruction and volume conductor computation. Valida-
tion shows promising estimation accuracy, and rapid computations of the DNN model are apt for
practical applications.
Conclusion: The study showed that the DNN model can estimate the electric fields from only T1 MR
images and requires low computation time, suggesting the possibility of using machine learning for real-
time electric field estimation in navigated TMS.
© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Transcranial magnetic stimulation (TMS) is a technique for
stimulating a target area of the brain in a non-invasive manner.
Impulsive and intense current injected into a stimulation coil
located just above the scalp induces a focal electric field (E-field) in
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the brain. Single- or multiple (repetitive)-pulse TMS is often used
for diagnosis in pre-surgical identification of motor and language
functions, as well as for therapy, such as that for neuropathic pain
and enhancing motor recovery [1]. Bottlenecks in TMS-based
diagnosis include its reliability being dependent on the experi-
ence of the operators, the time needed for the diagnosis, as well as
the choice of optimal stimulation parameters.

The stimulation strength of TMS has been thought to be
maximal just below the coil center, where the coil current is at its
maximum. However, recent experimental and computational
studies suggested that the maximal stimulation strength does not
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Fig. 1. Methodological design: A machine learning approach for estimating the E-field.
The conventional physical model-based method constructs a subject-specific
anatomical head model and estimates the E-field using a volume conductor model
based on the conductivities of individual brain tissues. By exploiting the number of
inputs and outputs generated by the physical model as a supervisor, the DNN model
automatically learns the relationship between patterns of MR images and the corre-
sponding E-fields. After learning from sufficient data, the appropriate E-fields can be
estimated from new MR patterns.

T. Yokota et al. / Brain Stimulation 12 (2019) 1500e1507 1501
always occur at this estimated location [2]. The reason for this
discrepancy is attributable to the complex structure of human brain
anatomy, as predicted by recent computational studies [3e8].

Recently, computational studies have been conducted to esti-
mate the E-field in certain subjects by using volume conductor
models based on subject-specific human head models. The E-field
is known as the main physical agent, and notably, its relative di-
rection to neural structures is also important. From a practical
viewpoint, it is used as a surrogate for stimulation volume. The
effectiveness of such modeling has been confirmed by comparing
computationally estimated volumes with those identified by direct
electric stimulation measured in neurosurgery studies [9,10]. This
computational approach is helpful for planning diagnoses and
therapy.

A concern associated with this approach is that the computa-
tional cost is generally substantial, including the cost associated
with the development of a subject-specific human head model and
computation using a volume conductor model. The latter takes tens
of seconds to a few minutes to estimate the E-field in the brain for
one location and angle of the TMS coil, and it is dependent on
factors such as the model resolution and computational resources.
This issue has beenmostly resolved by accelerating the algorithm of
volume conductor modeling; our in-house software based on a
geometric multi-grid reduces this time to several seconds or less
[11]. Fast multi-pole methods have also been used to accelerate
boundary element techniques [12]. However, the computation
times are still too long for real-time calculations. Another impor-
tant bottleneck is that it still takes few hours to half a day to
develop a patient-specific human head model. Specifically, the
process of segmenting the magnetic resonance (MR) image into
brain tissues is time-consuming; FreeSurfer [13e15] or BrainVoy-
ager1 are often used for this purpose, and other software packages
are used for the remaining tissues. These software packages have
been integrated into segmentation pipelines such as SimNIBS [6],
which can automatically generate segmented volume conductor
models from T1 and T2 MR images. However, the quality of the
segmentation is somewhat dependent on the MR image quality,
and the developed models always need to be verified manually.

This study is the first proposal for real-time estimation of E-
fields induced by TMS with “deep learning” [16], which directly
regresses E-fields from only T1 MR without using the time-
consuming segmentation software (e.g., FreeSufer). This is a data-
driven approach for E-field estimation: the mapping from only T1
MR images to E-fields is performed using training data consisting of
a large number of pairs of T1 MR images and the corresponding E-
fields. The mapping is represented by parametric models based on
deep convolutional neural networks, which are hierarchically
structured with convolution, max-pooling, and up-sampling layers.
We employed a network architecture called “U-Net” [17], which is a
fully convolutional network with multi-scale skip connections, for
our regression task, and it is trained using more than 200,000
segments of MR and E-field pairs for generalizing various parts of
the brain and TMS coil positions. After training and optimizing the
deep neural network (DNN), the E-fields induced by the TMS coil
can be directly estimated from only T1 MR images. In other words,
the proposed machine learning approach can be immediately
applied to new subjects after scanning the T1 MR images without
the time-consuming process of constructing the subject-specific
anatomical head model. Another advantage of this approach is
that the computation time is only 0.01e0.03 s with a graphics
processing unit (GPU), which is markedly reduced from the con-
ventional approach (i.e., a few hours for anatomical segmentation
1 http://www.brainvoyager.com/.
as well as at least several seconds for computation), and allows
calculations to be performed in real time during navigated TMS.
Materials and methods

Methodological design

Mathematically, the objective of this study is to estimate an E-
field y induced by TMS from a brain MR image x and a coil position
p. The proposed method is designed based on nonlinear regression
problem inputting (x, p) and outputting y. Fig. 1 shows the overall
design of the proposed method. The method is separated into two
phases: a training phase and an application phase. In the training
phase, a physical model-based computation method [11] generates
the training data ðx;p; yÞ as a supervisor in machine learning. Then,
the DNN model is optimized for fitting the training data ðx;p; yÞ so
that it imitates the supervisor. After the training using a large
number of samples ðx;p; yÞ2D train is complete, the constructed
regressor can be applied to a new MR image x0 with any coil posi-
tions p0 for estimating its induced E-field y0.

Data, computation, and learning

We used the MR images of Nx :¼ 37 subjects (Male 30, Female 7,
Age 18e55), obtained at Fukushima Medical University and data-
base.2 All images were acquired using T1-and T2-weighted se-
quences with two different 3-T MR scanners: Siemens 3 T with
MPRAGE sequence and GE 3 T with fast SPGR sequence. Each MR
image was segmented with FreeSurfer into gray matter, white
matter, cerebellum, brainstem, and various nuclei. Furthermore,
non-brain tissue compartments were segmented with the 2D-his-
togram of the T1 and T2 images into blood, dura, cerebrospinal
fluid, compact bone, spongy bone, fat, muscle, and skin. Fig. 2
shows the process for constructing the volume conductor model
(VCM) from T1-and T2-weighted MR images. Thereafter, the VCMs
were constructed for all MR images, and the induced E-fields, y,
with any combination of MR images and TMS coil positions, ðx;pÞ,
could be calculated using the finite element method [11] using a
figure-of-8 magnetic coil model that was constructed based on
previous E-field measurements of the Magstim 70mm Double Coil
(The Magstim Company Ltd., UK) [19]. Details for constructing the
VCMs and the electric field calculations are provided in the Sup-
plementary Material.
2 NAMIC: Brain Multimodality http://hdl.handle.net/1926/1687.
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Fig. 2. MR images and segmented anatomical model: The anatomical head model is constructed from T1-and T2-weighted MR images. Brain tissues are segmented into gray matter,
white matter, cerebellum, brain stem, and various nuclei by using FreeSurfer, and non-brain tissues are segmented into blood, dura, cerebrospinal fluid, compact bone, spongy bone,
fat, muscle, and skin based on a two-dimensional histogram of T1-and T2-weighted MR image intensities.
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For each subject, we computed E-fields for various TMS coil
positions: total Np ¼ 7056 positions combining ð14� 14Þ locations
and 36 angles. Fig. 3 shows examples of ð14� 14Þ TMS coil loca-
tions and angles. The TMS coil is located in a reticular pattern
around the motor cortex. At each point, the TMS coil is rotated
around the normal line of the brain surface at 10-degree intervals:
f0+;10+;20+;…;350+g. Finally, we obtained a total of N :¼ NxNp ¼
261,072 pairs of MR images and TMS coil positions, fxn;pngNn¼1, and
their corresponding E-fields, fyngNn¼1.

We considered a parametric nonlinear regression model rðx;
pjQÞ, whereQ is a set of model parameters. LetD train3D be a set
of training samples. We optimized Q using the following criterion:
minimizeQ

P
ðx;p;yÞ2D train

ky� rðx;pjQÞk2Up
, where Up stands for the

brain region of interest, namely, that with meaningful E-field
values. By considering a coil-centered coordinate system (see
Supplementary Materials for details), the regression problem is
simplified as

minimize
Q

X

ð~x;~yÞ2 ~D train

k~y � r0ð~xjQÞk2U0
; (1)

where ~x, ~y, and U0 stand for the MR image, E-fields, and brain re-
gion of interest in a coil-centered coordinate system, respectively. A
few examples of pairs of MR images ~x and E-fields ~y are shown in
Fig. 4. Any regressionmodel can be used for r0ð~xjQÞ in general, such
as kernel-based regression [20,21], randomForest [22,23], and
neural networks [24]. In this study, we employed a neural-network
based regression model because of its high representation ability,
Fig. 3. Coil locations and angles. There are 7056 coil positions for all combinations of
(14� 14) locations and 36 angles.
well-established optimization algorithms, and computational effi-
ciency. Fig. 5 shows a volume-to-volume neural network architec-
ture named “U-Net” [17,25], which is used in our experiments. U-
Net inputs a T1 MR image of size ð72� 144� 24Þ and outputs the
absolute value of the induced E-field of the same size, namely, ð72�
144� 24Þ. It consists of many 3D-convolution layers with batch
normalization (BN) [26], rectified linear units (ReLU) [27], max
pooling, and up-sampling. In addition, U-Net holds detailed local
information using its skip connections.

More details of the physical model-based computation method
and the DNNs are provided in Section 1 in the Supplementary
Materials.

Leave-five-cases-out validation

We validated the proposed estimation method of TMS-induced
E-fields by training with 32 subjects and testing with 5 subjects.
Thus, we had 32 � 7056 ¼ 225,792 samples for training, and 5 �
7056 samples ¼ 35,280 for testing (volume conductor computa-
tions). Three DNN models shown in Fig. 5 were used to demon-
strate the difference of performance come from the difference of
depth. For each model, we optimized the model parameter Q for
minimizing the cost function (1) by using the stochastic gradient
descent (SGD) algorithm [28,29]. In the SGD algorithm, the
parameterQ is iteratively updated using backpropagation [30] for a
mini-batch, which is a small subset containing a few (e.g., 5e50)
training samples. We iteratively updatedQ for 20 epochs, where an
epoch refers to a unit of iterations throughout the whole training
set. Note that we did not use validation set for early stopping the
optimization. After the optimization, DNN models with Q were
used for regression. The proposed DNN models were evaluated by
comparing them with the VCM results for subjects that were not
included in the training.

Results

Validations of the relative positions to the TMS coil

Focusing on the same voxel position of the estimated E-fields
on the coil-centered coordinate for all 35;280 testing samples, we
calculated the correlation coefficient between the VCM and DNN
model. Fig. 6 visualizes the values of those correlations for all



Fig. 4. Input/Output of the regression: our neural network model inputs a (72,144,24)-MR image and outputs a (72,144,24)-E-Field. Coil-centered T1 MR images (b), ~x, are extracted
from the original T1-MR image based on the corresponding coil positions, as shown in (a). Similarly, the corresponding E-fields for training (c), ~y, are extracted from the original
results by the VCM. Then, the DNN model automatically relates the inputs to its corresponding outputs.

Fig. 5. Network architecture applied to the learning of TMS-induced electric field: Convolutional DNN model (named U-Net) with depths of (a) 2, (b) 3, and (c) 4.
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voxel positions and the density plots of E-fields for some specific
positions. The positions in white are located outside the head, and
the correlations could not be calculated because of the zero
variance of the E-fields. Almost all meaningful positions had
positive correlations, and the higher values were obtained by
deeper networks (see Supplementary Figs. 4 and 5). Notably,
correlation coefficients on 95% of the meaningful relative posi-
tions of coil (i.e., region excluding centers of coil wings and
outside the brain) were higher than 0.8. The peripheral positions
(e.g., (a) and (g) in Fig. 6) that bounce in and out of the head region
had higher correlations since zero and non-zero values can be
easily estimated. The centers of two coils wings (e.g., (b) and (f) in
Fig. 6) have relatively low correlations because of the low strength
of the E-fields. With the exception of those positions, the center
and deeper positions (e.g., (c), (d), and (e) in Fig. 6) are highly
accurate in general.
Target regions

The E-field distributions on the brain surfaces were compared
by using the VCM computation and DNN estimations to confirm
their usefulness for two target areas, a motor area (hand knob area)
and a language area (Broca's area) which are considered important
in presurgical diagnoses. Note that Broca's area is outside of
training set, and here we report the interpolation performance by
hand knob area and the extrapolation performance by Broca's area.

MR images of five subjects excluded from the training data were
chosen, and the coil center was positioned so that it coincided with
that of Broca's area or the hand knob area. The angle of the coil was
fixed as 90� and 45� for Broca's area and the hand knob area,
respectively. The angle of 45� for the hand knob area was based on
clinical guidelines [31], while that for Broca's area was chosen
arbitrarily as no guideline exists.



Fig. 6. Correlation analysis between E-fields estimated by the VCM and DNN model(depth 4): The top figure (A) shows the 3D heat maps of correlations between the VCM and DNN
model in the coil-centered coordinate system. The correlation coefficient of each voxel is calculated with its corresponding voxel values of E-fields estimated by the VCM and DNN
model for all 35,280 testing samples from the five subjects. The difference in the accuracy of the DNN model with respect to the relative positions to the TMS coil is shown. The
bottom figure (B) shows the details of the statistics with density plots for several remarkable relative positions of the TMS coil. Different statistics can be observed for different
positions. Furthermore, we summarized statistics of relative absolute deviations with boxplot for various E-field levels. The maximum relative deviations are shown from the
highest markers in box plots. The accuracy of DNN was usually high for strong E-field levels.
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Fig. 7 shows the results of estimated E-fields on the surfaces of
gray matter extracted by FreeSurfer. The E-fields on the surface
were computed by the linear interpolation of the voxel represen-
tations. The clear similarity between the VCM results and DNN
estimations can be confirmed from the results. Specifically, the
regions having higher values in the VCM and DNN almost over-
lapped (see the last columns in Fig. 7(A) and (B)). Table 1 shows the
correlation coefficients,3 peak signal-to-noise ratio (PSNR) [dB],
mean absolute error (MAE) [V/m], and mean relative absolute de-
viations (RMAD) [%] between the two E-field surfaces of the VCM
and DNNs for those two coil positions for the five subjects. For
reference, we also calculated the E-fields using a homogenized
volume conductor model (i.e., all tissues of the head were assigned
3 Since the surface is represented by many triangles of various shapes, we
considered theweighted correlation based on the area of the triangles. Moreover, we
ignored the area outside the head, which has meaningful values in DNN regression.
the conductivity of gray matter) and the primary E-field (i.e., the
time derivative of the magnetic vector potential). It is shown that
the accuracy of DNN with depth 4 was much higher than the two
references. Values of DNN approximately equal to 0.93 and 0.97 of
the average correlation coefficients were obtained for Broca's area
and the hand knob area, respectively. Roughly, PSNR was larger
than 29 dB, MAE and RMAD were smaller than 6 V/m and 6% in
hand knob area.
Comparing computation times

We compared the computation times for the VCM and indi-
vidual DNN models. Table 2 shows the expected values of compu-
tation times for obtaining the output of one trial of an induced E-
field from an MR image or human head model with one given coil
position. The computation of the DNN was conducted by a single
workstation with an Intel(R) Core(TM) i7-6850K CPU with a fre-
quency of 3.60 GHz,128 GBmemory, and NVIDIAGeForce GTX 1080



Fig. 7. Visual comparison of E-fields [V/m] obtained by the VCM and DNN model (depth 4) for the areas of interest: (A) Broca's area (outside the 14-by-14 grid) and (B) hand knob
area (inside the 14-by-14-grid). The E-fields estimated by the DNN model are very similar to the volume conductor modeling results for five different subjects (S1eS5). Color maps
of both the VCM and DNN model visualizations are equivalent in each subject. The second last column of both (A) and (B) shows the regions with electric field values higher than
50% of the maximum value in only the VCM (cyan) and only DNN model (yellow). The overlapped regions between the VCM and DNN model are depicted in red. The last column of
both (A) and (B) shows the relative absolute deviation between VCM and DNN. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 1
Correlation/PSNR[dB]/MAE[V/m]/RMAD[%] between the VCM and references/DNNs on brain surfaces.

Broca's area (outside the 14-by-14 grid)

homogenized model primary E-fields DNN(depth 2) DNN(depth 3) DNN(depth 4)

S1 0.741/22.5/11.88/11.95 0.707/14.4/35.88/50.79 0.865/24.7/9.73/10.07 0.933/27.0/7.25/6.51 0.938/27.2/6.89/6.12
S2 0.847/26.4/7.47/8.74 0.731/13.9/39.51/58.45 0.748/23.3/10.05/8.93 0.853/24.6/9.04/8.75 0.934/28.5/5.51/5.81
S3 0.858/24.4/9.51/10.27 0.790/15.7/30.86/41.71 0.796/22.7/11.69/11.64 0.897/24.7/9.41/8.60 0.932/26.3/7.60/6.77
S4 0.868/26.3/7.77/8.52 0.774/14.0/39.19/56.10 0.893/25.0/9.35/8.00 0.920/25.6/8.89/8.03 0.944/28.8/5.74/5.68
S5 0.853/24.3/9.93/10.65 0.780/14.3/36.74/51.13 0.818/23.4/10.98/10.87 0.910/24.6/9.23/8.27 0.927/25.4/8.31/7.44
ave. 0.833/24.8/9.31/10.02 0.757/14.5/36.44/51.64 0.824/23.8/10.36/9.90 0.903/25.3/8.76/8.03 0.935/27.2/6.81/6.37
std. 0.052/1.6/1.78/1.42 0.036/0.7/3.48/6.44 0.057/1.0/0.96/1.46 0.031/1.0/0.87/0.90 0.006/1.4/1.19/0.73

Hand knob area (inside the 14-by-14 grid)

homogenized model primary E-fields DNN(depth 2) DNN(depth 3) DNN(depth 4)

S1 0.695/17.8/19.17/18.44 0.706/14.0/36.94/53.17 0.953/26.2/7.83/7.30 0.977/29.1/5.33/4.87 0.984/30.5/4.61/4.20
S2 0.778/20.6/14.94/15.84 0.757/13.7/39.24/55.46 0.957/29.4/5.62/5.68 0.964/29.8/5.13/5.12 0.974/31.3/4.34/4.44
S3 0.810/20.1/15.23/15.40 0.793/15.3/31.81/44.36 0.946/26.2/8.09/7.62 0.974/28.3/6.18/5.93 0.979/29.6/5.34/5.20
S4 0.799/20.4/14.09/14.29 0.771/15.4/31.64/44.55 0.933/25.3/9.01/8.91 0.963/28.6/5.88/5.90 0.979/31.2/4.20/4.11
S5 0.729/19.8/14.87/15.59 0.690/14.4/35.54/50.40 0.936/26.3/7.27/6.80 0.969/28.9/5.27/4.94 0.977/30.1/4.41/4.30
ave. 0.762/19.7/15.66/15.91 0.744/14.6/35.03/49.59 0.945/26.7/7.56/7.26 0.969/28.9/5.56/5.35 0.979/30.6/4.58/4.45
std. 0.049/1.1/2.01/1.53 0.044/0.7/3.30/5.02 0.010/1.6/1.25/1.18 0.006/0.6/0.45/0.52 0.004/0.7/0.45/0.44

Table 2
Computation times.

models computation time per trial

VCM (multi-grid) 3.034 [s]
DNN (depth 4, CPU) 0.541 [s]
DNN (depth 4, GPU) 0.024 [s]

Fig. 8. Effects of number of subjects for training. The graph shows average and stan-
dard deviation of PSNR and MAE of all (14� 14� 36� 5) testing E-fields estimated by
DNN trained with 5, 10, 15, 20, 25, and 32 subjects' MR brain images.
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Ti. Each value was calculated as the average time consumed for
10,000 trials in TensorFlowwith/without GPU. One trial refers to an
input of one MR image (i.e., the batch size is one) and an output of
one E-field. For reference, the computation time of the VCM was
measured with an Intel(R) Xeon(R) Gold 5120 CPUwith a frequency
of 2.20 GHz� 2 and 98 GBmemory. Note that the computation time
for the VCM does not include the lengthy construction process for
an anatomical human head model which takes a few hours’ or
longer computation. This comparison confirms that the computa-
tion time of the DNN with GPU showed an extreme improvement
over the conventional method.
Number of subjects for training

We tried to change the numbers of subjects for training in
f5;10;15;20;25;32g, and evaluated the constructed DNNswith the
same 5 testing subjects. Fig. 8 shows the average and standard
deviations of PSNR and MAE for all DNNs. There is almost no dif-
ference when the number of subjects exceeds 15. It implies that the
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variation of (72,144,24)-volumes in coil-centric coordinate would
be captured by training with almost 15 subjects, and it supports our
experiments using 32 subjects for training.

Discussion and conclusion

In this study, we first applied deep learning to relate E-fields
computed by volume conductor modeling and medical images. It
was shown that the field distribution can be estimated solely from
T1 MR images, without the need for any physical computation. The
effectiveness of the proposal was demonstrated by comparing the
computed (i.e., by the VCM) and estimated E-fields for stimulating
Broca's area and the hand motor area.

In conventional volume conductor modeling, the most time-
consuming aspect concerns the segmentation and construction of
subject-specific anatomical head models. In the proposed
approach, segmentation is not required once the machine learning
has been conducted. We confirmed that the image of the E-field is
provided in 0.024 s accurately in the area of the maximum E-field.
This is much quicker than a single computation of volume
conductor computation using common software, as well as tissue
segmentation from MR images.

There are commercially available neuronavigation systems that
superpose an empirically estimated E-field on the medical images.
However, this simple estimation does not model the distortion of
the E-field due to individual brain anatomy. While the accuracy of
the proposed DNN approach could still be improved, it can, none-
theless, capture the effect of anatomical features on the E-field
distribution (Figs. 6 and 7, Table 1). The approach could thus pro-
vide more precise determination of stimulated brain areas
compared to simple E-field models [9].

One motivation of this work was to provide the stimulation
parameters (coil angle, injection current, and other such factors) for
optimizing the E-field distribution on the brain in almost real time.
The computation time to estimate the E-field was only 0.024 s for
DNN with a depth of 4, using a conventional workstation with a
GPU. This means simply that 40e50 coil positions can be simulated
per second in real time during neuronavigation. The input data
required for the DNN are the same as for conventional neuro-
navigation, namely, the T1 image and coil position. Therefore, the
approach is very practical and could serve as an add-on for existing
neuronavigation systems.

The approach does, however, suffer from some limitations. The
first limitation is common for all VCMs. The proposed approach only
allows a direct estimation of the E-field distribution, which is the
physical agent of the stimulation, rather than the stimulation itself.
Thus, the estimation is not directly associated with the electro-
stimulation [11]. The biophysical mechanism, including the relative
angle of the E-field and axon [2,9,10,32,33], is not considered
because the E-field is still widely used for estimating the target area.
Another specific limitation of the machine learning approach is the
uncertainty of the results obtained from the outlying inputs (e.g.,
pathological MR images with/without tumors). It might be avoided
by augmenting the training dataset to contain various types of MR
images; however, collecting a large number of real MR images is not
easy and can be time-consuming. Synthetic data augmentation
techniques will be helpful for improving the robustness of outliers
although doing so is not a fundamental solution.

The DNNmodel constructed in this study is specific for one type
of TMS coil. Since the induced E-field distribution differ with
respect to the type of magnetic coil [34], a DNN model constructed
using different coil models/TMS settings cannot be used for esti-
mations by different condition. The differences in DNN models
between different magnetic coils/TMS settings remains to be
solved.
Some degradation of MR image quality or difference of the
characteristics of MR images with respect to scanning devices/
techniques would degrade the estimation of DNN. From a recent
computer vision study [35], a benefit of convolutional neural
network (CNN) structure that CNN itself has noise impedance has
been discussed, and it would support the noise robustness of the
proposed approach since U-Net is a CNN. Moreover, a simple so-
lution of these issue is collecting various MR images scanned by
various devices/techniques/situations. If it is difficult to collect a
large number of MR images, a machine learning technique of
“domain adaptation” [36] would be helpful to solve this issue, and it
is included in future work.

The size of input/output MR/E-field volume was set as
(72 mm� 144 mm� 24mm) in our experiments, and then limi-
tation of deep surface was 24mm, currently. However, the size of
the volume can be easily changed, and extended toward more deep
setting based on target applications.

The proposed DNNmodel outputs the magnitude of the induced
E-field, which is useful for real-time navigated TMS. However, the
model can be modified to output the vector components of the E-
field with a marginal changes. A similar approach can be used for
different applications, such as modeling transcranial direct current
stimulation.
Author declaration

Wewish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its
outcome.

We confirm that the manuscript has been read and approved by
all named authors and that there are no other persons who satisfied
the criteria for authorship but are not listed. We further confirm
that the order of authors listed in the manuscript has been
approved by all of us.

We confirm that we have given due consideration to the pro-
tection of intellectual property associated with this work and that
there are no impediments to publication, including the timing of
publication, with respect to intellectual property. In so doing we
confirm that we have followed the regulations of our institutions
concerning intellectual property.

We further confirm that any aspect of the work covered in this
manuscript that has involved either experimental animals or hu-
man patients has been conducted with the ethical approval of all
relevant bodies and that such approvals are acknowledged within
the manuscript.

We understand that the Corresponding Author is the sole con-
tact for the Editorial process (including Editorial Manager and
direct communications with the office). He/she is responsible for
communicating with the other authors about progress, sub-
missions of revisions and final approval of proofs. We confirm that
we have provided a current, correct email address which is acces-
sible by the Corresponding Author and which has been configured
to accept email from t.yokota@nitech.ac.jp.

List of all authors:

� Tatsuya Yokota (corresponding author)
� Toyohiro Maki
� Tatsuya Nagata
� Takenobu Murakami
� Yoshikazu Ugawa
� Ilkka Laakso
� Akimasa Hirata
� Hidekata Hontani

mailto:t.yokota@nitech.ac.jp


T. Yokota et al. / Brain Stimulation 12 (2019) 1500e1507 1507
Acknowledgments

This study was supported in part by a Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Scientific Research on
Innovative Area (Multidisciplinary Computational Anatomy): JSPS
KAKENHI Grant Number 26108003. The authors would like to
thank Shinta Aonuma and Takashi Sakai for their quick and helpful
assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.brs.2019.06.015.

References

[1] Rossi S, Hallett M, Rossini PM, Pascual-Leone A, of TMS Consensus Group S,
et al. Safety, ethical considerations, and application guidelines for the use of
transcranial magnetic stimulation in clinical practice and research. Clin Neu-
rophysiol 2009;120:2008e39.

[2] Bungert A, Antunes A, Espenhahn S, Thielscher A. Where does TMS stimulate
the motor cortex? Combining electrophysiological measurements and real-
istic field estimates to reveal the affected cortex position. Cerebr Cortex
2016;27:5083e94.

[3] Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the
electric field induced by transcranial magnetic stimulation. Neuroimage
2011;54:234e43.

[4] Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A. How the brain
tissue shapes the electric field induced by transcranial magnetic stimulation.
Neuroimage 2011;58. 849e9.

[5] Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological
observations validate finite element models for estimating subject-specific
electric field distributions induced by transcranial magnetic stimulation of
the human motor cortex. Neuroimage 2013;81:253e64.

[6] Windhoff M, Opitz A, Thielscher A. Electric field calculations in brain stimu-
lation based on finite elements: an optimized processing pipeline for the
generation and usage of accurate individual head models. Hum Brain Mapp
2013;34:923e35.

[7] Laakso I, Hirata A, Ugawa Y. Effects of coil orientation on the electric field
induced by TMS over the hand motor area. Phys Med Biol 2014;59:203e18.

[8] Laakso I, Murakami T, Hirata A, Ugawa Y. Where and what TMS activates:
experiments and modeling. Brain Stimulation: Basic, Translational, and Clin-
ical Research in Neuromodulation 2018;11:166e74.

[9] Opitz N, Zafarb Alexander anad, Bockermannb V, Rohdeb V, Paulus W. Vali-
dating computationally predicted TMS stimulation areas using direct electrical
stimulation in patients with brain tumors near precentral regions. Neuro-
image: Clinic 2014;4:500e7.

[10] Aonuma S, Gomez-Tames J, Laakso I, Hirata A, Takakura T, Tamura M,
Muragaki Y. A high-resolution computational localization method for trans-
cranial magnetic stimulation mapping. Neuroimage 2018;4:85e93.

[11] Laakso I, Hirata A. Fast multigrid-based computation of the induced electric
field for transcranial magnetic stimulation. Phys Med Biol 2012;57:7753e65.

[12] Makarov S, Noetscher G, Raij T, Nummenmaa A. A quasi-static boundary
element approach with fast multipole acceleration for high-resolution bio-
electromagnetic models. In: IEEE transactions on biomedical engineering;
2018.

[13] Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. segmentation
and surface reconstruction. Neuroimage 1999;9:179e94.
[14] Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis: Ii: inflation,
flattening, and a surface-based coordinate system. Neuroimage 1999;9:
195e207.

[15] Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc Natl Acad Sci Unit States Am 2000;97:
11050e5.

[16] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. MIT press
Cambridge; 2016.

[17] Ronneberger O, Fischer P, Brox T, U-net. Convolutional networks for
biomedical image segmentation. In: International conference on medical
image computing and computer-assisted intervention (MICCAI). Springer;
2015. p. 234e41.

[19] Can MK, Laakso I, Nieminen JO, Murakami T, Ugawa Y. Coil model comparison
for cerebellar transcranial magnetic stimulation. Biomedical Physics & Engi-
neering Express 2019;5. 015020.

[20] Hastie T, Tibshirani R. Generalized additive models. Wiley Online Library;
1990.

[21] Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V. Support vector
regression machines. In: Advances in neural information processing systems.
NIPS; 1997. p. 155e61.

[22] Breiman L. Random forests. Mach Learn 2001;45:5e32.
[23] Liaw A, Wiener M, et al. Classification and regression by randomForest.

R News 2002;2:18e22.
[24] Specht DF. A general regression neural network. IEEE Trans Neural Netw

1991;2:568e76.
[25] Çiçek €O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net:

learning dense volumetric segmentation from sparse annotation. In: Inter-
national conference on medical image computing and computer-assisted
intervention (MICCAI). Springer; 2016. p. 424e32.

[26] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International conference on machine
learning; 2015. p. 448e56.

[27] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence
and statistics; 2011. p. 315e23.

[28] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning
and stochastic optimization. J Mach Learn Res 2011;12:2121e59.

[29] Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014.
1412.6980.

[30] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature 1986;323:533e6.

[31] Rossini PM, Burke D, Chen R, Cohen L, Daskalakis Z, Di Iorio R, Di Lazzaro V,
Ferreri F, Fitzgerald P, George M, et al. Non-invasive electrical and magnetic
stimulation of the brain, spinal cord, roots and peripheral nerves: basic
principles and procedures for routine clinical and research application. an
updated report from an i.f.c.n. committee. Clin Neurophysiol 2016;126:
1071e107.

[32] Laakso I, Murakami T, Hirata A, Ugawa Y. Experiments and modelling pinpoint
the cortical activation site of TMS. Brain Stimulation: Basic, Translational, and
Clinical Research in Neuromodulation 2017;10:460e1.

[33] Seo H, Jun SC. Relation between the electric field and activation of cortical
neurons in transcranial electrical stimulation. Brain Stimulation; 2018.

[34] Deng Z-D, Lisanby SH, Peterchev AV. Electric field depthefocality tradeoff in
transcranial magnetic stimulation: simulation comparison of 50 coil designs.
Brain Stimulation 2013;6:1e13.

[35] Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior. In: IEEE conference on
computer vision and pattern recognition; 2018. p. 9446e54.

[36] Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F,
Marchand M, Lempitsky V. Domain-adversarial training of neural networks.
J Mach Learn Res 2016;17:1e35.

https://doi.org/10.1016/j.brs.2019.06.015
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref1
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref1
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref1
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref1
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref1
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref2
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref2
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref2
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref2
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref2
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref3
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref3
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref3
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref3
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref4
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref4
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref4
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref4
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref5
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref5
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref5
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref5
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref5
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref6
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref6
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref6
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref6
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref6
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref7
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref7
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref7
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref8
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref8
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref8
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref8
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref9
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref9
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref9
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref9
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref9
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref10
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref10
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref10
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref10
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref11
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref11
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref11
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref12
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref12
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref12
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref12
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref13
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref13
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref13
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref14
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref14
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref14
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref14
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref15
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref15
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref15
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref15
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref16
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref16
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref17
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref17
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref17
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref17
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref17
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref19
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref19
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref19
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref19
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref20
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref20
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref21
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref21
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref21
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref21
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref22
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref22
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref23
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref23
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref23
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref24
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref24
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref24
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref25
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref26
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref26
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref26
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref26
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref27
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref27
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref27
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref27
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref28
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref28
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref28
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref29
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref29
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref30
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref30
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref30
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref31
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref32
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref32
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref32
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref32
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref33
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref33
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref34
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref34
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref34
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref34
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref34
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref35
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref35
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref35
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref36
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref36
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref36
http://refhub.elsevier.com/S1935-861X(19)30266-9/sref36

	Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks
	Introduction
	Materials and methods
	Methodological design
	Data, computation, and learning
	Leave-five-cases-out validation

	Results
	Validations of the relative positions to the TMS coil
	Target regions
	Comparing computation times
	Number of subjects for training

	Discussion and conclusion
	Author declaration
	Acknowledgments
	Appendix A. Supplementary data
	References


