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Abstract
Diffusion models have shown great promise in
decision-making, also known as diffusion plan-
ning. However, the slow inference speeds limit
their potential for broader real-world applications.
Here, we introduce Habi, a general framework
that transforms powerful but slow diffusion plan-
ning models into fast decision-making models,
which mimics the cognitive process in the brain
that costly goal-directed behavior gradually transi-
tions to efficient habitual behavior with repetitive
practice. Even using a laptop CPU, the habitized
model can achieve an average 800+ Hz decision-
making frequency (faster than previous diffusion
planners by orders of magnitude) on standard of-
fline reinforcement learning benchmarks D4RL,
while maintaining comparable or even higher per-
formance compared to its corresponding diffusion
planner. Our work proposes a fresh perspective
of leveraging powerful diffusion models for real-
world decision-making tasks. We also provide
robust evaluations and analysis, offering insights
from both biological and engineering perspectives
for efficient and effective decision-making.

1. Introduction
The trade-off between computational cost and effectiveness
is a key problem in decision making (Kahneman, 2011;
Sidarus et al., 2019; Clark et al., 2021). In machine learning,
probabilistic generative models have increasingly been used
for planning of the outcome of actions (Ha & Schmidhu-
ber, 2018; Hafner et al., 2019; 2023). Recently, diffusion
models have been used for decision making (Janner et al.,
2021; Ajay et al., 2022; Du et al., 2024), in particular of-
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Figure 1. Performance vs. Frequency. Performance is normal-
ized across MuJoCo, AntMaze, and Kitchen tasks from D4RL.
Decision frequency (Hz) is measured on a laptop CPU (Apple M2,
MacBook). Habitual Inference (HI), a lightweight model generated
by our Habi, achieves an optimal balance between performance
and speed. See Table 1 for more results.

fline reinforcement learning (RL) (Levine et al., 2020; Fu
et al., 2020) by exploiting the generative power of diffusion
models for making plans (trajectory of states). While recent
diffusion model-based decision makers achieve state-of-the-
art performance on standard offline RL benchmarks (Wang
et al., 2023; Lu et al., 2025), the computational cost of dif-
fusion models remains a significant challenge – models like
diffuser and its variants usually take more than 0.1 seconds,
sometimes even more than 1 second, to make a simple deci-
sion using a decent GPU (Janner et al., 2021; Liang et al.,
2023; Lu et al., 2025), which is unacceptable for real-world
applications.

Meanwhile, it has been widely known and researched that
humans and animals can make optimal decisions using lim-
ited energy. In cognitive science and psychology, decision
making is often considered driven together by two kinds of
behaviors (Dolan & Dayan, 2013; Wood & Rünger, 2016): a
slow, deliberate goal-directed one, and a fast, automatic ha-
bitual one. Goal-directed behavior, focuses on careful plan-
ning and precise evaluation of the future outcomes (the pro-
cess also known as System 2 thinking (Kahneman, 2011)),
making it more reliable but time-consuming. In contrast, the
habitual behavior (System 1 thinking (Kahneman, 2011)) se-
lects actions in a model-free manner – without considering
subsequent outcomes, thus computationally-efficient while
could be less reliable.
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Figure 2. An illustrative example of the process of habitization
in playing the Minesweeper game. With practice, one’s decision-
making relies less on deliberate goal-directed planning and more
on context-dependent habitual behavior.

In this study, we are inspired by one of the findings on habits
and goals, known as habit formation, or habitization (Wood
& Rünger, 2016; Han et al., 2024). That is, the brain will
gradually transform slow, deliberate goal-directed behavior
into fast, habitual behavior when repetitively doing a task
(see Figure 2 for an illustrative example).

The key reason behind habitization is the hard need for
a trade-off between efficiency (decision time and energy)
and effectiveness (behavior performance) for animals to
survive. A recent study (Han et al., 2024) proposes a com-
putational framework to model the interaction between the
two behaviors: As many real-world tasks are few-shot or
zero-shot, animals need to utilize their world model to per-
form goal-directed planning to make reliable decisions (Lee
et al., 2014), which is computationally costly. To improve
efficiency, they must meanwhile “extract” the goal-directed
decision strategy to a habitual decision model that straight-
forwardly makes decisions without planning by world mod-
els.

We notice that diffusion planning (Janner et al., 2022; Ajay
et al., 2022) is akin to goal-directed behavior, as both gener-
ate plans in the future before making a decision, and both are
powerful but slow, hampering their real-world usage. Then,
an idea naturally arise: Can we develop a habitization pro-
cess like in the brain to transform slow, effective diffusion
planning into fast, straight-forward habitual behavior?

In this work, we provide a positive answer to this question.
We develop a general framework, referred to as Habi, that
mimics the brain’s habitization process. Inspired by Han
et al. (2024), Habi leverages variational Bayesian principles
(Kingma & Welling, 2014) to connect the slow, yet powerful
diffusion planner’s policy (as posterior) with a fast, habit-
ual policy model (as prior). By maximizing the evidence
lower bound (Kingma & Welling, 2014), the habitual policy
model is trained to take advantage of pretrained diffusion
planners while maintaining high efficiency, mimicking the
habitization process in the brain (Wood & Rünger, 2016).

Habi is featured with the following advantages:

Efficiency: The habitized policy model is lightweighted
and super-fast, providing orders-of-magnitude speedup over
existing diffusion planners (Figure 1).
Effectiveness: The habitized policy can compete with the
state-of-the-art model that are much slower (Figure 1).
Versatility: Habi can be used straightforwardly for any
diffusion planning and diffusion policy models.

We further conduct comprehensive evaluations across var-
ious tasks, offering empirical insights into efficient and
effective decision making.

2. Background
2.1. Offline Reinforcement Learning.

Offline reinforcement learning (RL) (Fujimoto et al., 2019;
Levine et al., 2020) considers the case that an agent learns
from a fixed dataset of previously collected trajectories with-
out interacting with the environment. The objective is to
train a policy that maximizes the expected return, defined
as E

[∑end
h=0 γ

hrt+h

]
, when deployed in the environment.

Here, rt is the immediate reward and γ is the discount
factor (Sutton & Barto, 1998). Offline RL is particularly
relevant in scenarios where exploration is costly, risky, or im-
practical, requiring agents to maximize the utility of existing
data for careful planning. Key challenges include handling
high-dimensional (Levine et al., 2020), long-horizon depen-
dencies and deriving near-optimal policies from potentially
sub-optimal datasets (Fujimoto et al., 2019). These factors
position offline RL as an ideal benchmark for evaluating
advanced decision-making methods. In this work, we evalu-
ate our framework using a standard offline RL benchmark
D4RL (Fu et al., 2020), providing a rigorous and consis-
tent comparison of its decision-making capabilities against
previous baselines.

2.2. Diffusion Models for Decision Making.

Diffusion models have recently demonstrated remarkable
potential in decision-making tasks due to their ability to
model complex distributions. Compared to classical diag-
onal Gaussian policies (Haarnoja et al., 2018; Schulman
et al., 2017; Kostrikov et al., 2021; Kumar et al., 2020), dif-
fusion models have achieved state-of-the-art performance in
both online (Wang et al., 2024a; Yang et al., 2023; Psenka
et al., 2023; Ren et al., 2024) and offline reinforcement learn-
ing (Chen et al., 2023a; Li et al., 2023; Wang et al., 2023;
Hansen-Estruch et al., 2023; Janner et al., 2022), as well as
demonstration learning (Ze et al., 2024; Chi et al., 2023).
There are two main ways diffusion models are applied in
decision-making:

(1) Diffusion planner (Ajay et al., 2022; Janner et al., 2022;
Liang et al., 2023) models a trajectory τ consisting of the
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current and subsequent H steps of states (or state-action
pairs) in a horizon:

τ =
[
st, st+1, · · · , st+H−1

]
or

[
st, st+1, · · · , st+H−1

at, at+1, · · · , at+H−1

]
.

(2) Diffusion policy (Hansen-Estruch et al., 2023; Wang
et al., 2023) leverages diffusion models for direct action dis-
tribution p(at|st) modeling, and can be viewed as modeling
trajectory τ = [st at] with planning horizon H = 1.

Recent research has expanded the applications of diffusion
planning to broader domains, such as vision-based decision-
making (Chi et al., 2023) and integration with 3D visual rep-
resentations (Ze et al., 2024). A recent study (Lu et al., 2025)
provides comprehensive analysis of key design choices, of-
fering practical tips and suggestions for effective diffusion
planning. Our work, Habi, is orthogonal to diffusion plan-
ners or diffusion policies, and can be viewed as an adaptive,
general framework to habitize diffusion planning into effi-
cient, habitual behaviors.

2.3. Auto-Encoding Variational Bayes

Variational Bayesian (VB) approaches in deep learning have
been popular since the introduction of the variational auto-
encoder (VAE) (Kingma & Welling, 2014; Sohn et al., 2015).
The core idea is to maximize the evidence lower bound
(ELBO) of an objective function of a probabilistic variable
x so that we can replace the original distribution with a vari-
ational approximation based on a latent variable z (Alemi
et al., 2017). The ELBO can be written as:

ELBO = Ez∼q(z) logP (x(z))−DKL [q(z)||p(z)] , (1)

where p, q indicates the prior and posterior distributions of
z, respectively. logP (x(z)) is the log-likelihood of cor-
rectly reconstructing data x from z, and DKL denotes Kull-
back–Leibler (KL) divergence (Kullback & Leibler, 1951).

An important property of ELBO is that although the log-
likelihood term in Equation 1 is calculated with posterior
samples q(z), the likelihood over prior distribution p(z)
is also optimized with the KL-divergence term (see Ap-
pendix B). Therefore, it is possible to reconstruct the data x
using prior p(z) and the decoder x(z) after training.

3. Methods
3.1. The Bayesian Behavior Framework

The Bayesian behavior framework (Han et al., 2024) pro-
vides a mathematical model for the interaction between
habitual and goal-directed behaviors. A latent Bayesian
variable z encodes the two behaviors with its prior and pos-

terior distributions, respectively:

habitual action← zprior,

goal-directed action← zpost.

The intuition behind such formation is that posterior distri-
bution in Bayes theory relies on additional information than
the prior. Habitual behavior relies simply on context (current
state), thus encoded as prior; whereas goal-directed behav-
ior is refined by additional evidence (current state + plan
of future states), thus encoded as posterior. The interplay
between two behaviors (including the habitization process)
can be modeled by minimizing a free energy function (Fris-
ton et al., 2006) (mathematically equal to the negative of
ELBO (Kingma & Welling, 2014), also known as the deep
variational information bottleneck (Alemi et al., 2017)):

L = Eq(z) [Recon. loss + RL loss]︸ ︷︷ ︸
Accuracy

+DKL [q(z)||p(z)]︸ ︷︷ ︸
Complexity

,

where q(z) and p(z) denotes the posterior and prior proba-
bilistic density function of z, respectively. Recon. and RL
loss (accuracy) corresponds to learning the state-transition
model and policy improvement, notably over the expec-
tation using posterior z. In the habitization process, the
KL-divergence (complexity) term can be intuitively under-
stood as aligning habitual behavior with the goal-directed
one (Appendix B).

The Bayesian behavior framework was shown to replicate
key experimental findings in cognitive neuroscience (Dolan
& Dayan, 2013; Wood & Rünger, 2016), in an online RL
setting. However, Han et al. (2024) used simple T-maze nav-
igation tasks (O’Keefe & Dostrovsky, 1971; Olton, 1979) to
compare with neuroscience experiments, and their methods
have not been compared with state-of-the-art models from
the machine learning community.

3.2. Habi: A Framework to Habitize Diffusion Planners

Inspired by Han et al. (2024), we aim to solve the efficiency
problems of diffusion planners by developing a framework,
which we call Habi, to convert slow, careful diffusion plan-
ning into fast, habitual actions, while keeping the effective-
ness and the probabilistic nature of policy. Habi consists of
two accordingly stages: (a) Habitization (Training) and (b)
Habitual Inference, as depicted in Figure 3.

Habi aligns the decision spaces of habitual behaviors and
deliberate goal-directed (diffusion model-based) planning.
The habitual and goal-directed behaviors are encoded as
the prior and posterior distributions of a latent probabilistic
variable z, respectively.

As powerful diffusion planner models have already been de-
veloped by existing studies (Lu et al., 2025), we can leverage
the off-the-shelf, pretrained diffusion planning models.
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Figure 3. The diagram of Habi. (a) During the Habitization (Training) stage, Habi learns to reconstruct actions from plans generated
by a diffusion planner, with the decision spaces of habits (prior) and planning (posterior) aligned via KL divergence in the latent space.
Trainable parts include Prior Encoder, Posterior Encoder, Decoder, and Critic. (b) During the Habitual Inference (HI) stage, only the
lightweight prior encoder and latent decoder are required, enabling fast, high-quality habitual behaviors for decision-making.

3.3. Transition from Goal-directed to Habitual Behavior

In this section, we will detail how a behavior policy is
habitized from a given diffusion planner (Figure 3a). In our
Bayesian behavior framework, the Bayesian latent variable
zpt (or zqt , where p denotes prior, and q indicates posterior)
is treated as a random variable following diagonal Gaus-
sian distribution N (µp

t , σ
p
t ) (or N (µq

t , σ
q
t )). The subscript

t denotes the timestep as we consider a Markov decision
process (Bellman, 1957). For simplicity, we will omit the
subscript t for the following formulations.

The prior distribution (µp, σp) is obtained from a mapping
(feedforward network) from state s (Figure 3a):

zp ∼ N (µp, σp)← PriorEncoder(s). (2)

The posterior zq is trained to encode the goal-directed
behavior by auto-encoding the diffusion planner’s action
a∗(Figure 3a).

zq ∼ N (µq, σq)← PosteriorEncoder(s, a∗). (3)

A reconstruction loss Lrecon is introduced (We provide im-
plementation details in Appendix Appendix C.3):

Lrecon =
∥∥Decoder(zq)− a∗

∥∥
2
. (4)

Intuitively, to make habitual behaviors consistent with goal-
directed decisions, the decision spaces of the prior and poste-
rior distributions are aligned under a constraint by Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951):

LKL = DKL

[
q(z|s, a∗)||p(z|s)

]
(5)

= log
σp

σq
+

(σq)2 + (µq − µp)2

2(σp)2
− 1

2
, (6)

where q(z|s, a∗) is the posterior distribution representing
goal-directed behaviors, and p(z|s) is the prior distribution
representing habitual behaviors.

The overall habitization loss is elegantly defined as (which is
the famous (negative of) ELBO with adjusted KL weighting
(Higgins et al., 2017)):

L = Lrecon + βKLLKL, (7)

where βKL is a weighting factor balancing reconstruction ac-
curacy and decision space alignment. βKL may vary greatly
across tasks, and a small βKL may lead to poor alignment,
while a large βKL may result in poor reconstruction (Hig-
gins et al., 2017; Alemi et al., 2017). To enable habitization
with minimal human intervention, Habi used an adaptive
βKL mechanism (Haarnoja et al., 2018; Han et al., 2022)
that dynamically adjusts its value during training:

LβKL = log βKL · (log10 LKL − log10 D
tar
KL), (8)

where Dtar
KL represents the target KL-divergence. This ap-

proach bounds βKL to be in a reasonable range constrained
by Dtar

KL , leading to robust performance across tasks without
requiring manual tuning (4.5).

3.4. Supervising Habitual Behaviors with Critic

Habitual behaviors are fast and efficient but should not be
purely instinct-driven. In the brain, regions like the dorsal
striatum provide feedback to ensure they remain effective
and avoid making mistakes (Kang et al., 2021). Inspired by
this, Habi also introduces a Critic function that evaluates
habitual decisions by considering both the decision latent
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z and the corresponding action a (similar to a Q-function,
Figure 3a). The critic loss is defined as:

Lcritic =
∥∥Critic(zq, a∗)−Q∥∥

2
. (9)

where Q is a scalar, represents the decision quality. In of-
fline reinforcement learning, Q is typically estimated from
offline data and represent as a Q-function (Wang et al.,
2023; Hansen-Estruch et al., 2023), value function (Hansen-
Estruch et al., 2023; Lu et al., 2025), or a classifier (Liang
et al., 2023; Janner et al., 2022). In practice, we use the
pre-trained Q corresponding to its diffusion planner as the
ground truth of our critic function. Note that zq is detached
(gradient stopped) in critic learning.

3.5. Inference with Habitual Behaviors

After habitization training (Figure 3a), we obtained a habit-
ual behavior model, which can be used without planning
(Figure 3b). We refer to it as Habitual Inference (Fig-
ure 3b), which uses the Prior Encoder, Decoder, and Critic
to generate habitual behaviors efficiently. HI samples multi-
ple latents zpi from the prior distribution, decodes them into
corresponding actions ai, and select the best action using
the critic. The process is formalized as:

{zpi }
N
i=1 ∼ N (µp, σp)← PriorEncoder(s) (10)
ai = Decoder(zi) (11)
a = argmax

ai

Critic(zpi , ai). (12)

where N represents the number of sampling candidates. The
Critic evaluates each action ai along with its decision latent
zi, and selects the best action a as the habitual behavior for
inference. In practice, we observe using N = 5 candidates
is sufficient to achieve satisfying performance. Detailed
discussions and ablation studies are provided in Section 4.6.

4. Experimental Results
4.1. Experiment Setup

Benchmarks. We empirically evaluate Habi on a diverse
set of tasks from the D4RL dataset (Fu et al., 2020), one
of the most widely used benchmarks for offline RL. We
test our methods across different types of decision-making
tasks, including locomotion, manipulation, and navigation
(Appendix A).

Baselines. To better compare the performance of Habi
with other state-of-the-art diffusion planners to benchmark
its performance, we include four types of representative
baselines: (1) deterministic policies: BC (vanilla imitation
learning), SRPO (Chen et al., 2024a) (2) diffusion poli-
cies: IDQL (Hansen-Estruch et al., 2023), DQL (Wang
et al., 2023), (3) diffusion planners: Diffuser (Janner et al.,

2022), AdaptDiffuser (Liang et al., 2023), Decision Dif-
fuser (DD) (Ajay et al., 2022), Diffusion Veteran (DV) (Lu
et al., 2025), and (4) recent works on accelerated decision-
making: DiffuserLite (Dong et al., 2024a), DTQL (Chen
et al., 2024b). Considering that different baselines adopt
varying frameworks and may differ in decision-making fre-
quency, we reproduce the relevant baselines (marked with
*) using CleanDiffuser (Dong et al., 2024b), ensuring a fair
and consistent comparison.

Infrastructure All runtime measurements were conducted
on two different computing hardwares: a laptop CPU (Apple
M2 Max) or a server GPU (Nvidia A100). Training was on
Nvidia A100 GPUs.

Reproducibility All the results are calculated over 500
episode seeds for each task to provide a reliable evaluation.
HI’s results are additionally averaged on 5 training seeds to
ensure robustness. Our code is anonymously available at
https://bayesbrain.github.io/.

4.2. Efficient and Effective Decision Making

How does HI compare with related methods in terms of
efficiency and performance? By summarizing the results
from the experiments (Table 1), we find that Habitual In-
ference (HI), could achieve comparable performance of
best diffusion policies or diffusion planners. Notably, HI
even outperforms the strongest decision-making baselines
in certain tasks, suggesting that the habitization process
may potentially help mitigate planning errors and enhance
decision quality. This phenomenon is particularly evident
in tasks requiring precise planning, such as navigation and
manipulation tasks.

Besides the standard performance metrics (the average total
rewards in an online testing episode), real-world decision-
making poses additional requirements on the decision effi-
ciency or frequency. We also conduct a detailed analysis
of the decision frequency across different tasks, hardwares,
and parallelism levels in Table 4 in the Appendix D.1. HI
demonstrates a significant decision speed margin over other
baselines. Figure 4 illustrates the trade-off between perfor-
mance and frequency across different tasks, highlighting
HI’s ability to balance efficiency and effectiveness.

4.3. Comparison with Direct Distillation Methods

How much performance gain can we obtain using Habi
comparing with direct distillation of diffusion planner?
We compare it with standard distillation methods. Specif-
ically, we evaluate (1) HI w/o Critic, which removes the
critic and directly uses the habitual policy without selection
(Figure 3b), and (2) Standard Distillation, which applies
supervised learning to mimic the planner. The results in
Table 2 show that even without the critic, Habi consistently
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Table 1. Performance comparison on the D4RL benchmark. The reported values are Mean ± Standard Error over 500 episode seeds
for robust testing. Frequencies are measured using a CPU (Apple M2 Max, MacBook laptop). Baselines marked with * were reproduced
using CleanDiffuser (Dong et al., 2024b) for consistency. Deterministic policies such as BC, SRPO (Chen et al., 2024a) are theoretically
more efficient, however, their performance remains substantially inferior to probabilistic policies. The best results are highlighted in bold,
while the second-best results are underlined. Action frequency on GPU can be found in Table 4.

Tasks Deterministic Policies Diffusion Policies Diffusion Planners Accelerated Probabilistic Decision-Making
Dataset Environment BC SRPO IDQL* DQL* Diffuser AdaptDiffuser DD DV DL-R1* DL-R2* DTQL HI (Ours)

Medium-Expert HalfCheetah 35.8 92.2 91.3 ± 0.6 96.0 ± 0.0 88.9 ± 0.3 89.6 ± 0.8 90.6 ± 1.3 92.7 ± 0.3 90.6 ± 0.7 88.6 ± 0.7 92.7 ± 0.2 98.0 ± 0.0
Medium-Replay HalfCheetah 38.4 51.4 46.5 ± 0.3 47.8 ± 0.0 37.7 ± 0.5 38.3 ± 0.9 39.3 ± 4.1 45.8 ± 0.1 44.0 ± 0.2 41.8 ± 0.2 50.9 ± 0.1 48.5 ± 0.0

Medium HalfCheetah 36.1 60.4 51.5 ± 0.1 52.3 ± 0.0 42.8 ± 0.3 44.2 ± 0.6 49.1 ± 1.0 50.4 ± 0.0 46.9 ± 0.1 45.9 ± 0.2 57.9 ± 0.1 53.5 ± 0.0
Medium-Expert Hopper 111.9 101.1 110.1 ± 0.7 111.4 ± 0.2 103.3 ± 1.3 111.6 ± 2.0 111.8 ± 1.8 110.0 ± 0.5 111.1 ± 0.2 110.9 ± 0.4 109.3 ± 1.5 92.4 ± 2.0
Medium-Replay Hopper 11.3 101.2 99.4 ± 0.1 102.2 ± 0.0 93.6 ± 0.4 92.2 ± 1.5 100.0 ± 0.7 91.9 ± 0.0 89.7 ± 0.4 94.7 ± 0.4 100.0 ± 0.1 102.0 ± 0.0

Medium Hopper 29.0 95.5 70.1 ± 2.0 102.3 ± 0.0 74.3 ± 1.4 96.6 ± 2.7 79.3 ± 3.6 83.6 ± 1.2 97.4 ± 0.5 95.9 ± 1.0 99.6 ± 0.9 102.5 ± 0.1
Medium-Expert Walker2d 6.4 114 110.6 ± 0.0 111.7 ± 0.0 106.9 ± 0.2 108.2 ± 0.8 108.8 ± 1.7 109.2 ± 0.0 109.2 ± 0.7 108.1 ± 1.0 110.0 ± 0.1 113.0 ± 0.0
Medium-Replay Walker2d 11.8 84.6 89.1 ± 2.4 101.2 ± 0.3 70.6 ± 1.6 84.7 ± 3.1 75.0 ± 4.3 85.0 ± 0.5 85.0 ± 0.6 84.1 ± 0.5 88.5 ± 2.2 102.0 ± 0.0

Medium Walker2d 6.6 84.4 88.1 ± 0.4 90.0 ± 0.5 79.6 ± 0.6 84.4 ± 2.6 82.5 ± 1.4 82.8 ± 0.1 82.3 ± 0.7 83.9 ± 0.7 89.4 ± 0.1 91.3 ± 0.1
Performance 31.9 87.2 84.1 90.5 77.5 83.3 81.8 83.5 84.0 83.8 88.7 89.2

Action Frequency on CPU (Hz) – – 35.9 197.2 0.23 0.23 16.7 7.5 75.5 206.6 142.7 1329.7
Mixed Kitchen 47.5 – 66.5 ± 4.1 55.1 ± 1.58 52.5 ± 2.5 51.8 ± 0.8 75.0 ± 0.0 73.6 ± 0.1 60.5 ± 1.0 52.6 ± 1.0 60.2 ± 0.59 69.8 ± 0.4
Partial Kitchen 33.8 – 66.7 ± 2.5 65.5 ± 1.38 55.7 ± 1.3 55.5 ± 0.4 56.5 ± 5.8 94.0 ± 0.3 43.5 ± 1.6 37.8 ± 1.8 74.4 ± 0.25 94.8 ± 0.6

Performance 40.7 – 66.6 60.3 54.1 53.7 65.8 83.8 52.0 45.2 67.3 82.3
Action Frequency on CPU (Hz) – – 34.4 146.0 0.05 0.06 27.1 2.7 16.5 36.2 97.5 385.7

Diverse Antmaze-Large 0.0 53.6 40.0 ± 11.4 70.6 ± 3.7 27.3 ± 2.4 8.7 ± 2.5 0.0 ± 0.0 80.0 ± 1.8 0.0 ± 0.0 32.6 ± 3.8 54.0 ± 2.2 65.2 ± 2.0
Play Antmaze-Large 0.0 53.6 48.7 ± 4.7 81.3 ± 3.1 17.3 ± 1.9 5.3 ± 3.4 0.0 ± 0.0 76.4 ± 2.0 54.0 ± 4.0 71.3 ± 3.6 52.0 ± 2.2 81.7 ± 1.7

Diverse Antmaze-Medium 0.0 75.0 83.3 ± 5.0 82.6 ± 3.0 2.0 ± 1.6 6.0 ± 3.3 4.0 ± 2.8 87.4 ± 1.6 85.33 ± 2.8 86.6 ± 2.7 82.2 ± 1.7 88.8 ± 1.4
Play Antmaze-Medium 0.0 80.7 67.3 ± 5.7 87.3 ± 2.7 6.7 ± 5.7 12.0 ± 7.5 8.0 ± 4.3 89.0 ± 1.6 79.3 ± 3.3 78.0 ± 3.3 79.6 ± 1.8 85.3 ± 1.5

Performance 0.0 65.7 59.8 80.5 13.3 8.0 3.0 83.2 54.7 67.1 67.0 80.3
Action Frequency on CPU (Hz) – – 34.2 198.6 0.03 0.03 11.8 0.7 15.7 35.2 138.6 908.3

Large Maze2D 5.0 – 167.4 ± 5.3 186.8 ± 1.7 123 167.9 ± 5.0 – 203.6 ± 1.4 103.3 ± 7.2 50.1 ± 6.8 – 199.2 ± 2.0
Medium Maze2D 30.3 – 133.9 ± 3.0 152.0 ± 0.8 121.5 129.9 ± 4.6 – 150.7 ± 1.0 52.1 ± 5.6 106.9 ± 7.4 – 150.1 ± 1.5
Umaze Maze2D 3.8 – 119.6 ± 4.1 140.6 ± 1.0 113.9 135.1 ± 5.8 – 136.6 ± 1.3 36.4 ± 7.0 125.0 ± 6.9 – 144.3 ± 1.7

Performance 13.0 – 140.3 159.8 119.5 144.3 – 163.6 63.9 94.0 – 164.5
Action Frequency on CPU (Hz) – – 33.9 215.8 0.03 0.03 – 2.8 16.4 38.5 – 1532.6

MuJoCo Franka Kitchen Antmaze Maze2d

Figure 4. Visualized results of Table 1. HI consistently performs in parallel with best models while being highly efficient.

outperforms standard distillation across all tasks.

This demonstrates that HI itself contributes to effective
decision-making beyond simple imitation. While the critic
further refines decision quality, the strong performance of
HI w/o Critic confirms that Habi is not merely replicating
planner behavior but instead leveraging the habitization pro-
cess to learn an efficient and robust decision policy.

4.4. Visualizing Prior and Posterior Policy Distributions

To investigate whether Habi can reasonably align habitual
and goal-directed decision spaces we conduct a case study
by visualing the action distributions of the Habitual Infer-
ence (HI) policy and its corresponding diffusion-based plan-
ner in the Maze2D environment, where the two-dimensional
action space allows for a clear comparison. Figure 5 visual-
izes the action distributions of Diffusion Veteran (DV) (Lu
et al., 2025), a state-of-the-art diffusion planner, and its cor-
responding habitual inference policy generated using our
framework Habi.

We find that despite the fundamental differences in infer-
ence mechanisms, the action distributions of HI remain well-
aligned with those of DV across different states. The action
distributions exhibit strong structural consistency, with HI
capturing both the variability and intent of the planner’s ac-
tions. Notably, HI produces more concentrated distributions.
This may reflect its ability to commit to high-confidence
decisions without iterative refinement.

4.5. Robustness of Adaptive KL-Divergence Weighting

We used adaptive βKL (Equation 8) in habitization learn-
ing for all tasks. Then a natural question is: how about
manually tuning βKL on each task? We evaluate the ef-
fectiveness of our proposed adaptive βKL. As shown in
Figure 6, fixed βKL tuning requires extensive grid search,
and its performance is highly sensitive to the choice of
βKL. A suboptimal βKL can lead to either poor alignment
(when too small) or degraded reconstruction quality (when
too large). This issue is especially pronounced in complex
tasks like AntMaze and Franka Kitchen, where improper
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Figure 5. Action distributions of Diffusion Planner (DV) and Habitual Inference (HI). Visualization of the action distributions from
a state-of-the-art diffusion planner (DV, 2.8Hz, top) (Lu et al., 2025) and its corresponding Habitual Inference policy (HI, 1532.6Hz,
middle) generated by our Habi framework. Here, HI shows a probabilistic generation capacity while roughly aligning with the action
distribution from the diffusion planner (DV). More examples are deferred to Appendix D.4.

MuJoCo Franka Kitchen Antmaze Maze2d

Figure 6. Performance Comparison of Searching βKL and our Adaptive βKL Mechanism. Fixed βKL requires grid search for each
task to achieve peak performance, while our adaptive βKL achieves comparable performance without task-specific tuning, as shown by
the consistent red dashed line across all tasks.

weighting significantly degrades performance.

In contrast, our adaptive βKL mechanism consistently
achieves almost optimal performance across all tasks with-
out requiring task-specific tuning. By dynamically adjusting
βKL during training, it effectively balances decision space
alignment and reconstruction accuracy in an automated man-
ner. This not only simplifies training but also ensures ro-
bustness across diverse environments. The consistent per-
formance of adaptive βKL (red dashed line) highlights its
reliability in achieving strong results without extensive hy-
perparameter tuning, making Habi potentially more scalable
and adaptable across diverse tasks with minimal human
intervention.

4.6. Importance of Action Selection with Sampling

We introduced action selection with sampling in HI (Fig-
ure 3b), where more numbers of candidates will bring more
computational cost. Here we examine the necessity of this
design choice and the proper number of candidates. As

shown in Figure 7, selecting from multiple candidates con-
sistently improves decision quality across various tasks,
confirming the benefit of leveraging the Critic for filter-
ing. Interestingly, we observe that using a single candidate
(N = 1) already achieves competitive results in some envi-
ronments, demonstrating that Habi can function effectively
even in an ultra-lightweight setting. However, without can-
didate selection, the policy loses the ability to refine habitual
decisions, leading to suboptimal outcomes in more complex
tasks like AntMaze and Maze2D. A moderate number of
candidates (e.g., N = 5) provides a good balance, achiev-
ing near-optimal performance with minimal computational
overhead.

5. Related work
Accelerating Diffusion Decision Making Diffusion mod-
els have been widely applied to decision-making tasks, in-
cluding offline RL, online RL, and imitation learning. How-
ever, their slow inference speed remains a significant bot-
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Table 2. Comparison with alternative approaches. We compare
HI with (1) HI without critic-based selection; and (2) standard
distillation, which directly applies supervised learning to distill the
corresponding diffusion planner.

Tasks Methods
Dataset Environment HI (Ours) HI w/o Critic Direct Distill

Med-Exp HalfCheetah 98.0 ± 0.0 96.9 ± 0.1 97.1 ± 0.1
Med-Rep HalfCheetah 48.5 ± 0.0 47.0 ± 0.0 46.7 ± 0.1
Medium HalfCheetah 53.5 ± 0.0 51.2 ± 0.0 51.2 ± 0.1
Med-Exp Hopper 92.4 ± 2.0 85.9 ± 2.0 61.1 ± 1.5
Med-Rep Hopper 102.0 ± 0.0 101.8 ± 0.0 101.4 ± 0.2
Medium Hopper 102.5 ± 0.1 98.5 ± 1.1 102.2 ± 0.0
Med-Exp Walker2d 113.0 ± 0.0 112.5 ± 0.0 112.2 ± 0.0
Med-Rep Walker2d 102.0 ± 0.0 101.9 ± 0.2 101.0 ± 0.0
Medium Walker2d 91.3 ± 0.1 91.4 ± 0.3 91.9 ± 0.1

Performance 89.2 87.5 (-2.0%) 85.0 (-4.9%)
Mixed Kitchen 69.8 ± 0.4 66.6 ± 0.4 69.1 ± 0.4
Partial Kitchen 94.8 ± 0.6 94.2 ± 0.6 64.8 ± 0.8

Performance 82.3 80.4 (-2.3%) 67.0 (-19.1%)
Diverse Antmaze-Large 65.2 ± 2.0 3.8 ± 0.8 72.0 ± 1.6

Play Antmaze-Large 81.7 ± 1.7 77.8 ± 1.8 52.0 ± 1.6
Diverse Antmaze-Medium 88.8 ± 1.4 92.1 ± 1.1 44.0 ± 1.5

Play Antmaze-Medium 85.3 ± 1.5 88.0 ± 1.4 76.0 ± 1.2
Performance 80.3 65.4 (-18.5%) 61.0 (-29.4%)

Large Maze2D 199.2 ± 2.0 201.8 ± 1.9 198.9 ± 1.8
Medium Maze2D 150.1 ± 1.5 143.9 ± 1.6 143.0 ± 1.7
Umaze Maze2D 144.3 ± 1.7 138.3 ± 1.8 137.7 ± 1.8

Performance 164.5 161.3 (-1.9%) 159.9 (-2.9%)

tleneck, limiting their broader applicability in real-world
scenarios. A primary approach to mitigating this issue in-
volves specialized diffusion solvers (Song et al., 2020; Lu
et al., 2022) to reduce sampling steps, while varying degrees
of performance degradation remain unavoidable. More re-
cently, distillation-based approaches (Poole et al., 2023;
Wang et al., 2024b) have been proposed to enable one-step
generation in diffusion models. However, directly applying
these techniques to decision-making may lead to suboptimal
performance (Chen et al., 2024b;a).

To achieve both effective and efficient decision-making,
ODE reflow-based numerical distillation has been intro-
duced as a promising direction (Dong et al., 2024a). Mean-
while, recent studies also explore joint training of a diffusion
model and a single-step policy, using the latter for deploy-
ment while maintaining state-of-the-art performance (Chen
et al., 2024b). These works serve as important baselines for
our comparison.

Variational Bayes in RL Variational Bayesian (VB) meth-
ods have been incorporated into RL research for several pur-
poses. A popular usage is exploiting the generative capacity
of VAE and its recurrent versions (Chung et al., 2015) for
constructing the world model (Ha & Schmidhuber, 2018;
Hafner et al., 2018; 2023). VB methods are also used to
extract useful representation of environmental states from
raw observations by modeling the state transitions (Igl et al.,
2018; Han et al., 2020; Ni et al., 2024). The acquired rep-
resentation is then used for the original RL task, i.e. max-
imizing rewards. Also, VB principles can help to design

MuJoCo Franka Kitchen

Antmaze Maze2d

Figure 7. Effect of the number of sampling candidates on per-
formance. Increasing the number of candidates N improves per-
formance initially, but excessive candidates (N ≥ 50) lead to
diminishing returns or slight degradation. A moderate choice (e.g.,
N = 5) provides a good balance between performance and effi-
ciency. Note that N = 1 is the case without critic-based selection.

RL objective functions (Levine, 2018; Fellows et al., 2019;
Guan et al., 2024). Other usages include using the predic-
tion error to compute curiosity-driven reward to encourage
exploration (Yin et al., 2021). Moreover, Han et al. (2022;
2024) demonstrated that ELBO can connect two policies in
online RL, with the one easier to learn as posterior, and the
prior could be used for inference, which inspires our study.
However, Habi focuses on offline RL, and we are the first
to show such an ELBO can result in tremendous speedup
without significant performance degradation.

6. Conclusion
In this work, we introduce Habi, a general framework
that habitizes diffusion planning, transforming slow, goal-
directed decision-making processes into efficient, habitual
behaviors. Through comprehensive evaluations on standard
offline RL benchmarks, we demonstrate that Habi achieves
orders-of-magnitude speedup while maintaining or even sur-
passing the performance of state-of-the-art diffusion-based
decision-making approaches.

Looking forward, Habi demonstrates potential for real-time,
high-speed decision-making in real-world environments,
making it a promising approach for applications in em-
bodied AI and other real-world decision-making problems.
Nevertheless, our work has limitations. We have focused on
state (proprioception)-based decision-making tasks using
offline datasets. Future directions include extending Habi
to online RL, investigating its generalization to broader
domains such as vision-based tasks (Du et al., 2024; Chi
et al., 2023), examining its effectiveness in real-world tasks,
as well as combining with orthogonal techniques such as
ensemble approaches (An et al., 2021; Yang et al., 2022).
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Impact Statement
This work contributes to technical advancements in ma-
chine learning by proposing an efficient decision-making
framework. It does not introduce unique ethical concerns
beyond standard considerations in algorithmic development
and deployment.
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A. Benchmarking Tasks
As shown in Figure 8, we consider a diverse set of benchmarking tasks to evaluate the performance of Habi. These tasks are
designed to encompass a wide range of evaluation metrics, including locomotion tasks that emphasize short-term planning,
robotic arm tasks requiring long-term strategic planning, and navigation tasks focused on path planning. We provide a
detailed description of each task below.

Franka Kitchen Maze2DAntmaze

MuJoCo Walker2D MuJoCo HalfCheetah MuJoCo Hopper

Figure 8. Rendering of the benchmarking tasks considered in this study. The tasks encompass a diverse set of evaluation metrics,
including locomotion tasks that emphasize short-term planning, robotic arm tasks requiring long-term strategic planning, and navigation
tasks focused on path planning.

MuJoCo Locomotion The MuJoCo Locomotion task is a standard benchmarking task in reinforcement learning that
requires the agent to control a simulated robot to navigate through a complex environment. The task is designed to evaluate
the agent’s ability to perform locomotion tasks that require short-term planning.

Franka Kitchen The Kitchen task is a robotic arm manipulation task that requires the agent to manipulate objects in
a kitchen environment. The task is designed to evaluate the agent’s ability to perform long-term strategic planning and
manipulation tasks.

AntMaze The AntMaze task is a combination of locomotion and planning tasks that require the agent to navigate through
a maze environment. The variations of this environment can be initialized with different maze configurations and increasing
levels of complexity. The task is designed to evaluate the agent’s ability to perform locomotion tasks while incorporating
planning strategies.

Maze2D The Maze2D task is a pure navigation task that requires the agent to navigate through a 2D maze environment.
The variations of this environment can be initialized with different maze configurations and increasing levels of complexity.
These tasks are used to test planning capabilities in environments where spatial reasoning is critical.

B. Property of ELBO
While the ELBO (Equation 1) optimizes the log-likelihood of reconstruction data, Ez∼q(z) logP (x(z)), based on the
exception over posterior distribution of z, the likelihood over the expectation of prior distribution, Ez∼p(z)P (x(z)), is also
being optimized. Equivalently, we need to show that the ELBO is indeed a lower bound on logEz∼p(z)P (x|z):

Ez∼q(z) logP (x|z)−DKL [q(z)||p(z)] ≤ logEz∼p(z)P (x|z). (13)

We start with the definition of the marginal likelihood:

logEz∼p(z)P (x) = log

∫
p(x, z)dz = log

∫
p(x|z)p(z)dz. (14)

Introducing a variational distribution q(z), we rewrite this using importance sampling:

logEz∼p(z)P (x) = log

∫
q(z)

p(x|z)p(z)
q(z)

dz. (15)

12



Habitizing Diffusion Planning for Efficient and Effective Decision Making

Applying Jensen’s inequality (since log is concave), we obtain:

logEz∼p(z)P (x) ≥
∫

q(z) log
p(x|z)p(z)

q(z)
dz. (16)

Rewriting the right-hand side:

Ez∼q(z) log p(x|z) + Ez∼q(z) log
p(z)

q(z)
. (17)

Recognizing the second term as the negative Kullback-Leibler (KL) divergence:

Ez∼q(z) log p(x|z)−DKL(q(z)||p(z)). (18)

Since the KL divergence is always non-negative, we conclude that:

Ez∼q(z) log p(x|z)−DKL(q(z)||p(z)) ≤ logEz∼p(z)P (x). (19)

Thus, the ELBO is a valid lower bound on logP (x). This ensures that our ELBO-like objective function (Equation 7)
improves habitual (prior) policy.

C. Implementation Details
In this section, we provide additional implementation details of Habi, including the network architecture and hyperparameters
used in all experiments.

C.1. Network Architecture

As demonstrated in Figure 3, the Habi pipeline consists of four main components: (1) Prior Encoder, (2) Posterior Encoder,
(3) Decoder, and (4) Critic. All these modules can be implemented with a lightweight multiple-layer perceptrons (MLP) and
trained using standard backpropagation during the Habitization stage. We provide detailed descriptions of each component
below.

Prior Encoder The Prior Encoder is required to encode the state into the prior latent zp for generating habitual behaviors.
In Habi, it is implemented with a multiple-layer perceptron (MLP), that only takes the current state s as input and outputs
the mean µp and standard deviation σp of the prior latent zp ∼ N (µp, σ):

µp = MLP(st)

ξp = MLP(st)

σp = softplus(ξp) + ϵ,

(20)

where ϵ is a small constant to ensure numerical stability (ϵ = 0.01 in our work).

Posterior Encoder The Posterior Encoder is responsible for encoding the state-action pair (s, a) into the posterior latent
zq for generating goal-directed behaviors. It is implemented similarly to the Prior Encoder, with the only difference being
that it takes the state-action pair as input:

µq = MLP(st, a
∗)

ξq = MLP(st, a
∗)

σq = softplus(ξq) + ϵ.

(21)

Decoder The Decoder is responsible for decoding the decision latent z into an action a. In Habi, the Decoder is implemented
as a simple MLP that takes the latent z as input and outputs the action a:

a = MLP(z). (22)
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Critic The Critic is used to evaluate the quality of habitual behaviors generated by the Decoder. In Habi, the Critic
is implemented as a simple MLP that takes the decision latent z and the action a as input and outputs a scalar value Q
representing the decision quality:

Q = MLP(z, a). (23)

In all experiments of this work, these components are consistently implemneted as a lightweight three-layer MLP with
hidden dimension of 256, as is shown in Table 3. The Direct Distill baseline uses the same architecture as Habi but performs
imitation learning directly on state-action pairs provided by diffusion planners.

C.2. Full Hyperparameters

We provide the consistent hyperparameters used in all experiments in Table 3.

Table 3. Hyperparameters in our experiments.

Settings Value
Optimizer Adam
Learning Rate 3e-4
Gradient Steps 1000000
Batch Size 256
Latent Dimension: Dim(z) 256
MLP Hidden Size (Encoder & Decoder) 256
MLP Hidden Layers (Encoder & Decoder) 2
Habitization Target (Locomotion Related) DQL (Wang et al., 2023) (MuJoCo, Antmaze)
Habitization Target (Planning Related) DV (Lu et al., 2025) (Kitchen, Maze2D)
Target KL-divergence Dtar

KL 1.0
Number of Sampling Candidates in Habitization training 50
Number of Sampling Candidates in Habitual Inference 5

C.3. Policy and Critic Training Details

To provide further details on the loss functions introduced in Section 3.3 and Section 3.4, we elaborate on the reconstruction
loss (Equation (4)) and the critic training loss (Equation (9)) in this section.

Policy Training. Most state-of-the-art diffusion model-based policy models generate actions by sampling a batch of
candidate actions and selecting the best one for decision-searching, recent studies (Wang et al., 2023; Dong et al., 2024b;
Lu et al., 2025) also have validated its effectiveness. In Habi, we aim to learn a policy that directly habitize their final
decisions. Specifically, the reconstruction loss optimizes the decoder to recover the planner’s selected action:

Lrecon =
∥∥Decoder(zq)− a∗

∥∥
2
, (24)

where a∗ is the best action chosen by the planner from the candidate batch. This helps the habitual policy focus on habitizing
high-quality decision-making rather than reproducing the full distribution of candidate actions, ensuring efficient and reliable
behavior generation.

Critic Training. Unlike the policy, which only needs to learn the planner’s final decision, the critic benefits from exposure
to both optimal and suboptimal plans. A robust critic should distinguish between high- and low-quality decisions, enabling
more effective filtering of habitual actions during inference. To achieve this, we train the critic using the whole batch of
candidate actions. Formally, the critic loss is given by:

Lcritic =
1

N

N∑
i

∥∥Critic(zq, a∗i )−Qi

∥∥
2
, (25)
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where a∗i also includes suboptimal actions that were not selected by the planner, and Qi is the corresponding value given by
the pretrained value function of the diffusion planners (Wang et al., 2023; Lu et al., 2025). This exposure to diverse plans
allows the critic to generalize better and maintain robustness in habitual decision-making.

D. Extensive Experimental Results
D.1. Decision Frequency Evaluation across Different Devices

We evaluate the decision frequency of our methods across tasks, devices, and levels of parallelism (Table 4). On a PC laptop
(Apple M2 Max CPU), HI consistently achieves the highest decision frequency, significantly outperforming diffusion policies
(IDQL, DQL) and diffusion planners (Diffuser, AdaptDiffuser, DD, DV). Compared with other accelerated probabilistic
decison-making methods, HI demonstrates a consistent advantage in decision frequency across all tasks.

On a server with an Nvidia A100 GPU, HI maintains its advantage of high decision frequency. At 10 and 20 parallel
environments, it leads in Franka Kitchen, Antmaze, and Maze2D. In MuJoCo with 10 environments, DTQL achieves a
slightly higher frequency, but HI remains competitive while being significantly faster than diffusion-based methods.

The results demonstrate that HI is capable of making decisions at a high frequency across different tasks, devices, and levels
of parallelism, making it a suitable choice for real-time decision-making applications.

Table 4. Decision-making frequency across tasks, devices and parallelism levels. Frequency reflects the number of actions (or action
batches) generated per second using either a PC laptop (CPU@Apple M2 Max) or a Linux server (GPU@Nvidia A100) under varying
levels of parallelism. The best results are highlighted in bold.

Task Device Parallel Envs IDQL* DQL* Diffuser AdaptDiffuser DD DV DL-R1* DL-R2* DTQL HI (Ours)
PC (CPU) 1 35.9 197.2 0.2 0.2 16.7 7.5 75.5 206.6 142.7 1329.7

Server (GPU) 10 110.9 135.4 3.1 3.1 22.9 18.0 49.4 109.2 318.8 308.4MuJoCo
Server (GPU) 20 86.5 108.1 3.0 3.0 22.4 19.8 48.4 104.2 223.7 281.3

PC (CPU) 1 34.4 146.0 0.1 0.1 27.1 2.7 16.5 36.2 97.5 385.7
Server (GPU) 10 78.4 92.9 2.3 2.4 22.1 7.8 27.2 51.0 143.6 147.3Franka Kitchen
Server (GPU) 20 64.2 85.2 2.2 2.2 21.5 4.2 24.0 36.3 113.0 137.3

PC (CPU) 1 34.2 198.6 0.03 0.03 11.8 0.7 15.7 35.2 138.6 908.3
Server (GPU) 10 102.3 127.6 2.5 2.3 24.3 2.0 29.8 58.0 241.4 261.4Antmaze
Server (GPU) 20 80.1 100.1 1.5 1.5 24.2 1.0 24.9 50.8 196.3 251.5

PC (CPU) 1 33.9 215.8 0.03 0.03 – 2.8 16.4 38.5 – 1532.6
Server (GPU) 10 126.4 151.9 2.7 2.6 – 8.3 30.3 62.5 – 388.4Maze2D
Server (GPU) 20 90.8 140.8 1.5 1.5 – 4.4 24.8 52.6 – 376.0

D.2. Impact of Number of Candidates

To further analyze the role of candidate selection, we provide additional results in Table 6, extending our discussion from the
main text. The results confirm that selecting from multiple candidates consistently improves decision quality across various
tasks. Even with a single candidate (N = 1), HI remains competitive, reinforcing its efficiency in lightweight settings.
However, increasing N enables further refinement, particularly benefiting complex tasks such as AntMaze and Maze2D,
where decision quality is more sensitive to suboptimal habitual actions.

We also observe diminishing returns beyond a moderate number of candidates. While larger N improves performance,
gains plateau after N = 5 in most environments, suggesting that a small candidate pool is sufficient for near-optimal
decision-making. This balance allows HI to achieve high efficiency without excessive computational overhead, making it
adaptable across different settings.

D.3. Additional comparison results

We also provide additional comparisons with accelerated generative decision-making methods, including flow-based (Zhang
et al., 2024; Dong et al., 2024a), consistency-based methods (Chen et al., 2023b) on shared tasks according to the original
papers. As shown in Table 5, our method (HI) achieves consistently strong performance across a range of MuJoCo
environments. These results highlight the effectiveness of our approach in balancing planning quality and efficiency across
diverse offline settings. However, we do not want to convey the message that Habi is better than flow-based method. Indeed,
they are orthogonal and can be combined (Kingma et al., 2016) for future work.
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Table 5. Additional comparison results on tasks of MuJoCo

Environment HI (Ours) FTB CPIQL CPQL
HalfCheetah-ME 98.0 ± 0.0 85.2 ± 0.7 81.0 ± 1.7 97.8 ± 0.5
HalfCheetah-MR 48.5 ± 0.0 38.4 ± 1.3 48.0 ± 1.4 46.6 ± 0.8
HalfCheetah-M 53.5 ± 0.0 - 54.6 ± 1.0 56.9 ± 0.9
Hopper-ME 92.4 ± 2.0 111.1 ± 2.0 110.6 ± 1.4 110.4 ± 3.2
Hopper-MR 102.0 ± 0.0 89.6 ± 4.9 100.6 ± 1.5 97.7 ± 4.6
Hopper-M 102.5 ± 0.1 - 99.7 ± 2.0 99.9 ± 4.5
Walker-ME 113.0 ± 0.0 109.3 ± 0.3 110.9 ± 0.2 110.9 ± 0.1
Walker-MR 102.0 ± 0.0 79.1 ± 1.4 91.8 ± 2.8 93.6 ± 5.6
Walker-M 91.3 ± 0.1 - 86.2 ± 0.6 82.1 ± 2.4
Tasks Average 89.2 - 87.0 88.4
Shared Tasks Average 92.7 85.5 90.5 92.8

Table 6. Sweeping Number of Sampling Candidates. This table presents the impact of critic selection and varying the number of
candidates N on performance across different datasets and environments. The reported values are Mean ± Standard Error over 5 training
seeds × 500 episode seeds.

Tasks Number of Candidates
Dataset Environment N = 1 N = 2 N = 5 N = 10 N = 20 N = 50 N = 100

Medium-Expert HalfCheetah 96.9 ± 0.1 97.5 ± 0.1 98.0 ± 0.0 98.3 ± 0.0 98.5 ± 0.0 98.6 ± 0.1 98.7 ± 0.1
Medium-Replay HalfCheetah 47.0 ± 0.0 47.9 ± 0.0 48.5 ± 0.0 48.7 ± 0.0 48.9 ± 0.0 48.9 ± 0.0 49.0 ± 0.0

Medium HalfCheetah 51.2 ± 0.0 52.4 ± 0.0 53.5 ± 0.0 54.2 ± 0.0 54.8 ± 0.0 55.4 ± 0.0 55.8 ± 0.0
Medium-Expert Hopper 85.9 ± 2.0 92.7 ± 1.9 92.4 ± 2.0 88.6 ± 2.0 83.1 ± 2.0 77.7 ± 1.9 74.0 ± 1.7
Medium-Replay Hopper 101.8 ± 0.0 101.9 ± 0.0 102.0 ± 0.0 102.0 ± 0.0 102.0 ± 0.0 102.0 ± 0.0 102.0 ± 0.0

Medium Hopper 98.5 ± 1.1 100.2 ± 0.8 102.5 ± 0.1 102.7 ± 0.1 102.9 ± 0.0 102.6 ± 0.2 102.7 ± 0.2
Medium-Expert Walker2d 112.5 ± 0.0 112.7 ± 0.0 113.0 ± 0.0 113.1 ± 0.0 113.2 ± 0.0 113.4 ± 0.0 113.5 ± 0.0
Medium-Replay Walker2d 101.9 ± 0.2 102.0 ± 0.0 102.0 ± 0.0 101.9 ± 0.0 101.7 ± 0.0 101.5 ± 0.0 101.5 ± 0.0

Medium Walker2d 91.4 ± 0.3 91.8 ± 0.2 91.3 ± 0.1 91.1 ± 0.1 91.0 ± 0.1 90.6 ± 0.3 90.3 ± 0.4
Performance 87.5 88.8 89.2 89.0 88.5 87.9 87.5

Mixed Kitchen 66.6 ± 0.4 68.4 ± 0.4 69.8 ± 0.4 70.4 ± 0.4 70.6 ± 0.3 70.2 ± 0.4 70.3 ± 0.4
Partial Kitchen 94.2 ± 0.6 95.5 ± 0.6 94.8 ± 0.6 94.2 ± 0.6 93.8 ± 0.6 93.2 ± 0.6 92.8 ± 0.6

Performance 80.4 82.0 82.3 82.3 82.2 81.7 81.6
Diverse Antmaze-Large 3.8 ± 0.8 42.3 ± 2.1 65.2 ± 2.0 70.0 ± 2.0 72.9 ± 1.9 71.7 ± 2.0 71.3 ± 2.0

Play Antmaze-Large 77.8 ± 1.8 82.4 ± 1.7 81.7 ± 1.7 81.0 ± 1.7 80.4 ± 1.7 77.8 ± 1.8 73.4 ± 1.9
Diverse Antmaze-Medium 92.1 ± 1.1 92.4 ± 1.1 88.8 ± 1.4 83.8 ± 1.6 78.8 ± 1.8 71.0 ± 2.0 64.7 ± 2.1

Play Antmaze-Medium 88.0 ± 1.4 87.3 ± 1.5 85.3 ± 1.5 84.0 ± 1.6 84.2 ± 1.6 84.6 ± 1.6 82.3 ± 1.7
Performance 65.4 76.1 80.3 79.7 79.1 76.3 72.9

Large Maze2D 201.8 ± 1.9 203.5 ± 1.8 199.2 ± 2.0 194.3 ± 2.1 193.2 ± 2.1 187.7 ± 2.3 183.9 ± 2.4
Medium Maze2D 143.9 ± 1.6 149.1 ± 1.5 150.1 ± 1.5 149.8 ± 1.5 148.4 ± 1.6 149.0 ± 1.6 146.4 ± 1.7
Umaze Maze2D 138.3 ± 1.8 141.5 ± 1.7 144.3 ± 1.7 146.2 ± 1.7 143.5 ± 1.7 144.5 ± 1.6 145.0 ± 1.7

Performance 161.3 164.7 164.5 163.4 161.7 160.4 158.4
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D.4. Visualizations of Habitual and Goal-Directed Policy Distributions
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Figure 9. Action distribution visualization on Kitchen, plotted the same way as Figure 5. The actions are dimension-reduced by PCA.
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Figure 10. Another example of action distribution visualization on Kitchen, plotted the same way as Figure 5. The actions are dimension-
reduced by PCA.
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Figure 11. Action distribution visualization on AntMaze, plotted the same way as Figure 5. The actions are dimension-reduced by PCA.
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Figure 12. Action distribution visualization on MuJoCo, plotted the same way as Figure 5. The actions are dimension-reduced by PCA.
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Figure 13. Another example of action distribution visualization on Maze2D, plotted the same way as Figure 5.
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