
Latent Space Simulator for Unveiling Molecular Free
Energy Landscapes and Predicting Transition

Dynamics

Anonymous Author(s)
Affiliation
Address
email

Abstract

Free Energy Surfaces (FES) and metastable transition rates are key elements in1

understanding the behaviour of molecules within a system. However, the typi-2

cal approaches require computing force-fields across billions of time-steps in a3

molecular dynamics (MD) simulation, which is often considered intractable when4

dealing with large systems or databases. In this work we propose LAMODY, a5

latent-space MD simulator to effectively tackle the intractability with around 20-6

fold speed improvements compared to classical MD’s. The model leverages a7

chirality aware SE(3)-invariant encoder-decoder architecture to generate a latent8

space, coupled with a recurrent neural network to run the time-wise dynamics. We9

show that LAMODY effectively recovers realistic trajectories and FES more accu-10

rately and faster than existing methods, while capturing their major dynamical and11

conformational properties. Furthermore, the proposed approach can generalize to12

molecules outside the training distribution.13

1 Introduction14

Fundamental quantities of interest towards understand-

Figure 1: Free Energy Surface (FES) with
minima corresponding to different confor-
mations and an example MD trajectory as
dotted arrow.

15

ing a molecule’s dynamics and properties are its Free16

Energy Surface (FES) and metastable states, along-17

side its transition rates between metastable states. Ac-18

cessing them enables many real-world applications in19

drug discovery or material sciences (Peng et al., 2014;20

Bochevarov et al., 2013). Each 3D conformation of a21

molecule is associated with a potential energy that de-22

termines its probability of occurring (via a Boltzmann23

distribution).24

The FES is a lower-dimensional representation of this25

energy landscape, providing insights into stable states26

(energy minima), transition pathways, and free energy27

differences. Additionally, a molecule’s kinetics are of28

interest, such as the transition rates between metastable29

states/modes of the Boltzmann distribution.30

The usual approach to compute these properties is to31

run long micro-second molecular dynamics (MD) simulations. Considering that each MD step is32
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Figure 2: Overview of LAMODY. An encoder E computes SE(3)-invariant latent embeddings
of a short initialization sequence, the dynamical propagator P iteratively predicts the next states to
produce a long-time trajectory in latent space from which molecular conformers can be reconstructed
by the decoder D. The warm-up sequence and predicted trajectory are visualized in the FES. Here,
N (0,Σ) denotes random noise, ⊕ is vector addition, Gt denotes the 3D graph representation of a
molecule at time t, z is a latent space state, τ is the time lag between states in a trajectory, and *
denotes the point where the MD trajectory crosses the plane.

in the scale of femto-seconds, the simulation comes with a high computational cost. To accelerate33

the recovery of these properties, it is essential to develop a method that (1) can operate at time steps34

beyond the femtosecond level; (2) captures the key reaction coordinates; (3) does not suffer from35

instabilities (unphysical states) for long-time simulations.36

Learned simulators operating in a latent space suit these requirements if the latent space captures37

reaction coordinates (a molecule’s most important degrees of freedom) since they allow for larger38

time steps (Sidky et al., 2020; Vlachas et al., 2022). However, existing architectures restrict the39

simulator to only work on a single molecule at a time, meaning that they cannot generalize to new40

molecules (Sidky et al., 2020; Vlachas et al., 2022). Furthermore, LED (Vlachas et al., 2022) fails41

to recover rare metastable states and lacks practical relevance as it has only been shown to work with42

multiple re-initializations from Boltzmann distributed states, meaning that a long MD simulation is43

still required to define the starting states.44

Other approaches, such as Boltzmann generators (Noé et al., 2019) or Distributional Graphormer45

(Zheng et al., 2023) can predict the equilibrium distribution of unseen molecules but do not have46

a notion of time, i.e., no dynamical properties such as the transition rates can be extracted. In this47

regard, machine learning (ML) force fields (Unke et al., 2021; Batzner et al., 2022; Hu et al., 2021)48

have made significant progress for ab-initio simulations but are still slower for long simulations and49

larger molecules where classical force fields are applied (Fu et al., 2023).50

To tackle these limitations, we propose a learned Latent Molecular Dynamics LAMODY, model. We51

employ an SE(3)-invariant encoder-propagator-decoder scheme based on message-passing neural52

networks (MPNN) (Gilmer et al., 2017) that can be trained end-to-end on MD data and can gener-53

alize to unseen molecules. For the tasks of FES recovery, past studies used different sampling and54

evaluation protocols, making it difficult to compare methods. We define scientifically meaningful55

tasks and metrics that allow that reflect a model’s practical relevance in probing the free energy56

surface of molecules. In summary, our contributions are:57

• 20-fold speed improvements compared to classical MD, thanks to a long operating time58

step of 100fs.59

• Generalization to unseen molecules thanks to our chirality-aware SE(3)-invariant encoder-60

decoder.61

• Defining a systematic evaluation scheme to assess the performance of simulation methods62

against scientifically meaningful tasks for FES recovery.63
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2 Related work64

Enhanced sampling methods inject bias to the potential energy function to facilitate fast sampling65

of transitions between local energy minima that are separated by high energy barriers. Popular66

methods include simulated annealing (Bernardi et al., 2015; Tsallis & Stariolo, 1996), metadynamics67

(Laio & Gervasio, 2008), replica exchange (Bernardi et al., 2015), umbrella sampling (Torrie &68

Valleau, 1977), and parallel tempering Yang et al. (2019). A major limitation of enhanced sampling69

methods lies in the fact that they typically require determining collective variables (CVs) in advance,70

which can be challenging for complex systems Wang et al. (2021). Furthermore, enhanced sampling71

methods do not have an explicit notion of “time”, meaning that no extraction of dynamical properties72

is possible (Stelzl & Hummer, 2017).73

Latent Space Simulators enable to accelerate MD simulations in the 3D configuration space, by74

updating a latent state generated by a learned encoder, instead of moving each atom according to its75

velocity and computed force. The updates are performed by a dynamical propagator, and the all-76

atom representation can be constructed with a decoder. Time-lagged autoencoders with propagators77

(Otto & Rowley, 2019; Lusch et al., 2018) learn a linear propagator whereas Sidky et al. (2020) use78

a mixture density network (Bishop, 1994) as a propagator. However, the above methods do not obey79

the SE(3)-invariance of molecules (they could, e.g., arbitrarily flip a chirality each step). Vlachas80

et al. (2022) train an LSTM network as propagator and account use a mixture density network as81

autoencoder. However, this method requires multiple re-initializations from Boltzmann distributed82

states and it remains unclear if the method stays stable for longer simulations. Additionally, all83

previously mentioned methods only work on a single molecule they have been trained on - they are84

not able to generalize unlike LAMODY.85

3 Method86

3.1 Model Architecture87

Figure 3: Training scheme for long sequences:
The propagator P takes in a latent state zt and
cell state St to predict the latent state at time t+1.
The cell states are not re-initialized and gradients
are detached after a fixed-length interval.

Encoder To make the encoder architecture gen-88

eralizable to other molecules, we use a graph89

representation of internal coordinates and em-90

ploy a Graph Neural Network (GNN) archi-91

tecture. Concretely, a molecular state is rep-92

resented by a graph G ∈ (V,B,X , C) with93

each node representing a bond in the origi-94

nal molecule, and edges representing bond an-95

gles and torsion angles defined by triplets and96

quadruplets of bonds respectively, hence |V| =97

|B| and |B| = |A| + |T|. Nodes are featurized98

with information about the atoms forming the99

bond and the bond length and edges are featur-100

ized with the respective bond or torsion angle101

and a categorical feature indicating whether the102

edge defines a bond angle or a torsion angle103
1. We then employ L message-passing layers104

akin to Shi et al. (2021), pool the nodes using105

a learnable set-to-set mapping (Vinyals et al.,106

2016), and predict the final latent vector using107

a linear layer.108

Decoder To reconstruct the internal coor-109

dinates of a molecular state given a latent110

representation, we use a second GNN similar to Winter et al. (2021). The decoder takes as input111

a two-dimensional molecular graph with nodes representing atoms and edges representing bonds112

and a latent vector describing the molecular state in the latent space. First node level embeddings113

are computed by iteratively applying a sequence of message-passing layers similar to the encoder.114

Then, bond lengths are predicted by applying a three-layer MLP onto the concatenated pairs of115

1for a detailed description see subsection C.1
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nodes and the latent embedding, i.e. di = Πbond([ha, hb, z]) with h∗ being the node embeddings,116

z the latent vector and Πbond the MLP. The same approach is taken for bond angles and torsion117

angles with triplets/quadruplets of node embeddings and Πang.Πtor respectively.118

119

Dynamical Propagator As suggested by Vlachas et al. (2022), sequences of MD states are not120

necessarily Markovian since complex systems can exhibit long-term correlations in their behavior,121

meaning that future states can depend on past states, violating the assumption of independence122

between time steps. To account for this, we use an LSTM (Hochreiter & Schmidhuber, 1997) as the123

dynamical model that is trained to predict the next latent state given a short history. Concretely, we124

use125

(ht+τ , ct+τ ) = LSTM (zt,ht, ct)

zt+τ = Ξ(ht+τ )
(1)

where ht, ct denote the LSTM hidden state and cell state at time t, zt is the latent state at time t and126

Ξ is a two-layer MLP.127

3.2 Training128

We train our model end-to-end on MD data. To do so, we randomly sample a batch of starting points129

from the dataset from which we consider the consecutive k states with a time lag τ between states.130

Hence, we end up with a batch of sub-sequences of the full trajectory of length k+1 states. Starting131

with an initial LSTM state of S0 = (h0, c0) = (⃗0, 0⃗), we iteratively unfold the LSTM to predict the132

next time step, while the LSTM cell states are passed through time. More specifically, we encode133

G0 into latent space by z0 = E(G0), from which together with S0 the next time step latent state ẑ1134

is predicted. Then S1 and z1 = E(G1) are used to predict ẑ2, which can all be decoded back to135

molecular states.136

To optimize the parameters of the model with backpropagation, we define an end-to-end propagation137

loss that is additionally regularized by a reconstruction loss and a latent loss :138

L = δe2e
1

k

k∑
i=1

Lrec [Gi,D ◦ P ◦ E(Gi−1)]

+ δlat
1

k

k∑
i=1

||zi − ẑi||2 + δrec
1

k + 1

k∑
i=0

Lrec [Gi,D ◦ E(Gi)]

(2)

here δrec, δlat, δe2e are hyperparameters and Lrec is defined as in Equation 11. Note that zi =139

E(Gi), ẑi = P ◦ E(Gi−1). Although the end-to-end part of our loss function theoretically encap-140

sulates the latent and the reconstruction loss, we found the explicit presence of both as additional141

regularization to be crucial for the training process to succeed.142

Training on long sequences As we aim to predict long-timescale trajectories at inference time with143

Nsteps ≫ k, we require training on long sequences without suffering from vanishing or exploding144

gradients. To do so, we sample sub-trajectories of length c ∗ k with c being a hyperparameter and145

iteratively train on sequences of length k where we keep the LSTM states but detach the gradients146

as suggested by Vlachas et al. (2022).147

3.3 Inference148

At inference time, we ”warm up” the LSTM with a sequence of k MD states from which we iter-149

atively unfold the propagator to predict latent trajectories. Additionally, we infuse artificial noise150

to the latent states before feeding them into the propagator. We found this to be crucial because151

otherwise, the dynamical model was prone to become stuck at a local energy minimum. Concretely,152

we predict the next latent state by :153

ẑt+τ =

{
P (ẑt +N (0,Σ)) , if x ∼ U(0, 1) ≤ β

P (ẑt) , else
(3)

where β ∈ [0, 1] is a hyperparameter, x ∼ U(0, 1) indicates a sample from the uniform distribution154

and Σ = I ∗ σ2, σ2 ∈ R+ is computed from the warmup trajectory.155
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Figure 4: MSPR: Metastable State Precision/Recall; Ramachandran plot of a long and a short MD
simulation for a peptide where identified metastable states are indicated by crosses. The third figure
shows the long MD trajectory with modes identified by the short MD simulation superimposed
and the circles denote the area where a mode is considered to be correct. This allows to compute
metastable state precision and recall (MSPR).

4 Evaluation Protocol for FES recovery156

This section aims to provide an evaluation protocol that is both robust and scalable. After identifying157

the issues with prior metrics, we propose a method of identifying metastable states and measuring158

the agreement between the model and the ground truth.159

Deficiencies of Past Metrics Past studies have used different tasks and metrics for evaluation,160

making it difficult to compare methods. The metastable states of the free energy surface are fre-161

quently used for evaluation as they allow to reason about dominant conformations and transition162

rates. However, previous evaluation protocols are often not applicable to multiple systems but only163

allow qualitative inspection of single molecules at a time. To overcome these challenges, we propose164

a systematic evaluation protocol to reliably assess the quality of predicted trajectories for multiple165

systems.166

A common practice to evaluate the quality of predicted FES is to use Kullback-Leibler (KL) diver-167

gences, either between one-dimensional marginals or the two-dimensional histogram (Klein et al.,168

2023). However, this method is heavily dependent on the chosen bin size of the histogram and169

ignores the fact that variations in the estimated density are negligible for multiple practical applica-170

tions, where the correct identification of modes and transition rates is the desired goal.171

Work on conformation generation (Jing et al., 2022; Zhu et al., 2023) is typically evaluated by172

computing the coverage of predicted structures (in terms of RMSD) and reporting precision and173

recall, i.e. the fraction of correctly predicted structures and the fraction of identified structures174

compared to MD. Similar to the KL-based metrics, this protocol does not capture whether modes175

and transition rates are correctly identified.176

Identifying metastable states Identifying modes in a two-dimensional FES is highly non-trivial.177

While previous works used K-MEANS clustering to identify metastable states (Pandey et al., 2023;178

Jain & Stock, 2012), we found that K-MEANS frequently converges to incorrect minima. There-179

fore, we use the method of Novelli et al. (2022) where the FES is first smoothed using a Gaussian180

kernel and local minima are identified via running multiple BFGS solvers from random starting181

points. For a detailed explanation, we refer to subsection B.3. Lastly, the identification of reac-182

tion coordinates varies across past methods where multiple methods a sophisticated scheme such as183

Time-Independent-Component-Analysis (TICA) (Pérez-Hernández et al., 2013) to define the reac-184

tion coordinates from which the FES is constructed (Sidky et al., 2020; Klein et al., 2023). While185

TICA is useful for a variety of applications, it requires a Chapman–Kolmogorov test and manual186

inspection of the lag time to guarantee high-quality dimensionality reduction. Therefore, we use the187

two dihedral angles ϕ, ψ as they are known to capture the conformation space of peptides (Choud-188

huri, 2014).189
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Figure 5: Example MSM with
three states fitted to MD trajectory
with transition probabilities.

Metrics With the above-described procedure, we can iden-190

tify metastable states without the need of manual specification.191

This allows to compute precision and recall in terms of found192

metastable states, i.e. the fraction of correctly predicted modes193

and the percentage of modes found where a mode is considered194

correct if it lies within close proximity to the ground-truth MD195

mode 2.196

Furthermore, the transition rates between these identified197

metastable states are relevant for many applications, such as198

inferring relaxation times or reaction rates, and can be studied199

using a Markov State Model (MSM) (Bowman et al., 2014).200

Hence, an MSM can be fitted to predicted and MD trajec-201

tories, allowing to compare transition rates. Specifically, the202

Mean First Passage Times (MFPTs) (Hoel et al., 1986) can be203

computed which represent the expected times for a transition204

to happen from a predefined origin state to a target state. The205

relative error across the MFPTs for multiple molecules com-206

pared to MD then gives insight about the practical use of the207

predicted dynamical properties.208

5 Experimental Results209

In this section, we first show LAMODY’s ability to recover the dynamics and transition states of210

alaninde dipeptide, then show that it effectively generalizes across peptides. We further demonstrate211

the large benefits of LAMODY in terms of simulation speed in Appendix B. Finally, we do ablation212

studies on some of the architectural choices.213

5.1 Alanine Dipeptide214

Before we evaluate the generalization capabilities to unseen molecules, we test our method on a215

single molecule, namely alanine dipeptide (ALDP), which is a widely used benchmark for MD216

simulators and has been the subject of evaluation in previous works. In the case of ALDP, the217

primary degrees of freedom under consideration are the two backbone dihedral angles ϕ and ψ.218

Despite the model being trained on this exact molecule, it’s important to note that recovering long-219

time FES and transition rates remains highly nontrivial, as dynamical models are typically designed220

to predict single or a limited number of steps. Specifically, we train on 100ns of MD data of ALDP221

in implicit solvent to assess whether the model can qualitatively reproduce the free energy surface222

in terms of the backbone dihedral angles. Additionally, we analyze the model’s ability to predict223

transition rates between the identified metastable states, comparing them to MD results.224
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Figure 6: Ramachandran plots of trajectories from MD data and predictions of our model for alanine
dipeptide with corresponding metastable states as defined by Vlachas et al. (2022).

FES recovery To use the trained model for simulating MD trajectories, we use the procedure de-225

scribed above. Starting from an initialization sequence of five states, we simulate a trajectory of226

2See subsection B.3 and Figure 4
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length 100ns without re-initialization. The Ramachandran plots of the predicted trajectory along-227

side the MD simulation are visualized in Figure 6. Figure 6 shows that our model is able to capture228

all metastable states without becoming unstable, i.e. no unphysical states are visited throughout the229

entire simulation. Notably, the model is able to explore the rare states Cax
7 , αL, which previous230

latent space simulators (Vlachas et al., 2022) failed to achieve. The Ramachandran plots also show231

that our model slightly overestimates the density of αR.
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Figure 7: Transition probabilities of MSMs for alanine dipeptide estimated from MD data and pre-
dictions of our model. Black squares are transitions that were never observed.

232

Transition dynamics To examine whether the overestimation of αR leads to unrealistic dynamical233

properties, we can compare the transition rates extracted from MSMs fitted to MD data as well as234

the predicted trajectory, which are shown in Figure 7. The transition probabilities clearly show that235

the dynamical properties that can be inferred from the model predictions closely match the true236

dynamics. Even for the highly unlikely states, our model approximates the correct transition rates.237

We found the training scheme for long trajectories as described above to be crucial for this.238

5.2 Generalization across Molecules239

After this first sanity check, we assess the capability of our approach to generalize to unseen240

molecules. To do so, we constructed a dataset of 216 dipeptides3 with a length of 12ns each of241

which 200 are used for training and 16 are held out for evaluation. We use the systematic evaluation242

protocol introduced in section 4.243
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Figure 8: Metastable state precision and recall (MSPR) for train and test samples of the dipeptide
model.

FES recovery In contrast to prior work on latent space simulators (Sidky et al., 2020; Vlachas244

et al., 2022) where the model can only be evaluated on the same molecule it has been trained on,245

our architecture is not restricted to single molecules. We evaluate the peptide model on 16 unseen246

molecules and randomly choose 16 peptides from the training set as a comparison. Figure 8 shows247

the precision and recall values the dipeptide model achieved. We can observe, that the model is better248

in terms of precision than recall. This suggests, that the learned simulator is more ”conservative”249

3Peptides with two amino acids
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and avoids predicting unphysical modes rather than exploring the full state space which is desirable.250

However, Figure 8 also shows that the model fails to recover the correct metastable states for a subset251

of the peptides.
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Figure 9: Mean relative error of MFPTs for MSMs fitted to predicted trajectories compared to MD
for train and test set. Correctly extracted metastable states from the predicted trajectory are used to
construct MSMs on MD and predicted data. Peptides where only one metastable state exists and
therefore the MFPT error would always be zero are held out.

252

Predicting transition dynamics To gain more insight into the predicted trajectories, we evaluate253

the relative error between predicted and MD MFPTs for MSMs constructed from correctly identified254

states as defined in section 4. The results of this analysis are shown in Figure 9 where peptides that255

only contain one mode are excluded, as the MFPT error would be 0 in this case (only one state in256

the MSM, so no transitions). Figure 9 shows that the mean relative error is below 0.5 except for257

two peptides from the training set and two peptides from the test set. This confirms the previous258

results, i.e. that the model can approximate the majority of peptides very well, but misses a small259

subset. Furthermore, this metric shows that the modes which are found by the model are captured260

accurately and the transitions between the modes are captured within a relative error that existing261

latent space simulators (Vlachas et al., 2022) achieve for a single molecule they have been trained262

on. Furthermore, this shows the practical use of this method, as it can quickly and efficiently recover263

the leading states of unseen molecules from which accurate transition rates can be extracted making264

this model especially useful for screening large chemical spaces.265

6 Discussion266

We present MSPR, a reliable evaluation metric for FES that tackles the necessity of comparable267

evaluation schemes for learnerd simulators. Additionally, we introduce LAMODY, a learned sim-268

ulator operating in a latent space to efficiently recover free energy surfaces and transition rates.269

LAMODY is trained end-to-end on MD data constructing its own latent space. The model employs270

an SE(3)-invariant encoder-propagator-decoder scheme. We show that our method can operate at271

integration time steps that are two orders of magnitude larger than for MD while still being able272

to conduct stable long-timescale simulations required for recovering properties such as FES and273

transition rates.274

In contrast to prior works, LAMODY does not require re-initialization throughout the simulation,275

removing the need for prior MD simulations. We demonstrate that the predicted trajectories closely276

match the results of MD and correct dynamical properties can be recovered even for rare metastable277

states. Furthermore, our model is generalizable to molecules outside its training distribution and can278

capture their leading structural and dynamical properties. Overall, our approach is approximately279

20 times faster at recovering FES and transition rates than classical MD and can additionally easily280

be parallelized for up to 128 peptides on a single GPU.281
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A Additional Explanations463

A.1 Molecular Dynamics Simulation464

Molecular Dynamics (MD) simulations are a computational tool that can be utilized to study the465

behavior of molecules over time at an atomistic resolution. To do so, a popular method is Langevin466

Dynamics (Lemons & Gythiel, 1997), which evolves the positions and velocities of the system under467

study by the following stochastic differential equation:468

mi
d2xi

dt2
= −∇iU(x1, ...,xN )− γmi

dxi

dt
+
√

2miγkBTdBt (4)

where xi denotes the position of atom i, U is the potential energy, γ is a friction constant, mi is the469

mass of atom i, T is the temperature of the system, kB is the Boltzmann constant, and dBt is standard470

Brownian motion. To ensure the stability of the simulation, the integration time step size is typically471

chosen to be in the range of a few femtoseconds. The potential energy of the molecule based on472

the coordinates of the particles U(x1, ...,xN ) is usually parameterized by a force field4. Machine473

4see González (2011) for a detailed definition.
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learning methods that aim to simulate molecular systems are normally evaluated by their ability to474

recover conformational modes, free energy surfaces, and dynamical properties in comparison to a475

classical MD simulation (Vlachas et al., 2022; Sidky et al., 2020; Klein et al., 2023).476

A.2 Internal Coordinate Graph477

Figure 10 shows the a visualization of the internal coordinate graph used by the encoder as defined478

in subsection 3.1.479

Figure 10: Graph of internal coordinates superimposed onto the molecular graph. Blue vertices and
black edges show the corresponding molecular graph. The internal graph is superimposed with bond
vertices in purple, bond angle edges in orange, and torsion angle edges in green.

B Additional Results480

B.1 Simulation Speed481

As high computational complexity/ slow simulation speed is the major limitation of MD simulations482

Table 1 shows the propagation speed of our method and MD in terms of iterations per second and483

the total wallclock time the respective simulation requires5. Table 1 clearly shows the advantage484

of our method that realizes a speedup of approximately 20, improving upon the results of Vlachas485

et al. (2022), who reported an acceleration by a factor of 3. Furthermore, in contrast to prior work,486

our model does not require re-initialization paired with short timescale predictions but can instead487

simulate long timescale trajectories starting from a five-state sequence without becoming unstable.488

Note that the predictions of our model can also be run in parallel with up to 128 peptides on a single489

GPU.490

Table 1: Simulation Speed of MD and LAMODY given as averaged iterations per second and total
wallclock times.

Molecule
iteration/second wallclock time [minute]

MD LAMODY MD LAMODY

ALDP 189 3788 88 4.6
Peptides 117 2239 34.2 1.8

B.2 model variations and ablations491

Cartesian Encoders As the natural choice for an input representation seems to be representing a492

state by the two-dimensional molecular graph and associated cartesian positions, we also employed493

an SE(3)-invariant encoder operating on cartesian coordinates based on Euclidean graph neural494

networks (Geiger & Smidt, 2022). Additionally, we also used the popular GEMNET (Gasteiger495

et al., 2021) as our encoder network since GEMNET operates on cartesian coordinates and uses the496

internal coordinates of a molecule as features during message passing. However, we unexpectedly497

encountered that the cartesian encoder as well as GemNet failed to identify rare metastable states.498

The results of these simulations are shown in Figure 11 and Figure 12. We suspect this to be the499

5Hardware specifications are reported in Appendix F
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case as both models are more memory intense than the internal encoder and we, therefore, had to500

reduce the length over which we unroll the propagator states during training 6.501

B.3 Identification of metastable states502

Following Novelli et al. (2022), we use a standard Gaussian kernel density estimator (Scott, 1992)503

to approximate the free energy surface in the space of the two dihedral angles ϕ, ψ that are known504

to capture the conformational space for peptides (Choudhuri, 2014). Then we aim to identify the505

local minima of the FES as these will represent the metastable states. To do so, 100 BFGS solvers506

(Nocedal & Wright, 2006) are initialized at random points and run until convergence from which507

we recover the unique local minima. By doing so, we are able to reliably identify metastable states508

without the need for manual specification 7.509

To assess the quality of our predictions, we apply this procedure to the trajectories produced by510

our model as well as the MD data. This allows to compute precision and recall of the metastable511

states extracted from the predicted trajectories where we consider a metastable state to be correctly512

identified if ||µpred − µMD|| ≤ 0.15. This allows us to judge the models’ ability to recover correct513

FES for multiple peptides. Additionally, we use the set of correctly identified metastable states (from514

our model predictions) to construct an MSM for which we can compare the mean first passage times515

(MFPT) (Hoel et al., 1986) between MD and our model. The MFPTs are the expected time for a516

transition to happen from a predefined origin state to a target state. In practical applications this517

property is of great interest and can, for instance, be used to estimate the time it takes for a molecule518

to bind to a receptor. With this evaluation metric, we can judge the quality of the predicted dynamics519

and the practical use of the model, even if the model did not find all metastable states.520

B.4 Model Variations and Ablations521
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Figure 11: Ramachandran plots of trajectories from MD data and predictions of the model with
cartesian encoder based on tensor product convolutions (Geiger & Smidt, 2022).

Figure 11 and Figure 12 show the inference results for the models with a cartesian/GEMNET en-522

coder respectively. The figures show that both models miss the rare metastable states, which we523

suspect to be caused by the shorter training sequences due to memory limitations as described in524

subsection B.2.525

C Architecture Details526

C.1 Encoder527

The internal encoder operates on the internal coordinate graph as described in subsection 3.1, which528

is SE(3)-invariant by construction. The internal coordinates are normalized to lie in [0, 1].529

Nodes vi are featurized with: Atomic number of the first atom in the bond, atomic number of the530

second atom in the bond, bond length, mass of the first atom, and mass of the second atom. Edges531

6Unrolling propagator states for long trajectories with detaching gradients, see subsection 3.2 for details.
7An example is shown in Figure 4
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Figure 12: Ramachandran plots of trajectories from MD data and predictions of the model with
GEMNET (Gasteiger et al., 2021) encoder.

between all pairs of bonds that form a bond angle are featurized with the bond angle and an addi-532

tional categorical feature indicating the edge type. Torsional edges are featurized with the torsion533

angle and the categorical feature accordingly. These scalar features are transformed by a set of534

learnable MLPs (one for each feature), to compute an initial feature embedding h0 for each node.535

After computing the initial embeddings h0
i , we iteratively apply L message passing layers that ad-536

dionally employ a (multi-head) dot product attention mechanism to scale messages according to537

their importance, akin to Shi et al. (2021). More specifically, node embeddings for a node a at layer538

l get updated by:539

hl+1
a = βaW1h

l
a + (1− βa)

 ∑
b∈N (a)

αab

(
W2h

l
b +W6cab

)
︸ ︷︷ ︸

ma

(5)

with540

αab = softmax

((
W3h

l
a

)T (
W4h

l
b +W6cab

)
√
d

)
βa = sigmoid

(
W5

[
W1h

l
a,ma,W1h

l
a −ma

]) (6)

here W∗ indicates learnable parameters, d is the hidden size of the attention heads, [a, b] indicates541

vector concatenation, cab ∈ C are the edge features of edge (a, b), and N (a) = {b|(a, b) ∈ B ∨542

(b, a) ∈ B}. Between each of the layers, ELU nonlinearities and batch normalization are applied.543

After the final message passing layer, we use a learnable set-to-set mapping Vinyals et al. (2016) to544

pool the nodes:545

qt = LSTM(q∗
t−1)

ei,t = hL
i · qt

αi,t =
exp(ei,t)∑
j

exp(ej,t)

rt =

N∑
i=1

αi,th
L
i

q∗
t = [qt, rt]

(7)

where · denotes the dot product and hL
i indicates the node embedding after the final message passing546

interaction layer. This layer iteratively updates the aggregated set for T processing steps by comput-547

ing a weighted sum rt of node embeddings, concatenating this sum to the last state qt and passing548

this concatenated vector q∗ through the LSTM. We found this learnable set-to-set mapping to yield549

better results compared to sum or mean reduction. After the set-to-set aggregation, we use a linear550

layer Φ to map to the fixed-size latent embedding vector:551

z = Φ(q∗
T ) (8)
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Given this model architecture, we are able to learn a mapping to a latent space, which is by con-552

struction of the graph SE(3)-invariant. Moreover, the model is not limited to a fixed-size graph but553

can be applied to graphs of distinct molecules.554

C.2 Decoder555

The molecular decoder acts as a counterpart to the encoder and reconstructs a molecular state from556

a latent representation by predicting the molecule’s internal coordinates for that state. The decoder557

architecture was heavily inspired by the work of Winter et al. (2021). As the decoder has to be558

applicable to different molecules, we condition the decoder on the time-invariant two-dimensional559

molecular graph. Concretely, the decoder predicts a molecular state at time t via:560

Gt = D (zt,Gmol) (9)

To do so, we first compute node embeddings for all atoms of Gmol ∈ (Vmol,Bmol,Xmol, Cmol)561

where nodes represent atoms and edges represent bonds between atoms in the molecule. Gmol is562

constant throughout and MD simulation, as only the atom position change. We featurize nodes with563

the following attributes: Atomic number, chirality, degree, number of rings the atom is involved564

in, implicit valence, formal charge, number of bonded hydrogens, hybridization type, whether or565

not it is in an aromatic ring, whether or not it is in a 5 or 6-ring, the residue name and the atom566

name. Bonds between atoms are featurized by bond type and a radial basis embedding of the bond567

length (Schütt et al., 2017). Since torsion angles are defined by quadruplets of atoms that do not568

necessarily have to be direct neighbors, we add additional edges by connecting each node to all its569

k-hop neighbors. Concretely, we modify Bmol to be Bmol :=
{
(a, b) | a ∈ Vmol ∧ b ∈ N k(a)

}
570

where N k(a) denotes all nodes that can be reached with a maximum of k hops from a. The571

additional edges facilitate the information flow over longer distances during message passing.572

573

After an initial node embedding akin to subsection C.1, we apply L message passing layers that574

update the node embeddings similar to subsection C.1. With the final node embeddings hL
i , we575

predict the internal coordinates of the current state by:576

dtab = Πbond

([
hL
a ,h

L
b , zt

])
∀(a, b) ∈ B

ϕtabc = Πang

([
hL
a ,h

L
b ,h

L
c , zt

])
∀(a, b, c) ∈ A

cosψt
abcd = Πtorcos

([
hL
a ,h

L
b ,h

L
c ,h

L
d , zt

])
∀(a, b, c, d) ∈ T

sinψt
abcd = Πtorsin

([
hL
a ,h

L
b ,h

L
c ,h

L
d , zt

])
∀(a, b, c, d) ∈ T

(10)

where Π∗ are two-layer MLPs with ELU activations and dropout that map from the concatenated577

node embeddings and latent state to the single scalar of interest. B denotes the set of all pairs of578

atoms defining a bond, A is the set of all triplets of atoms defining a bond angle, and T is the set of579

all quadruplets of atoms defining a torsion angle. Note that the decoder outputs a prediction for the580

bond angles directly, while for the torsion angles, sin and cos are predicted. This design choice is581

grounded on the fact that the models’ parameters could not be optimized to decode the full space of582

torsion angles when predicting them directly.583

584

D Training and Inference585

We define the reconstruction loss in terms of internal coordinates by:586

Lrec(Gi, Ĝi) = ξb
1

|B|
∑

(a,b)∈B

||dab − d̂ab||

+ ξa
1

|A|
∑

(a,b,c)∈A

cos(ϕabc − ϕ̂abc)

+ ξt
1

2|T|
∑

(a,b,c,d)∈T

(
cos(ψabcd)− ˆcosψabcd

)2
+
(
sin(ψabcd)− ˆsinψabcd

)2
(11)
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where ξb, ξa, ξt are hyperparameters, B denotes the set of all pairs of atoms defining a bond, A is587

the set of all triplets of atoms defining a bond angle, and T is the set of all quadruplets of atoms588

defining a torsion angle. Note that as described in subsection C.2, the model predicts the bond589

angles directly, whereas, for the torsion angles, it predicts sin(ψ) and cos(ψ).590

591

To infer σ2, i.e. the amount of noise added during inference, we found that the required noise level592

strongly correlates with the variance of the (normalized) torsion angles in the warmup trajectory.593

We identified a relationship of594

σ2 =
1

|T|

|T|∑
i=1

V ar(ψi) (12)

to reliably give a good estimate of the noise level with |T| being the number of torsion for the595

respective molecule. While this relationship holds across molecules, we used a noise level of596

σ2
i = 6 ∗ V ar(ψi) for the alanine dipeptide model where the factor of six was inferred from the597

norm of the latent space.598

599

E Dataset Details600

All datasets were created by performing MD simulations using the openmm library (Eastman et al.,601

2017).602

The simulation was performed with the parameters shown in Table 2 and Figure 13 shows the free603

energy surface based on the two backbone dihedral angles (ϕ, ψ) of alanine dipeptide in implicit604

solvation. Given the distribution of (ϕ, ψ), the free energy surface can be computed by:605

FESi = −kBT ln [p(ϕi, ψi)] (13)

where kB is the Boltzmann constant and T is the temperature of the system. We can ob-606

serve five energetically favorable metastable states {PII , C
ax
7 , C5, αR, αL} which we also refer to607

as modes of the Boltzmann distribution. Note that the metastable states {Cax
7 , αL} are visited rarely.608

609

Table 2: Alanine dipeptide dataset properties.

Property Value
Simulation time 100ns
Integrator Langevin
Integrator time step 1fs
Forcefield AMBER ff96
Solvation OBC GBSA implicit
Frame Spacing 100fs
Temperature 300K

The dipeptide dataset was created with the simulation parameters given in Table 3.

Table 3: Dipeptide dataset properties.

Property Value
# Peptides 216
Simulation time (each) 12ns
Integrator Langevin
Integrator time step 1fs
Forcefield AMBER 14-all
Solvation implicit GBn
Frame Spacing 120fs
Temperature 300K

610
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Figure 13: Ramachandran plot of the two backbone dihedral angles of the alanine dipeptide dataset
with parameters from Table 2 and metastable states {PII , C

ax
7 , C5, αR, αL} as defined by Vlachas

et al. (2022).

F Implementation details611

All experiments were implemented in PyTorch (Paszke et al., 2019) using the extension for deep612

learning on graphs Pytorch Geometric (Fey & Lenssen, 2019). Furthermore, the scipy library (Vir-613

tanen et al., 2020) is extensively used throughout our implementation and we utilized the stateinter-614

preter package (Novelli et al., 2022) to automatically identify metastable states.615

The experiments were run on two different machines. All training was run on a machine with two616

AMD EPYC 7513 CPU @ 2.60GHz with 32/64 cores each, 504GB of RAM, and eight NVIDIA617

RTX A6000 GPUs with 48GB vRam of which only a single one was used at a time. All inference618

experiments were performed on a machine with two Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz619

with 20/40 cores each, 504GB of RAM, and eight NVIDIA Tesla V100 GPUs with 32GB vRam620

where again only a single GPU was used at a time.621

G Additional Model Variations622

Dynamical Propagator We found the LSTM architecture to consistently achieve the best simulation623

metrics outperforming the following architectures: Gated Recurrent Unit (GRU) (Cho et al., 2014);624

MLP; Mixture Density Network (Bishop, 1994); Transformer for time series forecasting (Wu et al.,625

2020). Besides the different architectures, we evaluated if conditioning the dynamical model onto626

the molecule it currently works with improves the generalization capabilities of our model. To do627

so, we employed another GNN that computes a fixed-size embedding based on the two-dimensional628

molecular graph, essentially constructing a learned representation of a certain molecule. This rep-629

resentation was then appended to the latent space to facilitate the prediction of correct dynamics for630

the propagator. However, we did not encounter any benefits of using this approach in terms of the631

quality of predicted trajectories for varying molecules.632

Training Schemes Besides the training scheme described in subsection 3.2, we explored various633

methods of improving the robustness of the dynamical model mainly inspired by the approaches634

of Brandstetter et al. (2022). The model always gets correct latent states as input at training time635

whereas at inference time the propagator gets its own previous prediction as input which introduces636

a distribution shift between training and inference time. To mitigate this error, Brandstetter et al.637

(2022) suggest the ”pushforward trick” which means to instead of using the correct latent state as638

input, the previous prediction of the dynamical model is used with a certain probability. Addition-639

ally, we tested whether infusing noise at different stages of our pipeline (in cartesian space; in in-640

ternal coordinate space; in the latent space) improves the test performance of our dynamical model.641

While the above two approaches did not improve the simulation results, we found the approach642

of unrolling the LSTM for multiples of its sequence length and cutting the gradients between the643

steps as described in subsection 3.2 to be absolutely crucial for the model to learn correct long-term644

dynamics.645
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Pretraining the autoencoder In contrast to the results of Sidky et al. (2020), we found that pre-646

training the autoencoder did not improve simulation results but in fact significantly constrained the647

latent space such that dynamical properties could not be modeled precisely anymore.648

H Hyperparameters649

For all training, we use the Adam8 optimizer and the ReduceLROnPlateau9 learning rate scheduler650

with reduction parameter 0.7 and patience 5 epochs. We define an epoch to consist of 12 batches651

of trajectories with length T for alanine dipeptide and 16 batches for the peptide models and train652

each model for 100 epochs, as we found all training metrics to have fully converged after that time.653

654

Training the smaller model on alanine dipeptide took 14.6 hours with a memory consumption of655

8.9GB. During inference, the memory consumption was 6B, which is mainly caused by the batched656

decoding of structures where we used batches of size 1e5 and which could be adapted to other hard-657

ware limitations. For the dipeptide models, training took approximately three days with a memory658

consumption of 43GB. For decoding, we used a batch size of 1e4, which led to 14GB of used GPU659

memory.660

H.1 Alanine Dipeptide Hyperparameters661

The parameters were tuned in the order in which they appear in the table from top to bottom. The662

final parameters are marked in bold.663

We found the batch size to have a significant impact on the performance of our model, as batches664

larger than 8 independent trajectories prevented the models to produce reasonable inference results.665

While we do not have concrete evidence, we suspect this to be the case because batches larger than666

8 contain too diverse trajectories, essentially impeding the computation of meaningful gradients.667

Table 4: Search space for the general hyperparameters, spanning across encoder, decoder and prop-
agator.

Parameter Search Space
latent embedding dimension [5, 10, 32, 64, 75, 100, 128, 256, 512]
data normalization [min-max, z-score]
batch size [2, 4, 8, 16, 32, 64]
starting learning rate [1e-3, 5e-4, 1e-4, 1e-5, 1e-6]
c [1, 2, 5, 10, 25, 50, 100, 120, 150, 200]
δrec, δlat, δe2e, ξb, ξa, ξt [0.33, 1 , 2] (independently altered)

668

Table 5: Search space for the hyperparameters of the encoder network.

Parameter Search Space
# layers [2, 3, 4, 5, 6, 7, 8, 10]
# final MLP layers [1, 2, 3, 4]
# attention heads [2, 4, 8, 16]
node embedding size [5, 10, 15, 25]
edge embedding size [2, 4, 8, 12]
# readout function [Set2Set, Sum, Mean]
dropout [0, 0.1, 0.15, 0.2]

8https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
9https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html
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Table 6: Search space for the hyperparameters of the decoder network.

Parameter Search Space
# MP layers [1, 2, 3, 4, 5, 6, 7, 8, 10]
k-hop edge concatenation [2, 3, 4]
# attention heads [2, 4, 8, 16]
input node embedding size [5, 10, 15, 25]
output node embedding size [10, 15, 25, 50, 100]
# final MLP layers [1, 2, 3, 4]
dropout MP layers [0, 0.1, 0.15]
dropout MLP layers [0, 0.1, 0.15]

Table 7: Search space for the hyperparameters of the LSTM propagator.

Parameter Search Space
k (sequence length) [1, 3, 5, 10, 25, 50, 100, 250]
# LSTM layers [1, 2, 3, 4, 5, 6]
# MLP layers [1, 2, 3]
LSTM dropout [0, 0.1, 0.2]
β 0.15

H.2 Dipeptide Hyperparameters669

For the training of the peptide models, we identified a batch size of 64 to yield the best results.670
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Table 8: Search space for the hyperparameters of the dipeptides model. All hyperparameters that
are not explicitly listed are the same as for the alanine dipeptide model.

Parameter Search Space
latent embedding dimension [128, 256, 512, 1024, 2048]
# num encoder layers [4, 5, 6, 8, 10]
# num decoder layers [4, 5, 6, 8, 10]
# LSTM layers [ 4, 5, 6, 8]
c [1, 2, 5, 10, 25, 50, 100, 120, 150, 200]
decoder output node embedding size [10, 15, 25, 50, 100]
β 0.9
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