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ABSTRACT

With the success of Neural Radiance Field (NeRF) in 3D-aware portrait edit-
ing, a variety of works have achieved promising results regarding both quality
and 3D consistency. However, these methods heavily rely on per-prompt op-
timization when handling natural language as editing instructions. Due to the
lack of labeled human face 3D datasets and effective architectures, the area of
human-instructed 3D-aware editing for open-world portraits in an end-to-end
manner remains under-explored. To solve this problem, we propose an end-to-end
diffusion-based framework termed InstructPix2NeRF, which enables instructed
3D-aware portrait editing from a single open-world image with human instruc-
tions. At its core lies a conditional latent 3D diffusion process that lifts 2D edit-
ing to 3D space by learning the correlation between the paired images’ differ-
ence and the instructions via triplet data. With the help of our proposed token
position randomization strategy, we could even achieve multi-semantic editing
through one single pass with the portrait identity well-preserved. Besides, we
further propose an identity consistency module that directly modulates the ex-
tracted identity signals into our diffusion process, which increases the multi-view
3D identity consistency. Extensive experiments verify the effectiveness of our
method and show its superiority against strong baselines quantitatively and qual-
itatively. Source code and pretrained models can be found on our project page:
https://mybabyyh.github.io/InstructPix2NeRF.

1 INTRODUCTION

While existing 3D portrait editing methods (Cai et al., 2022; Lin et al., 2022; Sun et al., 2022b; Li
et al., 2023; Xie et al., 2023; Lan et al., 2023) explored the latent space manipulation of 3D GAN
models and made significant progress, they only support preset attribute editing and cannot handle
natural language. The explosion of language models has made it possible to enjoy the freedom
and friendliness of the natural language interface. Recently, many excellent text-supported image
editing methods have emerged, such as Talk-To-Edit (Jiang et al., 2021), StyleCLIP (Patashnik et al.,
2021), TediGAN (Xia et al., 2021), AnyFace (Sun et al., 2022a) and InstructPix2Pix (Brooks et al.,
2023). However, these methods are typically limited to the 2D domain and cannot directly produce
3D results. While it is possible to connect a 2D text-supported editing model to a 3D inversion
model for text-supported 3D-aware editing, this will result in extra loss of identity information as
the original face is invisible in the second stage. Thus, an end-to-end model is more desirable for
better efficiency and performance.

Rodin (Wang et al., 2023) and ClipFace (Aneja et al., 2023) explored end-to-end text-guided 3D-
aware face editing. Rodin trains a conditional diffusion model in the roll-out tri-plane feature space
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Remove the beard Turn the hair color to red

Make her look like a cartoon Put eyeglasses on her and turn the portrait into a bronze statue

Figure 1: Our instructed 3D-aware portrait editing model allows users to perform interactive global
and local editing with human instructions. This can be a single attribute editing or style editing
instruction, multiple attribute editing instruction together, or even attribute and style instructions
together.

with 100K 3D avatars generated by a synthetic engine. Rodin achieves text-guided 3D-aware ma-
nipulation by conditioning the diffusion process with the manipulated embedding, which consists
of the CLIP (Radford et al., 2021) image embedding and a direction in the CLIP text embedding.
However, since Rodin can only generate avatar faces, it cannot handle real-world face editing. Clip-
Face learns a texture mapper and an expression mapper with CLIP loss and uses the generated UV
map and deformed 3D mesh to achieve text-guided manipulation in the synthetic domain. However,
ClipFace cannot handle real-world face editing and is time-consuming and inconvenient because a
separate encoder needs to be trained for each text prompt.

Human instructions are better for expressing editing intent than descriptive prompts. However,
focusing on noun phrases, existing text-guided 3D-aware face editing methods are challenging to
understand verbs in instructions. For example, descriptive-prompt-driven editing methods usually
treat “remove the eyeglasses” as putting on the eyeglasses, as shown in Appendix A.2.1. Therefore,
end-to-end 3D-aware portrait editing from an input image with human instructions is a critical and
fascinating task, which aims to achieve 3D-consistent editing with a user-friendly interface. To our
knowledge, we are the first to explore this area. We analyze that it is critical to design an efficient
framework incorporating human instructions with 3D-aware portrait editing. In addition, due to the
lack of multi-view supervision, it is challenging to maintain the consistency of identity and editing
effects when performing 3D-aware editing from a single image, especially multi-semantic editing.

In this work, we address these issues by proposing a novel framework termed InstructPix2NeRF,
which enables precise 3D-aware portrait editing from a single image guided by human instructions.
We prepare a triplet dataset of each sample consisting of a 2D original face, a 2D edited face, and
a human instruction semantically representing a single change from the original face to the edited
face. Training on a large number of images and single human instructions, our model enables
instructed 3D-aware editing with many single instructions even multiple instructions, rather than
training the model for each human instruction. Although trained on a single-instruction dataset, In-
structPix2NeRF enables multi-instruction editing during inference. InstructPix2NeRF can perform
instructed 3D-aware face editing thanks to the three key ingredients below.

Firstly, we design a novel end-to-end framework combining diffusion and NeRF-based generators.
The state-of-the-art architecture for text-guided image editing is typically based on diffusion models
(Rombach et al., 2022; Zhang & Agrawala, 2023; Brooks et al., 2023). At the same time, 3D portrait
modeling commonly relies on NeRF-based GANs (Chan et al., 2022; Sun et al., 2022b; Niemeyer
& Geiger, 2021; Chan et al., 2021). We efficiently combine these two aspects to design an effective
cross-modal editing model. Specifically, we use the inversion encoder PREIM3D (Li et al., 2023)
to obtain the w+ latent codes of the 2D original and edited faces, then train a transformer-based
diffusion model in the 3D latent space. The CLIP’s text embedding of instructions is injected into
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the diffusion process via a cross-attention block after the self-attention block. Latent codes with
biconditional sampling of text and images are decoded to geometry and multiple views with a single
pass through the NeRF-based generator.

Secondly, we propose a Token Position Randomization (TPR) training strategy to handle multiple
editing requirements via one single pass. By TPR, instruction tokens are put in a random position of
the token sequence, enabling the model to fulfill multiple editing requirements simultaneously while
preserving the facial identity to a large extent.

Thirdly, we propose an identity consistency module that consists of an identity modulation part
and an identity regularization part. We replace layer-normalization layers in the transformer block
with adaptive layer norm (adaLN), which modulates the identity signal. The identity regularization
loss is calculated between the original face image and a typical face image generated by a one-step
prediction of latent code when the diffusion timestep is less than the threshold.

Combining the three key components together, InstructPix2NeRF enables instructed and 3D con-
sistent portrait editing from a single image. With one 15-step DDIM(Song et al., 2021; Lu et al.,
2022) sampling, our model can output a portrait and geometry with attributes or style guided by
instructions in a few seconds. Figure 1 shows the editing results produced by our method. We
recommend watching our video containing a live interactive instruction editing demonstration. To
facilitate progress in the field, we will be completely open-sourcing the model, training code, and the
data we have curated. We expect our method to become a strong baseline for future works towards
instructed 3D-aware face editing.

2 RELATED WORK

NeRF-based 3D generation and manipulation. Neural Radiance Field (NeRF) (Mildenhall
et al., 2021) has significantly impacted 3D modeling. Early NeRF models struggle to generate
diverse scenes since the models are trained on a lot of pose images for every scene. Recent NeRF
methods, such as GIRAFFE(Niemeyer & Geiger, 2021), EG3D(Chan et al., 2022), and IDE-3D(Sun
et al., 2022b), integrate NeRF into the GAN framework to generate class-specific diverse scenes.
These works have paved the way for 3D-aware objects editing methods like IDE-3D (Sun et al.,
2022b) PREIM3D (Li et al., 2023), HFGI3D (Xie et al., 2023), and E3DGE (Lan et al., 2023) that
perform semantic manipulation in the latent space of NeRF-based GANs in specific domain, such
as human faces, cars, and cats. Despite the promising results of these methods, they cannot handle
natural language.

Diffusion models. The diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020) can generate high-quality data from Gaussian noise through a for-
ward noise addition process and a learnable reverse denoising process. By training a noise predictor
using UNet (Ronneberger et al., 2015; Dhariwal & Nichol, 2021; Song & Ermon, 2019; Bao et al.,
2022b) or transformers (Vaswani et al., 2017; Bao et al., 2022a; Peebles & Xie, 2022) backbone,
the diffusion model can stably learn the probability distribution on ultra-large datasets and hold ex-
tensive applications such as image generation (Rombach et al., 2022), multi-model data generation
(Bao et al., 2023), image editing (Zhang & Agrawala, 2023; Brooks et al., 2023), and likelihood es-
timation(Zheng et al., 2023). Initially, the diffusion model had difficulty generating high-resolution
images in pixel space. Recently, the Latent Diffusion (Rombach et al., 2022), which combines the

Table 1: An overview of 3D-aware portrait editing methods.

Method Per-image
Optimization-free

Real-world
Images Text-supported Per-text

Optimization-free Instructed

IDE-3D ✓ -
E3DGE ✓ ✓ -
PREIM3D ✓ ✓ -
ClipFace ✓
IDE3D-NADA ✓ ✓
Rodin ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓
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VAE and the diffusion model, significantly improves generation efficiency and image resolution. In-
spired by latent diffusion (Rombach et al., 2022), we combine the diffusion model with NeRF-base
GAN to efficiently implement latent 3D diffusion.

Text-guided editing. The previous approach for text-guided editing (Jiang et al., 2021) usually
involves training a text encoder to map text input or human instructions to a linear or non-linear
editing space, which may not handle out-of-domain text and instructions well. Recently, The pre-
trained CLIP (Radford et al., 2021) model contains vast vision and language prior knowledge, sig-
nificantly accelerating the development of vision-language tasks. StyleCLIP (Patashnik et al., 2021)
calculates the normalized difference between CLIP text embeddings of the target attribute and the
neutral class as the target direction ∆t, which is then applied to fit a style space manipulation direc-
tion ∆s. InstructPix2Pix combines the abilities of GPT (Brown et al., 2020) and Stable Diffusion
(Rombach et al., 2022) to generate a multi-modal dataset and fine-tunes Stable Diffusion to achieve
instructed diverse editing. However, these methods are focused on editing 2D images and do not
enable 3D-aware editing. Recently, Rodin (Wang et al., 2023), ClipFace (Aneja et al., 2023), and
IDE3D-NADA (Sun et al., 2022b; Gal et al., 2022) explored text-guided 3D-aware editing. How-
ever, Rodin and ClipFace can only be applied to the synthesis face, and ClipFace and IDE3D-NADA
require optimization for each text prompt. Meanwhile, Instruct-NeRF2NeRF (Haque et al., 2023),
AvatarStudio (Mendiratta et al., 2023), and HeadSculpt (Han et al., 2023) have achieved success in
optimizing text-driven single-3D-scene editing. However, these methods require a 3D scene rather
than a single image, and they take tens of minutes for each scene.

As shown in Table 1, IDE-3D, E3DGE, and PREIM3D cannot handle natural language, ClipFace
and IDE3D-NADA rely on per-prompt optimization, Rodin and ClipFace cannot be applied to real-
world faces.

3 DATA PREPARATION

Inspired by InstructPix2Pix (Brooks et al., 2023), we prepared a multimodal instruction-following
triplet dataset, where triplet data consists of an original face, an edited face, and a human instruction
representing a single change from the original to the edited. Specifically, given a face, we use pre-
trained 2D editing models to produce a 2D edited face and use the large language model ChatGPT
(Brown et al., 2020) to generate the corresponding editing instructions.

Paired image generation. We leverage two off-the-shelf 2D image editing methods, e4e (Tov
et al., 2021) and InstructPix2Pix (Brooks et al., 2023), to generate paired images on FFHQ (Karras
et al., 2019). We use e4e, the widely used state-of-the-art face attribute editing method, to generate
22K pairs of images with 44 attributes editing. As for InstructPix2Pix, we have selected 150 portrait-
related instructions from its instruction set using keywords. The faces edited with these instructions
were filtered by a face identification model (Deng et al., 2021) to obtain 18K paired images.

Instruction generation. In-context learning in large language models (LMs) demonstrates the
power that rivals some supervised learning. For the paired images generated by e4e, we provide
ChatGPT with some example data consisting of the paired attribute labels and corresponding hand-
written transfer instructions. We tell it that the instructions represent a single change between at-
tributes. After that, we asked ChatGPT to generate 20-30 transfer instructions with the provided
attributes of the pairs. For the paired image generated by InstructPix2Pix, since there are already
human instructions, we asked ChatGPT to generate 20-30 instructions representing the same seman-
tic meaning on this basis.

Assigning human instructions to 40K paired images, we obtained a final triplet dataset containing
640K examples, each consisting of a single semantic instruction and paired image. See Appendix
for more detailed data preparation.

4 METHOD

Given input image and human instructions, our goal is to generate multi-view images and geom-
etry, which behave as intended by human instructions and can keep other attributes and identities
unchanged. With the NeRF-based generator and inversion encoder, our goal can be translated into
generating latent code w that represents the edited face image. The latent code w will be given to the
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Figure 2: An overview of our conditional latent 3D diffusion model. We use a NeRF-based gener-
ator inversion encoder E to obtain the latent code of the image. Then, we train a diffusion model
conditioned on human instructions and the original face. Text instruction conditioning is introduced
using the cross-attention mechanism with the CLIP text embedding, and the original image condi-
tioning is realized via concatenating and adaptive layer norm. F is a face identification model. G is
a NeRF-based generator. The Diffusion Transformer is trainable, the other models are fixed.

NeRF-based generator to produce multi-view images conditioned on camera pose. Figure 2 illus-
trates the whole architecture of our method. We will introduce the key components of our pipeline
in the following subsections.

4.1 CONDITIONAL LATENT 3D DIFFUSION

Our method is based on the NeRF-based generator G and inversion encoder E. The NeRF-based
generator, such as EG3D (Chan et al., 2022), can generate multi-view images from a Gaussian noise
z ∈ Z ⊆ R512 conditioned on camera parameters c. The noise z is mapped to the intermediate latent
code w = f(z) ∈ W ⊆ Rk∗512, which is used to produce tri-plane features through the convolu-
tional network. A small MLP decoder is used to interpret the features retrieved from 3D positions
as color and density, rendered into multi-view images conditioned on camera pose c, described as
X = G(w, c).

The NeRF-based inversion encoder E (Li et al., 2023; Lan et al., 2023) learns the features of a large
number of images with different poses to reconstruct 3D representation from a single image. The
encoder maps an input image X to the latent code w, which can be used to produce a novel view X

′

of the input image :
w = E(X),

X
′
= G(E(X), c).

(1)

where c is the camera pose.

Performing the diffusion process in the latent space combines the strength of other generators and
accelerates training, especially in the 3D generation area. Here, there are several candidate latent
spaces, such as Z , W , and W+. The W space consists of k repetitive 512-dimensional latent vectors
fed into convolutional layers of different resolutions, but the W+ space consists of k distinct latent
vectors. It’s demonstrated that k distinct latent vectors can increase the representation capacity of
the generator than k identical latent vectors (Shen et al., 2020; Li et al., 2023). Although EG3D is
trained on the real-world face dataset FFHQ, our simple experiments in Appendix A.2.2 demonstrate
that it is possible to generate some out-of-domain 3D faces, such as bronze statues, and cartoons,
using fixed EG3D fed W+ latent code. Moreover, W+ space is considered more disentangled than
Z and W spaces (Tov et al., 2021; Patashnik et al., 2021). Therefore, we choose W+ space to
perform the diffusion process in our work.

Diffusion model architecture. To obtain the latent code w guided by human instructions, we
employ a diffusion model to learn the correlation between the paired images and the instructions.
Notably, transformers (Vaswani et al., 2017) show a promising ability to capture complex interac-
tions and dependencies between various modalities (Bao et al., 2023). In this paper, our diffusion
backbone is Diffusion Transformer (DiT) (Peebles & Xie, 2022). We have made the following
modifications to DiT: (i) add an input header that enables paired latent codes diffusion, (ii) add a
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cross-attention block after the self-attention block and introduce CLIP text embedding here, and (iii)
add an identity embedding module that is plugged into the norm layer of transformer block using
adaptive layer norm described in section 4.3.

Given an input image Xo and a human instruction T , our goal can be formulated as learning the
conditional distribution p(w|Xo, T ). The inversion encoder E is applied to obtain the latent code
wo = E(Xo) ∈ R14∗512, we = E(Xe) ∈ R14∗512 for the original image Xo and corresponding 2D
edited image Xe respectively. We add noise to the latent code we with a fixed schedule, producing
a noisy version wet at step t, t ∈ T . Our model is trained as a noise predictor ϵθ to predict the added
noise conditioned on image and text. The image conditioning cI consists of two parts: concatenation
of wo and we, and identity modulation. The text conditioning cT is realized by adding a multi-head
cross-attention block with the CLIP text embedding following the multi-head self-attention block.
To adapt to the model, the latent code would be reshaped. Take 512*512 resolution for example,
after padding 2 zero vectors for w ∈ R14∗512, we reshape the latent code to the shape 512 ∗ 4 ∗ 4.
The conditional latent diffusion objective is:

Ldiff = Ewe,cI ,cT ,ϵ∼N (0,1),t[∥ϵ− ϵθ(wet, t, cI , cT )∥22], (2)

where cI is the image conditioning, cT is the text conditioning.

4.2 TOKEN POSITION RANDOMIZATION

In our preliminary experiments, we have observed that when editing with multiple instructions, the
more forward-positioned instructions are easier to show up in the edited image. We analyze this issue
and attribute it to the training data being single instruction edited. In natural language processing,
text conditioning requires that text be tokenized into a sequence of tokens, which is 77 in length
in this paper. Only the first few sequence positions are usually non-zero when we train with single
instruction data. It is intuitive to think that the cross-attention mechanism might pay more attention
to the head of multiple instructions.

To achieve better editing results for the multiple instructions, we propose token position randomiza-
tion, randomly setting the starting position of the text instruction tokens. This strategy makes the
model more balanced in its attention to the components of multiple instructions. As a result, multi-
semantic editing can be performed in a way that fulfills all the editing requirements while preserving
identity well. In our paper, we randomly set the starting position in [0, 30], with the last non-zero
token position being less than 77. Ablation studies in Figure 5, and Table 3 show the effectiveness
of the token position randomization strategy.

4.3 IDENTITY CONSISTENCY MODULE

For precise face editing, preserving the input subject’s identity is challenging, especially in 3D space.
Latent code can be considered as compression of an image that loses some information, including
identity. To tackle this, We impose an identity compensation module that directly modulates the ex-
tracted identity information into the diffusion process. A two-layer MLP network maps the identity
features extracted from the original face into the same dimension as the diffusion timestep embed-
ding. We regress dimensionwise scale and shift parameters γ and β from the sum of the embeddings
of diffusion timestep t, and the embeddings of identity feature extracted from the portrait using a
face identification model (Deng et al., 2021).

To improve 3D identity consistency further, we explicitly encourage face identity consistency at
different poses by adding identity regularization loss between the 2D edited image and the rendered
image with yaw = 0, and pitch = 0.

LID = 1− ⟨F (Xe), F (G(w̃e0, c0))⟩, (3)

where F is the face identification model which extracts the feature of the face, Xe is the 2D edited
face, w̃e0 is the one-step prediction of latent code, c0 is the camera pose with yaw=0, pitch=0.

When the diffusion timestep is large, it will lead to a poor w for one-step prediction. Thus, this loss
is calculated only for samples with timestep t less than the timestep threshold tth. The total loss is:

L = Ldiff + λidLID, (4)

where λid is the weight of LID. λid is set to 0.1 in our experiments.
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Table 2: Quantitative evaluation for editing with single instruction on multi-view faces. ID score
denotes the identity consistency between before and after editing. CLIP score measures how well
the editing result matches the editing instructions. Attribute altering (AA) measures the change of
the desired attribute. Attribute dependency (AD) measures the change in other attributes.

Attribute Instruction example Method ID↑ CLIP↑ AA↑ AD ↓

Bangs Let’s add some bangs

Talk-To-Edit* 0.41 0.07 0.97 0.56
InstructPix2Pix 0.40 0.07 0.80 0.64

img2img 0.40 0.10 0.99 0.61
Ours 0.56 0.13 1.05 0.53

Eyeglasses Make the person
wearing glasses

Talk-To-Edit* 0.46 0.04 0.69 0.67
InstructPix2Pix 0.51 0.17 3.27 0.65

img2img 0.42 0.17 3.33 0.79
Ours 0.59 0.20 3.37 0.64

Smile The person should
smile more happily

Talk-To-Edit* 0.43 0.10 0.54 0.62
InstructPix2Pix 0.48 0.16 1.46 0.66

img2img 0.46 0.15 1.47 0.76
Ours 0.60 0.18 1.50 0.61

*: Talk-To-Edit don’t recognize some instructions. Only the results of recognized instructions are considered.

4.4 IMAGE AND TEXT CONDITIONING

Classifier-free guidance trains an unconditional denoising diffusion model together with the condi-
tional model instead of training a separate classifier (Ho & Salimans, 2021). Liu et al. (2022) show
that composable conditional diffusion models can generate images containing all concepts condi-
tioned on a set of concepts by composing score estimates. Following (Ho & Salimans, 2021; Liu
et al., 2022; Brooks et al., 2023), we train a single network to parameterize the image-text condi-
tional, the only-image conditional, and the unconditional model. We train the unconditional model
simply by setting cI = ∅, cT = ∅ with probability p1, similarly, only setting cT = ∅ with probability
p2 for the only-image-conditional model ϵθ(wot, cI , ∅). In our paper, we set p1 = 0.05, p2 = 0.05
as hyperparameters. In the inference phase, we add a little bit of noise to the latent of the input
image (usually 15 steps) to obtain wot and then use our model to perform conditional denoising.
The model predicts three score estimates, the image-text conditional ϵθ(wot, cI , cT ), the only-image
conditional ϵθ(wot, cI , ∅), and the unconditional ϵθ(wot, ∅, ∅). cT = ∅ indicates that the text takes
an empty character. cI = ∅ means that the concatenation wo takes zero and identity modulation
takes zero. Image and text conditioning sampling can be performed as follows:

ϵ̃θ(wot, cI , cT ) =ϵθ(wot, ∅, ∅)
+ sI(ϵθ(wot, cI , ∅)− ϵθ(wot, ∅, ∅))
+ sT (ϵθ(wot, cI , cT )− ϵθ(wot, cI , ∅))

(5)

where sI and sT are the guidance scales for alignment with the image and the text, respectively.

5 EXPERIMENTS

Given that the field of instructed 3D-aware face editing is under-explored, we have designed and
developed a series of models that serve as our baselines. We compare our method with three base-
lines: Talk-To-Edit (Jiang et al., 2021) combined with PREIM3D (Li et al., 2023), InstructPix2Pix
(Brooks et al., 2023) combined with PREIM3D, and a method similar to the img2img mode of Stable
Diffusion (Rombach et al., 2022). More implementation details are provided in the Appendix A.1.

We use the official pre-trained models and code for Talk-To-Edit, InstructPix2Pix, and PREIM3D in
the comparison experiments. The metrics are calculated on the first 300 images from CelebA-HQ.
To evaluate the 3D capability, we uniformly rendered 4 views from yaw angles between [−30◦, 30◦]
and pitch angles between [−20◦, 20◦] for an input image. We evaluate our method using ID, CLIP,
AA, AD, Md, and Sd, defined in the Appendix A.1.3.
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InstructPixel2Pixel

img2img
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wearing eyeglasses

Figure 3: Qualitative comparison. Our method achieves the requirements of the text instruction
while preserving identity consistency, especially multiple instruction editing.

Table 3: Quantitative evaluation for editing with multiple instructions on multi-view faces. Md and
Sd measure 3D consistency

Method ID↑ CLIP↑ AAavg ↑ ADavg ↓ AAmin ↑ Md ↓ Sd ↓
Talk-To-Edit* 0.44 0.05 0.24 0.58 -0.12 0.125 0.042

InstructPix2Pix 0.46 0.19 1.48 0.71 0.31 0.109 0.039
img2img 0.37 0.17 1.39 0.88 0.12 0.119 0.039

Ours(w/o TPR) 0.50 0.18 1.50 0.73 0.08 0.114 0.038
Ours 0.55 0.20 1.53 0.69 0.52 0.105 0.038

*: Same as Table 2.

Qualitative evaluation. We present examples of the instructed editing results in Figure 3. Due
to using a word bank, Talk-To-Edit does not recognize part of the instructions and cannot handle
multiple instructions. Img2img does not disentangle the attributes and struggles in aligning text
editing requirements with images, leading to changes in some other attributes. For example, the
fourth row in Figure 3 shows the additional semantics of becoming younger. InstructPix2Pix usually
leads to variations in hue and identity consistency, such as the skin tones in the third row of Figure 3.
Our method achieves better text instruction correspondence, disentanglement, and 3D consistency
than baselines. More editing results are provided in Appendix A.3

Quantitative evaluation. We chose three typical facial attributes, bangs, eyeglasses, and smile,
to evaluate our method and baseline quantitatively. To be fair, our instruction test set consists of
selected instructions from Talk-To-Edit, InstructPix2Pix, and InstructPix2NeRF, where each model
contributes 15 instructions, such as ’Make her happy instead.’ and ’The eyeglasses could be more
obvious.’ The metrics on the multiple instructions are measured with six combinations of the above
three attributes in different orders. As shown in Table 2, 3, our method performs better than the
baselines. Since img2img doesn’t disentangle the editing requirements and is prone to cause changes
on other attributes, it has a low ID score and a high AA score. Talk-To-Edit sometimes responds

8



Published as a conference paper at ICLR 2024

only marginally to editing instructions, its CLIP and AA scores are significantly worse than other
methods. InstructPix2Pix scores well, but still below our method. See Appendix A.2.3 for more
evaluation of attribute editing. We conducted a user study and as shown in Table 6, our method
outperforms the baselines.

Table 4: Effects of identity modulation and reg-
ularization loss. w/o LID and w/o ID cond rep-
resent the model without regularization loss and
identity modulation, respectively.

Config IDbang IDeyeglasses IDsmile IDmulti

w/o LID 0.47 0.52 0.55 0.44
w/o ID cond 0.54 0.55 0.57 0.50
Ours 0.56 0.59 0.60 0.55

input w/o 𝐿𝐼𝐷 w/o ID condinstruction

Put eyeglasses on him

Turn her into a Pixar char-

acter,put eyeglasses on her

Ours

Figure 4: Visual improvements of identity mod-
ulation and regularization loss.

Figure 5: The improvement rate of AA and CLIP
score for our model with a different number of
editing instructions against the model without to-
ken position randomization training strategy.

Ablation of token position randomization To verify the effectiveness of token position random-
ization training, two models were trained, one using the token position randomization training strat-
egy and the other not. Table 3 and Figure 8 show that the model with TPR performs better than the
other model when editing with multiple instructions.

To further compare the performance of the two models for multiple instructions of different lengths,
we performed multiple instructions editing of lengths 1-4, involving bangs, eyeglasses, smile, age.
The average improvement in AA and CLIP scores measures the effect. As shown in Figure 5, the
two models give comparable AA and CLIP scores when using single instruction editing. Still, as the
instruction length increases, our model shows a better correspondence for text instruction.

Ablation of identity consistency module Injecting learned identity information into the diffusion
process, the identity modulation compensates for losing information in latent space. The identity
regularization loss explicitly guides the model to preserve the identity of the input subject. As shown
in Table 4 and Figure 5, the model with the identity consistency module significantly improves the
identity consistency scores and visuals.

6 CONCLUSIONS

In this paper, to solve the instructed 3D-aware face editing, we propose a novel conditional latent 3D
diffusion model, enabling instructed 3D-aware precise portrait editing interactively. To support the
editing of multiple instructions editing that was not available in previous methods, we propose the
token position randomization training strategy. Besides, we propose an identity consistency module
consisting of identity modulation and identity loss to improve 3D identity consistency. We expect
our method to become a strong baseline for future works towards instructed 3D-aware face editing.
Our method can be used for interactive 3D applications such as virtual reality and metaverse.

Limitations. One limitation of our work is that some semantically identical instructions may pro-
duce slight errors. For example, although ”turn the hair color to pink” and ”change her hair into
pink” both want to change the hair color to pink, they will obtain different pink. Moreover, the same
instruction will also have color differences for different people. We have some losses for details
such as eye shape and eyelashes. These are issues that need to be addressed in this area in the future.
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A APPENDIX

In the Appendix, we first provide implementation details, including the model parameters and train-
ing dataset. We follow with additional experiments and visual results. We highly recommend watch-
ing our video, which contains a live demonstration of interactive instructed editing.

A.1 IMPLEMENTATION DETAILS

A.1.1 EXPERIMENT SETTING

We train our conditional diffusion model on the dataset we prepared from FFHQ (Karras et al., 2019)
and use CelebA-HQ (Karras et al., 2018) for evaluation. In our experiments, we use pretrained
EG3D model (Chan et al., 2022), pretrained PREIM3D model (Li et al., 2023), and pretrained ’ViT-
H-14’ CLIP model (Radford et al., 2021). The Diffusion Transformer is modified from the backbone
of ’DiT B/1’, adding an input header, a text condition module with the cross-attention mechanism,
and an identity modulation module. The number of parameters in the model is 1.15 Billion. We set
tth = 600, λid = 0.1 and trained the model on a 4-card NVIDIA GeForce RTX 3090 for 6 days
with a batch size of 20 on a single card.

A.1.2 TRAINING DATASET

The triplet data encourages the model to learn the correlation between the change from pairs of im-
ages and the instruction. Since the perceptual changes between the paired images are well-defined,
we can easily generate corresponding instructions. Figure 6 shows the data preparation. For the
paired images generated by e4e, we provide ChatGPT with some example data consisting of the
paired attribute labels and a few corresponding handwritten transfer instructions. We guide Chat-
GPT by following these steps.

a. You are now an excellent data generation assistant.
b. The rule for generating data is that I give you an input label and an output label, and you help
me generate an instruction that represents the change from the input label to the output label.
c. These are some examples.
example 1

input label: eyeglasses
output label: without eyeglasses
instruction: remove the eyeglasses.

example 2
input label: no beard
output label: beard man
instruction: give him some beard

example 3
input label: an old lady
output label: a young girl
instruction: make her look more youthful.

example 4
input label: brown hair
output label: blond hair
instruction: turn the hair to blond

d. I will give you an input label and an output label to generate 10 institutions based on the rules
and examples above.

input label: a small nose
output label: a big nose
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For the paired image generated by InstructPix2Pix, we guide ChatGPT like this, ”You are an ex-
cellent instruction generation assistant. I give you a face editing instruction, please generate 30
instructions that are semantically identical to this one.”.

Our dataset has about 40K paired images and the corresponding 3K instructions, with e4e generating
22K paired images and InstructPix2Pix generating 18K paired images. For the images generated by
e4e, 500 images share about 30 instructions. For the images generated by InstructPix2Pix, 120
images share about 10 instructions. The resolution of the image is 512*512. All instructions are
single editing requirements. We train our model with the dataset cropped as EG3D (Chan et al.,
2022) and PREIM3D (Li et al., 2023). The dataset examples are provided in Figure 7.

e4e InstructPixel2Pixel

ChatGPT

Keyword: eyeglasses

Instruction: Add eyeglasses to his face.

Instruction: Give him a pair of glasses.

Make him wear glasses.

ChatGPT

Instruction: Turn the portrait into a bronze statue.

Instruction: Transform the painting into a bronze statue.

Sculpt the painting in bronze.

Make him wear glasses.Add bangs to her 

hairstyle.

Have it be a painting by 

Edward Hopper.

Transform the painting 

into a bronze statue.

Paired images generation

Instruction generation

Triplet data examples

Figure 6: We use e4e and InstrucPixel2Pixel to generate paired images and use ChatGPT to produce
the instructions.

A.1.3 EVALUATION

Test data. The image test dataset is the first 300 images from CelebA-HQ (Karras et al., 2018).
The instruction test set used in the comparison experiments consists of selected instructions from
Talk-To-Edit, InstructPix2Pix, and InstructPix2NeRF, where each model contributes 15 instructions,
such as ’Make her happy instead.’ and ’The eyeglasses could be more obvious.’. The multiple
instruction comprises 3 single instructions that are concated together. We show the test instructions
in Table 7, 8, and 9.

Baselines. Talk-To-Edit and InstructPix2Pix are the most popular methods enabling instructed 2D
editing. We perform 2D portrait editing guided by the instructions and then get the 3D-aware edited
images using the state-of-the-art 3D inversion encoder PREIM3D. For another baseline img2img,
we only trained a text-to-3D diffusion model using the instructions and edited images in the prepared
dataset. Similar to the img2img mode of Stable Diffusion, we apply denoising sampling to the latent
code of the input image with a small amount of noise added, conditional on the instruction.
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Add bangs to her hairstyle.Trim his hair to have bangs Add some bangs

change her hair to blondmake her have blonde hair turn the hair blonde

Make her wear eyeglasses.add a pair of eyeglasses Add glasses to her face.

have him wear a mustachegive him a mustache Add a mustache to him

make her have a smiling 

mouth

Make him appear to be 

grinning.

Have her wear a smile

Figure 7: The dataset examples.

Metrics. The subject’s multi-view identity consistency (ID) is measured by the average ArcFace
feature similarity score (Deng et al., 2021) between the sampled images and the input image. We
evaluate the precision of instructed editing with the directional CLIP similarity (Gal et al., 2022),
which is calculated by the cosine similarity of the CLIP-space direction between the input image
and multi-view edited images and the CLIP-space direction between the input prompt and edited
prompt. Here, our input prompt is composed of attribute labels with a probability greater than 0.9 in
an off-the-shelf multi-label classifier based on ResNet50 (Huang & Belongie, 2017), and the edited
prompt is appended by the input prompt with the attribute label you want to edit. Following (Li et al.,
2023; Wu et al., 2021), We use attribute altering (AA) to measure the change of the desired attribute

15



Published as a conference paper at ICLR 2024

input w/o TPR w TPRinstruction

Put eyeglasses on her, crea-
te a smiling expression, and 
turn the painting into a bro-
nze statue.

Style her hair with a pink 
wig, put eyeglasses on her.

Put eyeglasses on her, make 
her happy instead, turn the 
hair color to blue.

Figure 8: Editing results of multiple instructions. w/o TPR denotes the model without token position
randomization training scheme.

and use attribute dependency (AD) to measure the change in other attributes when modifying a
specific attribute. Attribute altering (AA) is the attribute logit change ∆lt normalized by the standard
deviation σ(l) when detecting attribute t by the classifier, and attribute dependency (AD) is the other
attribute logit change. Following Abdal et al. (2023), we computed the mean differences (Md) and
standard deviation differences (Sd) metrics between the depth maps of the editing results and the
depth map of the randomly sampled images in EG3D to measure 3D consistency.

A.2 MORE EXPERIMENTS

A.2.1 PROMPT-DRIVEN EDITING

Text-image pairing contributes significantly to text-to-image and image captioning. Focusing on ad-
jectives and nouns in the text, prompt-driven editing methods perform better on descriptive prompts
than instructed text. For example, StyleClip (Patashnik et al., 2021), the state-of-the-art text-guided
2D face editing method, usually misinterprets some verbs, as shown in Figure 9.

input remove the

eyeglasses
shave the beardtake off the

eyeglasses

remove the beardinput

Figure 9: The instructed editing results of StyleClip.

A.2.2 EXPLORING THE W+ SPACE OF EG3D

EG3D, the state-of-the-art NeRF-based generator in the face domain, is trained on a real-world face
dataset. The original EG3D can generate high-resolution multi-view-consistent images and high-
quality 3D geometry from the Gaussian noise. Although the original EG3D can only generate faces
with a similar distribution to the FFHQ data, we get a wider range of reasonable face images by
navigating in the W+ space. The intermediate latent space of EG3D is a manifold of k identical
512-dimensional latent vectors. Using k distinct latent vectors rather than identical ones, we can
greatly extend the generation capability of the fixed EG3D. Figure 17 illustrates our exploration of
W+ space in EG3D.
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A.2.3 MORE ATTRIBUTE EDITING

We evaluated the instructed editing performance of more attributes, as shown in Table 5. Our method
outperforms InstructPix2Pix and img2img in AA, AD, and ID metrics.

Table 5: Quantitative evaluation for more instructed attribute editing.

Instruction five o’clock shadow arched eyebrows attractive bags under eyes bald

Method IP2P I2I IP2N IP2P I2I IP2N IP2P I2I IP2N IP2P I2I IP2N IP2P I2I IP2N

ID↑ 0.45 0.52 0.59 0.52 0.51 0.64 0.59 0.48 0.61 0.55 0.50 0.63 0.42 0.47 0.56
AA↑ 0.29 0.94 0.95 -0.30 0.09 0.13 -0.29 -0.01 0.40 0.35 1.09 1.06 0.93 0.93 1.04
AD↓ 0.76 0.77 0.74 0.50 0.67 0.48 0.55 0.62 0.53 0.65 0.61 0.60 0.76 0.74 0.71

Instruction big lips big nose black hair blond hair brown hair

ID↑ 0.53 0.50 0.59 0.42 0.49 0.59 0.48 0.54 0.63 0.54 0.47 0.60 0.51 0.52 0.62
AA↑ 0.37 0.37 0.44 0.42 0.65 0.97 1.05 1.12 1.09 0.96 0.87 0.98 0.36 0.14 0.28
AD↓ 0.53 0.52 0.49 0.75 0.66 0.65 0.59 0.60 0.52 0.58 0.64 0.55 0.58 0.61 0.56

Instruction bushy eyebrows chubby double chin young goatee

ID↑ 0.56 0.53 0.64 0.48 0.50 0.64 0.48 0.51 0.64 0.43 0.47 0.50 0.57 0.47 0.61
AA↑ 0.89 1.02 1.00 0.98 1.05 1.05 0.94 0.96 1.00 0.21 0.01 0.77 1.25 1.30 1.40
AD↓ 0.75 0.62 0.51 0.59 0.65 0.54 0.76 0.76 0.63 0.68 0.65 0.63 0.80 0.85 0.78

Instruction gray hair heavy makeup high cheekbones male mouth open

ID↑ 0.52 0.54 0.64 0.54 0.51 0.63 0.55 0.51 0.64 0.38 0.48 0.62 0.45 0.50 0.65
AA↑ 1.11 1.06 0.99 0.11 0.03 0.53 0.29 0.96 1.07 1.03 1.16 1.03 0.84 1.12 1.21
AD↓ 0.59 0.63 0.57 0.52 0.55 0.50 0.57 0.62 0.54 0.80 0.78 0.68 0.71 0.57 0.50

Instruction mustache narrow eye no beard pale skin pointy nose

ID↑ 0.53 0.51 0.60 0.46 0.50 0.65 0.45 0.50 0.62 0.50 0.52 0.66 0.52 0.48 0.59
AA↑ 0.55 0.50 0.47 0.15 1.23 1.46 -0.39 -0.09 0.27 1.02 1.03 1.11 -0.33 -0.16 0.57
AD↓ 0.64 0.72 0.68 0.55 0.56 0.50 0.72 0.70 0.49 0.51 0.53 0.47 0.56 0.60 0.60

Instruction rosy cheeks sideburns lipstick straight hair wavy hair

ID↑ 0.51 0.52 0.60 0.34 0.52 0.62 0.55 0.51 0.62 0.44 0.50 0.62 0.33 0.47 0.59
AA↑ -0.43 0.48 0.52 1.02 1.25 1.29 0.15 0.07 0.41 0.57 0.27 0.45 0.72 0.89 0.99
AD↓ 0.49 0.55 0.51 0.89 0.82 0.75 0.51 0.53 0.50 0.57 0.62 0.53 0.84 0.54 0.49

note: IP2P, I2I, and IP2N denote InstructPix2Pix, img2img, and InstructPix2NeRF, respectively.

A.2.4 USER STUDY

To perceptually evaluate the instructed 3D-aware editing performance, we conduct a user study in
Table 6. We collected 1,440 votes from 30 volunteers, who evaluated the text instruction correspon-
dence and multi-view identity consistency of editing results. Each volunteer is given a source image,
our editing result, and baseline editing, and asked to choose the better one, as shown in Figure 18
The user study shows our method outperforms the baselines.

Table 6: The result of our user study. The value represents the rate of Ours > others. Multiple
instructions indicate editing with the combinations of the above three attributes.

Method bang eyeglasses smile multiple instructions

Talk-to-Edit 0.742 0.958 0.817 0.875
InstructPix2Pix 0.833 0.667 0.725 0.683

img2img 0.733 0.758 0.750 0.783

A.2.5 W+ OPTIMIZATION ABLATION

In 2D image editing, although optimization-based inversion may be more time-consuming than
encoder-based inversion, it produces better identity consistency. We replace the inversion encoder
with latent optimization in our pipeline to see if it improves identity consistency. Since each opti-
mization takes several minutes, we cannot perform optimizations during training, but only at infer-
ence time.
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In our experiments, we considered two configurations: Direct W+ optimization and PTI Roich et al.
(2022) optimization. Direct W+ optimization involves optimizing the W+ vector while keeping
the generator fixed. PTI (Pivotal Tuning Inversion) technique fine-tunes the generator based on the
initial value provided by direct optimization. We conducted 500 steps of optimization on the W+
vector, and PTI added 100 steps of fine-tuning the generator.

The results of these experiments are presented in Figure 10, where we compare the outcomes of di-
rect W+ optimization, PTI, and the encoder-based method. The results show that directly replacing
the encoder with an optimization method during inference will lead to a severe decrease in both edit-
ing effect and identity consistency. We attribute this issue to the deviation between the model and
data distribution. The model learns a conditional distribution within the encoder’s inversion space
during training. When the encoder is replaced by an optimization method during inference, the data
distribution used for inference mismatches the learned model distribution. This mismatch results in
greater identity drift and undesirable editing outcomes.

While conducting W+ optimization during training (much larger compute) could potentially ad-
dress the distribution deviation problem, it may introduce artifacts in novel views, as pointed out by
PREIM3D. This is due to optimization being performed on a single image during training. In sum-
mary, while direct optimization of the W+ vector is an interesting concept, our experiments suggest
that it may not necessarily lead to improved identity preservation and editing results compared to
the encoder-based approach.

A.2.6 EFFECTS OF THE BACKGROUND

To verify the effect of background on the editing results, we edited images of the same person in
different scenes. We show the results in Figure 11, where the first two rows are the same subject, the
middle two rows are the same subject and the last two rows are the same subject. The results show
that the background has no obvious impact on the editing results. However, note that when editing
colors, particularly when the color being edited is close to the background color, there can be some
blending between the foreground and background elements.

A.2.7 THE TRIPLET DATA MECHANISM ABLATION

The triplet data mechanism plays a crucial role in achieving accurate and disentangled image edit-
ing. To provide a more thorough understanding of its importance, we conducted an ablation study.
Our comparison involves the img2img model, which can be considered as using a text-image pair-
ing data mechanism, in contrast to our method which utilizes the triplet data mechanism. Unlike
InstructPix2NeRF, img2img has no paired images, but the rest of the network structure is the same.

The results of the ablation study, as shown in 3 and Table 2, 3, and 5, demonstrate that the triplet
data mechanism significantly contributes to the quality of editing in terms of identity preservation
(ID) and attribute dependency (AD) when attribute altering (AA) is close to equal.

Our method consistently outperforms img2img in preserving identity across various attributes, as
indicated by the higher ID scores. Moreover, the triplet data mechanism helps reduce attribute de-
pendency, ensuring that changes to one attribute do not excessively affect others. These results
highlight that the triplet data mechanism encourages the model to learn the correlations between
changes in pairs of images and the corresponding instructions, leading to more precise and disentan-
gled editing. In conclusion, the triplet data mechanism is essential for achieving high-quality image
editing results.

A.3 MORE VISUAL RESULTS

We provide a large number of instructed editing results produced by InstructPix2NeRF in Figure 12,
13, 14, 15, and 16

Diversity and generalization. We realize the importance of diversity in the evaluation of image
editing methods and strive to provide a comprehensive evaluation. As described in Appendix A.1.1
Experimental Settings, our model is trained on the FFHQ dataset, which consists of 70,000 high-
quality faces featuring vast diversity in terms of age, ethnicity, and background, while also exhibit-
ing comprehensive representation of accessories such as glasses, sunglasses, and hats. This diverse
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Make the person 

wearing eyeglasses

Make her have 

a smiling mouth

Turn her hair 

color to pink

Make her look 

like a cartoon

Turn her into 

a bronze statue

Input EncoderW+ optimization PTI

Figure 10: Replacing the inversion encoder with the optimization method.
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Change the hair color to blonde Change the hair color to blonde

Make him smile Make him smile

Give him bushy eyebrows Give him bushy eyebrows

Make her a cartoon character Make her a cartoon character

Turn his hair color to pink Turn his hair color to pink

Change the hair color to blonde Change the hair color to blonde

Figure 11: The effects of background.

20



Published as a conference paper at ICLR 2024

Table 7: The test human instructions on bangs.

Source Instruction

InstructPix2Pix

Add a fringe to the wig.
Make the hairstyles have a fringe.
Make the bangs fringes.
Add a fringe.
Flapper hairstyles with a fringe.

Talk-To-Edit

Let’s try long bangs.
What about adding longer bangs?
Emm, I feel the bangs can be longer.
How about trying adding longer bangs?
The bangs should be much longer.

InstructPix2NeRF

Style his hair with bangs.
Move the bangs to the front.
Let’s add some bangs.
Give the girl bangs.
Add bangs to the hairstyle.

Table 8: The test human instructions on eyeglasses.

Source Instruction

InstructPix2Pix

with glasses
Make the person wearing glasses
Make him wear glasses.
Have the faces be wearing glasses.
The women are wearing eyeglasses

Talk-To-Edit

Make the eyeglasses more obvious.
How about trying thick frame eyeglasses.
It should be eyeglasses with thin frame.
The eyeglasses could be more obvious.
Try eyeglasses.

InstructPix2NeRF

Make her wear glasses.
Give her a pair of eyeglasses.
Apply glasses to her face.
Place eyeglasses on her nose.
Add a pair of eyeglasses

training data ensures that our model can generalize to various races and attributes. As shown in
Figures 14 and 15, our models are capable of handling different races, hairstyles, ages, and other at-
tributes. In Figure 16, we demonstrate this capability using the results of editing scenarios featuring
characters from this year’s movie ”Mission: Impossible – Dead Reckoning Part One.”
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Turn her into a vampire Turn her into a vampire

Give it a zombie makeover Give it a zombie makeover

Make it look like a sketch by Edward 

Hopper

Make it look like a sketch by Edward 

Hopper

Make him a cartoon character Make her a cartoon character

Turn the painting into a bronze statue Turn the painting into a bronze statue

Figure 12: More Visual Results.

22



Published as a conference paper at ICLR 2024

Turn the hair color to pink Turn the hair color to pink

Turn the hair color to pink, put eyeglasses 

on her

Turn the hair color to pink, put eyeglasses 

on her

Give the portrait a comic book look Give the portrait a comic book look

Put eyeglasses on his face, give him a 

goatee

Put eyeglasses on his face, give him a 

goatee

Remove the beard Remove the beard

Figure 13: More Visual Results.
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Make her eyes appear narrower Make her eyes appear narrower

Style her hair with a pink wig Style her hair with a pink wig

Shave the beard off Shave the beard off

Have his wear a smile Add a smile to her face

Turn him into a vampire Give it a zombie makeover

Figure 14: More Visual Results.
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Put eyeglasses on her Put eyeglasses on her

Add some beard Add some beard

Give her thicker, bushier eyebrows Add bangs to the hairstyle

Turn the portrait into a bronze statue Turn the portrait into a bronze statue

Make her look like a cartoon Give the portrait a comic book look

Figure 15: More Visual Results.
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Give her a happy expression Turn her hair to pink

Turn the portrait into a bronze statue Make her a cartoon character

Figure 16: Characters in Mission: Impossible – Dead Reckoning Part One.

Table 9: The test human instructions on smile.

Source Instruction

InstructPix2Pix

Have her be smiling
The faces should be smiling
Have an open-mouthed shark smiling
Add a “smiling” emoji
Make her happy instead

Talk-To-Edit

The person should smile more happily.
The person can smile to some degree more happily.
I kind of want the face to be smiling with the mouth wide open.
I would like the face to be smiling with teeth visible.
I would like to change the pokerface face to a smiling face.

InstructPix2NeRF

Alter her expression to appear cheerful and merry.
Give her a happy expression with a smile and bright eyes.
Adjust her features to convey a sense of happiness and positivity.
Make her look cheerful and full of good cheer.
Make the person have a smiling face
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Figure 17: Our exploration of W+ space.
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Figure 18: Examples from user study, the first choice (A: Ours, B: InstructPix2Pix), the second
choice (A: img2img, B: Ours), the third choice (A: ours, B: Talk-To-Edit), the fourth choice (A:
InstructPix2Pix, B: Ours)
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