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Abstract

Soft Actor-Critic (SAC) has achieved notable suc-
cess in continuous control tasks but struggles in
sparse reward settings, where infrequent rewards
make efficient exploration challenging. While
novelty-based exploration methods address this
issue by encouraging the agent to explore novel
states, they are not trivial to apply to SAC. In par-
ticular, managing the interaction between novelty-
based exploration and SAC’s stochastic policy
can lead to inefficient exploration and redundant
sample collection. In this paper, we propose KEA
(Keeping Exploration Alive) which tackles the
inefficiencies in balancing exploration strategies
when combining SAC with novelty-based explo-
ration. KEA integrates a novelty-augmented SAC
with a standard SAC agent, proactively coordi-
nated via a switching mechanism. This coordina-
tion allows the agent to maintain stochasticity in
high-novelty regions, enhancing exploration effi-
ciency and reducing repeated sample collection.
We first analyze this potential issue in a 2D naviga-
tion task, and then evaluate KEA on the DeepSea
hard-exploration benchmark as well as sparse re-
ward control tasks from the DeepMind Control
Suite. Compared to state-of-the-art novelty-based
exploration baselines, our experiments show that
KEA significantly improves learning efficiency
and robustness in sparse reward setups.

1. Introduction

Despite the success of deep reinforcement learning (RL) in
continuous control tasks, such as robotic manipulation, these
methods often rely on manually designed dense rewards
(Zhou et al., 2023; Zhou & Held, 2023; Zhang et al., 2023;
Yang et al., 2024), which require task-specific expertise and
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limit task generalization. To reduce reliance on handcrafted
dense rewards, early works have focused on sparse reward
settings, where feedback is rare. However, this makes ex-
ploration difficult, and basic strategies like stochastic sam-
pling (Tokic, 2010; Bridle, 1989) or additive noise (Silver
et al., 2014) often fail. In this context, Soft Actor-Critic
(SAC) (Haarnoja et al., 2018; Christodoulou, 2019) has
shown significant success in continuous control tasks (Zhou
et al., 2023; Zhou & Held, 2023; Yang et al., 2022) by opti-
mizing exploration and exploitation via stochastic policies
and entropy regularization. However, even SAC struggles
with inefficient exploration under sparse rewards.

Reward shaping (Ng et al., 1999; Hu et al., 2020; Ladosz
et al., 2022) has been used to improve exploration, but it
risks misaligning the agent’s behavior from the true task ob-
jective (Irpan, 2018; Popov et al., 2017). Solving sparse re-
ward tasks is essential for objective alignment. One promis-
ing solution to sparse rewards is to augment (extrinsic)
rewards with intrinsic signals that encourage exploration.
Curiosity-based methods (Pathak et al., 2017; Burda et al.,
2019) use prediction errors from learned dynamics mod-
els, while novelty-based methods (Burda et al., 2018; Badia
et al., 2020) compute intrinsic rewards based on the novelty
of visited states. However, while unvisited states may offer
high intrinsic rewards in principle, the agent has no prior ex-
perience to estimate their novelty. As a result, novelty-based
methods tend to reinforce revisiting previously known states
that have already been assigned high intrinsic rewards, lack-
ing a mechanism to actively target truly unvisited states. To
improve exploration, NovelD (Zhang et al., 2021) combines
novelty differences with episodic counting-based bonuses
to focus exploration on the boundary between visited and
unvisited regions. This increases the likelihood of entering
previously unvisited regions by chance.

While novelty-based methods have been shown to improve
exploration when coupled with an on-policy RL method
such as PPO (Schulman et al., 2017), applying them to
sample-efficient off-policy methods presents additional chal-
lenges. For example, Soft Actor-Critic (SAC) drives explo-
ration via stochastic policy sampling with entropy regular-
ization. When combined with novelty-based methods, this
can lead to unintended interactions between exploration



Keeping Exploration Alive by Proactively Coordinating Exploration Strategies

Intrinsic Reward Entropy

T al
-
175 Action

RLUD

T3 D:J]_ACUOH
O

T =[] Action

Figure 1. Interactions between exploration strategies. Each subfigure corresponds to a different training stage and shows the agent’s
action distribution (move right, left, up, down) at a specific region (white circle). The intrinsic reward map visualizes intrinsic rewards
(brighter means higher value), and the entropy map reflects policy entropy. The gray bar is a fixed obstacle, and the agent’s objective is to
navigate from the left to the right side of the map. Initially, high intrinsic rewards drive the agent to revisit certain regions repeatedly.
As novelty decays, increased policy entropy introduces more randomness, increasing the chance of exploring new areas. This cycle of
revisiting and shifting continues, but excessive revisits can lead to redundant experience collection and inefficient learning.

strategies due to the lack of explicit coordination. In partic-
ular, novelty-based exploration and SAC’s stochastic policy
can overlap or interfere, alternately dominating the agent’s
behavior. Relying solely on natural shifting between them
can cause delays in discovering new states: the agent may
repeatedly revisit visited states with high intrinsic rewards
instead of exploring unvisited ones, leading to redundant
experience collection and inefficient exploration (see Ap-
pendix A for more details).

To illustrate this dynamic, Fig. 1 shows three representa-
tive training stages during training: (1) At time 7}, the
actions move right and left have the highest probabilities,
and high intrinsic rewards lead the agent to repeatedly re-
visit a specific region. (2) As intrinsic rewards of this region
decay (time 75), policy entropy increases, introducing more
randomness into action selection. This shift raises the like-
lihood of sampling previously unvisited directions, such
as move down. (3) Once discovering previously unvisited
regions (time 73), the agent becomes driven again by high in-
trinsic rewards to focus on revisiting these newly discovered
areas. This cyclical interaction underscores the limitations
of relying solely on natural shifting between novelty-based
and entropy-driven explorations. Without effective coordi-
nation, the agent can collect redundant experiences, slowing
down overall learning.

In this paper, we propose KEA (Keeping Exploration Alive)
to address inefficiencies arising from the complex inter-
actions between novelty-based exploration and stochastic
policy exploration. KEA proactively coordinates different
exploration strategies, resulting in consistent exploration
behavior, maintaining diversity in exploration, and prevent-
ing the agent from repeatedly revisiting explored states. To
implement proactive coordination, we integrate a novelty-
augmented agent with a standard agent, where the former is
guided by novelty-based exploration and the latter preserves
stochasticity. A switching mechanism based on state nov-

elty dynamically shifts control between them. Additionally,
KEA leverages off-policy RL to collect data using multiple
policies. This allows us to use distinct exploration strategies
(from the novelty-augmented agent and the standard agent)
to gather diverse experiences from the environment.

We evaluate KEA in three experimental settings (Section 3).
First, we analyze a 2D navigation task with sparse rewards
to study the underlying challenges of novelty-based explo-
ration. Then, we test KEA on the DeepSea hard-exploration
benchmark (Osband et al., 2020) and sparse reward control
tasks from DeepMind Control Suite (Tassa et al., 2018). In
the 2D navigation task, KEA substantially improves learning
efficiency by proactively coordinating exploration strategies.
Similarly, KEA improves performance over baselines in
more challenging tasks. Beyond SAC, we also investigate
KEA’s generalization to other off-policy methods, includ-
ing Deep Q-Networks (DQN) (Mnih, 2013) and Soft Q-
Learning (SQL) (Haarnoja et al., 2017). Our findings show
that KEA is most effective when the original exploration
strategy interacts with novelty-based exploration. This
demonstrates KEA’s potential beyond SAC, highlighting
its ability to work across different off-policy RL methods.

Our main contributions are as follows: (1) We analyze
a potential problem when combining SAC with novelty-
based exploration, where the complex interactions between
the exploration strategies may cause inefficiencies. (2) We
propose a method that proactively coordinates exploration
strategies, improving exploration efficiency and consistency.
KEA is simple to integrate with existing novelty-based ex-
ploration methods, offering broad applicability.

2. Method

2.1. Background

A Markov Decision Process (MDP) is represented by the
state s € S, action a € A, transition function 7 : (s,a) —
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Figure 2. Overview. KEA integrates a novelty-augmented SAC (AY) with a standard SAC agent (A5). A switching mechanism (¢)
proactively coordinates between AN and .45 based on the current state novelty computed by the novelty-based model. The stochastic

policies, 7~ and 75, are derived from AN and A5, respectively.

s', reward function r : S x A — R, and discount factory
~. The agent’s goal is to find a policy 7: S — A that
maps the state s; to the action a; for maximizing the sum of
expected rewards. In this paper, we consider a setup where
the primary reward of interest (the “extrinsic” reward) is
a sparse binary signal, supplemented by dense “intrinsic”
rewards calculated by an intrinsic reward model.

2.2. Overview

As Fig. 2, we integrate an additional standard agent (de-
noted as A%) with the novelty-augmented agent (denoted as
AN), providing a complementary exploration strategy to ad-
dress inefficiencies caused by the complexity of interactions
between the exploration strategies. To coordinate AN and
AS, we devise a switching mechanism, denoted as 1/, which
dynamically coordinates based on state novelty, measured
by the novelty-based model.

In this paper, because SAC has demonstrated significant
success in continuous control tasks, we use it as the
base RL agent and leverage Random Network Distillation
(RND) (Burda et al., 2018) to compute intrinsic reward for
exploration (AN). In an off-policy manner, we can collect
transitions with multiple policies while training with another.
This allows us to use distinct exploration strategies (e.g. AN
and AS) to gather diverse data from the environment. We
provide pseudocode for KEA in Algorithm 1.

2.3. Exploration Strategies

Novelty-based Exploration. Novelty-based exploration
encourages the agent to focus on novel states within the
explored region, increasing the chances of discovering previ-
ously unvisited areas. In this paper, we use SAC as the base
RL agent and leverage RND to compute intrinsic rewards
that guide this exploration (denoted as AN). Specifically, the
SAC policy is updated to account for both extrinsic rewards

Algorithm 1 KEA: Keeping Exploration Alive

1: Initialize 7™ « 0, replay buffer D, agents AS, AN, and
intrinsic reward (IR) model
2: for i = 1 to (# total steps) do
3:  Select policy via switching function 1 (r, 7N, 75)
4:  Sample action from selected policy 7(+) and collect
transition from the environment

5. Compute intrinsic reward ™ via IR model
6:  Store transition in buffer D
7:  Update IR model with latest transitions
8: if ¢ € train_steps then
9: Sample batch transitions from D
10: Recompute intrinsic rewards
11: Update A5 and AN using SAC
12:  endif
13: end for

(from the environment) and intrinsic rewards (based on nov-
elty). We modify the Soft Bellman update target for the Q
network in SAC (Haarnoja et al., 2018) as shown below:

Yo = (ﬁext ,rext + ﬂint ,r,int)

+’y(rg}inQ9£(s’,a’) — alogﬂ'SAC(-|s’)> M

1,2

where 3% and 3" are scaling factors for extrinsic and
intrinsic rewards, and « is the temperature parameter con-
trolling the entropy regularization. The ™ is an intrinsic
reward computed based on the state novelty, which mea-
sures the prediction error of Random Network Distillation

(RND), calculated as

i = [1f(s:0) = f(s0)]I?, @

where f : O — R represents a randomly initialized target
network that maps an observation s; to an embedding in
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R, and f : O — R¥ is a predictor network trained via
gradient descent to minimize the expected mean squared
error (MSE) with the target network.

Stochastic Policy via Standard Agent. We integrate an
additional standard agent (denoted as AS) alongside the
novelty-augmented agent (AV), offering a complementary
exploration strategy characterized by high stochasticity.
Specifically, .AS includes a stochastic policy that maintains
high action variance by delaying learning until extrinsic
rewards are obtained. This is implemented by assigning
zero weights to its losses, effectively freezing gradient up-
dates. Once extrinsic rewards are received, the full losses
are applied, allowing the agent to begin learning from accu-
mulated experiences in the replay buffer.

With A5 maintaining high variance in its actions, we proac-
tively coordinate AN and AS to prevent reliance solely on
natural shifts in exploration strategies caused by changes
in entropy and intrinsic rewards. This coordination ensures
consistent exploration of unvisited regions by reducing deter-
ministic actions in regions of high novelty but low entropy.

In this paper, we implement A using another SAC agent
to enhance data efficiency by sharing experiences in a uni-
fied replay buffer with AN. During training, experiences
are sampled from this shared buffer, and the policy and Q-
networks of AS are updated concurrently with those of AN.
The notable difference is that the standard agent is trained
using a different reward signal, only taking into account the
primary (sparse reward) task, which allows it to retain high
entropy for the exploration of unvisited states.

2.4. Switching Mechanism

Since our method involves two exploration strategies from
different agents, we require a mechanism to determine when
to use each. The role of the switching mechanism is crucial
for proactively coordinating AN and AS. Simply averaging
the action distributions from both agent policies would not
be effective, as their objectives may differ significantly. In-
stead, we design a switching mechanism that adapts based
on the novelty of the agent’s current state. This mechanism
ensures that A5 operates near the boundary between ex-
plored and unexplored regions, while AN frequently revisits
relatively novel states within the explored regions.

We define the switching criterion as follows:

T‘-(St) - w(rint’ﬂ-N(St)aﬂ-s(St)% (3)
_ ﬂ—s(st) , if 7'%“‘“ >0
e {WN(St) , otherwise “4)

where 75 and 7N are stochastic policies from A5 and AN,
respectively, and o is a threshold hyperparameter. When the
received intrinsic reward falls below the predefined thresh-
old, the agent switches to AN for novelty-based exploration,

which encourages the agent to visit relatively novel areas
more often. Conversely, when the received intrinsic reward
exceeds the threshold, the agent switches to AS, focusing
on stochastic policy exploration to enter unexplored regions.
This switching mechanism provides a proactive coordination
of exploration strategies, further improving the exploration
efficiency.

3. Experiments

In this section, we evaluate the KEA’s performance in sev-
eral RL tasks with sparse rewards to demonstrate its ability
to manage the complex interactions between different explo-
ration strategies and improve overall exploration efficiency.

We begin by testing our method on a 2D Navigation task,
where the agent must navigate to a fixed goal position while
avoiding obstacles. Next, we analyze the sensitivity of KEA
to the switching threshold (o), a critical hyperparameter
that affects the balance between A5 and AN. To evaluate
KEA’s generalization to other off-policy RL methods, we
conduct additional experiments by applying KEA to meth-
ods such as Deep Q-Networks (DQN) (Mnih, 2013) and
Soft Q-Learning (SQL) (Haarnoja et al., 2017). Finally, we
evaluate KEA on more challenging environments from the
DeepSea hard-exploration benchmark (Osband et al., 2020)
and sparse reward control tasks from DeepMind Control
Suite (Tassa et al., 2018).

We use Soft Actor-Critic (SAC) as the base RL agent and
demonstrate the flexibility of our method by integrating
it with two different novelty-based exploration methods.
Specifically, we combine SAC with Random Network Dis-
tillation (RND) (Burda et al., 2018), denoted as KEA-RND-
SAC, and also with NovelD (Zhang et al., 2021), denoted
as KEA-NovelD-SAC. Each method is evaluated across
five random seeds, with results presented as the mean and
standard deviation of episodic return. The primary evalua-
tion metric is mean episodic return, which reflects both task
performance and convergence speed.

3.1. 2D Navigation Task

Task Description. As shown in Fig. 3, the 2D Navigation
task involves navigating an agent to a fixed goal position on
the right (blue point) while avoiding an obstacle placed in
the middle of the environment. The agent’s starting position
(green point) is randomly initialized within the left half
of the environment at the beginning of each episode. The
environment provides sparse extrinsic rewards, meaning the
agent only receives extrinsic rewards when it successfully
reaches the goal.

The observation space is discrete, consisting of the agent’s
current (x, y) position, while the action space includes four
possible actions: (move right, move left, move up, move
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Figure 3. Left: 2D Navigation task involves navigating an agent from a randomly chosen start (light green circles) to a fixed goal position
on the right (blue point) while avoiding an obstacle placed in the middle of the environment. Right: Mean episodic returns during training.

The shaded area spans one standard deviation.

Method Episodic Return
SAC 0. +0.
RND-SAC 0.235 +0.184
KEA-RND-SAC (ours) 0.403 + 0.042
NovelD-SAC 0.607 + 0.042

KEA-NovelD-SAC (ours) 0.604 £ 0.051

Table 1. Mean episodic return (mean4std.) in 2D Navigation task.

down). Additionally, the transition function is unknown, and
the agent must learn to navigate the environment through
trial and error. We implement this environment by Gymna-
sium (Towers et al., 2024).

Experimental Setup. In this experiment, we compare
the performance of our method (KEA-RND-SAC and KEA-
NovelD-SAC) against standard SAC, as well as SAC aug-
mented with novelty-based exploration using RND (RND-
SAC) and NovelD (NovelD-SAC). Performance is measured
by the mean episodic return during training. The training is
halted after the agent collects 300,000 transitions from the
environment. Our method variants — KEA-RND-SAC and
KEA-NovelD-SAC — use RND and NovelD, respectively,
to compute the intrinsic rewards, combined with AS and
a dynamic switching mechanism to coordinate exploration
strategies. Each method is tested across five random seeds,
and we report both the mean and standard deviation of the
performance to ensure statistical significance.

Experimental Results. As shown in Fig. 3, our method
significantly outperforms the baselines. The final perfor-
mance metrics are summarized in Table 1. KEA-RND-
SAC achieves a mean episodic return of 0.403 £ 0.042
after 300,000 environment steps, compared to RND-SAC’s
0.235 £ 0.184, representing a more than 70% improve-

Threshold Mean Episodic Return A Usage

0.50 0.358 £ 0.151 0.24
0.75 0.348 + 0.033 0.19
1.00 0.407 £ 0.055 0.14
1.25 0.348 £ 0.150 0.11
1.50 0.334 £ 0.167 0.08

Table 2. Mean episodic return (mean=+std.) of KEA-RND-SAC
with different switching thresholds.

ment in performance. In the NovelD setup, NovelD-SAC
reaches a mean episodic return of 0.607+0.042, while KEA-
NovelD-SAC achieves 0.604 £+ 0.051 after 300,000 environ-
ment steps. Although the final performance between KEA-
NovelD-SAC and NovelD-SAC is similar, KEA-NovelD-
SAC converges significantly faster, reaching a return of 0.6
around 190,000 environment steps, whereas NovelD-SAC
requires 250,000 steps to achieve a similar return. These
results suggest that KEA’s more efficient exploration leads
to faster learning efficiency.

3.2. Different Switching Thresholds

The switching threshold (o) is a critical hyperparameter
in KEA that determines the usage of AS during training,
influencing the balance between AN and AS.

To analyze KEA’s sensitivity to different switching thresh-
olds (o), we evaluate KEA-RND-SAC’s mean episodic re-
turn on the 2D Navigation task (Section 3.1). As shown
in Table 2, varying the switching threshold affects KEA’s
performance. Notably, the highest mean episodic return
is achieved at 0 = 1.0, with a value of 0.407 £ 0.055.
While performance slightly drops at other thresholds, all
tested configurations consistently outperform the baseline
RND-SAC (0.235 + 0.184). This demonstrates that KEA
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Figure 4. Performance comparison of KEA across off-policy RL methods. Left: Mean episodic returns during training (shaded area
represents one standard deviation). Right: Improvement in episodic return from KEA across various off-policy RL methods. (RND &
KEA) - DQN represents the gain from applying KEA to DQN (KEA-RND-DQN minus RND-DQN). Similarly, (RND & KEA) - DQN-P
and (RND & KEA) - SQL denote improvements in DQN-P and SQL. KEA improves exploration in RND-SQL and RND-DQN-P, where
the original exploration strategy interacts with novelty-based exploration, but has minimal impact in RND-DQN due to independent

e-greedy exploration.

maintains robust performance across a range of threshold
values.

To better understand KEA’s switching behavior, we analyze
AS usages across different thresholds (Table 2, column AS
Usage). As o increases, the usage of AS steadily decreases,
dropping from 0.24 at 0 = 0.50 to 0.08 at o = 1.50. This
indicates that a higher threshold restricts .45 to states with
very high intrinsic rewards, resulting in more frequent re-
liance on AN. These findings highlight the trade-off between
exploration strategies influenced by o. Lower thresholds
encourage greater usage of .AS, promoting more stochastic
exploration, while higher thresholds focus on A, leading
to more reliance on novelty-based exploration.

3.3. Generalization to Other Off-Policy RL Methods

In this paper, we primarily focus on SAC, as the interaction
between SAC’s stochastic exploration and novelty-based
exploration can lead to inefficiencies, which KEA addresses,
as demonstrated in Section 3.1. However, a natural question
arises: can KEA generalize to other off-policy RL methods?
To investigate this, we conducted additional experiments
applying KEA to two off-policy methods, Deep Q-Networks
(DQN) (Mnih, 2013) and Soft Q-Learning (SQL) (Haarnoja
etal., 2017).

DQN employs e-greedy exploration, where actions are se-
lected randomly with probability €, independent of the cur-
rent best Q-value. In contrast, SQL uses stochastic sampling,
where action selection is influenced by all Q-values in the
state. To facilitate direct comparison, we further modified
DQN’s e-greedy exploration to use proportional sampling,
where actions are sampled based on their Q-values rather
than uniformly. With this modification, the e-greedy explo-

ration becomes dependent on Q-values in the state.

Experimental Setup. We evaluate six configurations: (1)
RND-DQN and RND-SQL, incorporating Random Network
Distillation (RND). (2) KEA-RND-DQN and KEA-RND-
SQL, applying KEA to RND-DQN and RND-SQL. (3)
RND-DQN-P and KEA-RND-DQN-P, modifying e-greedy
exploration with proportional sampling. As in previous ex-
periments, training is halted after the agent collects 300,000
transitions, and each method is tested across five random
seeds.

Experimental Results. As shown in Fig. 4, our results pro-
vide key insights into KEA’s generalization across different
off-policy RL methods. In the RND-DQN baseline, KEA
(KEA-RND-DQN) does not improve performance because
e-greedy selects actions with a fixed probability, indepen-
dent of novelty. As a result, the two exploration strategies do
not interact, and KEA’s switching mechanism has a limited
effect. Since KEA is designed to coordinate exploration
strategies that influence each other, its impact is minimal in
this setting.

When proportional sampling is introduced in e-greedy
(RND-DQN-P), performance drops due to the emerging
interaction between exploration strategies. However, ap-
plying KEA in this setting (KEA-RND-DQN-P) improves
performance by proactively coordinating proportional sam-
pling and novelty-based exploration.

In SQL-RND, KEA (KEA-RND-SQL) significantly im-
proves exploration efficiency. SQL, like SAC, maintains
a stochastic policy that interacts with novelty-based explo-
ration, leading to balance shifts similar to those observed
in SAC. By proactively coordinating these strategies, KEA
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Algorithm DeepSea 10 DeepSea 14 DeepSea20 DeepSea24 DeepSea 30
DeRL-A2C (Schifer et al., 2021) 098 +0.10 0.65+023 0424+0.16 0.07+0.10 0.09+0.08
DeRL-PPO (Schifer et al., 2021) 0.61 +£0.20 092+0.18 -0.01+£0.01 0.634+0.27 -0.01+0.01
DeRL-DQN (Schifer et al., 2021) 098 +£0.09 0.95+0.17 040+0.08 0.53+0.27 0.10=+0.10
SOFE-A2C (Castanyer et al., 2024) 094 £0.19 0454+031 0.11£0.25 0.08+0.14 0.04 £0.09
SOFE-PPO (Castanyer et al., 2024)  0.77 £0.29 0.67 £0.33 0.13+0.09 0.07 +£0.15 0.09 +0.23
SOFE-DQN (Castanyer et al., 2024) 0.97 £0.29 0.78+£0.21 0.70+0.28 0.65+0.26 0.42+0.33
SAC 098 £0.01 0.69+023 0.00+0.00 0.00+0.00 0.00=+0.00
RND-SAC 099 +0.01 092+0.13 089+0.09 0.67+035 035+044
KEA-RND-SAC (ours) 099 +£0.01 0.99+001 092+0.05 0.81+0.18 0.54 £ 0.32

Table 3. Average performance on DeepSea environments of varying sizes, reported with one standard deviation over 100,000 training

episodes.

enhances exploration consistency, resulting in better perfor-
mance.

These findings suggest that KEA is most effective in sce-
narios where the base exploration strategy is coupled with
novelty-based exploration. Specifically, KEA demonstrates
the following order of effectiveness: (1) entropy-regularized
(probabilistic) policies, such as SAC and SQL, (2) Q-value
proportional exploration within a non-greedy exploration
step, as in the modified DQN-P, and (3) basic e-greedy
exploration, where its impact is minimal. This hierarchy
reflects the degree of interaction between the original explo-
ration strategy and novelty-based exploration, which KEA
is designed to coordinate.

3.4. DeepSea: A Hard-Exploration Benchmark

Task Description. The DeepSea environment (Osband
et al., 2020) is a well-established benchmark for evaluating
hard-exploration challenges in reinforcement learning. It
consists of an N x N grid where the agent starts in the
top-left corner and aims to reach a goal in the bottom-right
cell. At each timestep, the agent moves one row down and
selects an action to shift either left or right. The observation
space is a one-hot encoding of the agent’s location in the
grid, while the action space is discrete (go left or go right).

The reward function is intentionally deceptive: moving left
yields zero reward, while moving right receives a small neg-
ative reward of —0.01/N. However, the agent receives a
sparse reward of +1 only when reaching the goal. Each
episodes last exactly IV steps. Increasing N further in-
creases the difficulty, making DeepSea suitable for evaluat-
ing the efficiency of exploration strategies.

Experimental Setup. In this experiment, we follow the
setup in DeRL (Schifer et al., 2021) and SOFE (Cas-
tanyer et al., 2024) to evaluate KEA and baseline meth-
ods on DeepSea environments of increasing size (N =
10, 14, 20, 24, 30) to study performance under varying ex-

ploration complexity. Agents are trained for 100,000
episodes, with evaluation every 1000 episodes. We compute
the average return across 100 test episodes, providing nsight
into both achieved performance and sample efficiency.

All methods are tested across five random seeds per environ-
ment size, and we report the mean and standard deviation of
the performance to ensure statistical significance. The base-
lines include standard SAC, SAC with RND (RND-SAC),
DeRL, and SOFE.

Experimental Results. Table 3 summarizes the average
performance of all evaluated methods across DeepSea en-
vironments of increasing size (N = 10 to 30). As the
environment depth increases, the exploration becomes more
challenging due to longer episode lengths and deceptive
short-term rewards.

Overall, KEA-RND-SAC, consistently achieves competi-
tive or superior performance across all settings, with par-
ticularly strong results in the more difficult configurations.
Compared to SOFE and DeRL variants, KEA-RND-SAC
demonstrates improved sample efficiency and robustness in
deeper environments. These findings support the effective-
ness of KEA’s proactive coordination mechanism, which
balances novelty-based and stochastic exploration to en-
hance performance in sparse-reward settings.

3.5. DeepMind Control Suite

Task Description. The DeepMind Control Suite (Tassa
et al., 2018) is a set of continuous control tasks to evalu-
ate RL algorithms. These tasks simulate various physical
environments and require agents to learn complex motor
skills to achieve specified goals. Observation spaces are con-
tinuous, consisting of joint positions and velocities, while
action spaces are represented as continuous values (e.g.,
joint torques or forces). The number of observation and
action dimensions depends on the specific task.

Experimental Setup. In this experiment, we compare the



Keeping Exploration Alive by Proactively Coordinating Exploration Strategies

Method Walker Run Sparse Cheetah Run Sparse Reacher Hard Sparse
SAC 0. +0. 0.+0. 715.17 £ 216.57
RND-SAC 287.65 + 334.12 512.02 + 466.26 790.32 4+ 143.26
KEA-RND-SAC (ours) 629.74 + 196.75 773.76 + 162.74 874.61 + 94.58
NovelD-SAC 553.26 £ 191.03 647.29 + 382.58 860.40 + 76.15
KEA-NovelD-SAC (ours) 706.47 + 389.23 734.67 + 316.95 837.12 + 68.95

Table 4. Mean episodic return (mean=std.) in three tasks from the DeepMind Control Suite.

Walker Run Sparse

Cheetah Run Sparse

Reacher Hard Sparse

—— SAC —— SAC
1000 1 —— RND-SAC 1000 1 - RND-SAC
—— NovelD-SAC —— NovelD-SAC
800{ — KEA-RND-SAC (ours) 800{ — KEA-RND-SAC (ours)
c —— KEA-NovelD-SAC (ours) c —— KEA-NovelD-SAC (ours)
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Figure 5. Performance on three continuous control tasks from the DeepMind Control Suite. Our method (KEA-RND-SAC and KEA-
NovelD-SAC) performs notably better than baselines in more challenging exploration tasks. The shaded regions indicate one standard

deviation across evaluation runs.

Figure 6. Three tasks from the DeepMind Control Suite (Tassa
et al., 2018) are used for evaluation: Walker Run, Cheetah Run,
and Reacher Hard. The objective in the first two tasks is to run
as fast as possible, while in the third task, the agent must reach a
specified goal position.

performance of our method (KEA-RND-SAC and KEA-
NovelD-SAC) against three baselines: standard SAC, SAC
with RND (RND-SAC), and SAC with NovelD (NovelD-
SAC). The training is halted after the agent collects 500,000
transitions from the environment. As described earlier in 3.1,
KEA-RND-SAC and KEA-NovelD-SAC incorporate an ad-
ditional standard agent (A%) and a dynamic switching mech-
anism to proactively coordinate exploration strategies. They
use RND and NovelD, respectively, to compute intrinsic
rewards. Each method is tested across five random seeds,
and we report both the mean and standard deviation of the
performance to ensure statistical significance.

We evaluate the methods on three tasks from the DeepMind
Control Suite: Walker Run Sparse, Cheetah Run Sparse,
and Reacher Hard Sparse (shown in Fig. 6). In Reacher
Hard Sparse, the reward structure is originally sparse. For
Walker Run Sparse and Cheetah Run Sparse, rewards are
provided sparsely only when the original reward exceeds a
certain threshold. The threshold for Walker Run is set at 0.3,

while for Cheetah Run, it is 0.35.

Experimental Results. As shown in Fig. 5, Walker Run
Sparse and Cheetah Run Sparse present significant explo-
ration challenges. Without novelty-based exploration, SAC
struggles to reach the goal. In contrast, Reacher Hard Sparse
is relatively easier, as SAC can reach the goal even without
intrinsic rewards. Besides, novelty-based exploration im-
proves performance across all three tasks, and our method
further enhances this performance.

As shown in Table 4, after 500,000 environment steps,
KEA-RND-SAC achieves significant improvements over
RND-SAC, with increases of 119%, 51%, and 11% in mean
episodic returns across the three tasks. Similarly, KEA-
NovelD demonstrates approximately a 10% improvement
over NovelD. Although KEA-NovelD shows similar results
to NovelD on the Reacher Hard Sparse task, it performs
notably better in the more challenging exploration tasks,
Walker Run Sparse and Cheetah Run Sparse.

4. Related Work

Computing novelty to improve exploration has emerged as
a critical component for improving exploration efficiency
in sparse reward setups, where extrinsic rewards are lim-
ited (Ladosz et al., 2022; Burda et al., 2019; Kim et al.,
2019). These methods complement our work, as KEA can
integrate with various curiosity- and novelty-based explo-
rations.

Prediction Error-based Novelty. One popular approach is
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prediction error-based novelty, which measures state nov-
elty by predicting the next state and calculating the error.
Stadie et al.(Stadie et al., 2015) compute the error between
the predicted and the actual state in the latent space, while
ICM (Pathak et al., 2017) measures the prediction error of an
agent’s ability to anticipate action outcomes in a learned fea-
ture space using a self-supervised inverse dynamics model.
RND (Burda et al., 2018) computes state novelty using the
prediction error of a randomly initialized network.

Count-based Novelty. Count-based novelty methods offer
another effective strategy by measuring the novelty based
on state visitation frequency. Early works (Bellemare et al.,
2016; Ostrovski et al., 2017; Tang et al., 2017) use pseudo-
counts to estimate state visitation in high-dimensional envi-
ronments. Machado et al. (Machado et al., 2020) improves
upon earlier methods by using the norm of the successor
representation for implicit state counts without requiring
domain-specific density models.

Including Episodic Memory. Some approaches com-
bine episodic memory and lifelong novelty. For exam-
ple, NGU (Badia et al., 2020) encourages exploration
across episodes and throughout training. RIDE (Raileanu &
Rocktéschel, 2020) combines forward and inverse dynam-
ics models with episodic count-based novelty to compute
intrinsic rewards based on the distance between consecutive
observations in the state embedding space. AGAC (Flet-
Berliac et al., 2021) integrates episodic count-based novelty
with the KL-divergence between the agent’s policy and an
adversarial policy to compute intrinsic rewards.

NovelD (Zhang et al., 2021) combines count-based novelty
and novelty difference to encourage uniform and boundary
exploration, showing strong results in sparse reward tasks.
In this paper, we propose KEA, leveraging NovelD for in-
trinsic rewards while introducing an additional standard
agent and a switching mechanism to proactively coordinate
exploration strategies and improve efficiency.

Other Exploration Methods. Beyond prediction and count-
based novelty approaches, other exploration methods in-
clude adding noise to parameters (Fortunato et al., 2018;
Plappert et al., 2017), computing intrinsic rewards via hierar-
chical RL (Kulkarni et al., 2016), using curriculum learning
to guide exploration (Bengio et al., 2009; Portelas et al.,
2021), combining self-supervised reward-shaping methods
and count-based intrinsic reward (Devidze et al., 2022), us-
ing distance-based metrics for reward shaping (Trott et al.,
2019), diversifying policies by regularizing the loss function
with distance metrics (Hong et al., 2018), and combining
a novelty-based exploration method with switching con-
trols to determine which states to add shaping rewards in a
multi-agent RL framework (Zheng et al., 2021).

5. Conclusion

In this paper, we present KEA, a novel approach to ad-
dress the challenges of applying novelty-based exploration
in SAC. KEA introduces a standard agent (AS) alongside a
novelty-augmented SAC (AY), which incorporates existing
methods such as RND and NovelD. A dynamic switch-
ing mechanism proactively coordinates the two exploration
strategies, enabling consistent discovery of new regions
while maintaining an effective balance between them. Com-
pared to previous methods that rely solely on intrinsic re-
wards, KEA reduces the complexity arising from the interac-
tions between the novelty-based exploration strategy and the
stochastic policy exploration strategy, leading to a more sta-
ble training process. Our experiments on DeepSea highlight
the effectiveness of KEA’s proactive coordination mecha-
nism in balancing novelty-based and stochastic exploration
under sparse rewards. Results on sparse reward tasks from
the DeepMind Control Suite further demonstrate KEA’s
substantial improvement over RND-SAC and NovelD-SAC,
underscoring its effectiveness in balancing different explo-
ration strategies.

While KEA offers several advantages, one limitation is that
it is restricted to off-policy learning, as the additional stan-
dard agent shares experiences with the target policy. Never-
theless, we believe KEA provides a principled approach to
balancing exploration strategies, advancing exploration in
complex environments.
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A. Theoretical Example: Inefficiency Arising from Interaction Between Exploration Strategies

Problem Setup and Assumptions. Consider an MDP with states S = {sg, s1, $2} and actions A = {ay,as}, with
deterministic transitions: T'(s1|sg,a1) =1, T(s2|s0,a2) = 1..

The reward combines sparse extrinsic and intrinsic novelty-based components:
/ ext / int/ ./
7"(8,0,,5):7" (&a,s)—i—ﬁ-r (S)’

with 7i"(s") = 1/N(s’), where N (s') is the number of visits to state s’.

We assume training with Soft Actor-Critic (SAC), using entropy coefficient cv. The initial Q-values are uniform, Q°(s;, a;) =
€, and the initial policy is uniform: 7°(a;|s;) = 0.5. We consider single-step episodes.

Definitions and Policy Structure. The soft Q-function is updated according to the soft Bellman equation:
Qt-l-l (870,) — TeXt(&CL, S/) + B . Tint(s/) + ’YV(S/)7

where the soft value function V' (s) is defined as:
V(s) = Zﬂ'(a|s) [Q(s,a) — alogm(als)].

The policy follows a softmax distribution over Q-values:

exp(Q'(s,a)/a)
2o exp(Q'(s,a’) /)

m'(als) =

Interaction of Exploration Methods. Initially, at 5o, Q"(s0,a1) = Q°(s0, az) = ¢, so the initial policy is:
7°(aj|s0) = 0.5.
Suppose the agent takes a1 and transitions to s;. Then the Q-value becomes:
Q' (s0,a1) = B - (s1) + vV (s1) = B+ (e + alog2),
assuming 7' (sq, a1, s1) = 0 and r'"(s1) = 1/N(s1) = 1.
The updated policy becomes:

exp(Q' (s0,a1)/)
> exp(Q(s0,a') /)’

7T1(a1|8()) = Wl(ag‘SO) =1- 7T1(a1|8()).

Analytical Derivation of Step Count k. Define the action probability ratio:

k 7rk(a1|30) — exp (Qk(so,al) - Qk(so,a2)> .

= k (as|so) !

With repeated visits to s, the intrinsic reward decays as r"(s;) = 1/k, leading to:

Q" (s0,a1) = g +7(e+alog2), QF(so,a2) =e.

Solving for the step k* where n* = 1 (i.e., equal action probability), we obtain:

p
(1 —7)e —vyalog?2’

k" =
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Interpretation. This derived expression for £* indicates the number of times the agent must revisit state s; (via action a;)
before the action probability ratio n* returns to equilibrium, i.e., 7(a1|sg) = 7(az|so) = 0.5. At that point, the agent has a
higher probability of sampling the action a5 to explore the unvisited state ss.

Initially, high intrinsic rewards bias the agent toward revisiting novel states, resulting in repeated transitions. As novelty
decays over time, the effect of entropy increases, driving the policy back toward uniformity. This delayed shift from
novelty-based to entropy-driven exploration introduces inefficiencies and slows the agent’s ability to discover unvisited
regions.

Despite the simplicity of this example, the underlying dynamic—where intrinsic rewards dominate early behavior and decay
slowly—applies broadly, including in longer-horizon tasks with more complex novelty mechanisms.

B. Training Details

We summarize the hyperparameters used in training our method in Tables 5 and Tables 6. Table 5 outlines the default
hyperparameters used for both the standard agent A5 and the novelty-augmented agent AN in KEA. These values are kept
consistent across tasks unless otherwise noted. Both agents are trained with the Adam optimizer, and architectures and
learning rates are adapted for DeepSea.

Table 5. Hyperparameters for KEA.

Hyperparameter AS AN

Actor learning rate 0.0003 0.0003

Critic learning rate 0.001 /0.0003 (DeepSea) 0.001 /0.0003 (DeepSea)

Optimizer Adam Adam

Actor Architecture FC(256, 256), FC(64, 64) (DeepSea) FC(256, 256), FC(64, 64) (DeepSea)

Critic Architecture FC(256, 256), FC(64, 64) (DeepSea) FC(256, 256), FC(64, 64) (DeepSea)

Target Update Frequency 1 1

Target smoothing coeff. T 0.005 0.005

Entropy coeff. o 0.3, 0.1 (DeepSea) 0.3, 0.1 (DeepSea)

Discount factor 0.99 0.99

Replay buffer size 300K, 500K (DM Control Suite) 300K, 500K (DM Control Suite)
100K (DeepSea) 100K (DeepSea)

UTD ratio 1 (2D Navigation Task), 1/2 1 (2D Navigation Task), 1/2

Table 6. Hyperparameters Across Different Tasks

Hyperparameter 2D Navigation Task DM Control Suite DeepSea

Intrinsic architecture (RND) FC(16, 32) FC(32, 64) FC(16, 32)
Intrinsic embedding dim. f(s;; 0) 16 64 16

Intrinsic reward clip range 2 2 2

Intrinsic reward scale 0.5 0.5 0.3

Intrinsic reward Normalization run mean std run mean std run mean std
Episode length 100 1,000 map size (10, 14, 20, 24, 30)
Extrinsic reward scale 100 100 map size (10, 14, 20, 24, 30)
Total Environment steps 300K 500K 100K x map size

# Samples before learning 1,024 4,096 200 x map size
Batch size 64 64 64

Learning rate (RND) 0.0003 0.0003 0.0003

Clip gradient norm (RND) 0.5 0.5 0.5

Switch Threshold o 1 0.75 1
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Effect of Varying Update-to-Data (UTD) Ratios 2D Navigation Task

== RND-SAC IR-8 0.51 RND-SAC (8-8)
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Figure 7. Performance under varying update-to-data (UTD) ratios. We vary SAC gradient updates at 8, 16, 32, and 48 times per 32
transitions, and RND updates at 8 and 16 times. Left: Final performance, where IR-8 and IR-16 denote RND update at 8 and 16 times,
respectively. Right: Training curves for all UTD combinations, denoted as SAC’s-RND’s (e.g., 8-16 means the SAC updates 8 times and
RND 16 times per 32 transitions).

C. Analysis of Varying UTD Ratios

The influence of interaction between exploration strategies is not only affected by the exploration strategies mechanism but
also influenced by how aggressively the SAC agent and intrinsic reward model are updated. The Update-to-Data (UTD)
ratio affects the evolution of both entropy and intrinsic rewards, thereby impacting the shifting between these exploration
strategies.

To evaluate KEA’s ability to coordinate different exploration strategies and mitigate the inefficiency caused by the complexity
of interaction between exploration strategies, we conducted an experiment with varying Update-to-Data (UTD) ratios in the
2D Navigation task (shown in Fig. 3). We compare KEA-RND-SAC with RND-SAC to evaluate how different UTD ratios
(for SAC and RND) affect the overall performance. This comparison highlights how KEA maintains efficient exploration and
robustness across a range of UTD ratio settings. We further visualize the training process using a specific example to illustrate
how the balance between exploration strategies shifts over time and how these shifts impact exploration performance. Our
method demonstrates proactive coordination of exploration strategies, reducing inefficiencies by combining SAC with
novelty-based methods, ensuring more consistent and efficient exploration.

C.1. Experimental Restuls

In this experiment, we varied the UTD ratios by adjusting the number of SAC gradient updates to 8, 16, 32, and 48 times
per 32 transitions, while the number of RND updates was set to either 8 or 16 times. The goal is to observe how the mean
episodic return evolves during training, with a total of 300,000 samples collected from the environment.

As shown in the Fig. 7, KEA-RND-SAC consistently achieves higher mean episodic returns across all UTD ratios when
compared to RND-SAC. Specifically, KEA-RND-SAC attains its best performance at 0.403 = 0.042, whereas RND-SAC
reaches a lower episodic return of 0.292 £ 0.197. However, at the highest UTD ratio (48 times updates), both methods
experience a performance decline. Despite this drop, KEA-RND-SAC maintains a better performance advantage over
RND-SAC. Moreover, KEA-RND-SAC exhibits smaller standard deviations across all configurations, indicating that it is
more robust and stable even as the update intensity increases.

C.2. Visualization

In Fig. 8, we visualize intrinsic rewards, entropy, and action probabilities throughout the training process to illustrate how
exploration evolves over time. While RND-SAC successfully reaches the goal in its best cases for both 48 and 8 gradient
updates ((a2) and (b2)), it becomes stuck in local minima in the worst cases ((al) and (b1)), limiting further exploration.
In contrast, KEA-RND-SAC consistently reaches the goal across all setups. Compared to RND-SAC, KEA-RND-SAC
maintains higher entropy in regions with high intrinsic rewards, especially before reaching the goal. This demonstrates that
our method proactively coordinates different exploration strategies (novelty-based exploration via AN and stochastic policy
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via AS), thereby reducing the negative effect from the complexity of their interaction. As a result, KEA-RND-SAC ensures
more thorough exploration, decreasing the likelihood of getting stuck in local minima.

D. Details on 2D Navigation Task

The 2D Navigation task is designed to evaluate an agent’s ability to explore and reach a sparse-reward goal in a constrained
environment. The environment is implemented using the Gymnasium framework (Towers et al., 2024) and consists of a
discrete 41x41 grid.

A fixed obstacle of size 4x34 is placed centrally in the grid, effectively creating a narrow passage that the agent must learn
to navigate around or through. The goal position is fixed at coordinates (10, 0), located on the right side of the grid. At the
beginning of each episode, the agent’s starting position is randomly initialized within the left half of the grid.

The observation space is the agent’s current (x, y) location in the grid. The action space consists of four discrete actions:
move right, move left, move up, and move down. The transition function is unknown to the agent, requiring it to learn
effective navigation strategies through trial and error.

Episodes terminate when one of the following conditions is met: the agent reaches the goal, hits the boundary of the
environment, or collides with the obstacle. Besides, we truncate the episode when the agent reaches the maximum episode
length of 100 steps. The environment provides sparse extrinsic rewards, with a non-zero reward given only when the agent
successfully reaches the goal. No intermediate rewards are provided, making exploration especially challenging.
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Figure 8. Panels (a) and (b) depict RND-SAC using 48 and 8 gradient updates, respectively, while panels (c) and (d) show KEA-RND-SAC
under the same conditions. Additionally, (1) highlights the worst performance across five random seeds and (2) highlights the best. In
each sub-figure (e.g., (al)), intrinsic rewards (left) and entropy (right) are presented at three different stages of training: after collecting
20,000, 100,000, and 300,000 samples. Action probabilities are represented by arrows pointing in different directions. For clarity, we
focus on the right part of the environment, which showcases the most interesting exploration behaviors, with unexplored states removed.
The central obstacle in the environment is shown in Fig. 3.
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