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Abstract

To enable video models to be applied seamlessly across video tasks in different environments,
various Video Unsupervised Domain Adaptation (VUDA) methods have been proposed to
improve the robustness and transferability of video models. Despite improvements made
in model robustness, these VUDA methods require access to both source data and source
model parameters for adaptation, raising serious data privacy and model portability issues.
To cope with the above concerns, this paper firstly formulates Black-box Video Domain
Adaptation (BVDA) as a more realistic yet challenging scenario where the source video
model is provided only as a black-box predictor. While a few methods for Black-box Do-
main Adaptation (BDA) are proposed in the image domain, these methods cannot apply
to the video domain since video modality has more complicated temporal features that are
harder to align. To address BVDA, we propose a novel Endo and eXo-TEmporal Regular-
ized Network (EXTERN) by applying mask-to-mix strategies and video-tailored regulariza-
tions. They are the endo-temporal regularization and exo-temporal regularization, which
are performed across both clip and temporal features, while distilling knowledge from the
predictions obtained from the black-box predictor. Empirical results demonstrate the state-
of-the-art performance of EXTERN across various cross-domain closed-set and partial-set
action recognition benchmarks, which even surpasses most existing video domain adaptation
methods with source data accessibility.

1 Introduction

Video Unsupervised Domain Adaptation (VUDA) (Chen et al., 2019a; Xu et al., 2021a; 2022a) aims to
transfer knowledge from a labeled source video domain to an unlabeled target video domain, and has wide
applications in scenarios where massive labeled video data may not be available. Despite their effectiveness
in improving the robustness of video models (Xu et al., 2022b), current VUDA methods require access
to the source video data which contains personal and private information, raising serious concerns about
data privacy and model portability issues (Liang et al., 2020a; 2022). The Source-Free Video Domain
Adaptation (Xu et al., 2022c; Tian et al., 2021) is subsequently formulated to learn a target model without
access to source data, but it still relies on the well-trained source model parameters which allow generative
models to recover source videos (Goodfellow et al., 2014; Creswell & Bharath, 2018; Luan et al., 2021; Wang
et al., 2021).

Privacy-preserving is vital in applying action recognition models to real-world applications such as in smart
hospitals and security surveillance where action recognition models are leveraged for anomaly behavior
recognition (Sultani et al., 2018; Said et al., 2021; Zhou et al., 2019; Zhong et al., 2022). In these cases,
current VUDA methods are totally inapplicable when sharing models across organizations due to their
violation of privacy-related regulations such as the European GDPR (Goddard, 2017) and Singaporean
PDPA (Chik, 2013). To further cope with the video privacy issue, we therefore formulate and study a
more realistic and challenging video domain adaptation scenario termed the Black-box Video Domain
Adaptation (BVDA) where the source video model is provided for adaptation only as a black-box predictor
(e.g., API service). In privacy-concerned scenarios, BVDA helps to derive an accurate model in the target
domain without access to both the parameters and data in the source domain.
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Figure 1: Clip features of target videos may be scattered, violating both the cluster assumption and the
masked temporal hypothesis. We augment the target video domain with virtual temporal features through
a novel mask-to-mix strategy and apply endo-temporal regularization. The resulting temporal features are
more discriminative and comply with both the cluster assumption and the masked temporal hypothesis.

Without access to source data and model, existing VUDA methods that aim at enhancing transferability
through statistical alignment (e.g., TAMAN (Xu et al., 2023)) or adversarial alignment (e.g., TA3N (Chen
et al., 2019a) and SAVA (Choi et al., 2020)) are not applicable. There have been a few recent research
efforts (Liang et al., 2021; Yang et al., 2022) aiming at Black-box Domain Adaptation for images. One rep-
resentative work is DINE (Liang et al., 2022), where target features are extracted by obtaining pseudo-labels
from the black-box predictors while applying structural regularizations (Viola & Wells III, 1997; Verma et al.,
2019) that encourage better model discriminability and generalization ability. However, structural regular-
izations of DINE are tailored for images that only contain spatial features. In comparison, characterized by
the multi-modality nature, videos consist of spatial features and additional temporal information, resulting
in additional challenges in aligning temporal features. As a result, solutions for images such as DINE cannot
show significant improvements for the BVDA task. Previous studies (Chen et al., 2019b; Yang et al., 2020a;
Kundu et al., 2022; Huang et al., 2022) prove that improving discriminability would benefit the effectiveness
of domain adaptation. Inspired by these studies, we propose to improve the discriminability of temporal
features to tackle BVDA effectively when neither source data nor source model is accessible.

One common strategy to extract video temporal features is to split longer videos into a series of shorter
clips. Therefore, temporal features can be constructed explicitly with the series of clip features (Wang et al.,
2018; Zhou et al., 2018). Meanwhile, humans are capable of recognizing actions correctly even with only
representative clips from videos (Isik et al., 2018). Intuitively, if the target model is able to perform similarly
to human perception and obtain discriminative features with consistent predictions given only partial clip
information, the representational capacity of the target model and the discriminability of the extracted target
temporal features could be improved significantly even without knowledge from the source domain. We term
the above hypothesis as the masked-temporal hypothesis as this hypothesis depicts the ideal characteristics
of features obtained after certain clips are masked out. Our method is built upon this hypothesis.

To this end, we propose the Endo and eXo-TEmporal Regularized Network (EXTERN) to address the
BVDA task. EXTERN extracts robust temporal features in a self-supervised manner by applying both
the endo-temporal regularization and the exo-temporal regularization while distilling knowledge from the
predictions obtained from the source predictor. Specifically, the endo-temporal regularization is designed
to improve the discriminability of clip features and drive clip features towards complying with the cluster
assumption (Rigollet, 2007; Xiao et al., 2023) and the masked-temporal hypothesis as presented in Fig. 1. This
objective is achieved by augmenting the target video domain with virtual temporal features through a novel
mask-to-mix strategy over clip features corresponding to the same video. Meanwhile, the exo-temporal
regularization is designed to drive the proposed model to extract more stable and discriminable temporal
features that are linearly smooth in-between by augmenting the target video domain with interpolated
temporal features. It is remarkable that our EXTERN achieves outstanding results, outperforming most
existing VUDA methods that require source data and models. This demonstrates that training the target
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model from scratch may help overcome the negative effect of domain shift, paving a new way for tackling
VUDA.

In summary, our contributions are threefold. (i) We formulated a realistic and more challenging task, Black-
box Video Domain Adaptation (BVDA). To the best of our knowledge, this is the first work to address black-
box domain adaptation for privacy-preserving and portable video model transfer. (ii) We propose EXTERN
to address BVDA, which enhances discriminative temporal feature extraction through an endo-temporal
regularization using a mask-to-mix strategy along with an exo-temporal regularization, driving clip features
towards complying with the masked-temporal hypothesis. (iii) Extensive experiments show the efficacy of
EXTERN, achieving state-of-the-art performances across cross-domain action recognition benchmarks under
closed-set and partial-set video domain adaptation settings with the remarkable 7.7% and 12.4% average
improvements under the closed-set and the partial-set settings respectively, even outperforming most existing
adaptation methods with access to source data.

2 Related Work

(Video) Unsupervised Domain Adaptation ((V)UDA). UDA and VUDA aims to distill shared
knowledge across a labeled source domain and an unlabeled target domain, which improves the robustness and
transferability of deep learning models. (V)UDA methods could be broadly categorized into four categories:
i) reconstruction-based methods (Ghifary et al., 2016; Yang et al., 2020b; Wei et al., 2022), where domain-
invariant features are extracted by encoders trained with data-reconstruction objectives; ii) discrepancy-
based methods (Saito et al., 2018; Xu et al., 2019; YUAN et al., 2022; Zhang et al., 2023), where domain
alignment is achieved by applying metric learning approaches, optimized with metric-based objectives such
as MDD (Zhang et al., 2019), CORAL (Sun et al., 2016), and MMD (Long et al., 2015); iii) adversarial-
based methods (Tzeng et al., 2017; Xu et al., 2022b; Levi et al., 2022), where methods leverage additional
domain discriminators along with feature generators, trained jointly in an adversarial manner (Huang et al.,
2011) by minimizing adversarial losses (Ganin & Lempitsky, 2015); and iv) semantic-based methods (Choi
et al., 2020; Kim et al., 2021; Sahoo et al., 2021; Song et al., 2021; Du et al., 2023), where domain-invariant
features are obtained subject to certain semantic constraints by leveraging auxiliary tasks such as contrastive
learning (Chen et al., 2020) and clip order prediction (Choi et al., 2020). Compared to UDA research which
is primarily focused on image-based tasks, VUDA research lags behind owing to the challenges brought by
aligning temporal features. Despite the challenges, there has been a substantial increase in research for
VUDA, backed by the introduction of various cross-domain closed-set or partial-set video datasets (Chen
et al., 2019a; Xu et al., 2021a; 2023). Regardless of the improvements in video model robustness and
transferability, VUDA approaches all require access to both source data and source model parameters during
adaptation, which could raise serious privacy concerns given the amount of private information of the subjects
and scenes contained in videos.

Black-box Domain Adaptation (BDA). With the increased importance of data privacy with concerns
of possible data leakage through white-box attack given model parameters (Zhang et al., 2020), there have
been a few research that explores BDA with images. BDA enables image models to be adapted to the
unlabeled target domain without either the source data or the source model parameters, with the source
model provided only as a black-box predictor. Under such settings, BBSE (Lipton et al., 2018) focused
on black-box label shift, and requires a hold-out source set for class confusion matrix estimation, which is
commonly unavailable. More recently, LNL (Zhang et al., 2021) proposed to tackle BDA by an iterative noisy
learning approach via pseudo labels that are refined with KL divergence, while DINE (Liang et al., 2022)
leveraged knowledge distillation with information maximization and structural regularizations. Despite the
above recent advances, BVDA has never been explored, which is more challenging as temporal features
must also be aligned. We propose to tackle BVDA by applying a temporal feature tailored endo-temporal
regularization leveraging a mask-to-mix strategy, along with exo-temporal regularization.
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3 Methodology

For Black-box Video Domain Adaptation (BVDA), we only have access to a black-box video pre-
dictor HS (i.e., the constraint Source API) which is trained from the labeled source video domain
DS = {(ViS , yiS)}nS

i=1 containing nS videos, with ViS ∈ VS , yiS ∈ YS . We are also given an unlabeled
target video domain DT = {ViT }nT

i=1 with nT i.i.d. videos ViT ∈ VT . Additionally, we assume that source and
target video domains share the same label space with C classes, i.e., YS = YT while the source and target
videos follow different data distributions. Therefore, there exists a domain shift (Ben-David et al., 2006)
between DS and DT . The objective of BVDA is to learn a mapping model VT → YT to perform the action
recognition task on the unlabeled DT while both DS and the parameters of HS are not accessible.

Constrained by the absence of both the source data and the parameters of the source model, neither VUDA
methods nor SFVDA methods could be directly applied for BVDA. To tackle BVDA, we resort to an
alternative strategy where we adapt target models to the embedded semantic information of the source
data resorting to the hard or soft predictions of the target domain from the black-box source predictor
ŶT = HS(VT ). Essentially, for BVDA, such a strategy aims to extract effective temporal features with
high discriminability and complies with the cluster assumption. We therefore propose EXTERN which
drives temporal feature towards high discriminability in a self-supervised manner relying on both the endo-
temporal regularization and the exo-temporal regularization. We first introduce the backbone structure of
the target model, followed by a thorough illustration over EXTERN and its key components.

3.1 Backbone Network

Videos differ from images greatly due to the existence of temporal features. A key prerequisite for the target
network to be adapted to the embedded source semantic information is that its backbone could extract
temporal features explicitly. An efficient and popular approach constructs the temporal features explicitly
with a series of clip features, obtained through clips sampled from the corresponding videos (Wang et al.,
2018; Zhou et al., 2018). One notable example is the Temporal Relation Network (TRN) (Zhou et al., 2018).
TRN has been widely adopted in previous video domain adaptation tasks, such as VUDA (Chen et al.,
2019a; Xu et al., 2022b), PVDA (Xu et al., 2021a) and SFVDA (Xu et al., 2022c) bringing state-of-the-art
results, thanks to its ability in extracting accurate temporal features by reasoning over correlations between
spatial representations which coincides with the process of humans recognizing actions.

Formally, we define an input target video with k frames as Vi = {f
(1)
i , f

(2)
i , ..., f

(k)
i } , with f

(j)
i being the

spatial feature of the j-th frame in the i-th source video. The subscript for the target domain T is omitted for
clarity. The spatial features are extracted from the source spatial feature generator Gsp which is formulated
as a 2D-CNN (e.g., ResNet-50 or ResNet-101 (He et al., 2016; Li et al., 2021)). Subsequently, the temporal
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feature of Vi is constructed by a combination of multiple clip features, obtained from the temporal feature
generator Gt. More specifically, Gt builds each clip feature with r temporal-ordered sampled frames where
r ∈ [2, k]. Formally, a clip feature for Vi, denoted as cl

(r)
i , is defined by:

cl
(r)
i =

∑
m

g(r)((V (r)
i )m). (1)

Here (V (r)
i )m = {f

(a)
i , f

(b)
i , ...}m is defined as the m-th clip with r temporal-ordered frames, where a and b

are the frame indices. a and b may not be consecutive as the clip could be extracted with nonconsecutive
frames, but should be both constrained within the range of [1, k] with b > a. Eventually, the clip feature
cl

(r)
i is obtained by fusing all the r time ordered frame-level spatial features through an integration function

g(r), usually formulated as a Multi-Layer Perceptron (MLP). The above computation would result in a total
of (k −1) clips. Finally, the temporal feature of Vi, denoted as ti, is computed through the mean aggregation
applied across all clip features, defined as:

ti = 1
k − 1

∑
r

cl
(r)
i . (2)

3.2 Endo and Exo-Temporal Regularizations

Current methods for BDA (Liang et al., 2022) attempt to obtain features from the unlabeled target data
with high discriminability via self-supervised learning by applying structural regularizations. However, such
regularizations are only tailored for spatial features since relevant studies are only conducted over image-
based BDA tasks. Comparatively, videos contain temporal features that are constructed from a series of
clip features. As depicted in Fig. 1, clip features of discriminative temporal features may still be scattered
across the decision boundary, resulting in temporal features with indistinct semantic information and causing
inferior target domain performance. The key to tackling BVDA is to improve the discriminability of clip
features.

Clip features that are discriminative should meet the cluster assumption and the masked-temporal hypothesis.
Specifically, the masked-temporal hypothesis matches the human intuition that a combination of partial clip
features from the same video would still result in consistent prediction as the overall temporal features
that combines all clip features if both the temporal features and their corresponding clip features are of
high discriminability. In other words, the clip features of high discriminability should be clustered toward
the temporal feature. To achieve this, we first augment the target domain with virtual temporal features
with a mask-to-mix strategy as depicted in Fig. 2. We define the virtual temporal feature of Vi as t̃i.
It is constructed by mixing a set of clip features cl

(r)
i , r ∈ [2, k] selected by a random masking process.

Specifically, if the temporal feature ti is built upon a set of (k − 1) clips, there will be exactly (k − 3) clips
masked randomly, leaving two randomly unmasked clips: cl

(r1)
i and cl

(r2)
i where r1, r2 ∈ [2, k]. For each

mini-batch, the selection of masked clips is random across all input videos within the mini-batch and across
each epoch. This is to ensure that the virtual temporal features of Vi are built upon all possible clip pairs
from Vi across the whole training process. Different from the temporal feature which is constructed through
a simple mean aggregation where all clip features are combined with equal weights, we compute the virtual
temporal feature via the MixUp (Zhang et al., 2018) operation. Essentially, the virtual temporal feature is
computed as a linear combination of the two unmasked clips assigned with random weights, defined as:

t̃i = MixUpλv
(cl

(r1)
i , cl

(r2)
i )

= λvcl
(r1)
i + (1 − λv)cl

(r2)
i ,

(3)

where λv ∈ Beta(αv, αv) is the weight assigned to cl
(r1)
i sampled from a Beta distribution with αv as the hy-

perparameter. The virtual temporal feature constructed is essentially the linear intermediate representation
between the unmasked clip features.

With the constructed virtual temporal feature, the masked-temporal hypothesis is satisfied by encouraging
the virtual temporal prediction to be consistent with the prediction of the corresponding target video (or
equivalently, the corresponding target temporal feature). To achieve such prediction consistency, we aim
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to minimize the divergence between the virtual temporal prediction and the target prediction. The virtual
temporal prediction is obtained from the target predictor directly, i.e., ỹi = HT (t̃i). The target prediction is
obtained by applying the target predictor to the target temporal feature, i.e., yi = HT (ti). The minimization
of prediction divergence is formulated as:

Lpre = DKL(ỹi∥yi), (4)

where DKL(·∥·) denotes the Kullback-Leibler divergence.

To further ensure that the temporal feature contains distinctive semantic information, the clip features
should also comply with the cluster assumption. Previous studies (Zhang et al., 2018) suggest that the
discriminability of extracted features can be improved and thus the cluster assumption is met if the feature
generator behaves linearly in-between training samples. The cluster assumption of clip features is therefore
complied by employing the interpolation consistency training (ICT) technique (Verma et al., 2019). Specif-
ically, such a technique encourages the virtual temporal prediction (ỹi) to be consistent with the mixed
unmasked clip prediction. The mixed unmasked clip prediction is computed as the linear combination of the
target predictions from both unmasked clips. The mixed unmasked clip prediction is computed as the linear
combination of the target predictions from both unmasked clips, defined as:

ymix,i = MixUpλv
(HT (cl

(r1)
i ), HT (cl

(r2)
i ))

= λvHT (cl
(r1)
i ) + (1 − λv)HT (cl

(r2)
i ).

(5)

Subsequently, we aim to optimize the loss function:

Lvir = lce(ỹi, ymix,i), (6)

where lce denotes the cross-entropy loss.

Overall, the proposed endo-temporal regularization drives the target model to obtain discriminable temporal
features by extracting clip features with higher discriminability that complies with the masked-temporal
hypothesis and the cluster assumption. The endo-temporal regularization is applied by jointly optimizing
Eq. 4 and Eq. 6:

Lendo = Lvir + Lpre. (7)

The implementation of the endo-temporal regularization can be observed to be very simple, yet it brings
significant improvements towards tackling BVDA, as would be presented in Sec. 4.

To further enhance the discriminability of the temporal feature, we extend the promotion of linear behavior
in-between training samples towards the temporal feature. Given a pair of videos Vi, Vj , we employ the
ICT (Verma et al., 2019) across their corresponding temporal features ti, tj , formulating the exo-temporal
regularization term. Such operation is equivalent to augmenting the target video domain with interpolated
temporal features which would drive the model towards better generalization. Formally, similar to how
virtual temporal features are constructed, the interpolated temporal features of ti, tj are obtained by applying
MixUp (Zhang et al., 2018). With yi = HT (ti) and yj = HT (tj) denoting the target predictions of ti and
tj , the exo-temporal regularization aims to optimize the loss function:

Lexo = lce(MixUpλt
(ti, tj), MixUpλt

(yi, yj)), (8)

where lce is the cross-entropy loss. MixUpλt
is defined as shown in Eq. 3 and 5, and λt ∈ Beta(αt, αt) is the

weight assigned to ti with αt as the hyperparameter.

Our mask-to-mix strategy utilizes MixUp for the construction of virtual temporal features, which seeks to
obtain consistent prediction as the temporal features such that the corresponding clip features satisfy the
masked-temporal hypothesis, which is different from existing domain adaptation works based on Mixup that
regards it as a data augmentation approach (Xu et al., 2020; Yan et al., 2020; Wu et al., 2020; Panfilov et al.,
2019).
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3.3 Endo and eXo-TEmporal Regularized Network

With the endo-temporal regularization and exo-temporal regularization terms defined, we propose the EX-
TERN to address BVDA leveraging on both regularizations, as depicted in Fig. 2. EXTERN builds upon
the TRN backbone structure as specified in Sec. 3.1.

Extracting Knowledge via Knowledge Distillation. To extract knowledge from the black-box predic-
tor HS , knowledge distillation (KD) (Hinton et al., 2015) has proven to be an effective solution. The target
model is seen as the student, and is trained to learn predictions analogous to that produced by the source
model, which is seen as the teacher. However, due to domain shift between the source domain DS and target
domain DT , the output from the source model could be noisy and inaccurate. To cope with such drawback,
the adaptive label smoothing (AdaLS) technique (Liang et al., 2022) with self-distillation (Laine & Aila,
2017) and exponential moving average (EMA) (Grebenkov & Serror, 2014) update is recently proposed.
Here, only the predictions of the top-c classes are directly utilized while predictions of other classes are
forced to a uniform distribution as:

ŷ′
i = AdaLSc(ŷi) =

ŷp
i , p ∈ T c

i
1−

∑
q∈T c

i

ŷq
i

C−c , otherwise,
(9)

where ŷi ∈ Ŷ is the prediction of the target video Vi obtained from the black-box source predictor HS (i.e.,
the teacher prediction), while yp

i denotes the prediction of the p-th class and T c
i is the class index set of the

top-c predictions for input Vi. The teacher prediction is further dynamically updated per training epoch to
maintain a EMA prediction. We apply AdaLS with EMA to reduce noisy information by focusing only on
the top-predicted classes. Extracting source knowledge is eventually achieved by optimizing:

Lkd = EVi∈DT
DKL(ŷ′

i∥yi). (10)

Learning Adaptive Clip Weights. Previous research (Nguyen et al., 2020; Chen et al., 2019a) shows
that features with lower prediction uncertainty would possess higher discriminability. Therefore, to better
aggregate the clip features for the temporal feature, we assign a clip weight to each clip feature by attending
to clip features with lower prediction uncertainty. Specifically, the clip weight is defined as the additive inverse
of the target predictions of the corresponding clip, computed as:

w
cl

(r)
i

= 1 − h(HT (cl
(r)
i )), (11)

where the constant 1 is added as a residual connection for more stable optimization. Subsequently, the
temporal feature is obtained as the weighted aggregation of all clip features, with Eq. 2 modified as:

ti = 1
k − 1

∑
r

w
cl

(r)
i

cl
(r)
i . (12)

Information Maximization. Inspired by prior works in BDA (Liang et al., 2022; Yang et al., 2022), we
maximize the mutual information (MI) to encourage diversity among target predictions and to promote
their individual certainty:

Lmi = h(EVi∈DT
yi) − EVi∈DT

h(yi), (13)

where yi = HT (Gsp(Gt(Vi))) = HT (ti) is the target prediction for input Vi and h(yi) = −
∑C

c=1 yc
i log yc

i is
the conditional entropy function. Maximizing MI could marginally improve the performances for BVDA,
as would be shown later in the ablation studies (Sec. 4.3).

The aforementioned techniques of leveraging AdaLS, adaptive clip weights and information maximization
have been proven to be effective for black-box domain adaptation for images (Liang et al., 2022) and source-
free video unsupervised domain adaptation (Xu et al., 2022c). They are leveraged to build a strong baseline
for BVDA.
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Table 1: Results for BVDA on UCF-HMDBfull and Sports-DA for closed-set video domain adaptation.
Methods Publication Privacy UCF-HMDBfull Sports-DA

Data Model U101→H51 H51→U101 Avg. K600→U101 K600→S1M S1M→U101 S1M→K600 U101→K600 U101→S1M Avg.
TRN (Zhou et al., 2018) ECCV-18 - - 76.11 78.97 77.54 90.25 71.16 88.95 73.90 62.73 49.74 72.79
LNL (Zhang et al., 2021) - ✓ ✓ 75.78 78.92 77.35 82.37 68.44 82.11 73.11 59.03 54.84 69.98
HD-SHOT (Liang et al., 2021) TPAMI(21’) ✓ ✓ 77.86 80.39 79.13 87.08 69.75 81.59 72.11 65.63 60.49 72.78
SD-SHOT (Liang et al., 2021) TPAMI(21’) ✓ ✓ 79.29 82.22 80.76 85.39 68.07 83.58 74.80 63.94 60.75 72.75
DINE (Liang et al., 2022) CVPR-21 ✓ ✓ 81.39 87.57 84.48 91.60 72.11 86.54 77.59 76.22 66.95 78.50
EXTERN - ✓ ✓ 88.89 91.95 90.42 93.77 73.79 95.42 82.16 81.19 72.74 83.18
TA3N (Chen et al., 2019a) ICCV-19 ✗ ✗ 77.70 85.37 81.54 90.28 68.57 92.97 72.65 63.63 54.06 73.70
DANN (Ganin & Lempitsky, 2015) ICML-15 ✗ ✗ 78.63 90.29 84.46 87.97 75.05 85.75 73.40 65.88 55.08 73.85
MK-MMD (Long et al., 2015) ICML-15 ✗ ✗ 77.99 86.18 82.09 90.16 67.95 90.95 73.58 66.10 55.58 74.05
SAVA (Choi et al., 2020) ECCV-20 ✗ ✗ 78.56 89.28 83.92 97.33 75.76 91.20 75.28 58.17 51.33 74.85
SHOT (Liang et al., 2021) TPAMI(21’) ✓ ✗ 77.44 86.77 82.10 91.91 72.44 91.95 75.57 67.81 52.11 75.30
ACAN (Xu et al., 2022b) - ✗ ✗ 84.04 93.78 88.91 94.70 76.69 92.32 77.69 62.50 52.38 76.05
ATCoN (Xu et al., 2022c) ECCV-22 ✓ ✗ 83.21 91.07 87.14 97.59 77.56 94.36 80.32 67.20 55.17 78.70

Table 2: Results for BVDA on Daily-DA for closed-set video domain adaptation.
Methods Privacy Daily-DA

Data Model K600→A11 K600→H51 K600→MIT MIT→A11 MIT→H51 MIT→K600 H51→A11 H51→MIT H51→K600 A11→H51 A11→MIT A11→K600 Avg.
TRN (Zhou et al., 2018) - - 25.91 37.50 31.25 20.25 45.83 61.66 16.99 33.25 43.45 20.42 13.25 21.66 30.95
LNL (Zhang et al., 2021) ✓ ✓ 20.75 49.38 32.25 15.51 41.52 55.96 16.80 31.75 41.34 20.04 14.00 35.85 31.26
HD-SHOT (Liang et al., 2021) ✓ ✓ 15.84 46.87 32.50 16.26 39.14 56.52 15.87 31.00 43.12 23.28 15.25 42.60 31.52
SD-SHOT (Liang et al., 2021) ✓ ✓ 17.02 47.92 33.25 16.56 41.07 58.16 16.17 32.50 46.96 24.49 16.00 45.57 32.97
DINE (Liang et al., 2022) ✓ ✓ 19.47 50.83 34.50 14.28 49.17 64.00 23.51 38.75 51.17 21.25 17.75 47.03 35.98
EXTERN ✓ ✓ 23.97 55.83 35.25 18.15 53.75 68.14 26.22 40.75 57.66 26.25 18.25 51.45 39.64
TA3N (Chen et al., 2019a) ✗ ✗ 23.51 36.17 31.75 18.94 43.77 57.19 16.58 28.75 40.38 17.81 14.00 22.04 29.24
DANN (Ganin & Lempitsky, 2015) ✗ ✗ 25.30 38.34 23.25 20.71 45.30 61.86 16.86 35.25 40.26 24.46 19.00 27.38 31.50
MK-MMD (Long et al., 2015) ✗ ✗ 25.88 37.06 25.75 19.09 52.71 61.57 24.16 30.75 35.58 22.81 17.25 26.40 31.58
SAVA (Choi et al., 2020) ✗ ✗ 26.33 38.29 32.00 20.61 46.50 62.64 21.30 34.00 44.38 23.74 13.50 22.08 32.11
SHOT (Liang et al., 2021) ✓ ✗ 18.37 48.40 34.50 13.88 38.33 53.73 22.05 29.00 47.92 31.93 16.50 39.52 32.84
ACAN (Xu et al., 2022b) ✗ ✗ 27.08 42.39 33.50 21.17 47.97 63.88 21.81 34.75 45.79 25.35 15.00 31.73 34.20
ATCoN (Xu et al., 2022c) ✓ ✗ 22.55 53.32 35.00 24.73 52.50 65.90 25.28 36.75 53.51 32.44 17.00 43.45 38.54

Overall Objective. Summarizing all the loss functions as presented in Eqs. (7, 8, 10, 13), the overall
optimization objective of EXTERN is expressed as:

L = Lkd + βreg(Lendo + Lexo) − Lmi, (14)

where βreg is the hyperparameter that controls the strength of the regularizations and is empirically set to
1. We refer to the settings of DINE (Liang et al., 2022) by setting αt as 0.3 and c as 3.

4 Experiments

In this section, we evaluate our proposed EXTERN across a variety of cross-domain action recognition
benchmarks, covering a wide range of cross-domain scenarios. We demonstrate exceptional performances
on all benchmarks. Moreover, thorough ablation studies and analysis of EXTERN are performed to further
justify the design of EXTERN.

4.1 Experimental Settings

Datasets. We evaluate EXTERN on three benchmarks: UCF-HMDBfull (Chen et al., 2019a), Sports-
DA (Xu et al., 2023) and Daily-DA (Xu et al., 2023). UCF-HMDBfull is one of the most common bench-
marks for VUDA and is constructed from UCF101 (U101) (Soomro et al., 2012) and HMDB51 (H51) (Kuehne
et al., 2011), each corresponding to a separate domain. Sports-DA is a large-scale benchmark with three
domains, built from UCF101, Sports-1M (S1M) (Karpathy et al., 2014), and Kinetics (K600). Daily-DA
incorporates both normal and low-illumination videos with four domains, built from ARID (A11) (Xu et al.,
2021b) (a low-illumination video dataset), HMDB51, Moments-in-Time (MIT) (Monfort et al., 2019), and
Kinetics (Kay et al., 2017). The distant domain shift due to immense illumination difference renders it more
challenging.

Implementation. We implement our method with the PyTorch (Paszke et al., 2019) library. To obtain
video features, we instantiate Temporal Relation Network (TRN) (Zhou et al., 2018) with ResNet-50 (He
et al., 2016) as the model backbone for both the black-box source model and the target model. The TRN
is leveraged thanks to its capability in extracting explicit temporal features via reasoning over correlations
between spatial representations which coincides with how humans recognize actions. TRN has therefore
been widely adopted in previous video unsupervised domain adaptation tasks, including closed-set video
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domain adaptation (Chen et al., 2019a; Xu et al., 2022b), multi-set video domain adaptation (Xu et al.,
2023), and partial-set video domain adaptation (Xu et al., 2021a), delivering state-of-the-art results in the
respective tasks. For the source model, an additional fully connected layer is inserted before the last fully
connected layer which acts as the classifier. For the target model, following (Liang et al., 2022), a Batch
Normalization (Ioffe & Szegedy, 2015) and an additional fully connected layer are inserted before the final
classifier, which is constructed with a weight normalization (Salimans & Kingma, 2016) layer and a fully
connected layer.

A similar strategy is applied for training the black-box source model and the target model, where the
TRN backbones are both initialized from pre-trained weights obtained by pre-training on ImageNet (Deng
et al., 2009). All new layers are trained from scratch, with their learning rates set to be 10 times that of
the pretrained-loaded layers. For the black-box source model, the training lasts for 100 epochs for tasks
related to the Sports-DA and the MiniKinetics-UCF dataset, and for 50 epochs for all other datasets. For
the target model, the training lasts for 20 epochs for tasks related to the UCF-HMDBfull dataset and the
UCF-HMDBpartial dataset, 30 epochs for tasks related to the Daily-DA dataset and the HMDB-ARIDpartial
dataset, and 50 epochs for the Sports-DA dataset and the MiniKinetics-UCF dataset. The stochastic gradient
descent (SGD) algorithm (Bottou, 2010) is used for optimization, with the weight decay set to 0.0001 and
the momentum set to 0.9. The batch size is set to 32 input videos per GPU. Hyper-parameters αv = 0.3
and βreg = 1.0 are empirically set and fixed.

Baselines. We compare EXTERN with state-of-the-art BDA approaches as well as competitive UDA/VDA
approaches. For fair comparisons, all compared methods are re-implemented with the exact same backbone
as EXTERN. Specifically, for BDA approaches, LNL (Zhang et al., 2021) is a noisy label learning method
where pseudo labels are refined with KL divergence and leveraged for iterative network training. HD-SHOT
and SD-SHOT obtain the model through self-training and apply SHOT (Liang et al., 2021) by employing
a cross-entropy loss and weighted cross-entropy loss respectively. We also compare with methods including:
DINE (Liang et al., 2022), DANN (Ganin & Lempitsky, 2015), MK-MMD (Long et al., 2015), TA3N (Chen
et al., 2019a), SAVA (Choi et al., 2020), ACAN (Xu et al., 2022b), SHOT (Liang et al., 2021), ATCoN (Xu
et al., 2022c), BA3US (Liang et al., 2020b), PADA (Cao et al., 2018) and PATAN (Xu et al., 2021a). We
report the average accuracies over five runs with identical settings.

Table 3: Results for BVDA on UCF-HMDBpartial , HMDB-ARIDpartial and MiniKinetics-UCF for partial-set
video domain adaptation.

Methods Publication Privacy UCF-HMDBpartial HMDB-ARIDpartial MiniKinetics-UCF
Data Model U-14→H-7 H-14→U-7 Avg. H-10→A-5 A-10→H-5 Avg. M-45→U-18 U-45→M-18 Avg.

TRN (Zhou et al., 2018) ECCV-18 - - 59.05 82.33 70.69 21.54 29.33 25.44 64.30 87.56 75.93
LNL (Zhang et al., 2021) - ✓ ✓ 56.79 80.94 68.86 22.23 26.57 24.40 61.40 85.92 73.66
HD-SHOT (Liang et al., 2021) TPAMI(21’) ✓ ✓ 56.41 80.62 68.51 23.30 26.84 25.07 59.95 89.62 74.78
SD-SHOT (Liang et al., 2021) TPAMI(21’) ✓ ✓ 61.52 82.42 71.97 23.74 25.62 24.68 61.07 88.79 74.93
DINE (Liang et al., 2022) CVPR-21 ✓ ✓ 66.19 83.84 75.01 17.69 17.33 17.51 68.79 93.56 81.18
EXTERN - ✓ ✓ 71.43 90.60 81.02 23.08 38.67 30.87 75.89 96.49 86.19
TA3N (Chen et al., 2019a) ICCV-19 ✗ ✗ 50.99 73.70 62.35 20.95 27.08 24.02 63.24 92.14 77.69
DANN (Ganin & Lempitsky, 2015) ICML-15 ✗ ✗ 61.56 77.63 69.59 22.73 19.54 21.13 62.06 93.04 77.55
MK-MMD (Long et al., 2015) ICML-15 ✗ ✗ 59.16 82.25 70.70 22.31 25.79 24.05 69.26 88.69 78.98
SAVA (Choi et al., 2020) ECCV-20 ✗ ✗ 54.74 83.41 69.08 25.27 27.94 26.61 66.49 90.31 78.40
PADA (Cao et al., 2018) ECCV-18 ✗ ✗ 68.37 85.86 77.11 21.28 32.60 26.94 72.72 91.62 82.17
BA3US (Liang et al., 2020b) ECCV-20 ✗ ✗ 71.85 88.41 80.13 26.81 32.20 29.51 76.41 95.44 85.93
PATAN (Xu et al., 2021a) ICCV-21 ✗ ✗ 73.60 91.85 82.72 30.34 35.51 32.93 77.31 96.50 86.90

4.2 Overall Results and Comparisons

Closed-set domain adaptation. We show the results on UCF-HMDBfull and Sports-DA in Tab. 1, and
results on Daily-DA in Tab. 2. Our proposed EXTERN achieved state-of-the-art results across all the three
cross-domain benchmarks. On average, EXTERN outperforms all BDA approaches designed for image-based
DA tasks (i.e., LNL, HD/SD-SHOT and DINE), outperforming the best method by a relative 7.0%, 6.0%
and 10.2% respectively. This justifies the effectiveness of the designed regularizations tailored for temporal
features whose discriminability relies on clip features complying with the masked-temporal hypothesis and the
cluster assumption. It could also be observed that the prior BDA approaches may fail to tackle BVDA well,
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with at least one task of Sports-DA and Daily-DA benchmarks showing inferior performance to that of the
source-only model. Prior BDA approaches focused solely on spatial features, and may not obtain clip features
that meet the masked-temporal hypothesis and temporal feature with distinct semantic information, resulting
in negative impacts compared to the source-only baseline. Notably, EXTERN even outperforms various
VUDA approaches (Chen et al., 2019a; Choi et al., 2020; Xu et al., 2022b) with source data accessibility.
Since EXTERN performs adaptation based solely on prediction results, it is found that EXTERN would
not be affected by noise contained within the source data or source model, generating superior adaptation
results. This shows that training a target model from scratch with strong regularizations while adapting
solely with source predictions can be as effective as data-based domain alignment techniques.

Partial-set domain adaptation. Apart from closed-set video domain adaptation, we further demonstrate
the generalization ability of our proposed EXTERN by evaluating on partial-set video domain adaptation
(PVDA) tasks. To achieve this, we follow (Xu et al., 2021a) and leverage on three other benchmarks: UCF-
HMDBpartial , HMDB-ARIDpartial and MiniKinetics-UCF. Specifically, UCF-HMDBpartial is built from
UCF101 and HMDB51 from 14 overlapping categories and contains two PVDA tasks: U-14→H-7 and
H-14→U-7. HMDB-ARIDpartial is built from HMDB51 and ARID, which is more challenging thanks
to the distant domain shift. The dataset is collected from 10 and contains two PVDA tasks: H-10→A-5
and A-10→H-5. MiniKinetics-UCF is a large-scale dataset built from MiniKinetics (Xie et al., 2017)
and UCF101 containing 45 overlapping categories, also containing two PVDA tasks: M-45→U-18 and
U-45→M-18.

Table 4: Ablation studies of learning objectives and clip weights on UCF-HMDBfull and UCF-HMDBpartial .
Methods Components UCF-HMDBfull UCF-HMDBpartial Avg.

Lkd Lmi Lexo Lvir/Lendo Lpre/Lendo wcl U101→H51 H51→U101 U-14→H-7 H-14→U-7

EXTERN

✓ ✓ ✓ 78.25 85.64 60.72 81.09 76.42
✓ ✓ ✓ ✓ 80.08 86.34 61.91 82.71 77.76
✓ ✓ ✓ ✓ 82.66 89.49 64.52 86.47 80.78
✓ ✓ ✓ ✓ ✓ 83.89 89.93 65.24 88.16 81.80
✓ ✓ ✓ ✓ 86.47 90.63 68.11 88.23 83.36
✓ ✓ ✓ ✓ ✓ 87.22 90.89 69.05 89.47 84.16
✓ ✓ ✓ ✓ 84.65 90.11 66.62 87.59 82.24
✓ ✓ ✓ ✓ ✓ 85.83 90.37 67.71 88.91 83.21

✓ ✓ ✓ ✓ ✓ 87.74 91.16 70.19 90.08 84.79
✓ ✓ ✓ ✓ ✓ 88.43 91.64 71.06 90.34 85.36

✓ ✓ ✓ ✓ 87.65 91.16 70.04 89.84 84.67
✓ ✓ ✓ ✓ ✓ 87.92 91.33 70.38 90.08 84.93
✓ ✓ ✓ ✓ ✓ ✓ 88.89 91.95 71.43 90.60 85.72

(a) Sensitivity to 𝛽𝑟𝑒𝑔 on U101→H51 (c) Sensitivity to 𝛽𝑟𝑒𝑔 on H51→U101(b) Sensitivity to 𝛼𝑣 on U101→H51 (d) Sensitivity to 𝛼𝑣 on H51→U101
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Figure 2: Sensitivity of hyperparameters βreg and αv on UCF-HMDBfull .

The results for partial-set cross-domain action recognition are presented in Tab. 3. Partial-set is more
challenging due to the asymmetric label spaces with the existence of “source-only” classes, causing negative
transfer (Cao et al., 2018; Xu et al., 2021a). Negative transfer affects all previous BDA approaches, where
all approaches will under-perform against the source-only baseline in at least one benchmark. Despite
such challenge, EXTERN still achieves outstanding results, outperforming the best BDA approach by a
relative 8.0%, 23.1% and 6.2% on the three benchmarks respectively. EXTERN also surpasses several PDA
approaches even though EXTERN is not specifically catered for label shift.
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(a) Clip features (left) and temporal features (right) 

with source-only model
(b) Clip features (left) and temporal features (right) 

with DINE

(c) Clip features (left) and temporal features (right) 

with EXTERN

Figure 3: t-SNE (Van der Maaten & Hinton, 2008) visualizations of clip features and temporal features
extracted by (a) source-only model, (b) DINE (Liang et al., 2022), and (c) EXTERN, with class information.
Different colors denotes different classes.

4.3 Ablation Studies and Analysis

To gain a deeper understanding of the effectiveness of EXTERN while justifying its design, we perform
detailed ablation studies as shown in Tab. 4 and Fig. 2. Specifically, the ablations studies explore EXTERN
from two perspectives: the effects of individual learning objectives and the effects of assigning clip weights.
The ablation studies are conducted on UCF-HMDBfull and UCF-HMDBpartial with the same TRN backbone
as previous experiments.

Endo and Exo-Temporal Regularizations. As demonstrated in Tab. 4, there is a notable performance
drop when either Lexo, Lendo or any of the components of Lendo (i.e., Lvir and Lpre) is removed from the
learning objective, thus justifying that the designed learning objectives complement each other. Further,
by applying the proposed endo and exo-temporal regularizations alone (optimizing Lendo, Lvir, and Lpre),
EXTERN could outperform all prior BDA approaches and even some UDA/PDA approaches. This further
proves the effectiveness of both the endo-temporal regularization and exo-temporal regularization since these
regularizations are tailored to temporal features.

Knowledge Distillation, Information Maximization, and Clip Weight. Tab. 4 also shows that ap-
plying knowledge distillation and information maximization brings further improvements towards EXTERN.
However, the scale of which brought by these techniques is marginal compared to applying the temporal
feature-tailored regularizations. Meanwhile, results also justify the need to construct temporal features at-
tentively with clip weight, bringing consistent performance gain, though the gain is also relatively marginal.

Hyperparameter Sensitivity. We focus on studying the hyperparameter sensitivity of βreg which con-
trols the strength of the regularizations and αv which relates to the construction of virtual temporal feature
t̃i. Here βreg is in the range of 0.2 to 1.2 and αv is in the range of 0.1 to 0.9. As shown in Fig. 2, the results
of EXTERN falls within a marginal 0.83% which ranges from 88.06% to 88.89% for the U101toH51 task,
and a marginal 0.62% which ranges from 91.33% to 91.95% for the H51toU101 task. EXTERN obtains the
best results for both tasks at αv = 0.3 and βreg = 1.0. The minimal variations show that the performance of
EXTERN is robust to both hyperparameters. Meanwhile, despite the slight variations, EXTERN maintains
the best results with all the hyperparameter settings.

Feature Visualization. We further understand the characteristics of EXTERN by plotting the t-SNE
embeddings (Van der Maaten & Hinton, 2008) of both the clip features and temporal features extracted by
the source-only model, DINE and EXTERN for H51→U101, as shown in Fig. 3. It is clearly observed that
both the clip features and temporal features from EXTERN are more clustered and discriminable, justifying
that the applied regularizations can promote higher discriminability and better compliance with the cluster
assumption. We can also observe that the distribution of clip features is more similar to the distribution
of temporal features with EXTERN. This intuitively proves that EXTERN drives clip features towards
satisfying the masked-temporal hypothesis where clip features are aligned towards the temporal features, and
ensures that the temporal features contain distinct semantic information with high discriminability.
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Table 5: Detailed comparison of EXTERN with related but different VUDA and UDA methods.

Method Publication Task Techniques

DINE (Liang
et al., 2022) CVPR-21

Black-box Domain Adaptation
(BDA): source image data not avail-
able, source image model provided as
a black-box predictor whose parame-
ters are not available, target label not
available, image-based.

DINE extracts target image features by obtain-
ing pseudo-labels from the black-box predictors
while applying structural regularizations.

ATCoN (Xu
et al., 2022c) ECCV-22

Source-free Video Domain Adaptation
(SFVDA): source video data not avail-
able, source video model parameters
are available, target label not avail-
able, video-based.

(a) ATCoN is designed such that the source and
target models are identical in their structure,
where the target model leverages the source clas-
sifier directly; (b) ATCoN learns temporal con-
sistency which includes feature consistency and
source prediction consistency across local tempo-
ral features; (c) ATCoN attends to local temporal
features based on prediction confidence obtained
from source classifier.

TA3N (Chen
et al., 2019a) ICCV-19

Video Unsupervised Domain Adapta-
tion (VUDA): source video data and
source video model are available, tar-
get label not available, video-based.

(a) TA3N (Chen et al., 2019a) aligns source
and target videos by applying adversarial-based
domain adaptation with domain discriminators
across both spatial and local temporal fea-
tures; (b) TA3N (Chen et al., 2019a) attends
to the local temporal features with high domain
discriminability.

DM-ADA (Xu
et al., 2020) AAAI-20

Unsupervised Domain Adaptation
(UDA): source image data and source
image model are available, target
label not available, image-based.

(a) DM-ADA leverages domain MixUp which
augments the target domain with source domain
data. (b) DM-ADA utilizes soft domain labels
to improve the generalization ability of the fea-
ture extractor and obtain a domain discrimina-
tor judging samples’ difference relative to two do-
mains with refined scores.

EXTERN
(Ours) -

Black-box Video Domain Adaptation
(BVDA): source video data not avail-
able, source video model provided as
a black-box predictor whose parame-
ters are not available, target label not
available, video-based

(a) EXTERN extracts temporal features in a
self-supervised manner by applying the endo-
temporal regularization and the exo-temporal reg-
ularization; (b) EXTERN distills knowledge
from the predictions obtained from the source
predictor; (c) The endo-temporal regularization
drives clip features towards satisfying the clus-
ter assumption (Rigollet, 2007) and the masked-
temporal hypothesis by augmenting the tar-
get video domain with virtual temporal fea-
tures through a mask-to-mix strategy over clip
features.

4.4 Detail Comparison with Related VUDA and UDA Methods

To highlight the novelty of EXTERN, we further compare our EXTERN with previous VUDA and UDA
methods in detail. Specifically, we compare with DINE (Liang et al., 2022), ATCoN (Xu et al., 2022c),
TA3N (Chen et al., 2019a), and DM-ADA (Xu et al., 2020) which is an image-based UDA method that
leverages MixUp (Zhang et al., 2018). The methods are compared from two perspectives: the tasks they
tackle and the techniques leveraged, as shown in Table 5.

5 Conclusion

In this work, we pioneer in formulating and exploring the realistic yet more challenging task of Black-box
Video Domain Adaptation (BVDA) for privacy-preserving and portable video model transfer. We propose
EXTERN for BVDA which obtains effective and discriminative temporal features by driving clip features
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to satisfy the masked-temporal hypothesis and the cluster assumption, achieved by applying a novel endo-
temporal regularization following a mask-to-mix strategy, along with an exo-temporal regularization. Results
across cross-domain action recognition benchmarks under both closed-set and partial-set domain adaptation
settings justify the efficacy of EXTERN. We believe that such a superior performance of EXTERN could
pave a new way for tackling video domain adaptation.
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