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Abstract

While large language models (LLMs) are gen-
erally considered proficient in generating lan-
guage, how similar their language usage is to
that of humans remains understudied. In this
paper, we test whether models exhibit linguistic
convergence, a core pragmatic element of hu-
man language communication, asking: do mod-
els adapt, or converge, to the linguistic patterns
of their user? To answer this, we systematically
compare model completions of exisiting dia-
logues to the original human responses across
sixteen language models, three dialogue cor-
pora, and a variety of stylometric features. We
find that models strongly converge to the con-
versation’s style, often significantly overfitting
relative to the human baseline. While conver-
gence patterns are often feature-specific, we
observe consistent shifts in convergence across
modeling settings, with instruction-tuned and
larger models converging less than their pre-
trained counterparts. Given the differences be-
tween human and model convergence patterns,
we hypothesize that the underlying mechanisms
for these behaviors are very different.

1 Introduction

Large language models have revolutionized natu-
ral language generation, with both proprietary and
open-source chatbots providing grammatical and
topical responses to user queries (e.g., Grattafiori
etal., 2024; Gemma Team et al., 2025). These mod-
els have become so fluent (particularly in English)
that readers frequently cannot determine whether
a text was authored by a human or a model (Clark
et al., 2021). The apparent linguistic competency
of LLMs thus opens an array of questions on the
properties of model-generated language, particu-
larly concerning how model language use differs
from humans’.

In this work, we investigate this through the lens
of accommodation, the process by which people
adjust their speech or writing style based on the

identity of their interlocutor (Giles et al., 1991).
While accommodation takes many forms, in this
paper we focus on linguistic convergence, or how
similar the target’s language is to their interlocu-
tor’s (Niederhoffer and Pennebaker, 2002). As the
most prevalent use case for LLMs is via a chat
agent, convergence acts as an interesting case study
into the novel setting of human-model interaction.
Thus, we seek to answer the following questions:
Do LLM-based chatbots adapt their language use
to mirror that of their users? And does this behavior
mirror trends observed in human accommodation
or follow different patterns?

To study convergence in LLMs, we perform a
systematic analysis of model-generated responses
to human-authored conversations, which we collect
by prompting various LLMs to complete turns in
existing conversations drawn from dialogue cor-
pora. We then analyze these responses for a series
of stylometric features used to study accommoda-
tion in human linguistics, in order to estimate the
degree of convergence LLMs exhibit towards their
context relative to randomly-sampled utterances
and a human control (i.e., the gold text in turns that
the model replaces).

Our experiments show that models strongly
adapt their outputs’ style to their context. We also
find differences in convergence across model size
and training schemes, with larger and instruction-
tuned models converging less than smaller or solely
pretrained models. Given that pretrained models
often overconverge on these linguistic markers rel-
ative to the human baseline, this indicates that
instruction-tuned models are frequently more in
line with human behavior. Furthermore, these con-
vergence patterns are feature-specific, with models
adapting to their context to different extents across
metrics. While this varied behavior across features
is also common in human accommodation, the vari-
ance we observe in the models often differs from
that of the human baseline, indicating subtler dif-



ferences in human and model convergence. We
then conclude by discussing the implications of
this work towards understanding the linguistics of
LLMs.

To summarize, this paper presents the follow-
ing primary contributions: (1) we develop a novel,
synthetic paradigm for testing model behavior with
respect to a paired human control, which we ap-
ply to studying linguistic convergence in LLMs;
and (2) we present a quantitative analysis of into
how language models converge to the style of their
context, with insights into how modeling factors
affect this phenomenon and the implications it has
for interpreting model-generated text. Our findings
demonstrate how models do and do not adapt to
their inputs across various stylistic features, provid-
ing broader insights into the relationship between
human and model language use.'

2 Related Work

Linguistic accommodation has been widely stud-
ied in human communication (Giles et al., 1991;
Niederhoffer and Pennebaker, 2002; Giles et al.,
2023, inter alia). Many prior works have lever-
aged computational methods to characterize this
phenomenon in human language across settings
ranging from online interactions (Mukherjee and
Liu, 2012; Berdicevskis and Erbro, 2023) to code-
switching (Bawa et al., 2018) and movie dialogues
(Danescu-Niculescu-Mizil and Lee, 2011). Bhatt
and Rios (2021) study how users exhibit accommo-
dation when interacting with models, while Parekh
et al. (2020) examine how users accommodate
model code-switching in conversation. In this pa-
per, we apply the method presented in Ireland et al.
(2011) to model-generated text while expanding
the analysis to include additional stylometric fea-
tures, to better understand how models adapt their
language to their users.

Accommodation research methods have also
been applied to computational models of language
in prior work. Earlier work has examined the rel-
evance of model accommodation in chatbot task
effectiveness (Chaves et al., 2019; Thomas et al.,
2020). Most similar to this paper is Kandra et al.
(2025), which tests whether GPT-40 exhibits syn-
tactic accommodation. However, Kandra et al.
(2025) focuses on entirely machine-generated in-
teractions between two LLM agents, while our ex-

'We will release our codebase and model generations upon
publication.

periments test the extent to which LLMs show ac-
commodation while completing a pre-existing dia-
logue. Thus, our setting enables direct comparison
between human and model responses in a given
context. We also evaluate a larger suite of open-
source language models across two model families
and study a large set of stylometric features to fully
characterize the convergence of these models.

Finally, this work also falls into the broader field
of language model behavioral analysis (see Chang
and Bergen (2024) for a survey of this area). In
particular, our analysis of the stylistic convergence
of LMs to their inputs corroborates findings on syn-
tactic and semantic priming in language models
(Sinclair et al., 2022; Jumelet et al., 2024; Gonen
et al., 2025). However, we characterize this con-
vergence more broadly for user-model interactions,
rather than through carefully constructed behav-
ioral probes.

3 Measuring Linguistic Convergence in
Language Models

Linguistic convergence occurs when a speaker
adapts their language to mirror that of the person
they are communicating with. While it is com-
monly accepted that humans frequently accommo-
date one another in this manner (e.g. Niederhoffer
and Pennebaker, 2002), it is unknown to what ex-
tent language models exhibit these patterns during
human-model interaction. We test whether con-
vergence occurs in machine-generated text via a
two-step process. First, we elicit generations that
are grounded in human-authored conversations. We
then test whether the model responses exhibit con-
vergence compared to several control settings.

Data Generation First, we elicit machine-
generated texts grounded in a dialogue by prompt-
ing a model to generate a response r; continu-
ing a two-person dialogue with speakers s;, sy,
conditioned on the prior turns of the conversation
r<¢ = T0,...,Tt—1; the model is always given ac-
cess to at least m = 5 prior turns of dialogue.
Therefore, the model replaces the utterance of
speaker s, beginning at ¢ = 6 and continues to
participate in the role of s, on turns ¢t = {8, 10, ...}
for the remainder of the dialogue.

By replacing utterances within human-authored
conversations, our data generation approach ap-
proximates a human-model experimental paradigm
while minimizing annotator burden. Thus, this set-
ting enables us to extend our experimental frame-



work to many different conversations and domains,
beyond what is feasible in a single user study. Our
setting also aligns model generations with the origi-
nal human utterances from conversations, allowing
for direct comparisons that are not possible in fully
synthetic analyses of LM linguistics.

Convergence Analysis We then quantify how
well r; accommodates other utterances in the dia-
logue according to a number of different stylomet-
ric features (Section 3.1). Unless otherwise stated,
we consider how much r; converges with respect
to 7,1, or the turn immediately prior uttered by
the other speaker s;. Thus, we primarily consider
specifically how much the model’s output mirrors
the linguistic features of the most recent utterance
from the user; Section 5.4 extends this to a step-
wise analysis to examine the effect of earlier turns
(r¢—2, ...) on model convergence.

In addition to directly measuring model con-
vergence, we also compare the models’ behavior
to two baselines: the human baseline, which
considers how well the original utterance that
r; replaces accommodates the prior text,” and
the random baseline, which calculates how
much a random utterance drawn from a different
conversation in the dataset accommodates 7;_1.

3.1 Linguistic Indicators of Convergence

We measure the following features to characterize
whether models alter their linguistic style to match
that of their users, drawing on both human accom-
modation research and other stylometric features:

Utterance Length We measure how similar
model response lengths are to the text in prior turns,
a feature commonly used in accommodation and
stylometric work, such as in Niederhoffer and Pen-
nebaker (2002); Lin and Walker (2017). We mea-
sure this with the symmetric metric from Ireland
etal. (2011): LSM, = 1—|a —b|/(a+ b), where
a and b represent the observed values for turn r;
and r;_1, respectively.

LIWC Agreement A standard measure of lin-
guistic accommodation is the frequency of LIWC
(Chung and Pennebaker, 2012) function word
classes (e.g. Danescu-Niculescu-Mizil and Lee,
2011). Here, we consider the LIWC2007 classes
considered in Ireland et al. (2011) (personal and
impersonal pronouns, articles, conjunctions, prepo-
sitions, auxiliary verbs, frequently used adverbs,

?1.e., establishing the accommodation exhibited by humans
in the same setting.

negations, and quantifiers), also using the LSM
metric to calculate how well each LIWC category
distribution in generated responses aligns with prior
turns. We both report the mean LIWC agreement
across categories and provide a fine-grained analy-
sis of each category in Section 5.3.

PROPN Overlap We calculate the overlap (per-
centage) of proper nouns between the text gener-
ated by the model and the preceding turn. We
expect that language users converging more with
their interlocutor will have a higher overlap.

Token Novelty We evaluate the percentage of
tokens novel relative to the reference utterance,
where a smaller percentage of novel tokens would
indicate that the model is adapting more to the
user interacting with it. This is measured as
|we N wi—1|/|we|, where wy = {w € r3}.

Utterance length, LIWC Agreement, and PROPN
Overlap are symmetric metrics and don’t account
for directional influence. Given the nature of our
experiments (the prior context outside of genera-
tions is fixed and can not be affected by the model),
we consider this a reasonable assumption to hold.

4 Experimental Setup

Datasets We perform our dialogue prompting ex-
periments on three English datasets: DailyDialog
(Li et al., 2017), containing conversations about
daily life as written by English language learn-
ers; NPR (Majumder et al., 2020), a dataset of ra-
dio interview transcripts; and the Movie Corpus
(Danescu-Niculescu-Mizil and Lee, 2011), which
contains (fictional) conversations scraped from
movie scripts.

For each dataset, we filter the conversations to
ensure they contain at least six turns of dialogue
and two speakers; we merge consecutive turns from
the same speaker into a single turn. We randomly
downsample the larger datasets to consider at most
1,000 conversations per setting. Our experiments
are performed on the (filtered) development sets of
DailyDialog and NPR; as the Movie corpus does
not provide data splits, we randomly sampled our
evaluation data from the full set. Table 1 presents
the dataset statistics for each corpus post-filtering.

Models We consider two open-source LLM fam-
ilies: Gemma 3 (Gemma Team et al., 2025), with
models spanning 1B, 4B, 12B, and 27B parameters;
and Llama 3 (Grattafiori et al., 2024), with models
of 1B, 3B parameters from Llama 3.2 and 8B and



Dataset Statistics
DailyDialog Movie  NPR
Conversations 707 1,000 1,000
Avg. Turns 9.79 898 17.57
Avg. Turn Length 13.44 10.87 48.43
" Replaced Turns 1,918 2,280 6,568

Table 1: Dataset sizes and statistics for the dialogue
corpora post-filtering. For each dataset, we calculate
convergence over the model completions of Replaced
Turns in each dataset.

70B from the Llama 3.1 release. We perform infer-
ence with checkpoints provided via Huggingface
(Wolf et al., 2019) and use 8-bit quantization3 to
run the largest model (i.e., Llama3 70B). For each
model, we analyze the convergence expressed by
both the pretrained and instruction-tuned versions.

Prompting For each dialogue turn we want the
model to complete, we prompt the model to “Con-
tinue this conversation based on the given context”
and provide the conversation history, including
prior model generations from earlier turns in the
conversation if applicable. We perform simple post-
hoc filtering of the generations to remove noise,
such as standardizing white space and filtering di-
alogue tags used within the prompt. Appendix A
provides example inputs and model generations
and other experimental details.

Linguistic Annotations We parse each uttrance
with spaCy (Honnibal et al., 2020) to tokenize the
data and obtain proper noun annotations, and we
use the LIWC 2007 word classes (Chung and Pen-
nebaker, 2012) to obtain LIWC categories.

5 Analysis Results

Here, we summarize and discuss the results of the
convergence analysis for both the human baselines
and model-generated responses when compared to
a randomly sampled control.* LLMs adapt signif-
icantly to the style of their interlocutor across
stylometric features, often matching or exceeding
the level of convergence exhibited in the human
baseline (Figure 2).

However, we note that linguistic convergence
is often multi-faceted, and human accommodation
behavior often varies significantly across features
in prior work (e.g., Ireland et al., 2011; Danescu-
Niculescu-Mizil and Lee, 2011). We find this is
also the case for model convergence, particularly in

3https://huggingface.co/docs/bitsandbytes/
*Appendix B presents additional visualizations and the
complete set of numerical results.
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Figure 1: Comparison of the human and random base-
lines on each metric across datasets. Metrics marked
with 1 indicate more agreement with higher values; and
}, vice-versa.

the case of fine-grained linguistic features (Section
5.3) and when examining convergence according
to earlier turns in the conversation (Section 5.4).
We also observe different trends depending on the
model type, with instruction-tuned models gener-
ally converging to their context less than their pre-
trained counterparts.

5.1 Linguistic Convergence in Human-
Authored Text

To obtain a baseline for the expected level of con-
vergence in our chosen dialogue settings, we first
examine the linguistic convergence exhibited by
the original speakers in these datasets. We there-
fore compare the level of accommodation (as mea-
sured by our four convergence metrics) exhibited
in ground truth utterances with random utterances
drawn from the dataset (Figure 1).

Unsurprisingly, we generally find that the gold
utterance r; converges with the preceding utter-
ance r;—1 more than a randomly sampled utterance.
We find a significant difference (p < 0.05 in a
paired t-test) between the human and random set-
tings on the token novelty and PROPN overlap
metrics across datasets. However, convergence in
utterance length is only significant between the
two settings on the DailyDialog dataset.

We also observe differing levels of convergence
on LIWC categories: while NPR conversations ex-
hibit significant accommodation over the random
baseline on all LIWC categories except quantifiers,
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Figure 2: Scatter plot of Gemma and Llama Model scores on various convergence metrics relative to human and
random baselines on DailyDialog (top row), Movie corpus (middle), and NPR (bottom), across model sizes (Billion
parameters). PT indicates pretrained checkpoints while /7 are instruction-tuned. Metrics marked with 1 indicate

more agreement with higher values; and |, vice-versa.

the other datasets show much smaller differences.’

DailyDialog conversations only show significant
differences on five of nine LIWC word classes (de-
spite appearing to have a large average increase
in convergence over random utterances), and utter-
ances drawn from the Movie corpus are only sig-
nificantly more accommodating over the random
baseline on a single class, auxiliary verbs.

The limited linguistic convergence we observe in
the Movie corpus is likely due to the nature of the
data, as the conversations were written by screen-
writers, rather than drawn from naturally occurring
speech. Danescu-Niculescu-Mizil and Lee (2011)
similarly found that while the Movie corpus exhib-
ited convergence under their conditions, the levels
observed were much lower compared to real-world
conversations (in their case, drawn from Twitter).

5.2 Linguistic Convergence in LLM-
Generated Text

We now turn to examining how model-generated
responses to these conversations exhibit conver-
gence. Figure 2 compares model scores on each
convergence metric against the human and random
baselines on the three datasets. With these results,

5See Appendix Tables 8, 9, 10 for full numerical results.

we consider the following questions:

Do models converge to their context? We find
that models significantly outscore the random base-
line in 81.25%, 100%, and 85.42% of cases for
Utterance Length, PROPN overlap, and Token
Novelty, respectively, in a paired t-test (p < 0.05).
We also observe strong convergence on LIWC
categories: models outscore the random utter-
ances 91.67% (44 of 48) of the time on averaged
scores, with significant improvements on individual
LIWC classes ranging from 37.5% (for conjunction
words) to 87.5% (on personal pronouns). While
specific model convergence trends can differ based
on several factors, this indicates that models gener-
ally adapt to the linguistic style of their context.

Furthermore, language models also significantly
over-converge relative to human-authored utter-
ances in many cases. We find that in 62.5% and
79.2% of cases for Utterance Length and Token
Novelty, the model-generated responses signifi-
cantly outscore human utterances. Overconver-
gence occurs in fewer cases for PROPN overlap
(35.4%) and LIWC classes, where they range be-
tween 10.4% and 56.25% of settings. We discuss
which model settings overfit to their context relative
to humans below.



Does model size and training affect conver-
gence? Figure 2 shows that model training ap-
proaches affect the convergence behaviors of
LLMs, with pretrained models generally adapt-
ing more to their context than their instruction-
tuned counterparts. This is particularly true in
the case of the Gemma model family, where the
instruction-tuned models exhibit the least amount
of convergence. An exception to this trend is
the PROPN Overlap metric: here, pretrained mod-
els more closely mirror the human baseline while
while instruction-tuned models significantly over-
accommodate by more often repeating proper
nouns from the prior utterance. This difference is
likely due to alternate training objectives; for exam-
ple, pretrained models likely appear to adapt more
on Token Novelty because they are trained to fit
closely to the input distribution, while instruction-
tuned models are encouraged to introduce novel
information during fine-tuning.

We also see minor convergence trends across
model size: larger models slightly but nonsignifi-
cantly shift towards the human baseline and accom-
modate their context less on Utterance Length,
LIWC Agreement, and PROPN Overlap (Appendix
Table 4). However, convergence trends appear
more stable for the Token Novelty metric.

Does model convergence differ across datasets?
We find that LLMs exhibit relatively consistent
convergence behavior across the three datasets, fre-
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Figure 3: Summary of model convergence relative to
the human and random baselines for individual LIWC
word classes on the DailyDialog dataset. Pink cells
indicate classes where the model significantly (p <
0.05) overconverges relative to the baseline, while green
cells indicate significant undercongergence. Gray cells
are not significantly different from the baseline.

quently significantly outscoring the random control.
Given the presence of convergence across datasets
and indicator metrics, linguistic convergence ap-
pears to be a general phenomenon in LLMs across
various data settings and model types.

However, we also observe shifts in the models’
adaptation to different datasets, particularly in the
case of the NPR dataset. Specifically, models often
exhibit /ess convergence than the baselines on NPR
for Token Novelty and PROPN Overlap, but sig-
nificantly more convergence in terms of Ut terance
Length (Figure 2). This shift likely stems from
the underlying data: compared to the more casual
dialogue of our other settings, NPR conversations
are interview transcripts that have more structured
turns and expected variance in utterance lengths,
particularly between the interviewer and intervie-
wee. Thus, while models adapt their style to their
contexts, whether this adaptation is human-like de-
pends on the setting.

5.3 Fine-grained Analysis of LIWC
Categories

While we examine several axes to quantify lin-
guistic convergence in language models, the ma-
jority of prior computational work on human ac-
commodation quantifies convergence by measuring
the frequency of common types of function words
based on the subset of LIWC word classes identified
by Ireland et al. (2011). In this section, we con-
sider model convergence on these nine LIWC sub-
categories (rather than the averaged result across
classes reported in prior sections) to understand
finer-grained aspects of when models do and don’t
converge to their context.

Figure 3 summarizes the results of our fine-
grained LIWC analysis on DailyDialog, reporting
the relative delta of model scores on these classes
compared to the random and human baselines;
Appendix Figures 5 and 6 present the results for
the Movie and NPR datasets. We see similar gen-
eral trends to previous sections (e.g., instruction-
tuned models converge less to their context than
pretrained ones), but model behavior often varies
markedly across individual LIWC categories, par-
ticularly in comparison to human scores. Specifi-
cally, while pretrained model convergence is usu-
ally stronger than the random baseline, their con-
vergence relative to the human baseline is mixed.
Compared to human utterances, the pre-trained
models overconverge on certain word classes, such
as quantifiers, conjunctions, and adverbs, while
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performing on par with humans on others.

A potential explanation is that pretrained mod-
els may simply generate these word classes less
overall. Examining the use of quantifiers by the
largest pretrained Llama3 model, we find it under-
uses this word class relative to the human texts at
similar rates, regardless of whether the prior utter-
ance includes at least one quantifier or not (28.6%
vs. 24.1%). Table 2 (Case A) shows a pair of
model- and human-generated utterances exemplify-
ing this trend for quantifiers. Given that only 27%
of the reference utterances include a quantifier, it
is likely the “overconvergence” we see is at least
partially due to overall lower use of uncommon
word types by the pretrained models.

Furthermore, instruction-tuned models continue
to converge less than the pretrained ones on in-
dividual LIWC classes, underconverging relative
to human utterances in 16 cases. Here we see a
strong difference across model families, with the
instruction-tuned LLama models performing sim-
ilarly to humans on most word classes and their
Gemma counterparts underconverging on a number
of categories, such as impersonal pronouns, arti-
cles, and conjunction usage. There is also a minor
shift with model size, as larger Gemma models
converge less across these classes.

In contrast with pretrained models, this under-
convergence seems to stem from an overuse of
these classes, which causes generations from the
instruction-tuned models to align less with their
context. We examine the use of conjunctions by
the pretrained and instruction-tuned largest Gemma
models, and find that instruction-tuned models
frequently overgenerate conjunctions relative to
the human and pretrained model, with instruction-
tuned models using additional conjunctions in
47.0% and 59.1% of utterances, respectively (for
reference, the human reference only uses this word

Case A (Quant.)
_ Prior Utterance "I willaketen”
Human “Do you want to add some baby’s

breath for that?”

Llama-70B (PT) “Do you want them delivered?”

Case B (Conj.)
Prior Utterance

“Yes, our over-the-counter medicine
is over there on that shelf.”

Gemma-27B (PT)  “Thank you.”
Gemma-27B (IT)  “Great. And how much is a bottle
of 2007

Table 2: Examples of model responses: pretrained mod-
els overconverge on quantifiers (Case A) and instruction-
tuned models overuse (and thus underconverge on) con-
Jjunctions (Case B).

class in 39% of utterances). Table 2 (Case B) pro-
vides an example of this overuse.

5.4 Stepwise Analysis of Linguistic
Convergence

In the previous analyses, we examine how well the
model-generated responses r; converge linguisti-
cally to the immediately prior utterance in the con-
versation ;1. However, our experimental setup
primes the model with the first five turns in a di-
alogue before prompting it to participate. Thus,
there is much more context for the model to poten-
tially fit to than r;_1, as it is also conditioned on
other prior turns from .S, the speaker with whom
the model is asked to converse (and the standard
target of linguistic convergence analysis), and on
turns from S, the speaker that the model replaces.

In this section, we test how linguistic features
from earlier turns in the conversation influence
initial model-generated utterances in conversation.
Specifically, we take the first utterance generated
by the model in each conversation (at ¢ = 6) and
compare it to all prior turns r;—1 5 (Figure 4 for
DailyDialog; Appendix Figures 7 and 8 for Movie
and NPR datasets). For clarity, we report aver-



age convergence scores across model sizes on each
model family and training scheme set.

We find that human convergence scores fluctu-
ate across timesteps; this is unsurprising, as alter-
nating timesteps are uttered by the same speaker
Sy as the considered utterance 7, indicating that
each speaker’s linguistic patterns agree more with
themselves than with their interlocutors. Interest-
ingly, we see similar patterns across time with the
language models for most metrics. This finding
suggests that not only do language models adapt to
their context, they also differentiate this adaptation
to different roles within the dialogue.

However, we do observe some differences in
model behavior compared to humans across time,
particularly on PROPN Overlap. Model behavior
follows the human trend less closely for this metric
at earlier timesteps, with a sharp increase in overlap
scores relative to humans on the last turn before
the model generation (Figure 4). This increased
score corresponds to the overconvergence observed
in models in the prior sections on PROPN. Thus, it
is likely that in the case of exact word overlap (e.g.,
names and other proper nouns), model convergence
demonstrates a strong recency bias towards newer
concepts (Liu et al., 2024).°

6 Discussion

Throughout our analysis, we compare model con-
vergence to that of the human baselines to con-
textualize the models’ behavior. However, while
in some cases the model converges to its context
similarly to human utterances, we emphasize that
the observed similarities do not necessarily indi-
cate that the underlying causes of these behaviors
are the same. Human accommodation is driven
by speakers (often unconsciously) altering their
speech to foster social and communicative goals
(Giles et al., 1991). In contrast, language models
do not have these same underlying communication
goals when generating text.

We hypothesize that model convergence is in-
stead driven by their pretraining objective, which
encourages the model to produce test stylistically
consistent with their input by training them on com-
plete, often single-author documents. This con-
sistency effect extends beyond style convergence:
model generations have also been shown to be influ-
enced by their input in structural priming (Sinclair

We similarly see small upticks on convergence with the

first utterance for multiple datasets and metrics, suggesting
that primacy biases may affect convergence as well.

et al., 2022; Jumelet et al., 2024) and through super-
fluous semantic correlations (Gonen et al., 2025).
Recently, Kandra et al. (2025) demonstrated this
in the syntactic convergence of model-model inter-
actions. The stylistic convergence and overconver-
gence that we observe are thus likely another facet
of this behavior.

Instead, an important consideration is how the
user will interpret texts from models that appear to
accommodate them as a human interlocutor would,
such as in the case of instruction-tuned models. Ap-
propriate model style has been shown to facilitate
successful chatbot interactions (Chaves et al., 2019;
Thomas et al., 2020), and Bhatt and Rios (2021)
finds that users tend to accommodate models more
when they successfully produce topically relevant
outputs, treating them more like human conver-
sation partners. Thus, model convergence that is
more in line with humans (rather than sycophantic,
as overconvergence may appear) will likely lead to
higher trust in the model, even if the true capabili-
ties of the model are unreliable.

7 Conclusion

This paper presents a comprehensive description of
linguistic convergence in a series of open-source
generative language models. Specifically, we char-
acterize the extent to which these language mod-
els adapt their outputs to the style of their context
across various stylometric features and dialogue do-
mains. While our experiments reveal varied trends
across datasets and model training regimes, we
generally find that LM generations do exhibit con-
vergence, almost always significantly outscoring
a random control on the considered metrics. Fur-
thermore, in many cases, language models also
overconverge relative to the human baseline.

Thus, we consider the extent to which model
convergence is even related to human accommo-
dation. Finer-grained analysis on LIWC categories
(a prototypical feature for studying accommoda-
tion) shows that models exhibit very different pat-
terns on these features than humans, suggesting
that the underlying mechanisms for these behav-
iors are likely very different. Therefore, while this
work primarily considers human behavior as a ref-
erence for characterizing the models’ generations,
future work should characterize these differences
further and examine the underlying causes of the
observed convergence in LMs.



Limitations

We approximate the participation of LLMs in user-
driven dialogues by having them complete turns
in existing dialogue datasets. While this approach
has some experimental advantages (i.e., we can
directly compare human accommodation features
with the model’s responses in the same context),
it also presents some limitations. Specifically, the
model’s responses may be biased due to participat-
ing only in the later portion of (fixed) conversations.
Future work should supplement our experimental
setting with more focused user studies to validate
whether our findings hold in these cases.

While we perform experiments on sixteen lan-
guage models and three dialogue datasets, it re-
mains an open question how larger models (>70B
parameters) and models post-trained on other objec-
tives adapt to their users. The considered datasets
cover various styles of conversations, but these
differ from how some users interact with the mod-
els (i.e., information-seeking). Thus, future work
should confirm whether these findings hold up in
interactive user studies. Finally, while we test for
an array of stylometric features, it is possible that
the model’s behavior of other aspects of style may
differ.
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A Further Experimental Details

In this section, we provide additional details about
our experimental setup. To obtain model comple-
tions for the target conversations, we generate re-
sponses by prompting the model to continue the
conversation based on the given context (Table 3).
We generate from the models using a temperature
of 0.4 and top-p sampling at 0.8. We also limit the
generated output to 40 tokens and perform simple
cleaning heuristics to standardize the generation be-
fore performing our convergence analysis. These
parameters were chosen after a small parameter
search over a small subset of the Movie corpus
conversations.

Computational Hardware and Budget We run
our experiments on 2 H100 GPUs, using 8-bit quan-
tization for the LLaMA3 70B parameter model; in
total, across all models (16) and datasets (3), we
perform 48 generation runs of up to 1000 conver-
sations (see Table 1 for full dataset composition
details). Post-hoc analysis of the data is not com-
putationally expensive and performed on CPUs,
using the spaCy “en_core_web_trf”” model (Honni-
bal et al., 2020) for tokenization and proper noun
identification.

Artifact Licensing and Use The DailyDialog
dataset (Li et al., 2017) is released under a Cre-
ativeCommons Attribution and Non-comerical li-
cense (CC BY-NC-SA 4.0), while the Cornell
Movie corpus (Danescu-Niculescu-Mizil and Lee,
2011) and NPR Interview dataset (Majumder et al.,
2020) are released in conjunction with academic pa-
pers but do not report the license for these datasets
in their papers or associated artifacts. All datasetd
are released through academic publications with
the intention of contiued use in NLP and dialogue
research.

The spaCy package (Honnibal et al., 2020) is
released under the MIT License (allowing both
academic and commercial use), while the LIWC
package (Chung and Pennebaker, 2012) is under a
custom end user liscense agreement for academic
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Prompt Continue this conversation based on the
given context.

Context <user> What can I do for you, sir? </user>
<assistant> We’d like to order breakfast for
tomorrow morning. </assistant> ...
<user> OK, and when shall I bring it here?
</user> \n <model>

Responses

" Human ~  About seven thirty. By the way...

Generation™ At 7:30 AM.

Table 3: Prompt, context, and sample generations for
our prompting setup to obtain model responses for our
convergence analysis. *Example text generated by the
Llama3 (3B) pretrained model, example conversation
drawn from the DailyDialog development set.
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Figure 5: Summary of model convergence relative to
human and random baselines on LIWC word classes for
DailyDialog.

use.” The Llama3 models (Grattafiori et al., 2024)
are released by Meta for open use under a custom
liscense®, and the Gemma model family is released
under the Gemma Terms of Use.’

B Additional Analysis Results

Here, we present additional analysis figures and
the full numerical results of our convergence ex-
periments. First, we perform a correlation study to
examine the effect of model size and style conver-
gence (Table 4).

Figure 5 and Figure 6 show the relative delta
against the human and random baselines for indi-
vidual LIWC categories for the Movie corpus and
NPR dataset, respectively; this complements the
DailyDialog results presented in Section 5.3. We

"https://www.liwc.app/help/eula
8https://www.llama.com/llama3/license/
*https://ai.google.dev/gemma/terms
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Figure 6: Summary of model convergence relative to
human and random baselines on LIWC word classes for
DailyDialog.

also present the full numerical results for the indi-
vidual LIWC classes for DailyDialog (Table 8), the
Movie corpus (Table 9), and NPR (Table 10). We
also report the summary figures for the stepwise
experiments described in Section 5.4 with Figure 7
for the Movie corpus and Figure 8 for NPR.

Finally, we present the full dataset-level exper-
imental results across our convergence metrics in
Tables 5, 6, and 7 for the DailyDialog, Movie,
and NPR datasets, respectively. We also provide
Human and Random baselines in each table for
comparison.
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Figure 7: Stepwise analysis of convergence in LM generations (and human ground truth utterances) for the Movie
corpus, measuring the agreement between each utterance r;—,, and the preceding utterances 7;—1,...,—1 on our four
metrics. Timesteps in gray (¢ = 2,4) indicate the prior turns in the role the model adopts, S, while white timesteps
are utterances from the other speaker 5.
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Figure 8: Stepwise analysis of convergence in LM generations (and human ground truth utterances) for NPR,
measuring the agreement between each utterance r;—,, and the preceding utterances r¢—; . ,—1 on our four metrics.
Timesteps in gray (¢ = 2, 4) indicate the prior turns in the role the model adopts, S, while white timesteps are
utterances from the other speaker 5.

Dataset PT/IT P P
Utterance Length
~ DailyDialog ~ PT  -0.189  0.653
DailyDialog IT -0.221  0.380
Movie PT -0.252  0.546
Movie IT -0.253  0.546
NPR PT -0.263  0.530
NPR IT -0.263  0.529
LIWC Agreement
"~ DailyDialog  ~ ~ PT 0225 ~ 0592 °
DailyDialog IT -0.233  0.579
Movie PT -0.212  0.614
Movie IT -0.256  0.541
NPR PT -0.217  0.606
NPR IT -0.218  0.604
PROPN Overlap
~ DailyDialog ~~ PT  -0.355  0.389
DailyDialog IT -0.246  0.558
Movie PT -0.246  0.557
Movie IT -0.136  0.749
NPR PT -0.563  0.146
NPR IT -0.282  0.499
Token Novelty
~ DailyDialog ~ PT  -0.209  0.620
DailyDialog IT -0.214  0.612
Movie PT -0.239  0.569
Movie IT -0.230  0.584
NPR PT -0.199  0.636
NPR IT -0.217  0.606

Table 4: Correlation across model size and convergence
values for different features and experimental settings.
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Accommodation Features

Model Utterance Len. (1) LIWC (f) PROPN (1) Token Novelty (1)
Human 0.69102  0.53759 0.01460 0.75742
Random 0.66348  0.50481 0.00052 0.78874
Llama3-1B (PT) 0.68975  0.57859  0.01929 0.666241
Llama3-3B (PT) 0.68722  0.57327 0.02190 0.681301
Llama3-8B (PT) 0.69062  0.57630 0.02033 0.67796'
Llama3-70B (PT) 0.65438"  0.57083 0.01668 0.676031
Llama3-1B (IT) 0.68893  0.53960 0.05057" 0.70558"
Llama3-3B (IT) 0.70523  0.54633 0.044841 0.724801
Llama3-8B (IT) 0.71776"  0.55260 0.03702" 0.72800"
Llama3-70B (IT) 0.65438"  0.52757 0.03858" 0.729501
" Gemma3-1B (PT) 0.69385  0.57911  0.02190  0.65732
Gemma3-4B (PT) 0.67167  0.57470 0.01825 0.665821
Gemma3-12B (PT) 0.67753  0.57359 0.01356 0.669681
Gemma3-27B (PT) 0.67461  0.56564 0.02033 0.686951
Gemma3-1B (IT) 0.73334"  0.56969 0.05266" 0.695511
Gemma3-4B (IT) 0.66628"  0.51836 0.05735" 0.75824
Gemma3-12B (IT) 0.64808"  0.51796 0.052141 0.75992
Gemma3-27B (IT) 0.61049"  0.49306 0.06726' 0.76123

Table 5: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the DailyDialog dataset. Scores for Utterance Length, PPROPN, and Token
Novelty in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores
indicated with  are p < 0.001 relative to human scores.

Accommodation Features

Model Utterance Len. (1) LIWC (f) PROPN (1) Token Novelty (1)
Human 0.58664  0.53215 0.02719 0.75639
Random 0.58447  0.52271 0.00000 0.78985
Llama3-1B (PT) 0.63248" 058302  0.03772  0.635311
Llama3-3B (PT) 0.618247  0.58764 0.03114 0.659101
Llama3-8B (PT) 0.629517  0.58892 0.03947 0.657741
Llama3-70B (PT) 0.59195  0.58594 0.03509 0.675011
Llama3-1B (IT) 0.58722  0.50072 0.08553" 0.67083"
Llama3-3B (IT) 0.61592F  0.52352 0.07061" 0.695951
Llama3-8B (IT) 0.61986"  0.54813 0.05570" 0.67503"
Llama3-70B (IT) 0.59195  0.53864 0.06535" 0.698171
" Gemma3-1B (PT) 0.63923"  0.58475  0.03421  0.64280"
Gemma3-4B (PT) 0.62373"  0.57981 0.03158 0.655211
Gemma3-12B (PT) 0.611047  0.58613 0.02807 0.663921
Gemma3-27B (PT) 0.62077"  0.59398 0.03114 0.655301
Gemma3-1B (IT) 0.62703"  0.55655 0.06711% 0.707141
Gemma3-4B (IT) 0.58937  0.51274 0.07061" 0.728191
Gemma3-12B (IT) 0.59290  0.52782 0.085971 0.726191
Gemma3-27B (IT) 0.53554"  0.46521 0.102197 0.71779%

Table 6: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the Movies dataset. Scores for Utterance Length, PPROPN, and Token Novelty
in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores indicated
with { are p < 0.001 relative to human scores.
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Accommodation Features

Model Utterance Len. (1) LIWC (1) PROPN (1) Token Novelty (})
Human 0.45905  0.53007 0.25837 0.58561
Random 0.46025  0.48035 0.00959 0.58921
Llama3-1B (PT) 0.63248"  0.52466  0.106277  0.45246'
Llama3-3B (PT) 0.61824"  0.52563 0.11510" 0.522621
Llama3-8B (PT) 0.62951F  0.53303 0.11480" 0.506841
Llama3-70B (PT) 0.59195"  0.53057 0.14495" 0.49636"
Llama3-1B (IT) 0.587227  0.52972 0.26675 0.605361
Llama3-3B (IT) 0.61592"  0.52786 0.23097 0.607541
Llama3-8B (IT) 0.61986"  0.53835 0.218941 0.569101
Llama3-70B (IT) 0.59195"  0.53203 0.26249 0.596741
" Gemma3-1B (PT) 0.639237 051606  0.122877  0.44413"
Gemma3-4B (PT) 0.62373"  0.52087 0.11754% 0.509631
Gemma3-12B (PT) 0.61104"  0.52570 0.12500° 0.516441
Gemma3-27B (PT) 0.620777  0.52608 0.12180" 0.516891
Gemma3-1B (IT) 0.62703"  0.52380 0.16261" 0.645121
Gemma3-4B (IT) 0.589377  0.52234 0.15164" 0.675851
Gemma3-12B (IT) 0.592907  0.52603 0.17266' 0.658171
Gemma3-27B (IT) 0.53554"  0.51925 0.16078" 0.68015"

Table 7: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the NPR Interview dataset. Scores for Utterance Length, PPROPN, and Token
Novelty in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores
indicated with  are p < 0.001 relative to human scores.
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LIWC Classes 1

Model Per. PRON Imp. PRON Article CONJ PREP AUX Verb Adverb Negation Quanitifer
Human 0.55537 0.47056  0.50837 0.499783 0.47303 0.45335 0.46373 0.82350 0.59065
Random 0.49129 0.42833 0.43827  0.49319 0.41357 0.42089 0.45927 0.81013 0.58833

Llama3-1B (PT) 0.59106*  0.53085* 0.54780* 0.57325* 0.48835  0.46233 0.51702* 0.79396"  0.70274*
Llama3-3B (PT) 0.57755* 0.52371* 0.53142  0.55528* 0.46733 0.47396 0.52381* 0.81289 0.69351*
Llama3-8B (PT) 0.58959* 0.51368* 0.52987  0.54597* 0.47035 0.48503* 0.51281* 0.84558* 0.69377*
Llama3-70B (PT) 0.58169* 0.50944* 0.52370  0.56084* 0.47408 0.45810 0.51558* 0.82351 0.69056*
Llama3-1B (IT) 0.60780* 0.47280 0.44638" 0.48232 0.48471 0.47022 0.48627 0.79248" 0.61341
Llama3-3B (IT) 0.58567* 0.47435 0.49488  0.47292° 0.47582 0.48030™" 0.47990 0.82840 0.62471*
Llama3-8B (IT) 0.59796* 0.46956 0.48389  0.50265 0.48433 0.48032% 0.48493 0.83320 0.63653*
Llama3-70B (IT) 0.57476 0.45832 0.45687- 0.47638 0.46646 0.45063 0.44361 0.81702 0.60406

" Gemma3-1B (PT)  0.60207*  0.53798* 0.53470% 0.56730* 0.50729* 0.47569 0.50796* 0.78080"  0.69818*
Gemma3-4B (PT) 0.57737* 0.52909* 0.53040  0.57401* 0.46686 0.45656 0.52408* 0.81130 0.70267*
Gemma3-12B (PT) 0.57765* 0.51877* 0.53791* 0.55138" 0.43060 0.45863 0.51551* 0.83322 0.68864*
Gemma3-27B (PT) 0.56882 0.51818* 0.52879  0.54490* 0.46479 0.44267 0.51152* 0.82200 0.68911*
Gemma3-1B (IT) 0.58208* 0.49887* 0.50235  0.54368*" 0.49011 0.46066 0.51424* 0.85839* 0.67683*
Gemma3-4B (IT) 0.55696 0.42369- 0.43792° 0.43233" 0.45948 0.45446 0.45307 0.85591* 0.59141
Gemma3-12B (IT) 0.55628 0.43151- 0.45384" 0.45801 0.46614° 0.43746 0.44574 0.83848 0.57419
Gemma3-27B (IT) 0.53463 0.41544 0.42213- 0.40541- 0.44547- 0.44339 041977 0.81694 0.53432"

Table 8: Per-class scores of LIWC categories on the DailyDialog dataset. Per-class scores significantly (p<0.05) over- or under-accommodating relative
to the human baseline are annotated with +/~, respectively.
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LIWC Classes 1

Model Per. PRON Imp. PRON Article  CONJ  PREP AUX Verb Adverb Negation Quanitifer
Human 048662 045882 051208 053520 042770 044849 049068  0.73628 0.69347
Random 047229 043810 049400 0.54280 043686 041626 048199  0.73486 0.68726
" Llama3-1B (PT) 0.56046%  0.51947* 0.56849* 0.61117* 0.49737* 0.47484* 0.56384* 0.66310°  0.78845%
Llama3-3B (PT) 0.55145*  0.50901* 0.56037* 0.63205* 0.50568* 046281 0.58514* 0.69707" 0.78515*
Llama3-8B (PT) 0.55398*  0.51839% 0.57427* 0.63041* 0.51024* 047168 0.58988* 0.66916" 0.78227+
Llama3-70B (PT) 0.54275%  0.50662* 0.57818* 0.62881* 0.51181* 0.45624 0.58017*  0.68024" 0.78867+
Llama3-1B (IT) 0.57487+  0.44679° 043215 051564 043272 043078 046555  0.54436" 0.66362"
Llama3-3B (IT) 0.55139* 044934  0.48609° 0.51258 0.44856  0.44119 0.48063  0.64849" 0.69343
Llama3-8B (IT) 0.54993* 046742 049897 0.56659% 0.47575% 046808 0.52338*  0.67381° 0.70928
Llama3-70B (IT) 0.54230* 045001 0.50772 0.54154 0.45813* 047079 0.50060  0.69068 0.68594
" Gemma3-1B (PT)  0.57242%  0.54646% 0.54701% 0.62979* 0.51441% 0.46974 0.58130* 0.60856°  0.79308*
Gemma3-4B (PT) 0.55490*  0.51745% 0.56900% 0.62117* 0.50467* 0.46693 0.58258* 0.61537" 0.78623*
Gemma3-12B (PT)  0.55298*  0.51403* 0.57491* 0.62396* 0.50916* 0.46872 0.58389*  0.66710" 0.78044*
Gemma3-27B (PT)  0.55451%  0.53745% 0.59499* 0.63705* 0.50941*  0.49088* 0.58387* 0.64797" 0.78968*
Gemma3-1B (IT) 0.51589* 047635 0.48902 0.60815% 0.45868* 0.46234 0.53365% 0.71364" 075127+
Gemma3-4B (IT) 047517  0.42279° 044448 052310 042822  0.42271° 0.45371°  0.74263 0.70185
Gemma3-12B (IT) 0.51448% 043624 0.49435 0.52473 045220 044352 0.48475  0.71455 0.68557
Gemma3-27B (IT) 048289  0.36519° 041157 0.42902° 0.39545  0.38945° 0.38815°  0.68913" 0.63603"

Table 9: Per-class scores of LIWC categories on the Movie corpus. Per-class scores significantly (p<0.05) over- or under-accommodating relative to
the human baseline are annotated with */~, respectively.
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LIWC Classes 1

Model Per. PRON Imp. PRON Article  CONJ  PREP AUX Verb Adverb Negation Quanitifer
Human 051224 056815 052201 0.50898 0.57620  0.58099 046672  0.62373 0.41161
Random 047656 046571 048411 046186 055681 049711 044354  0.53601 0.40152

" Llama3-1B (PT) 0.51461  0.54908° 0.50790° 0.41766 0.44772"  0.48655 0.46538  0.80887*  0.52413*
Llama3-3B (PT) 0.50221  0.54298° 0.50162° 0.42035 0.45789" 0.50929° 047096  0.81561*  0.50974*
Llama3-8B (PT) 0.50871  0.55488" 0.50834" 0.41920° 0.47860" 0.52426" 047534  0.80852*  0.51937*
Llama3-70B (PT) 051743 0.53373° 0.50334° 0.42873° 0.49814" 0.50906" 046667  0.78768*  0.53037*
Llama3-1B (IT) 051252  0.52152° 051547 0.46362° 056144 052774 042933  0.77361*  0.46223*
Llama3-3B (IT) 0.50690  0.52605° 0.52064 044533 0547127  0.52491° 0.43244"  0.78154*  0.46584*
Llama3-8B (IT) 0.52654*  0.54591° 0.51884 044775 0.53512°  0.55602° 0.43379°  0.79366*  0.48750*
Llama3-70B (IT) 0.52543*  0.52190° 051127 044526 0.53883"  0.53572° 0.43549°  0.79175*  0.48261*

" Gemma3-1B (PT)  0.50781  0.53966" 0.48955" 0.40049° 0.46065"  0.48000" 0.46200  0.78614*  0.51833*
Gemma3-4B (PT) 049885  0.54071° 0.49152° 0.41224" 046063  0.50473° 046580  0.79908*  0.51428*

Gemma3-12B (PT) 0.49863" 0.54130° 0.49419° 0.41503° 0.47925" 0.51447 0.46118 0.80888* 0.51833*
Gemma3-27B (PT) 0.50531 0.54580" 0.49988" 0.41498" 0.48409°  0.51519° 0.46871 0.78867* 0.51207*
Gemma3-1B (IT) 0.46099" 0.54123" 0.51009° 0.45534" 0.49789"  0.47316" 0.44876"  0.82397* 0.50275*
Gemma3-4B (IT) 0.47673" 0.53623" 0.51586 0.44279" 0.50731°  0.48312" 0.45753 0.80174* 0.47973*
Gemma3-12B (IT) 0.47781" 0.52282" 0.51185 0.45791" 0.54708"  0.50205" 0.44337-  0.81047* 0.46087*
Gemma3-27B (IT) 0.48005° 0.50935" 0.49790° 0.44714> 0.54294°  0.47903 0.45856 0.80388* 0.45444*

Table 10: Per-class scores of LIWC categories on the NPR Interview corpus. Per-class scores significantly (p<0.05) over- or under-accommodating
relative to the human baseline are annotated with ™/~ respectively.
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