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Abstract001

While large language models (LLMs) are gen-002
erally considered proficient in generating lan-003
guage, how similar their language usage is to004
that of humans remains understudied. In this005
paper, we test whether models exhibit linguistic006
convergence, a core pragmatic element of hu-007
man language communication, asking: do mod-008
els adapt, or converge, to the linguistic patterns009
of their user? To answer this, we systematically010
compare model completions of exisiting dia-011
logues to the original human responses across012
sixteen language models, three dialogue cor-013
pora, and a variety of stylometric features. We014
find that models strongly converge to the con-015
versation’s style, often significantly overfitting016
relative to the human baseline. While conver-017
gence patterns are often feature-specific, we018
observe consistent shifts in convergence across019
modeling settings, with instruction-tuned and020
larger models converging less than their pre-021
trained counterparts. Given the differences be-022
tween human and model convergence patterns,023
we hypothesize that the underlying mechanisms024
for these behaviors are very different.025

1 Introduction026

Large language models have revolutionized natu-027

ral language generation, with both proprietary and028

open-source chatbots providing grammatical and029

topical responses to user queries (e.g., Grattafiori030

et al., 2024; Gemma Team et al., 2025). These mod-031

els have become so fluent (particularly in English)032

that readers frequently cannot determine whether033

a text was authored by a human or a model (Clark034

et al., 2021). The apparent linguistic competency035

of LLMs thus opens an array of questions on the036

properties of model-generated language, particu-037

larly concerning how model language use differs038

from humans’.039

In this work, we investigate this through the lens040

of accommodation, the process by which people041

adjust their speech or writing style based on the042

identity of their interlocutor (Giles et al., 1991). 043

While accommodation takes many forms, in this 044

paper we focus on linguistic convergence, or how 045

similar the target’s language is to their interlocu- 046

tor’s (Niederhoffer and Pennebaker, 2002). As the 047

most prevalent use case for LLMs is via a chat 048

agent, convergence acts as an interesting case study 049

into the novel setting of human-model interaction. 050

Thus, we seek to answer the following questions: 051

Do LLM-based chatbots adapt their language use 052

to mirror that of their users? And does this behavior 053

mirror trends observed in human accommodation 054

or follow different patterns? 055

To study convergence in LLMs, we perform a 056

systematic analysis of model-generated responses 057

to human-authored conversations, which we collect 058

by prompting various LLMs to complete turns in 059

existing conversations drawn from dialogue cor- 060

pora. We then analyze these responses for a series 061

of stylometric features used to study accommoda- 062

tion in human linguistics, in order to estimate the 063

degree of convergence LLMs exhibit towards their 064

context relative to randomly-sampled utterances 065

and a human control (i.e., the gold text in turns that 066

the model replaces). 067

Our experiments show that models strongly 068

adapt their outputs’ style to their context. We also 069

find differences in convergence across model size 070

and training schemes, with larger and instruction- 071

tuned models converging less than smaller or solely 072

pretrained models. Given that pretrained models 073

often overconverge on these linguistic markers rel- 074

ative to the human baseline, this indicates that 075

instruction-tuned models are frequently more in 076

line with human behavior. Furthermore, these con- 077

vergence patterns are feature-specific, with models 078

adapting to their context to different extents across 079

metrics. While this varied behavior across features 080

is also common in human accommodation, the vari- 081

ance we observe in the models often differs from 082

that of the human baseline, indicating subtler dif- 083
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ferences in human and model convergence. We084

then conclude by discussing the implications of085

this work towards understanding the linguistics of086

LLMs.087

To summarize, this paper presents the follow-088

ing primary contributions: (1) we develop a novel,089

synthetic paradigm for testing model behavior with090

respect to a paired human control, which we ap-091

ply to studying linguistic convergence in LLMs;092

and (2) we present a quantitative analysis of into093

how language models converge to the style of their094

context, with insights into how modeling factors095

affect this phenomenon and the implications it has096

for interpreting model-generated text. Our findings097

demonstrate how models do and do not adapt to098

their inputs across various stylistic features, provid-099

ing broader insights into the relationship between100

human and model language use.1101

2 Related Work102

Linguistic accommodation has been widely stud-103

ied in human communication (Giles et al., 1991;104

Niederhoffer and Pennebaker, 2002; Giles et al.,105

2023, inter alia). Many prior works have lever-106

aged computational methods to characterize this107

phenomenon in human language across settings108

ranging from online interactions (Mukherjee and109

Liu, 2012; Berdicevskis and Erbro, 2023) to code-110

switching (Bawa et al., 2018) and movie dialogues111

(Danescu-Niculescu-Mizil and Lee, 2011). Bhatt112

and Rios (2021) study how users exhibit accommo-113

dation when interacting with models, while Parekh114

et al. (2020) examine how users accommodate115

model code-switching in conversation. In this pa-116

per, we apply the method presented in Ireland et al.117

(2011) to model-generated text while expanding118

the analysis to include additional stylometric fea-119

tures, to better understand how models adapt their120

language to their users.121

Accommodation research methods have also122

been applied to computational models of language123

in prior work. Earlier work has examined the rel-124

evance of model accommodation in chatbot task125

effectiveness (Chaves et al., 2019; Thomas et al.,126

2020). Most similar to this paper is Kandra et al.127

(2025), which tests whether GPT-4o exhibits syn-128

tactic accommodation. However, Kandra et al.129

(2025) focuses on entirely machine-generated in-130

teractions between two LLM agents, while our ex-131

1We will release our codebase and model generations upon
publication.

periments test the extent to which LLMs show ac- 132

commodation while completing a pre-existing dia- 133

logue. Thus, our setting enables direct comparison 134

between human and model responses in a given 135

context. We also evaluate a larger suite of open- 136

source language models across two model families 137

and study a large set of stylometric features to fully 138

characterize the convergence of these models. 139

Finally, this work also falls into the broader field 140

of language model behavioral analysis (see Chang 141

and Bergen (2024) for a survey of this area). In 142

particular, our analysis of the stylistic convergence 143

of LMs to their inputs corroborates findings on syn- 144

tactic and semantic priming in language models 145

(Sinclair et al., 2022; Jumelet et al., 2024; Gonen 146

et al., 2025). However, we characterize this con- 147

vergence more broadly for user-model interactions, 148

rather than through carefully constructed behav- 149

ioral probes. 150

3 Measuring Linguistic Convergence in 151

Language Models 152

Linguistic convergence occurs when a speaker 153

adapts their language to mirror that of the person 154

they are communicating with. While it is com- 155

monly accepted that humans frequently accommo- 156

date one another in this manner (e.g. Niederhoffer 157

and Pennebaker, 2002), it is unknown to what ex- 158

tent language models exhibit these patterns during 159

human-model interaction. We test whether con- 160

vergence occurs in machine-generated text via a 161

two-step process. First, we elicit generations that 162

are grounded in human-authored conversations. We 163

then test whether the model responses exhibit con- 164

vergence compared to several control settings. 165

Data Generation First, we elicit machine- 166

generated texts grounded in a dialogue by prompt- 167

ing a model to generate a response rt continu- 168

ing a two-person dialogue with speakers sx, sy, 169

conditioned on the prior turns of the conversation 170

r<t = r0, ..., rt−1; the model is always given ac- 171

cess to at least m = 5 prior turns of dialogue. 172

Therefore, the model replaces the utterance of 173

speaker sy beginning at t = 6 and continues to 174

participate in the role of sy on turns t = {8, 10, ...} 175

for the remainder of the dialogue. 176

By replacing utterances within human-authored 177

conversations, our data generation approach ap- 178

proximates a human-model experimental paradigm 179

while minimizing annotator burden. Thus, this set- 180

ting enables us to extend our experimental frame- 181
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work to many different conversations and domains,182

beyond what is feasible in a single user study. Our183

setting also aligns model generations with the origi-184

nal human utterances from conversations, allowing185

for direct comparisons that are not possible in fully186

synthetic analyses of LM linguistics.187

Convergence Analysis We then quantify how188

well rt accommodates other utterances in the dia-189

logue according to a number of different stylomet-190

ric features (Section 3.1). Unless otherwise stated,191

we consider how much rt converges with respect192

to rt−1, or the turn immediately prior uttered by193

the other speaker sx. Thus, we primarily consider194

specifically how much the model’s output mirrors195

the linguistic features of the most recent utterance196

from the user; Section 5.4 extends this to a step-197

wise analysis to examine the effect of earlier turns198

(rt−2, ...) on model convergence.199

In addition to directly measuring model con-200

vergence, we also compare the models’ behavior201

to two baselines: the human baseline, which202

considers how well the original utterance that203

rt replaces accommodates the prior text,2 and204

the random baseline, which calculates how205

much a random utterance drawn from a different206

conversation in the dataset accommodates rt−1.207

208

3.1 Linguistic Indicators of Convergence209

We measure the following features to characterize210

whether models alter their linguistic style to match211

that of their users, drawing on both human accom-212

modation research and other stylometric features:213

Utterance Length We measure how similar214

model response lengths are to the text in prior turns,215

a feature commonly used in accommodation and216

stylometric work, such as in Niederhoffer and Pen-217

nebaker (2002); Lin and Walker (2017). We mea-218

sure this with the symmetric metric from Ireland219

et al. (2011): LSMx = 1− |a− b|/(a+ b), where220

a and b represent the observed values for turn rt221

and rt−1, respectively.222

LIWC Agreement A standard measure of lin-223

guistic accommodation is the frequency of LIWC224

(Chung and Pennebaker, 2012) function word225

classes (e.g. Danescu-Niculescu-Mizil and Lee,226

2011). Here, we consider the LIWC2007 classes227

considered in Ireland et al. (2011) (personal and228

impersonal pronouns, articles, conjunctions, prepo-229

sitions, auxiliary verbs, frequently used adverbs,230

2I.e., establishing the accommodation exhibited by humans
in the same setting.

negations, and quantifiers), also using the LSM 231

metric to calculate how well each LIWC category 232

distribution in generated responses aligns with prior 233

turns. We both report the mean LIWC agreement 234

across categories and provide a fine-grained analy- 235

sis of each category in Section 5.3. 236

PROPN Overlap We calculate the overlap (per- 237

centage) of proper nouns between the text gener- 238

ated by the model and the preceding turn. We 239

expect that language users converging more with 240

their interlocutor will have a higher overlap. 241

Token Novelty We evaluate the percentage of 242

tokens novel relative to the reference utterance, 243

where a smaller percentage of novel tokens would 244

indicate that the model is adapting more to the 245

user interacting with it. This is measured as 246

|wt ∩ wt−1|/|wt|, where wx = {w ∈ rx}. 247

248

Utterance length, LIWC Agreement, and PROPN 249

Overlap are symmetric metrics and don’t account 250

for directional influence. Given the nature of our 251

experiments (the prior context outside of genera- 252

tions is fixed and can not be affected by the model), 253

we consider this a reasonable assumption to hold. 254

4 Experimental Setup 255

Datasets We perform our dialogue prompting ex- 256

periments on three English datasets: DailyDialog 257

(Li et al., 2017), containing conversations about 258

daily life as written by English language learn- 259

ers; NPR (Majumder et al., 2020), a dataset of ra- 260

dio interview transcripts; and the Movie Corpus 261

(Danescu-Niculescu-Mizil and Lee, 2011), which 262

contains (fictional) conversations scraped from 263

movie scripts. 264

For each dataset, we filter the conversations to 265

ensure they contain at least six turns of dialogue 266

and two speakers; we merge consecutive turns from 267

the same speaker into a single turn. We randomly 268

downsample the larger datasets to consider at most 269

1,000 conversations per setting. Our experiments 270

are performed on the (filtered) development sets of 271

DailyDialog and NPR; as the Movie corpus does 272

not provide data splits, we randomly sampled our 273

evaluation data from the full set. Table 1 presents 274

the dataset statistics for each corpus post-filtering. 275

Models We consider two open-source LLM fam- 276

ilies: Gemma 3 (Gemma Team et al., 2025), with 277

models spanning 1B, 4B, 12B, and 27B parameters; 278

and Llama 3 (Grattafiori et al., 2024), with models 279

of 1B, 3B parameters from Llama 3.2 and 8B and 280
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Dataset Statistics
DailyDialog Movie NPR

Conversations 707 1,000 1,000
Avg. Turns 9.79 8.98 17.57
Avg. Turn Length 13.44 10.87 48.43
Replaced Turns 1,918 2,280 6,568

Table 1: Dataset sizes and statistics for the dialogue
corpora post-filtering. For each dataset, we calculate
convergence over the model completions of Replaced
Turns in each dataset.

70B from the Llama 3.1 release. We perform infer-281

ence with checkpoints provided via Huggingface282

(Wolf et al., 2019) and use 8-bit quantization3 to283

run the largest model (i.e., Llama3 70B). For each284

model, we analyze the convergence expressed by285

both the pretrained and instruction-tuned versions.286

Prompting For each dialogue turn we want the287

model to complete, we prompt the model to “Con-288

tinue this conversation based on the given context”289

and provide the conversation history, including290

prior model generations from earlier turns in the291

conversation if applicable. We perform simple post-292

hoc filtering of the generations to remove noise,293

such as standardizing white space and filtering di-294

alogue tags used within the prompt. Appendix A295

provides example inputs and model generations296

and other experimental details.297

Linguistic Annotations We parse each uttrance298

with spaCy (Honnibal et al., 2020) to tokenize the299

data and obtain proper noun annotations, and we300

use the LIWC 2007 word classes (Chung and Pen-301

nebaker, 2012) to obtain LIWC categories.302

5 Analysis Results303

Here, we summarize and discuss the results of the304

convergence analysis for both the human baselines305

and model-generated responses when compared to306

a randomly sampled control.4 LLMs adapt signif-307

icantly to the style of their interlocutor across308

stylometric features, often matching or exceeding309

the level of convergence exhibited in the human310

baseline (Figure 2).311

However, we note that linguistic convergence312

is often multi-faceted, and human accommodation313

behavior often varies significantly across features314

in prior work (e.g., Ireland et al., 2011; Danescu-315

Niculescu-Mizil and Lee, 2011). We find this is316

also the case for model convergence, particularly in317

3https://huggingface.co/docs/bitsandbytes/
4Appendix B presents additional visualizations and the

complete set of numerical results.

Utterance Len. ⇧ LIWC Agreement ⇧

PROPN Overlap ⇧Token Novelty ⇩

Figure 1: Comparison of the human and random base-
lines on each metric across datasets. Metrics marked
with ↑ indicate more agreement with higher values; and
↓, vice-versa.

the case of fine-grained linguistic features (Section 318

5.3) and when examining convergence according 319

to earlier turns in the conversation (Section 5.4). 320

We also observe different trends depending on the 321

model type, with instruction-tuned models gener- 322

ally converging to their context less than their pre- 323

trained counterparts. 324

5.1 Linguistic Convergence in Human- 325

Authored Text 326

To obtain a baseline for the expected level of con- 327

vergence in our chosen dialogue settings, we first 328

examine the linguistic convergence exhibited by 329

the original speakers in these datasets. We there- 330

fore compare the level of accommodation (as mea- 331

sured by our four convergence metrics) exhibited 332

in ground truth utterances with random utterances 333

drawn from the dataset (Figure 1). 334

Unsurprisingly, we generally find that the gold 335

utterance rt converges with the preceding utter- 336

ance rt−1 more than a randomly sampled utterance. 337

We find a significant difference (p < 0.05 in a 338

paired t-test) between the human and random set- 339

tings on the token novelty and PROPN overlap 340

metrics across datasets. However, convergence in 341

utterance length is only significant between the 342

two settings on the DailyDialog dataset. 343

We also observe differing levels of convergence 344

on LIWC categories: while NPR conversations ex- 345

hibit significant accommodation over the random 346

baseline on all LIWC categories except quantifiers, 347

4
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Figure 2: Scatter plot of Gemma and Llama Model scores on various convergence metrics relative to human and
random baselines on DailyDialog (top row), Movie corpus (middle), and NPR (bottom), across model sizes (Billion
parameters). PT indicates pretrained checkpoints while IT are instruction-tuned. Metrics marked with ↑ indicate
more agreement with higher values; and ↓, vice-versa.

the other datasets show much smaller differences.5348

DailyDialog conversations only show significant349

differences on five of nine LIWC word classes (de-350

spite appearing to have a large average increase351

in convergence over random utterances), and utter-352

ances drawn from the Movie corpus are only sig-353

nificantly more accommodating over the random354

baseline on a single class, auxiliary verbs.355

The limited linguistic convergence we observe in356

the Movie corpus is likely due to the nature of the357

data, as the conversations were written by screen-358

writers, rather than drawn from naturally occurring359

speech. Danescu-Niculescu-Mizil and Lee (2011)360

similarly found that while the Movie corpus exhib-361

ited convergence under their conditions, the levels362

observed were much lower compared to real-world363

conversations (in their case, drawn from Twitter).364

5.2 Linguistic Convergence in LLM-365

Generated Text366

We now turn to examining how model-generated367

responses to these conversations exhibit conver-368

gence. Figure 2 compares model scores on each369

convergence metric against the human and random370

baselines on the three datasets. With these results,371

5See Appendix Tables 8, 9, 10 for full numerical results.

we consider the following questions: 372

Do models converge to their context? We find 373

that models significantly outscore the random base- 374

line in 81.25%, 100%, and 85.42% of cases for 375

Utterance Length, PROPN overlap, and Token 376

Novelty, respectively, in a paired t-test (p < 0.05). 377

We also observe strong convergence on LIWC 378

categories: models outscore the random utter- 379

ances 91.67% (44 of 48) of the time on averaged 380

scores, with significant improvements on individual 381

LIWC classes ranging from 37.5% (for conjunction 382

words) to 87.5% (on personal pronouns). While 383

specific model convergence trends can differ based 384

on several factors, this indicates that models gener- 385

ally adapt to the linguistic style of their context. 386

Furthermore, language models also significantly 387

over-converge relative to human-authored utter- 388

ances in many cases. We find that in 62.5% and 389

79.2% of cases for Utterance Length and Token 390

Novelty, the model-generated responses signifi- 391

cantly outscore human utterances. Overconver- 392

gence occurs in fewer cases for PROPN overlap 393

(35.4%) and LIWC classes, where they range be- 394

tween 10.4% and 56.25% of settings. We discuss 395

which model settings overfit to their context relative 396

to humans below. 397
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Does model size and training affect conver-398

gence? Figure 2 shows that model training ap-399

proaches affect the convergence behaviors of400

LLMs, with pretrained models generally adapt-401

ing more to their context than their instruction-402

tuned counterparts. This is particularly true in403

the case of the Gemma model family, where the404

instruction-tuned models exhibit the least amount405

of convergence. An exception to this trend is406

the PROPN Overlap metric: here, pretrained mod-407

els more closely mirror the human baseline while408

while instruction-tuned models significantly over-409

accommodate by more often repeating proper410

nouns from the prior utterance. This difference is411

likely due to alternate training objectives; for exam-412

ple, pretrained models likely appear to adapt more413

on Token Novelty because they are trained to fit414

closely to the input distribution, while instruction-415

tuned models are encouraged to introduce novel416

information during fine-tuning.417

We also see minor convergence trends across418

model size: larger models slightly but nonsignifi-419

cantly shift towards the human baseline and accom-420

modate their context less on Utterance Length,421

LIWC Agreement, and PROPN Overlap (Appendix422

Table 4). However, convergence trends appear423

more stable for the Token Novelty metric.424

Does model convergence differ across datasets?425

We find that LLMs exhibit relatively consistent426

convergence behavior across the three datasets, fre-427

DailyDialog

Human ΔRandom Δ

Llama
(PT)

Llama
(IT)

Gemma
(PT)

Gemma
(IT)

Figure 3: Summary of model convergence relative to
the human and random baselines for individual LIWC
word classes on the DailyDialog dataset. Pink cells
indicate classes where the model significantly (p <
0.05) overconverges relative to the baseline, while green
cells indicate significant undercongergence. Gray cells
are not significantly different from the baseline.

quently significantly outscoring the random control. 428

Given the presence of convergence across datasets 429

and indicator metrics, linguistic convergence ap- 430

pears to be a general phenomenon in LLMs across 431

various data settings and model types. 432

However, we also observe shifts in the models’ 433

adaptation to different datasets, particularly in the 434

case of the NPR dataset. Specifically, models often 435

exhibit less convergence than the baselines on NPR 436

for Token Novelty and PROPN Overlap, but sig- 437

nificantly more convergence in terms of Utterance 438

Length (Figure 2). This shift likely stems from 439

the underlying data: compared to the more casual 440

dialogue of our other settings, NPR conversations 441

are interview transcripts that have more structured 442

turns and expected variance in utterance lengths, 443

particularly between the interviewer and intervie- 444

wee. Thus, while models adapt their style to their 445

contexts, whether this adaptation is human-like de- 446

pends on the setting. 447

5.3 Fine-grained Analysis of LIWC 448

Categories 449

While we examine several axes to quantify lin- 450

guistic convergence in language models, the ma- 451

jority of prior computational work on human ac- 452

commodation quantifies convergence by measuring 453

the frequency of common types of function words 454

based on the subset of LIWC word classes identified 455

by Ireland et al. (2011). In this section, we con- 456

sider model convergence on these nine LIWC sub- 457

categories (rather than the averaged result across 458

classes reported in prior sections) to understand 459

finer-grained aspects of when models do and don’t 460

converge to their context. 461

Figure 3 summarizes the results of our fine- 462

grained LIWC analysis on DailyDialog, reporting 463

the relative delta of model scores on these classes 464

compared to the random and human baselines; 465

Appendix Figures 5 and 6 present the results for 466

the Movie and NPR datasets. We see similar gen- 467

eral trends to previous sections (e.g., instruction- 468

tuned models converge less to their context than 469

pretrained ones), but model behavior often varies 470

markedly across individual LIWC categories, par- 471

ticularly in comparison to human scores. Specifi- 472

cally, while pretrained model convergence is usu- 473

ally stronger than the random baseline, their con- 474

vergence relative to the human baseline is mixed. 475

Compared to human utterances, the pre-trained 476

models overconverge on certain word classes, such 477

as quantifiers, conjunctions, and adverbs, while 478
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Dailydialog

Utterance Len. ⇧ LIWC Agreement ⇧ Novel Tokens ⇩PROPN Overlap ⇧

Time step t Time step t Time step t Time step t

Figure 4: Stepwise analysis of convergence in LM generations (and human ground truth utterances) for DailyDialog,
measuring the agreement between each utterance rt=n and the preceding utterances rt=1,...,n−1 on our four metrics.
Timesteps in gray (t = 2, 4) indicate the prior turns in the role the model adopts, Sy, while white timesteps are
utterances from the other speaker, Sx. Each line reports the averaged score across all model sizes in a given family.

performing on par with humans on others.479

A potential explanation is that pretrained mod-480

els may simply generate these word classes less481

overall. Examining the use of quantifiers by the482

largest pretrained Llama3 model, we find it under-483

uses this word class relative to the human texts at484

similar rates, regardless of whether the prior utter-485

ance includes at least one quantifier or not (28.6%486

vs. 24.1%). Table 2 (Case A) shows a pair of487

model- and human-generated utterances exemplify-488

ing this trend for quantifiers. Given that only 27%489

of the reference utterances include a quantifier, it490

is likely the “overconvergence” we see is at least491

partially due to overall lower use of uncommon492

word types by the pretrained models.493

Furthermore, instruction-tuned models continue494

to converge less than the pretrained ones on in-495

dividual LIWC classes, underconverging relative496

to human utterances in 16 cases. Here we see a497

strong difference across model families, with the498

instruction-tuned LLama models performing sim-499

ilarly to humans on most word classes and their500

Gemma counterparts underconverging on a number501

of categories, such as impersonal pronouns, arti-502

cles, and conjunction usage. There is also a minor503

shift with model size, as larger Gemma models504

converge less across these classes.505

In contrast with pretrained models, this under-506

convergence seems to stem from an overuse of507

these classes, which causes generations from the508

instruction-tuned models to align less with their509

context. We examine the use of conjunctions by510

the pretrained and instruction-tuned largest Gemma511

models, and find that instruction-tuned models512

frequently overgenerate conjunctions relative to513

the human and pretrained model, with instruction-514

tuned models using additional conjunctions in515

47.0% and 59.1% of utterances, respectively (for516

reference, the human reference only uses this word517

Case A (Quant.)
Prior Utterance “I will take ten.”
Human “Do you want to add some baby’s

breath for that?”
Llama-70B (PT) “Do you want them delivered?”

Case B (Conj.)
Prior Utterance “Yes, our over-the-counter medicine

is over there on that shelf.”
Gemma-27B (PT) “Thank you.”
Gemma-27B (IT) “Great. And how much is a bottle

of 200?”

Table 2: Examples of model responses: pretrained mod-
els overconverge on quantifiers (Case A) and instruction-
tuned models overuse (and thus underconverge on) con-
junctions (Case B).

class in 39% of utterances). Table 2 (Case B) pro- 518

vides an example of this overuse. 519

5.4 Stepwise Analysis of Linguistic 520

Convergence 521

In the previous analyses, we examine how well the 522

model-generated responses rt converge linguisti- 523

cally to the immediately prior utterance in the con- 524

versation rt−1. However, our experimental setup 525

primes the model with the first five turns in a di- 526

alogue before prompting it to participate. Thus, 527

there is much more context for the model to poten- 528

tially fit to than rt−1, as it is also conditioned on 529

other prior turns from Sx, the speaker with whom 530

the model is asked to converse (and the standard 531

target of linguistic convergence analysis), and on 532

turns from Sy, the speaker that the model replaces. 533

In this section, we test how linguistic features 534

from earlier turns in the conversation influence 535

initial model-generated utterances in conversation. 536

Specifically, we take the first utterance generated 537

by the model in each conversation (at t = 6) and 538

compare it to all prior turns rt=1,...,5 (Figure 4 for 539

DailyDialog; Appendix Figures 7 and 8 for Movie 540

and NPR datasets). For clarity, we report aver- 541
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age convergence scores across model sizes on each542

model family and training scheme set.543

We find that human convergence scores fluctu-544

ate across timesteps; this is unsurprising, as alter-545

nating timesteps are uttered by the same speaker546

Sy as the considered utterance rt, indicating that547

each speaker’s linguistic patterns agree more with548

themselves than with their interlocutors. Interest-549

ingly, we see similar patterns across time with the550

language models for most metrics. This finding551

suggests that not only do language models adapt to552

their context, they also differentiate this adaptation553

to different roles within the dialogue.554

However, we do observe some differences in555

model behavior compared to humans across time,556

particularly on PROPN Overlap. Model behavior557

follows the human trend less closely for this metric558

at earlier timesteps, with a sharp increase in overlap559

scores relative to humans on the last turn before560

the model generation (Figure 4). This increased561

score corresponds to the overconvergence observed562

in models in the prior sections on PROPN. Thus, it563

is likely that in the case of exact word overlap (e.g.,564

names and other proper nouns), model convergence565

demonstrates a strong recency bias towards newer566

concepts (Liu et al., 2024).6567

6 Discussion568

Throughout our analysis, we compare model con-569

vergence to that of the human baselines to con-570

textualize the models’ behavior. However, while571

in some cases the model converges to its context572

similarly to human utterances, we emphasize that573

the observed similarities do not necessarily indi-574

cate that the underlying causes of these behaviors575

are the same. Human accommodation is driven576

by speakers (often unconsciously) altering their577

speech to foster social and communicative goals578

(Giles et al., 1991). In contrast, language models579

do not have these same underlying communication580

goals when generating text.581

We hypothesize that model convergence is in-582

stead driven by their pretraining objective, which583

encourages the model to produce test stylistically584

consistent with their input by training them on com-585

plete, often single-author documents. This con-586

sistency effect extends beyond style convergence:587

model generations have also been shown to be influ-588

enced by their input in structural priming (Sinclair589

6We similarly see small upticks on convergence with the
first utterance for multiple datasets and metrics, suggesting
that primacy biases may affect convergence as well.

et al., 2022; Jumelet et al., 2024) and through super- 590

fluous semantic correlations (Gonen et al., 2025). 591

Recently, Kandra et al. (2025) demonstrated this 592

in the syntactic convergence of model-model inter- 593

actions. The stylistic convergence and overconver- 594

gence that we observe are thus likely another facet 595

of this behavior. 596

Instead, an important consideration is how the 597

user will interpret texts from models that appear to 598

accommodate them as a human interlocutor would, 599

such as in the case of instruction-tuned models. Ap- 600

propriate model style has been shown to facilitate 601

successful chatbot interactions (Chaves et al., 2019; 602

Thomas et al., 2020), and Bhatt and Rios (2021) 603

finds that users tend to accommodate models more 604

when they successfully produce topically relevant 605

outputs, treating them more like human conver- 606

sation partners. Thus, model convergence that is 607

more in line with humans (rather than sycophantic, 608

as overconvergence may appear) will likely lead to 609

higher trust in the model, even if the true capabili- 610

ties of the model are unreliable. 611

7 Conclusion 612

This paper presents a comprehensive description of 613

linguistic convergence in a series of open-source 614

generative language models. Specifically, we char- 615

acterize the extent to which these language mod- 616

els adapt their outputs to the style of their context 617

across various stylometric features and dialogue do- 618

mains. While our experiments reveal varied trends 619

across datasets and model training regimes, we 620

generally find that LM generations do exhibit con- 621

vergence, almost always significantly outscoring 622

a random control on the considered metrics. Fur- 623

thermore, in many cases, language models also 624

overconverge relative to the human baseline. 625

Thus, we consider the extent to which model 626

convergence is even related to human accommo- 627

dation. Finer-grained analysis on LIWC categories 628

(a prototypical feature for studying accommoda- 629

tion) shows that models exhibit very different pat- 630

terns on these features than humans, suggesting 631

that the underlying mechanisms for these behav- 632

iors are likely very different. Therefore, while this 633

work primarily considers human behavior as a ref- 634

erence for characterizing the models’ generations, 635

future work should characterize these differences 636

further and examine the underlying causes of the 637

observed convergence in LMs. 638
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Limitations639

We approximate the participation of LLMs in user-640

driven dialogues by having them complete turns641

in existing dialogue datasets. While this approach642

has some experimental advantages (i.e., we can643

directly compare human accommodation features644

with the model’s responses in the same context),645

it also presents some limitations. Specifically, the646

model’s responses may be biased due to participat-647

ing only in the later portion of (fixed) conversations.648

Future work should supplement our experimental649

setting with more focused user studies to validate650

whether our findings hold in these cases.651

While we perform experiments on sixteen lan-652

guage models and three dialogue datasets, it re-653

mains an open question how larger models (>70B654

parameters) and models post-trained on other objec-655

tives adapt to their users. The considered datasets656

cover various styles of conversations, but these657

differ from how some users interact with the mod-658

els (i.e., information-seeking). Thus, future work659

should confirm whether these findings hold up in660

interactive user studies. Finally, while we test for661

an array of stylometric features, it is possible that662

the model’s behavior of other aspects of style may663

differ.664
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Prompt Continue this conversation based on the
given context.

Context <user> What can I do for you, sir? </user>
<assistant> We’d like to order breakfast for
tomorrow morning. </assistant> ...
<user> OK, and when shall I bring it here?
</user> \n <model>

Responses
Human About seven thirty. By the way...
Generation∗ At 7:30 AM.

Table 3: Prompt, context, and sample generations for
our prompting setup to obtain model responses for our
convergence analysis. ∗Example text generated by the
Llama3 (3B) pretrained model, example conversation
drawn from the DailyDialog development set.

Movie

Human ΔRandom Δ

Llama
(PT)

Llama
(IT)

Gemma
(PT)

Gemma
(IT)

Figure 5: Summary of model convergence relative to
human and random baselines on LIWC word classes for
DailyDialog.

use.7 The Llama3 models (Grattafiori et al., 2024)851

are released by Meta for open use under a custom852

liscense8, and the Gemma model family is released853

under the Gemma Terms of Use.9854

B Additional Analysis Results855

Here, we present additional analysis figures and856

the full numerical results of our convergence ex-857

periments. First, we perform a correlation study to858

examine the effect of model size and style conver-859

gence (Table 4).860

Figure 5 and Figure 6 show the relative delta861

against the human and random baselines for indi-862

vidual LIWC categories for the Movie corpus and863

NPR dataset, respectively; this complements the864

DailyDialog results presented in Section 5.3. We865

7https://www.liwc.app/help/eula
8https://www.llama.com/llama3/license/
9https://ai.google.dev/gemma/terms

NPR

Human ΔRandom Δ

Llama
(PT)

Llama
(IT)

Gemma
(PT)

Gemma
(IT)

Figure 6: Summary of model convergence relative to
human and random baselines on LIWC word classes for
DailyDialog.

also present the full numerical results for the indi- 866

vidual LIWC classes for DailyDialog (Table 8), the 867

Movie corpus (Table 9), and NPR (Table 10). We 868

also report the summary figures for the stepwise 869

experiments described in Section 5.4 with Figure 7 870

for the Movie corpus and Figure 8 for NPR. 871

Finally, we present the full dataset-level exper- 872

imental results across our convergence metrics in 873

Tables 5, 6, and 7 for the DailyDialog, Movie, 874

and NPR datasets, respectively. We also provide 875

Human and Random baselines in each table for 876

comparison. 877
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Movie

Utterance Len. ⇧ LIWC Agreement ⇧ Novel Tokens ⇩PROPN Overlap ⇧

Time step t Time step t Time step t Time step t

Figure 7: Stepwise analysis of convergence in LM generations (and human ground truth utterances) for the Movie
corpus, measuring the agreement between each utterance rt=n and the preceding utterances rt=1,...n−1 on our four
metrics. Timesteps in gray (t = 2, 4) indicate the prior turns in the role the model adopts, Sy , while white timesteps
are utterances from the other speaker Sx.

NPR Stepwise

Utterance Len. ⇧ LIWC Agreement ⇧ Novel Tokens ⇩PROPN Overlap ⇧

Time step t Time step t Time step t Time step t

Figure 8: Stepwise analysis of convergence in LM generations (and human ground truth utterances) for NPR,
measuring the agreement between each utterance rt=n and the preceding utterances rt=1,...n−1 on our four metrics.
Timesteps in gray (t = 2, 4) indicate the prior turns in the role the model adopts, Sy, while white timesteps are
utterances from the other speaker Sx.

Dataset PT/IT ρ p
Utterance Length

DailyDialog PT -0.189 0.653
DailyDialog IT -0.221 0.380

Movie PT -0.252 0.546
Movie IT -0.253 0.546
NPR PT -0.263 0.530
NPR IT -0.263 0.529

LIWC Agreement
DailyDialog PT -0.225 0.592
DailyDialog IT -0.233 0.579

Movie PT -0.212 0.614
Movie IT -0.256 0.541
NPR PT -0.217 0.606
NPR IT -0.218 0.604

PROPN Overlap
DailyDialog PT -0.355 0.389
DailyDialog IT -0.246 0.558

Movie PT -0.246 0.557
Movie IT -0.136 0.749
NPR PT -0.563 0.146
NPR IT -0.282 0.499

Token Novelty
DailyDialog PT -0.209 0.620
DailyDialog IT -0.214 0.612

Movie PT -0.239 0.569
Movie IT -0.230 0.584
NPR PT -0.199 0.636
NPR IT -0.217 0.606

Table 4: Correlation across model size and convergence
values for different features and experimental settings.
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Model
Accommodation Features

Utterance Len. (↑) LIWC (↑) PROPN (↑) Token Novelty (↓)
Human 0.69102 0.53759 0.01460 0.75742
Random 0.66348 0.50481 0.00052 0.78874
Llama3-1B (PT) 0.68975 0.57859 0.01929 0.66624†
Llama3-3B (PT) 0.68722 0.57327 0.02190 0.68130†
Llama3-8B (PT) 0.69062 0.57630 0.02033 0.67796†
Llama3-70B (PT) 0.65438† 0.57083 0.01668 0.67603†
Llama3-1B (IT) 0.68893 0.53960 0.05057† 0.70558†
Llama3-3B (IT) 0.70523 0.54633 0.04484† 0.72480†
Llama3-8B (IT) 0.71776† 0.55260 0.03702† 0.72800†
Llama3-70B (IT) 0.65438† 0.52757 0.03858† 0.72950†

Gemma3-1B (PT) 0.69385 0.57911 0.02190 0.65732†
Gemma3-4B (PT) 0.67167 0.57470 0.01825 0.66582†
Gemma3-12B (PT) 0.67753 0.57359 0.01356 0.66968†
Gemma3-27B (PT) 0.67461 0.56564 0.02033 0.68695†
Gemma3-1B (IT) 0.73334† 0.56969 0.05266† 0.69551†
Gemma3-4B (IT) 0.66628† 0.51836 0.05735† 0.75824
Gemma3-12B (IT) 0.64808† 0.51796 0.05214† 0.75992
Gemma3-27B (IT) 0.61049† 0.49306 0.06726† 0.76123

Table 5: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the DailyDialog dataset. Scores for Utterance Length, PPROPN, and Token
Novelty in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores
indicated with † are p < 0.001 relative to human scores.

Model
Accommodation Features

Utterance Len. (↑) LIWC (↑) PROPN (↑) Token Novelty (↓)
Human 0.58664 0.53215 0.02719 0.75639
Random 0.58447 0.52271 0.00000 0.78985
Llama3-1B (PT) 0.63248† 0.58302 0.03772 0.63531†
Llama3-3B (PT) 0.61824† 0.58764 0.03114 0.65910†
Llama3-8B (PT) 0.62951† 0.58892 0.03947 0.65774†
Llama3-70B (PT) 0.59195 0.58594 0.03509 0.67501†
Llama3-1B (IT) 0.58722 0.50072 0.08553† 0.67083†
Llama3-3B (IT) 0.61592† 0.52352 0.07061† 0.69595†
Llama3-8B (IT) 0.61986† 0.54813 0.05570† 0.67503†
Llama3-70B (IT) 0.59195 0.53864 0.06535† 0.69817†

Gemma3-1B (PT) 0.63923† 0.58475 0.03421 0.64280†
Gemma3-4B (PT) 0.62373† 0.57981 0.03158 0.65521†
Gemma3-12B (PT) 0.61104† 0.58613 0.02807 0.66392†
Gemma3-27B (PT) 0.62077† 0.59398 0.03114 0.65530†
Gemma3-1B (IT) 0.62703† 0.55655 0.06711† 0.70714†
Gemma3-4B (IT) 0.58937 0.51274 0.07061† 0.72819†
Gemma3-12B (IT) 0.59290 0.52782 0.08597† 0.72619†
Gemma3-27B (IT) 0.53554† 0.46521 0.10219† 0.71779†

Table 6: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the Movies dataset. Scores for Utterance Length, PPROPN, and Token Novelty
in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores indicated
with † are p < 0.001 relative to human scores.
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Model
Accommodation Features

Utterance Len. (↑) LIWC (↑) PROPN (↑) Token Novelty (↓)
Human 0.45905 0.53007 0.25837 0.58561
Random 0.46025 0.48035 0.00959 0.58921
Llama3-1B (PT) 0.63248† 0.52466 0.10627† 0.45246†
Llama3-3B (PT) 0.61824† 0.52563 0.11510† 0.52262†
Llama3-8B (PT) 0.62951† 0.53303 0.11480† 0.50684†
Llama3-70B (PT) 0.59195† 0.53057 0.14495† 0.49636†
Llama3-1B (IT) 0.58722† 0.52972 0.26675 0.60536†
Llama3-3B (IT) 0.61592† 0.52786 0.23097 0.60754†
Llama3-8B (IT) 0.61986† 0.53835 0.21894† 0.56910†
Llama3-70B (IT) 0.59195† 0.53203 0.26249 0.59674†

Gemma3-1B (PT) 0.63923† 0.51606 0.12287† 0.44413†
Gemma3-4B (PT) 0.62373† 0.52087 0.11754† 0.50963†
Gemma3-12B (PT) 0.61104† 0.52570 0.12500† 0.51644†
Gemma3-27B (PT) 0.62077† 0.52608 0.12180† 0.51689†
Gemma3-1B (IT) 0.62703† 0.52380 0.16261† 0.64512†
Gemma3-4B (IT) 0.58937† 0.52234 0.15164† 0.67585†
Gemma3-12B (IT) 0.59290† 0.52603 0.17266† 0.65817†
Gemma3-27B (IT) 0.53554† 0.51925 0.16078† 0.68015†

Table 7: Metric scores of common indicators of linguistic convergence in model-generated responses
to conversations in the NPR Interview dataset. Scores for Utterance Length, PPROPN, and Token
Novelty in bold are significantly different from human metrics (p < 0.05 on a paired t-test); scores
indicated with † are p < 0.001 relative to human scores.
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