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Abstract

Trained on internet-scale datasets, large lan-
guage models (LLMs) excel in tasks relying
on surface patterns and exhibit strong com-
mon sense knowledge. However, their per-
formance decreases on tasks requiring deeper
reasoning steps. Recent techniques aim to
combine the strengths of both reasoning pro-
grams and LLMs by converting natural lan-
guage problems into formal logic specifica-
tions, thereby enhancing reasoning task per-
formance. Despite these advancements, LLMs
often struggle with ambiguities and complex
cases, leading to reasoning errors in the formal
method step. In this paper, based on the ob-
servation that LLMs can provide the implicit
common sense facts when asked explicitly, we
propose ILENS (Iterative Logical Enhancement
via Neurosymbolic Computation and Common
Sense), a new iterative neurosymbolic system
for logical inferences which integrates the two
systems in an iterative manner. Initially, we
translate the problem specifications into AMR
graphs, and then convert them into first-order
logic (FOL) expressions to minimize inaccu-
rate interpretations from natural language to
FOL. Subsequently, we use formal theorem
provers (Prover9, Mace4) to deduce the conclu-
sion. Within this process, we ask the theorem
prover to generate counterexamples based on
the given premises when the theorem prover
fails to provide a definite answer, then prompt-
ing the LLM to identify any implicit common
sense facts. These facts are then incorporated
back into the theorem to attempt proof comple-
tion. Through the iterative steps and leveraging
the GPT-4 API in conjunction with Prover9 and
Mace4, our new proposed ILENS system signif-
icantly reduces uncertain and error cases and
achieves 80.22% accuracy on the challenging
FOLIO dataset, setting a new state of the art.

1 Introduction

Recent advancements in large language models
(LLMs), such as ChatGPT/InstructGPT (Ouyang

et al., 2022), GPT-3 (Brown et al., 2020), GPT-4
(Achiam et al., 2023), LLAMA (Touvron et al.,
2023), and PALM (Chowdhery et al., 2023),
have demonstrated significant success across
a variety of tasks including text generation,
classification, coding, and problem-solving. LLMs
are transformer-based models that operate on
statistical principles. Despite their considerable
success, the generation of outputs in these models
relies on probabilistic token prediction (Naveed
et al., 2023). However, real-world natural language
(NL) is often complex and ambiguous (Nadkarni
et al., 2011). Therefore, tasks that require long
sequences of logical reasoning, comprehension of
implicit natural language statements, or reasoning
out of domain remain challenging for LLMs (Liang
et al., 2022; Saparov et al., 2024; Anil et al., 2022).
Although techniques such as chain of thought
(CoT) (Nye et al., 2021; Wei et al., 2022; Wang
et al., 2022; Huang and Chang, 2022; Kojima
et al., 2022) and in-context learning (ICL) (Min
et al., 2021; Dong et al., 2022; Min et al., 2022;
Schick et al., 2024) have been proposed to address
some of these difficulties, recent studies suggest
that the inherent architecture of transformer-based
language models still lacks optimal efficiency in
deeper proofs logical reasoning (Dziri et al., 2024;
Olausson et al., 2023).

Additionally, logical reasoning is crucial for
Al-based tasks such as theorem proving, solving
mathematical problems with step-by-step solutions,
efficient code generation, algorithm design, and
answering complex queries. These type of tasks
can be challenging because they require long
chain of logical reasoning or step by step problem
solving. Hence, enhancing the logical capabilities
of LLMs and their ability to apply common
sense knowledge can significantly improve their
performance in mathematics and science-based
applications (Li et al., 2021; Jain et al., 2023). The
use of logical reasoning can lead to more accurate
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Figure 1: Iterative workflow of ILENS.

and reliable results by reducing hallucinations
across a wide range of applications compared to
probabilistic token prediction (Xu et al., 2024;
Olausson et al., 2023; Zhang et al., 2024). Recent
research has combined powerful LLMs with
formal theorem provers, leveraging the strengths of
both approaches to create more robust and capable
systems. This integration aims to enhance the
logical reasoning capabilities of LLMs, enabling
them to perform tasks that require rigorous
logical reasoning alongside natural language
understanding (Olausson et al., 2023; Pan et al.,
2023).

In this work, we implement ILENS (Iterative
Logical Enhancement via Neurosymbolic Compu-
tation and Common Sense), a system that combines
LLMs with a theorem prover in an iterative fashion,
thereby enhancing the logical capabilities of LLMs.
ILENS is an iterative neurosymbolic system where
the language model converts the natural language
statements first to abstract meaning representation
(AMR) (Banarescu et al., 2013; Knight et al.,
2021) using a parser, then translates the AMR
graphs to first-order logic (FOL) expressions
(Enderton, 2001; Barker-Plummer et al., 2011).
The translated FOL expressions are fed to the
theorem provers (Prover9, Mace4) (McCune,
2005-2010) to determine the truth value of the
inference. In the cases of indefinite responses or
syntax errors generated by the prover, our system
improves them. If the theorem prover fails to

provide a definite answer, we ask it to generate a
counter-example. This example is then used as
a reference for the language model to find any
missing links or facts in the given natural language
premises (NL) to enrich the NL premises. The
improved NL statements are then passed through
the parsers and theorem prover to get updated
inference output. If there is a syntax error in the
FOL expressions, the language model is prompted
to fix the error and the improved FOL is passed
through the prover again. This iteration continues
until the theorem prover can find a definite answer
or reach a specified threshold.

ILENS leverages the ability of LLM to follow
instructions and its strength of common sense
knowledge for FOL translation while offloading
logical reasoning deduction to a formal theorem
prover. Hence, the success of ILENS lies in two
novel ideas. The first key idea is translating AMR
to FOL rather than directly translating FOL from
NL. Abstract Meaning Representation (AMR)
tends to be more structured and semantically
clearer, making it potentially easier to translate into
FOL without errors whereas translating natural
language statements to first-order logic (FOL)
can be more complex due to the ambiguity and
nuances of human language (as shown in Figure
2). Our baseline system performs well with this
added step in FOL translation with improved FOL
expressions in secenarios where the NL statements
have implicit information. The second key idea



is to iterate logical reasoning with theorem
prover which updates the NL premises with any
missing facts provided by LLM based on the
counter-example from the theorem prover. By
adding this iterative step, our system improves
accuracy significantly from the baseline system by
29%. We can summarize our contributions:

¢ We introduce ILENS, a new iterative neu-
rosymbolic system for logical inferences. Our
system successfully improves the accuracy on
task that requires logic reasoning with LLMs
and external theorem prover setting a new
state of the art. On FOLIO dataset (Han et al.,
2022) the accuracy achieved is 80.22% which
is about 7.7% higher than the previous bench-
mark model (Olausson et al., 2023).

* Our experiments demonstrates that combining
common sense knowledge of LLM and itera-
tive logic inference by formal theorem provers
can improve the task of logic inference deduc-
tion.

* We do a thorough comparison of ILENS to
baseline systems and also perform error anal-
ysis.
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Figure 2: Comparing conversion of first-order logic
(FOL) from abstract meaning representation (AMR)
and natural language (NL).

2 Related work

Semantic parsing with language models is the
process of converting natural language into a struc-
tured, machine-readable representation which has
seen significant advancements with the advent of
LLMs. Semantic parsing traditionally involves
mapping natural language utterances to formal rep-
resentations like AMR, lambda calculus, or SQL
queries (Ge and Mooney, 2005; Kamath and Das,

2018). The goal is to capture the underlying mean-
ing of the input text in a way that facilitates fur-
ther processing by downstream applications (Wang
et al., 2015; Berant and Liang, 2014). Works by
(Zhang et al., 2019; Bevilacqua et al., 2021) use
a transformer-based architecture to achieve state-
of-the-art results in AMR parsing tasks. Recent
developments have leveraged the power of LMs,
such as GPT-3, BERT, and T5, to enhance seman-
tic parsing capabilities (Raffel et al., 2020; Shin
and Van Durme, 2021; Hahn et al., 2022; Wong
et al., 2023). LogicLLAMA (Yang et al., 2023) can
directly translate natural language into FOL rules
along with correct predictions made by GPT-3.5,
which achieves performance comparable to GPT-4
with a fraction of the cost.

Common sense reasoning in language models
allows language models to interpret implicit infor-
mation, disambiguate meanings, and make logical
inferences that are intuitive for humans. COMET
(Bosselut et al., 2019) uses the transformer model
to generate inferential knowledge, augmenting the
language model’s ability to reason about everyday
scenarios. Models like BERT and GPT-3 have been
fine-tuned on datasets specifically designed to im-
prove the capability of common sense reasoning
(Talmor et al., 2018; Rajani et al., 2019; Sap et al.,
2020; Liu et al., 2021; Bian et al., 2023).
Reasoning through neurosymbolic approaches
in LL.Ms combines neural networks with symbolic
reasoning systems to integrate structured knowl-
edge and logical inference capabilities (Hitzler
et al., 2022). The integration of structured knowl-
edge bases with neural models can enhance the
reasoning abilities of LLMs (Zhang et al., 2023b).
Recent studies have shown how LLMs have a sig-
nificant gap in logical reasoning when compared
to human judgment (Press et al., 2022; Wang et al.,
2024; Gu et al., 2024).

Given these extensive backgrounds, several works
have been done regarding the optimal methods for
integrating LLMs with symbolic components to
enhance logical reasoning capabilities. Arabshahi
et al. (2021) show how combining a neurosymbolic
system with common sense through conversation
can complete its reasoning chains. Similarly, Man-
haeve et al. (2021) develops systems that combine
neural and symbolic components to perform com-
plex reasoning tasks. In DSR-LM (Zhang et al.,
2023a), pre-trained LMs govern the perception of
factual knowledge, and a symbolic module per-
forms deductive reasoning. Logic-LLM proposed by
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Figure 3: Brief description of the models used to compare the performance of ILENS.

(Pan et al., 2023) integrates LLMs with symbolic
solvers to improve logical problem-solving. Addi-
tionally, they introduce a self-refinement module
that learns to modify inaccurate logical formula-
tions using error messages from the symbolic the-
orem prover as feedback. However, their idea of
self-refinement only focuses on syntax correction,
which is significantly different from our approach
and contributions. SATLM (Ye et al., 2023) uses
an LLM to generate a declarative task specification
rather than an imperative program and leverage an
off-the-shelf automated theorem prover to derive
the final answer. LINC (Olausson et al., 2023) uses
LLMs as the semantic parser and offloads the log-
ical reasoning task to an external theorem prover.
Our work is inspired by LINC, where our method-
ology enhances the natural language understanding
of LLMs by converting nature language premises
to AMR, thereby reducing ambiguity. Moreover,
iterative logical reasoning can incrementally add
more facts or rules to the theorem prover, result-
ing in significant performance improvements in our
system.

Tool usage for application task augments LMs
with external tools such as mathematical and sci-
entific computation tools, code interpreters, knowl-
edge base retrieval systems, and translation ser-
vices. This approach leverages the strengths of
both the LMs and specialized tools, resulting in a
more powerful and versatile system. Tool usage
can be done in two ways. First, External Tool In-

tegration Without Direct LM Awareness where the
language model is not directly aware of the exter-
nal tool or the procedures it uses. The integration
occurs at a higher level, where the outputs from the
LM are processed by external systems to perform
specific tasks, such as external code interpreters
(Gao et al., 2023; Drori et al., 2022; Azerbayev
et al., 2022). For theorem proving, existing works
(Wu et al., 2022; Jiang et al., 2022) rely on external
theorem provers to get inferences. We follow this
approach in our work by invoking external theo-
rem provers (Prover9, Mace4) for logical reasoning.
Second, Direct Tool Invocation by the LM where
the LM is responsible for invoking external tools
through API calls (Schick et al., 2024; Thoppilan
et al., 2022).

3 1ILENS

ILENS (Iterative Logical Enhancement via Neu-
rosymbolic Computation and Common Sense) is
an iterative neurosymbolic system augmented with
external theorem provers (Prover9, Mace4) for end-
to-end logical reasoning. Our framework (Figure
1) consists of six stages.

* Step 1: We use a semantic parser (Goodman,
2020) with LM to translate NL premises and
conclusion pair to AMR graphs. The given
premises and conclusion pair is converted to
AMR graphs using an LM pre-trained with
AMR dataset. More details on the LM used



can be found in Section 4.3.

Step 2: The AMR graphs are translated to
FOL expressions using GPT-4 API through
prompts with ICL. More details are provided
in Section 4.2 and Appendix B

Step 3: The translated FOL is then fed to the
formal theorem prover to determine the truth
value of the inference. We use Prover9, an
automated theorem-proving system for first-
order and equational logic extensively utilized
within the logic research community (Mc-
Cune, 2005) for inference deduction. For the
response of Prover9, we closely follow the
work done in LINC (Olausson et al., 2023),
therefore the prover either returns a value from
the set {True, False, Uncertain} or raises an
exception due to incorrect FOL syntax (e.g.,
if the formulae have unbalanced parentheses
or any unknown symbols or operators are not
recognized by the prover).

Step 4: If Prover9 is able to determine a defini-
tive response, the program proceeds with the
next example. However, the process involves
iterative methods when more complex scenar-
ios arise. Specifically, if Prover9 returns an
{Uncertain} response which indicates the in-
ability to find a definitive solution, the FOL
premises are forwarded to Mace4, a software
tool designed to find finite models for first-
order logic statements and is often used in con-
junction with theorem provers such as Prover9.
In this case, Mace4 attempts to identify a coun-
terexample to the premises and advances the
process to Step 5. On the other hand, if an er-
ror occurs during inference, the error message
is passed to the LLM along with the FOL ex-
pressions. The LLM then attempts to correct
the errors in the FOL statements before going
back to Step 3.

Step 5: The counterexample and the NL state-
ments are then sent to the LLM (GPT-4 API)
to find any missing fact or value. Using its
common sense ability, the LLM updates the
NL statements with the newly found missing
fact.

Step 6: The updated NL premise and conclu-
sion pair goes back to the FOL parser in Step
2 and continues through the process till the
prover is able to find a definite inference.

The success of ILENS hinges on accurately trans-
lating NL statements into FOL expressions and
augmenting both Prover9 and Mace4 to perform
logical inference and identify any missing links in
the given premises. Given the complexity of hu-
man language, our framework prioritizes formal
provers over LLMs to capture every nuance of fac-
tual information. This approach ensures there are
no hallucinations or incorrect representations in
the updated NL statements in Step 4 and Step 5.
However, a notable drawback is the potential for
semantic and syntax errors in the FOL expressions
produced by the LLM. To mitigate this, we first
convert NL statements into AMR graphs and then
transform these AMR graphs into FOL expressions.
The key advantage of AMR lies in its structured
representation of entities and relationships in nat-
ural language, thereby reducing the ambiguity of
NL statements (as shown in Figure: 2).

4 Experimental Setup

In this section, we introduce our experimental
setup, including the dataset and models used, as
well as the baselines against which ILENS is com-
pared. We provide the source code link! to our
experiments.

4.1 Dataset

For our experiments, we use the FOLIO dataset
(Han et al., 2022), which is a collection of anno-
tated natural language statements converted into
first-order logic (FOL) expressions, designed for
evaluating the performance of logical inference
systems. We have considered the validation set of
FOLIO for evaluation. Additionally, the dataset re-
quires pre-processing in order to have the right syn-
tax compatible with Prover9, which can reference
LINC’s pre-processing step (Olausson et al., 2023).
The original FOLIO validation set contains 204 ex-
amples. However, after pre-processing the dataset,
22 examples contained syntax errors, leaving 182
examples for evaluation. The pre-processing is
conducted to ensure that the FOL expressions in
FOLIO are in the correct syntactical format for
Prover9 and Mace4. We run the 182 examples on
our systems ILENS™ and ILENS. (System details
are included in Section 4.3 and 4.4). More infor-
mation on pre-processing is in Appendix A

!'Code: Project Code
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Figure 4: Performance of ILENS™ (baseline) and ILENS(Mode-2).

4.2 In-context learning

We have chosen six diverse examples from the FO-
LIO training set for in-context learning (ICL). For
our baseline experiment, we use only four out of
the six examples. Here, the NL statements in the ex-
amples are converted to AMR graphs. Along with
the FOL expressions and AMR graphs, the updated
examples from the training set are provided to the
GPT-4 API through prompts. For ILENS, we run
the experiment with two different modes. Mode-1
uses two out of six examples for ICL and iteration
happens only twice. Mode-2 uses six examples for
ICL and iteration happens four times. More details
on ICL can be found under Appendices A and B

4.3 Models

In our experiments, we use different lan-
guage models for different tasks. For convert-
ing NL statements to AMR graphs, we use
parse_xfm_bart_large (base model:facebook/bart-
large, version: 0.1.0 date: 2022-02-16, size: 1.4GB,
smatch score: 83.7 SMATCH) for sentence to
graph conversion. It is trained and scored on
AMR-3 (LDC2020T02) (Knight et al., 2021) using
num_beams=4. For more information, please refer
to the model on GitHub.> We use GPT-4 (OpenAl,
2023) API > 4 for AMR to FOL conversion as well
as for updating the NL statements with missing
links found from Mace4. We consider temperature

’The parse xfm model

3https://openai.com/index/gpt-4/

*The exact number of parameters in GPT-4 has not been
officially disclosed by OpenAl. However, reports and credi-
ble sources suggest that GPT-4 is significantly larger than its
predecessor, GPT-3, which has 175 billion parameters.

T = 0 for our baseline system and temperature
T = 0.2 for the main system. We use the NLTK °
extension of Prover9 and Mace4 which is a python
extension for the provers.

4.4 Baselines

We compare ILENS to three baselines namely
ILENS™, LINC (Olausson et al., 2023), and Logi-
cLLAMA¥*. For ILENS™, we consider our frame-
work without the iteration process (Step 4, Step
5 and Step 6). From LINC, we consider their
Naive, Scratchpad, CoT and original models for
GPT-3.5 and GPT-4. In Naive, the model is given
the NL premises and is asked to directly generate
the label. In Scratchpad, the model is asked to
first generate FOL expressions corresponding to
the premises, and then generate the label. In CoT,
standard technique of CoT prompting is used to
deduce the truth value. In LINC, the LLM is used
as a semantic parser and logical inference is done
by Prover9. LogicLLAMA* is a joint system with
LogicLLAMA (Yang et al., 2023) for FOL trans-
lation and Prover9 for logic inference. For better
understanding of the baseline models used to com-
pare ILENS, we show a schematic representation
in Figure 3.

5 Results & Analysis

In this section we provide details of our experimen-
tal results, comparisons of our systems with the
other baselines, and an analysis of different syntax
and semantic errors.

SNLTK python extension
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5.1 Experimental results

Figure 4 shows the performance of our baseline
system ILENS™ and iterative system ILENS. We
can observe from ILENS™’s performance that even
though it is able to deduce truth values correctly
in 95 out of 182 cases, there are still 26 syntax
errors and 110 indefinite logic inferences. This
signifies that AMR to FOL conversion can help
during the translation step. However, ILENS™ does
not include the iteration process, therefore there is
no improved logical reasoning. We discuss error
analysis in detail under Section 5.3. Our iterated
system ILENS has been configured into two modes
based on Section 4. Mode-1 runs with two itera-
tions and two-shot learning and Mode-2 runs with
four iterations and six examples for few-shot learn-
ing. In figure 4 (b) we provide the performance
of ILENS Mode-2. As we can see with increased
iterations and examples for few-shot learning, the
performance improves significantly. The syntax er-
rors as well as the indefinite logic inferences have
been reduced by increasing the prediction accuracy
to 36%, 35%, and 13% for "True", "False" and
"Uncertain" labels respectively. We provide more
information on ILENS Mode-1 under Appendix
C. Due to resource limitation, we were unable to
experiment beyond four iterations. With more itera-
tions, the system may be able to resolve the syntax
errors however the possibility of hallucination by
LLM needs to be further explored.

5.2 Comparison with other baseline models
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Figure 5: Results of our systems ILENS ™, ILENS with
the baseline models.

We compare our baseline and iterative systems
(Mode-1 and Mode-2) Figure 5 with the other
baseline models described in Section 4.4. From
this figure, we can see that ILENS(Mode-2) sur-
passes the performance of the previous models by

achieving 80.22% accuracy which is about 4.92%
higher than CoT-GPT4 and 7.72% higher than
LINC-GPT4 (Olausson et al., 2023). Addition-
ally, we notice a significant improvement in perfor-
mance with added iterations between ILENS™ and
ILENS(Mode-1 and Mode-2). This clearly shows
how iterative logic inference with external theorem
provers like Prover9 and Mace4 can help improve
logical reasoning. Further, we notice that by in-
creasing the iteration from two to four, the Mode-2
system improves its performance by 13%. Addi-
tionally, we investigate individual predictions of
different labels and show the result in Figure 6.

B Uncertain [l TRUE FALSE
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Figure 6: Comparison of accuracy in different categories
across different models and systems. The categories
considered here are "True", "False" and "Uncertain".

5.3 Error analysis

We perform a thorough error analysis on the mod-
els’ performances. We notice that FOL expressions
generated from GPT-4 API has some types of er-
rors.

FOL generated by LLM with syntax errors
Figure 7 shows the details of different syntax errors
generated by the API in FOL expressions.

* Arity issues: FOL expressions sometimes con-
tain multiple arities or symbols/arities are used as
both relation and function. One such example is:
NL Premise: "If Greyhound is not an airline, then
there are no Greyhound planes."

NL Conclusion: "A Greyhound is not a Boeing
707."

FOL Premise: "-Airline(Greyhound) -> -exists X.
(Plane(x) & Greyhound(x))"

FOL Conclusion:"-Boeing707(Greyhound)"

Here, "Greyhound" is used both as a predicate and
a constant value which is conflicting to Prover9.

* Term error: When the FOL statement has un-
necessary tokens which is not readable by the
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Figure 7: Performance of ILENS™ (baseline) and
ILENS(Mode-2).

Prover9, it causes this type of error. For ex-
ample: FOL Premise: "all x. (design_style(x,
Zaha_Hadid) -> Timeless(x))" will generate an er-
ror like "sread_term error"

* Unexpected token: This type of error arises
when the format of the FOL does not match the
Prover9 format, for instance, when there are un-
balanced parentheses or any unexpected symbols
like FOL Premise: "all x, y, z. ((LocatedAt(x, y) &
LocatedAt(y, z)) -> LocatedAt(x, z))

Unable to assume facts when given information
is incomplete

We observe that ILENS is not able to deduce logic
inference correctly when there is incomplete infor-
mation. Incomplete information is different from
missing links, missing rules, or implicit informa-
tion hidden in the Natural Language. Here is one
such example:

NL Premise: ["All rabbits are cute. ",

"Some turtles exist. ",

"An animal is either a rabbit or a squirrel.",

"If something is skittish, then it is not still.",

"All squirrels are skittish.",

"Rock is still."]

NL Conclusion: "Rock is a turtle or cute."

Actual label: True

Predicted label: Uncertain

Unless the LLM assumes some information about
"Rock", it will not be able to get a definite answer
for the inference.

The error analysis shows us the scenarios where our
system fails to successfully deduce logic inference.
The scenarios include FOL expressions generated
by GPT-4 with syntax errors and NL statements
with incomplete information.

6 Conclusion and Future Work

We present ILENS, an iterative neurosymbolic
system augmented with external theorem provers.
ILENS is built on two novel ideas: using abstract
meaning representation (AMR) to convert text into
first-order logic (FOL) expressions, and iterating
logic inference using counterexamples generated
by Mace4 to improve logical reasoning. Our sys-
tem significantly outperforms baseline models us-
ing similar evaluation techniques. We successfully
demonstrate that increasing the number of itera-
tions can enhance the performance of logic infer-
ence. This work supports the hypothesis that aug-
menting an external theorem prover with a large
language model (LLM) can improve truth value
inference deduction. Thus, the success of ILENS
paves the way for future research in neurosymbolic
computation for reasoning from natural languages.
Future work could explore integrating other forms
of symbolic reasoning, expanding the range of nat-
ural language inputs, and enhancing the scalability
of such systems.

Limitations

Due to limited resources, we were able to run
our experiments on one dataset (FOLIO valida-
tion (Han et al., 2022)) and with iteration up to
four. However, the workflow of our system is not
specific to any dataset. Therefore, with some sim-
ple data pre-processing it can be used on multiple
datasets and with different provers.

Ethics Statement
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tered during the course of this research. As such,
no ethical approval was required for this work.
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A  FOLIO Dataset

A.1 Pre-processing

In order to pre-process the data, we follow the
same technique done in LINC (Olausson et al.,
2023). We first reformat the dataset with correct
symbols accepted by Prover9 and Mace4. For one
of our baselines LogicLLAMA¥*, we preprocess
the dataset generated through LogicLLAMA model
(Yang et al., 2023) the same way.



A.2 Few-shot examples

For in-context learning (ICL) we consider the train-
ing set of the FOLIO dataset. We pick six diverse
examples whose labels were "True", "False" and
"Uncertain". We consider the following examples
from the Yale-LILY/FOLIO website with the fol-
lowing 24, 61, 149, 262, 264, 685. We do not
provide the labels of the examples during few-shot
learning. For our baseline and ILENS(Mode-1) we
randomly pick four and two out of these six exam-
ples respectively.

B Prompts used for FOL generation

For our system, we use in-context learning, there-
fore using prompts to ask the GPT-4 API to gener-
ate FOL expressions or correct/update FOL expres-
sions. We have provided the details of the prompts
we have used in Table: 1

C Detailed result of ILENS (Mode-1) and
LogicaLLAMA*

We provide below the performances of
ILENS(Mode-1) and LogicLLAMA* in Fig-
ure 8. For ILENS(Mode-1), we can see a clear
improvement in performance over ILENS™.
However, there still exists considerable amount
of errors which is overcome by ILENS(Mode-2)
indicating more iterations for logic inference can
be helpful to draw the truth values.

LogicaLLAMA* on the other hand, performs very
poorly on FOLIO dataset. After generating the
validation dataset with LogicLLAMA (Yang et al.,
2023) we preprocess the dataset (mentioned under
Appendix A). Then we pass it through the Prover9
for logic inference. As we can see from Figure
8(b), it contains many errors in the conversion.
The errors include the ones mentioned in Section
5.3 and several other syntax errors. Also, we know
that the conversion done by LogicLLAMA¥* is
incorrect semantically since most of the labels are
incorrectly predicted "Uncertain".
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Figure 8: Confusion Matrix of ILENS(Mode-1) and
LogicLLAMA*,


https://github.com/Yale-LILY/FOLIO

I will provide you with premises and conclusions in AMR, and you will convert them into
First Order Logic (FOL) expressions. Follow the given examples for format and syntax.
<Examples:>

Ensure that:

- Symbols are consistently used as either predicates or functions.

- Quantifiers are correctly placed.

- No quotations are required for any proper noun.

ILENS - The FOL expressions are valid and well-formed for use in theorem provers like Prover9.
- Make sure the FOL expressions are consistent, syntactically correct, and have balanced
parentheses.

- Make sure the output is not like a chat response.

Your output should be a dictionary with the keys '"premise-fol" for
premise_graphs_list with all FOL expressions /in a single list and "conclusion-fol" for
concluston_graphs_list with all FOL expressions in a single list.

Your task is to read and understand the counter_example generated from Mace4 and
use common sense knowledge to find any missing information or logic chain and generate
First Order Logic (FOL) from the /provided natural language premises and conclusion.
Follow the given example for format and syntax.

<Example:>

Ensure that:

[LENS - You do not use S}fmbols/ariti.es as both relation and func.tion. .

(Update | The FOL. expressions are valid and well-formed for use in theorem provers like Prover9

with with consistent ar%tles. ‘ ‘

counter- | The FOL expressions are consistent, .syntactlcally correct, and have balan.ced parentheses.

example) | You do not describe your answer like a chat. - You do not put quotations around any
proper nouns or person’s names.

- You do not use decimal numbers - You respond only with the JSON dictionary and
nothing else.

- Your output includes both premise and conclusion expressions.

Your output should be a dictionary with the keys "premises-FOL" for premises with
all FOL expressions in a single list and "conclusion-FOL" for conclusion with FOL
expression in a single list.

Your task is to fix some errors in first order logic statements. I will provide you with
the error, the premise_fol, and the conclusion_fol such that they do not contain that
error. Follow the given examples for format and syntax:

<Examples:>

Ensure that:

- You use common sense and do not use symbols/arities as both relation and function.

ILENS - The FOIj express.i('mS are valid and well-formed for use in theorem provers like Prover9

(Fix  er- with consistent ar%tles. . .

ror) - The FOL expressions are consistent, syntactically correct, and have balanced parentheses.

- You do not describe your answer like a chat. - You do not use decimal numbers.

- You do not put quotations around any proper nouns or person’s names.

- You respond only with the JSON dictionary and nothing else.

- Your output includes both premise and conclusion expressions.

Your output must be a JSON dictionary with the keys "premises-FOL" for premises (a
single list of FOL expressions) and "conclusion-FOL" for the conclusion (a single list of
FOL expressions).

Table 1: 2-6-shot prompts for ILENS ™, ILENS(Mode-1 and Mode-2)
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