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Abstract

Trained on internet-scale datasets, large lan-001
guage models (LLMs) excel in tasks relying002
on surface patterns and exhibit strong com-003
mon sense knowledge. However, their per-004
formance decreases on tasks requiring deeper005
reasoning steps. Recent techniques aim to006
combine the strengths of both reasoning pro-007
grams and LLMs by converting natural lan-008
guage problems into formal logic specifica-009
tions, thereby enhancing reasoning task per-010
formance. Despite these advancements, LLMs011
often struggle with ambiguities and complex012
cases, leading to reasoning errors in the formal013
method step. In this paper, based on the ob-014
servation that LLMs can provide the implicit015
common sense facts when asked explicitly, we016
propose ILENS (Iterative Logical Enhancement017
via Neurosymbolic Computation and Common018
Sense), a new iterative neurosymbolic system019
for logical inferences which integrates the two020
systems in an iterative manner. Initially, we021
translate the problem specifications into AMR022
graphs, and then convert them into first-order023
logic (FOL) expressions to minimize inaccu-024
rate interpretations from natural language to025
FOL. Subsequently, we use formal theorem026
provers (Prover9, Mace4) to deduce the conclu-027
sion. Within this process, we ask the theorem028
prover to generate counterexamples based on029
the given premises when the theorem prover030
fails to provide a definite answer, then prompt-031
ing the LLM to identify any implicit common032
sense facts. These facts are then incorporated033
back into the theorem to attempt proof comple-034
tion. Through the iterative steps and leveraging035
the GPT-4 API in conjunction with Prover9 and036
Mace4, our new proposed ILENS system signif-037
icantly reduces uncertain and error cases and038
achieves 80.22% accuracy on the challenging039
FOLIO dataset, setting a new state of the art.040

1 Introduction041

Recent advancements in large language models042

(LLMs), such as ChatGPT/InstructGPT (Ouyang043

et al., 2022), GPT-3 (Brown et al., 2020), GPT-4 044

(Achiam et al., 2023), LLAMA (Touvron et al., 045

2023), and PALM (Chowdhery et al., 2023), 046

have demonstrated significant success across 047

a variety of tasks including text generation, 048

classification, coding, and problem-solving. LLMs 049

are transformer-based models that operate on 050

statistical principles. Despite their considerable 051

success, the generation of outputs in these models 052

relies on probabilistic token prediction (Naveed 053

et al., 2023). However, real-world natural language 054

(NL) is often complex and ambiguous (Nadkarni 055

et al., 2011). Therefore, tasks that require long 056

sequences of logical reasoning, comprehension of 057

implicit natural language statements, or reasoning 058

out of domain remain challenging for LLMs (Liang 059

et al., 2022; Saparov et al., 2024; Anil et al., 2022). 060

Although techniques such as chain of thought 061

(CoT) (Nye et al., 2021; Wei et al., 2022; Wang 062

et al., 2022; Huang and Chang, 2022; Kojima 063

et al., 2022) and in-context learning (ICL) (Min 064

et al., 2021; Dong et al., 2022; Min et al., 2022; 065

Schick et al., 2024) have been proposed to address 066

some of these difficulties, recent studies suggest 067

that the inherent architecture of transformer-based 068

language models still lacks optimal efficiency in 069

deeper proofs logical reasoning (Dziri et al., 2024; 070

Olausson et al., 2023). 071

Additionally, logical reasoning is crucial for 072

AI-based tasks such as theorem proving, solving 073

mathematical problems with step-by-step solutions, 074

efficient code generation, algorithm design, and 075

answering complex queries. These type of tasks 076

can be challenging because they require long 077

chain of logical reasoning or step by step problem 078

solving. Hence, enhancing the logical capabilities 079

of LLMs and their ability to apply common 080

sense knowledge can significantly improve their 081

performance in mathematics and science-based 082

applications (Li et al., 2021; Jain et al., 2023). The 083

use of logical reasoning can lead to more accurate 084
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Step 1: AMR 
parser (amrlib)

NL Premise: Heinrich Schmidt 
was a Nazi German politician. 
NL conclusion: Heinrich 
Schmidt was German.

AMR Premise: ['# ::snt 
Heinrich Schmidt was a 
Nazi German politician.\n(p 
/ politician\n :mod (p2 / 
political-movement\n :name 
…]
AMR conclusion: ['# ::snt 
Heinrich Schmidt was 
German.\n(p / person\n…]

Step 2: FOL 
parser (LLM)

"premises-fol": "all x 
(NaziGermanPolitician(x) -> 
German(x)).\nNaziGermanPolitici
an(HeinrichSchmidt).",
"conclusion-fol": 
"German(HeinrichSchmidt)."

Step 3: 
Theorem prover 
(Prover9)

(True/False/Uncertain/Error)

Step 4: 
If “Uncertain”, get 
counter-example 
from Mace4

Step 4: 
If “True”/”False” or threshold 
is reached, then exit.

Step 5: 
Pass counter-example to LLM to 
update NL statements

Premise 1: Heinrich Schmidt is a 
Nazi German politician.
Premise 2: All Nazi German 
politicians are German.
Conclusion: Heinrich Schmidt is 
German.

{        {        

Step 6: 
Go back to Step 2

Step 4: 
If “ERROR”, get error 
message and pass it 
to LLM to fix it.

OR

Figure 1: Iterative workflow of ILENS.

and reliable results by reducing hallucinations085

across a wide range of applications compared to086

probabilistic token prediction (Xu et al., 2024;087

Olausson et al., 2023; Zhang et al., 2024). Recent088

research has combined powerful LLMs with089

formal theorem provers, leveraging the strengths of090

both approaches to create more robust and capable091

systems. This integration aims to enhance the092

logical reasoning capabilities of LLMs, enabling093

them to perform tasks that require rigorous094

logical reasoning alongside natural language095

understanding (Olausson et al., 2023; Pan et al.,096

2023).097

In this work, we implement ILENS (Iterative098

Logical Enhancement via Neurosymbolic Compu-099

tation and Common Sense), a system that combines100

LLMs with a theorem prover in an iterative fashion,101

thereby enhancing the logical capabilities of LLMs.102

ILENS is an iterative neurosymbolic system where103

the language model converts the natural language104

statements first to abstract meaning representation105

(AMR) (Banarescu et al., 2013; Knight et al.,106

2021) using a parser, then translates the AMR107

graphs to first-order logic (FOL) expressions108

(Enderton, 2001; Barker-Plummer et al., 2011).109

The translated FOL expressions are fed to the110

theorem provers (Prover9, Mace4) (McCune,111

2005–2010) to determine the truth value of the112

inference. In the cases of indefinite responses or113

syntax errors generated by the prover, our system114

improves them. If the theorem prover fails to115

provide a definite answer, we ask it to generate a 116

counter-example. This example is then used as 117

a reference for the language model to find any 118

missing links or facts in the given natural language 119

premises (NL) to enrich the NL premises. The 120

improved NL statements are then passed through 121

the parsers and theorem prover to get updated 122

inference output. If there is a syntax error in the 123

FOL expressions, the language model is prompted 124

to fix the error and the improved FOL is passed 125

through the prover again. This iteration continues 126

until the theorem prover can find a definite answer 127

or reach a specified threshold. 128

ILENS leverages the ability of LLM to follow 129

instructions and its strength of common sense 130

knowledge for FOL translation while offloading 131

logical reasoning deduction to a formal theorem 132

prover. Hence, the success of ILENS lies in two 133

novel ideas. The first key idea is translating AMR 134

to FOL rather than directly translating FOL from 135

NL. Abstract Meaning Representation (AMR) 136

tends to be more structured and semantically 137

clearer, making it potentially easier to translate into 138

FOL without errors whereas translating natural 139

language statements to first-order logic (FOL) 140

can be more complex due to the ambiguity and 141

nuances of human language (as shown in Figure 142

2). Our baseline system performs well with this 143

added step in FOL translation with improved FOL 144

expressions in secenarios where the NL statements 145

have implicit information. The second key idea 146
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is to iterate logical reasoning with theorem147

prover which updates the NL premises with any148

missing facts provided by LLM based on the149

counter-example from the theorem prover. By150

adding this iterative step, our system improves151

accuracy significantly from the baseline system by152

29%. We can summarize our contributions:153

154

• We introduce ILENS, a new iterative neu-155

rosymbolic system for logical inferences. Our156

system successfully improves the accuracy on157

task that requires logic reasoning with LLMs158

and external theorem prover setting a new159

state of the art. On FOLIO dataset (Han et al.,160

2022) the accuracy achieved is 80.22% which161

is about 7.7% higher than the previous bench-162

mark model (Olausson et al., 2023).163

• Our experiments demonstrates that combining164

common sense knowledge of LLM and itera-165

tive logic inference by formal theorem provers166

can improve the task of logic inference deduc-167

tion.168

• We do a thorough comparison of ILENS to169

baseline systems and also perform error anal-170

ysis.171

"premises-fol": [“all x. (NaziGermanPolitician(x) 
-> German(x)).”, “NaziGermanPolitician(Heinrich 
Schmidt)."],
"conclusion-fol": ["German(Heinrich 
Schmidt)."]

“premise-fol”: [“NaziGermanPolitician(Heinrich 
Schmidt)”],
“conclusion-fol”:[“German(Heinrich Schmidt)”]

premise: ['Heinrich Schmidt was a Nazi 
German politician.']
conclusion: ['Heinrich Schmidt was 
German.']

FOL from NL FOL from AMR

Figure 2: Comparing conversion of first-order logic
(FOL) from abstract meaning representation (AMR)
and natural language (NL).

2 Related work172

Semantic parsing with language models is the173

process of converting natural language into a struc-174

tured, machine-readable representation which has175

seen significant advancements with the advent of176

LLMs. Semantic parsing traditionally involves177

mapping natural language utterances to formal rep-178

resentations like AMR, lambda calculus, or SQL179

queries (Ge and Mooney, 2005; Kamath and Das,180

2018). The goal is to capture the underlying mean- 181

ing of the input text in a way that facilitates fur- 182

ther processing by downstream applications (Wang 183

et al., 2015; Berant and Liang, 2014). Works by 184

(Zhang et al., 2019; Bevilacqua et al., 2021) use 185

a transformer-based architecture to achieve state- 186

of-the-art results in AMR parsing tasks. Recent 187

developments have leveraged the power of LMs, 188

such as GPT-3, BERT, and T5, to enhance seman- 189

tic parsing capabilities (Raffel et al., 2020; Shin 190

and Van Durme, 2021; Hahn et al., 2022; Wong 191

et al., 2023). LogicLLAMA (Yang et al., 2023) can 192

directly translate natural language into FOL rules 193

along with correct predictions made by GPT-3.5, 194

which achieves performance comparable to GPT-4 195

with a fraction of the cost. 196

Common sense reasoning in language models 197

allows language models to interpret implicit infor- 198

mation, disambiguate meanings, and make logical 199

inferences that are intuitive for humans. COMET 200

(Bosselut et al., 2019) uses the transformer model 201

to generate inferential knowledge, augmenting the 202

language model’s ability to reason about everyday 203

scenarios. Models like BERT and GPT-3 have been 204

fine-tuned on datasets specifically designed to im- 205

prove the capability of common sense reasoning 206

(Talmor et al., 2018; Rajani et al., 2019; Sap et al., 207

2020; Liu et al., 2021; Bian et al., 2023). 208

Reasoning through neurosymbolic approaches 209

in LLMs combines neural networks with symbolic 210

reasoning systems to integrate structured knowl- 211

edge and logical inference capabilities (Hitzler 212

et al., 2022). The integration of structured knowl- 213

edge bases with neural models can enhance the 214

reasoning abilities of LLMs (Zhang et al., 2023b). 215

Recent studies have shown how LLMs have a sig- 216

nificant gap in logical reasoning when compared 217

to human judgment (Press et al., 2022; Wang et al., 218

2024; Gu et al., 2024). 219

Given these extensive backgrounds, several works 220

have been done regarding the optimal methods for 221

integrating LLMs with symbolic components to 222

enhance logical reasoning capabilities. Arabshahi 223

et al. (2021) show how combining a neurosymbolic 224

system with common sense through conversation 225

can complete its reasoning chains. Similarly, Man- 226

haeve et al. (2021) develops systems that combine 227

neural and symbolic components to perform com- 228

plex reasoning tasks. In DSR-LM (Zhang et al., 229

2023a), pre-trained LMs govern the perception of 230

factual knowledge, and a symbolic module per- 231

forms deductive reasoning. Logic-LM proposed by 232
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premise: ['Heinrich Schmidt was a Nazi 
German politician.']
conclusion: ['Heinrich Schmidt was German.']

1. NL to AMR with 
xfm_bart_large

2. AMR to FOL with GPT-4
3. Inference with Prover9

ILENS-

1. Inference with LLM

Naïve

1. NL to FOL with LLM
2. Inference with LLM

Scratchpad

1. Inference with LLM through 
chain of thoughts

CoT

1. NL to FOL with LLM
2. Inference with Prover9
3. K-major voting

LINC

1. NL to FOL with 
LogicLLAMA

2. Inference with Prover9

LogicLLAMA*
1. NL to AMR with 

xfm_bart_large
2. AMR to FOL with GPT-4
3. Inference with Prover9
4. If no definite answer, find 

counterexample with Mace4
5. Update NL with GPT-4
6. Iterate through

ILENS

Figure 3: Brief description of the models used to compare the performance of ILENS.

(Pan et al., 2023) integrates LLMs with symbolic233

solvers to improve logical problem-solving. Addi-234

tionally, they introduce a self-refinement module235

that learns to modify inaccurate logical formula-236

tions using error messages from the symbolic the-237

orem prover as feedback. However, their idea of238

self-refinement only focuses on syntax correction,239

which is significantly different from our approach240

and contributions. SATLM (Ye et al., 2023) uses241

an LLM to generate a declarative task specification242

rather than an imperative program and leverage an243

off-the-shelf automated theorem prover to derive244

the final answer. LINC (Olausson et al., 2023) uses245

LLMs as the semantic parser and offloads the log-246

ical reasoning task to an external theorem prover.247

Our work is inspired by LINC, where our method-248

ology enhances the natural language understanding249

of LLMs by converting nature language premises250

to AMR, thereby reducing ambiguity. Moreover,251

iterative logical reasoning can incrementally add252

more facts or rules to the theorem prover, result-253

ing in significant performance improvements in our254

system.255

Tool usage for application task augments LMs256

with external tools such as mathematical and sci-257

entific computation tools, code interpreters, knowl-258

edge base retrieval systems, and translation ser-259

vices. This approach leverages the strengths of260

both the LMs and specialized tools, resulting in a261

more powerful and versatile system. Tool usage262

can be done in two ways. First, External Tool In-263

tegration Without Direct LM Awareness where the 264

language model is not directly aware of the exter- 265

nal tool or the procedures it uses. The integration 266

occurs at a higher level, where the outputs from the 267

LM are processed by external systems to perform 268

specific tasks, such as external code interpreters 269

(Gao et al., 2023; Drori et al., 2022; Azerbayev 270

et al., 2022). For theorem proving, existing works 271

(Wu et al., 2022; Jiang et al., 2022) rely on external 272

theorem provers to get inferences. We follow this 273

approach in our work by invoking external theo- 274

rem provers (Prover9, Mace4) for logical reasoning. 275

Second, Direct Tool Invocation by the LM where 276

the LM is responsible for invoking external tools 277

through API calls (Schick et al., 2024; Thoppilan 278

et al., 2022). 279

3 ILENS 280

ILENS (Iterative Logical Enhancement via Neu- 281

rosymbolic Computation and Common Sense) is 282

an iterative neurosymbolic system augmented with 283

external theorem provers (Prover9, Mace4) for end- 284

to-end logical reasoning. Our framework (Figure 285

1) consists of six stages. 286

• Step 1: We use a semantic parser (Goodman, 287

2020) with LM to translate NL premises and 288

conclusion pair to AMR graphs. The given 289

premises and conclusion pair is converted to 290

AMR graphs using an LM pre-trained with 291

AMR dataset. More details on the LM used 292
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can be found in Section 4.3.293

• Step 2: The AMR graphs are translated to294

FOL expressions using GPT-4 API through295

prompts with ICL. More details are provided296

in Section 4.2 and Appendix B297

• Step 3: The translated FOL is then fed to the298

formal theorem prover to determine the truth299

value of the inference. We use Prover9, an300

automated theorem-proving system for first-301

order and equational logic extensively utilized302

within the logic research community (Mc-303

Cune, 2005) for inference deduction. For the304

response of Prover9, we closely follow the305

work done in LINC (Olausson et al., 2023),306

therefore the prover either returns a value from307

the set {True, False, Uncertain} or raises an308

exception due to incorrect FOL syntax (e.g.,309

if the formulae have unbalanced parentheses310

or any unknown symbols or operators are not311

recognized by the prover).312

• Step 4: If Prover9 is able to determine a defini-313

tive response, the program proceeds with the314

next example. However, the process involves315

iterative methods when more complex scenar-316

ios arise. Specifically, if Prover9 returns an317

{Uncertain} response which indicates the in-318

ability to find a definitive solution, the FOL319

premises are forwarded to Mace4, a software320

tool designed to find finite models for first-321

order logic statements and is often used in con-322

junction with theorem provers such as Prover9.323

In this case, Mace4 attempts to identify a coun-324

terexample to the premises and advances the325

process to Step 5. On the other hand, if an er-326

ror occurs during inference, the error message327

is passed to the LLM along with the FOL ex-328

pressions. The LLM then attempts to correct329

the errors in the FOL statements before going330

back to Step 3.331

• Step 5: The counterexample and the NL state-332

ments are then sent to the LLM (GPT-4 API)333

to find any missing fact or value. Using its334

common sense ability, the LLM updates the335

NL statements with the newly found missing336

fact.337

• Step 6: The updated NL premise and conclu-338

sion pair goes back to the FOL parser in Step339

2 and continues through the process till the340

prover is able to find a definite inference.341

The success of ILENS hinges on accurately trans- 342

lating NL statements into FOL expressions and 343

augmenting both Prover9 and Mace4 to perform 344

logical inference and identify any missing links in 345

the given premises. Given the complexity of hu- 346

man language, our framework prioritizes formal 347

provers over LLMs to capture every nuance of fac- 348

tual information. This approach ensures there are 349

no hallucinations or incorrect representations in 350

the updated NL statements in Step 4 and Step 5. 351

However, a notable drawback is the potential for 352

semantic and syntax errors in the FOL expressions 353

produced by the LLM. To mitigate this, we first 354

convert NL statements into AMR graphs and then 355

transform these AMR graphs into FOL expressions. 356

The key advantage of AMR lies in its structured 357

representation of entities and relationships in nat- 358

ural language, thereby reducing the ambiguity of 359

NL statements (as shown in Figure: 2). 360

4 Experimental Setup 361

In this section, we introduce our experimental 362

setup, including the dataset and models used, as 363

well as the baselines against which ILENS is com- 364

pared. We provide the source code link1 to our 365

experiments. 366

4.1 Dataset 367

For our experiments, we use the FOLIO dataset 368

(Han et al., 2022), which is a collection of anno- 369

tated natural language statements converted into 370

first-order logic (FOL) expressions, designed for 371

evaluating the performance of logical inference 372

systems. We have considered the validation set of 373

FOLIO for evaluation. Additionally, the dataset re- 374

quires pre-processing in order to have the right syn- 375

tax compatible with Prover9, which can reference 376

LINC’s pre-processing step (Olausson et al., 2023). 377

The original FOLIO validation set contains 204 ex- 378

amples. However, after pre-processing the dataset, 379

22 examples contained syntax errors, leaving 182 380

examples for evaluation. The pre-processing is 381

conducted to ensure that the FOL expressions in 382

FOLIO are in the correct syntactical format for 383

Prover9 and Mace4. We run the 182 examples on 384

our systems ILENS− and ILENS. (System details 385

are included in Section 4.3 and 4.4). More infor- 386

mation on pre-processing is in Appendix A 387

1Code: Project Code
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Figure 4: Performance of ILENS− (baseline) and ILENS(Mode-2).

4.2 In-context learning388

We have chosen six diverse examples from the FO-389

LIO training set for in-context learning (ICL). For390

our baseline experiment, we use only four out of391

the six examples. Here, the NL statements in the ex-392

amples are converted to AMR graphs. Along with393

the FOL expressions and AMR graphs, the updated394

examples from the training set are provided to the395

GPT-4 API through prompts. For ILENS, we run396

the experiment with two different modes. Mode-1397

uses two out of six examples for ICL and iteration398

happens only twice. Mode-2 uses six examples for399

ICL and iteration happens four times. More details400

on ICL can be found under Appendices A and B401

4.3 Models402

In our experiments, we use different lan-403

guage models for different tasks. For convert-404

ing NL statements to AMR graphs, we use405

parse_xfm_bart_large (base model:facebook/bart-406

large, version: 0.1.0 date: 2022-02-16, size: 1.4GB,407

smatch score: 83.7 SMATCH) for sentence to408

graph conversion. It is trained and scored on409

AMR-3 (LDC2020T02) (Knight et al., 2021) using410

num_beams=4. For more information, please refer411

to the model on GitHub.2 We use GPT-4 (OpenAI,412

2023) API 3 4 for AMR to FOL conversion as well413

as for updating the NL statements with missing414

links found from Mace4. We consider temperature415

2The parse xfm model
3https://openai.com/index/gpt-4/
4The exact number of parameters in GPT-4 has not been

officially disclosed by OpenAI. However, reports and credi-
ble sources suggest that GPT-4 is significantly larger than its
predecessor, GPT-3, which has 175 billion parameters.

T = 0 for our baseline system and temperature 416

T = 0.2 for the main system. We use the NLTK 5 417

extension of Prover9 and Mace4 which is a python 418

extension for the provers. 419

4.4 Baselines 420

We compare ILENS to three baselines namely 421

ILENS−, LINC (Olausson et al., 2023), and Logi- 422

cLLAMA*. For ILENS−, we consider our frame- 423

work without the iteration process (Step 4, Step 424

5 and Step 6). From LINC, we consider their 425

Naïve, Scratchpad, CoT and original models for 426

GPT-3.5 and GPT-4. In Naïve, the model is given 427

the NL premises and is asked to directly generate 428

the label. In Scratchpad, the model is asked to 429

first generate FOL expressions corresponding to 430

the premises, and then generate the label. In CoT, 431

standard technique of CoT prompting is used to 432

deduce the truth value. In LINC, the LLM is used 433

as a semantic parser and logical inference is done 434

by Prover9. LogicLLAMA* is a joint system with 435

LogicLLAMA (Yang et al., 2023) for FOL trans- 436

lation and Prover9 for logic inference. For better 437

understanding of the baseline models used to com- 438

pare ILENS, we show a schematic representation 439

in Figure 3. 440

5 Results & Analysis 441

In this section we provide details of our experimen- 442

tal results, comparisons of our systems with the 443

other baselines, and an analysis of different syntax 444

and semantic errors. 445

5NLTK python extension
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5.1 Experimental results446

Figure 4 shows the performance of our baseline447

system ILENS− and iterative system ILENS. We448

can observe from ILENS−’s performance that even449

though it is able to deduce truth values correctly450

in 95 out of 182 cases, there are still 26 syntax451

errors and 110 indefinite logic inferences. This452

signifies that AMR to FOL conversion can help453

during the translation step. However, ILENS− does454

not include the iteration process, therefore there is455

no improved logical reasoning. We discuss error456

analysis in detail under Section 5.3. Our iterated457

system ILENS has been configured into two modes458

based on Section 4. Mode-1 runs with two itera-459

tions and two-shot learning and Mode-2 runs with460

four iterations and six examples for few-shot learn-461

ing. In figure 4 (b) we provide the performance462

of ILENS Mode-2. As we can see with increased463

iterations and examples for few-shot learning, the464

performance improves significantly. The syntax er-465

rors as well as the indefinite logic inferences have466

been reduced by increasing the prediction accuracy467

to 36%, 35%, and 13% for "True", "False" and468

"Uncertain" labels respectively. We provide more469

information on ILENS Mode-1 under Appendix470

C. Due to resource limitation, we were unable to471

experiment beyond four iterations. With more itera-472

tions, the system may be able to resolve the syntax473

errors however the possibility of hallucination by474

LLM needs to be further explored.475

5.2 Comparison with other baseline models476
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Figure 5: Results of our systems ILENS−, ILENS with
the baseline models.

We compare our baseline and iterative systems477

(Mode-1 and Mode-2) Figure 5 with the other478

baseline models described in Section 4.4. From479

this figure, we can see that ILENS(Mode-2) sur-480

passes the performance of the previous models by481

achieving 80.22% accuracy which is about 4.92% 482

higher than CoT-GPT4 and 7.72% higher than 483

LINC-GPT4 (Olausson et al., 2023). Addition- 484

ally, we notice a significant improvement in perfor- 485

mance with added iterations between ILENS− and 486

ILENS(Mode-1 and Mode-2). This clearly shows 487

how iterative logic inference with external theorem 488

provers like Prover9 and Mace4 can help improve 489

logical reasoning. Further, we notice that by in- 490

creasing the iteration from two to four, the Mode-2 491

system improves its performance by 13%. Addi- 492

tionally, we investigate individual predictions of 493

different labels and show the result in Figure 6.

Models

0.00%

25.00%

50.00%

75.00%

100.00%

LINC-GPT4 CoT-GPT4 ILENS⁻ ILENS(Mode-1) ILENS(Mode-2)

Uncertain TRUE FALSE

Figure 6: Comparison of accuracy in different categories
across different models and systems. The categories
considered here are "True", "False" and "Uncertain".

494

5.3 Error analysis 495

We perform a thorough error analysis on the mod- 496

els’ performances. We notice that FOL expressions 497

generated from GPT-4 API has some types of er- 498

rors. 499

FOL generated by LLM with syntax errors 500

Figure 7 shows the details of different syntax errors 501

generated by the API in FOL expressions. 502

* Arity issues: FOL expressions sometimes con- 503

tain multiple arities or symbols/arities are used as 504

both relation and function. One such example is: 505

NL Premise: "If Greyhound is not an airline, then 506

there are no Greyhound planes." 507

NL Conclusion: "A Greyhound is not a Boeing 508

707." 509

FOL Premise: "-Airline(Greyhound) -> -exists x. 510

(Plane(x) & Greyhound(x))" 511

FOL Conclusion:"-Boeing707(Greyhound)" 512

Here, "Greyhound" is used both as a predicate and 513

a constant value which is conflicting to Prover9. 514

* Term error: When the FOL statement has un- 515

necessary tokens which is not readable by the 516

7
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Multiple arities Term Error

(a) Syntax errors of ILENS−.

8

1

2

Multiple arities Unexpected token Term Error

(b) Syntax errors of ILENS(Mode-2).

Figure 7: Performance of ILENS− (baseline) and
ILENS(Mode-2).

Prover9, it causes this type of error. For ex-517

ample: FOL Premise: "all x. (design_style(x,518

Zaha_Hadid) -> Timeless(x))" will generate an er-519

ror like "sread_term error"520

* Unexpected token: This type of error arises521

when the format of the FOL does not match the522

Prover9 format, for instance, when there are un-523

balanced parentheses or any unexpected symbols524

like FOL Premise: "all x, y, z. ((LocatedAt(x, y) &525

LocatedAt(y, z)) -> LocatedAt(x, z))526

Unable to assume facts when given information527

is incomplete528

We observe that ILENS is not able to deduce logic529

inference correctly when there is incomplete infor-530

mation. Incomplete information is different from531

missing links, missing rules, or implicit informa-532

tion hidden in the Natural Language. Here is one533

such example:534

NL Premise: ["All rabbits are cute. ",535

"Some turtles exist. ",536

"An animal is either a rabbit or a squirrel.",537

"If something is skittish, then it is not still.",538

"All squirrels are skittish.",539

"Rock is still."]540

NL Conclusion: "Rock is a turtle or cute." 541

Actual label: True 542

Predicted label: Uncertain 543

Unless the LLM assumes some information about 544

"Rock", it will not be able to get a definite answer 545

for the inference. 546

The error analysis shows us the scenarios where our 547

system fails to successfully deduce logic inference. 548

The scenarios include FOL expressions generated 549

by GPT-4 with syntax errors and NL statements 550

with incomplete information. 551

6 Conclusion and Future Work 552

We present ILENS, an iterative neurosymbolic 553

system augmented with external theorem provers. 554

ILENS is built on two novel ideas: using abstract 555

meaning representation (AMR) to convert text into 556

first-order logic (FOL) expressions, and iterating 557

logic inference using counterexamples generated 558

by Mace4 to improve logical reasoning. Our sys- 559

tem significantly outperforms baseline models us- 560

ing similar evaluation techniques. We successfully 561

demonstrate that increasing the number of itera- 562

tions can enhance the performance of logic infer- 563

ence. This work supports the hypothesis that aug- 564

menting an external theorem prover with a large 565

language model (LLM) can improve truth value 566

inference deduction. Thus, the success of ILENS 567

paves the way for future research in neurosymbolic 568

computation for reasoning from natural languages. 569

Future work could explore integrating other forms 570

of symbolic reasoning, expanding the range of nat- 571

ural language inputs, and enhancing the scalability 572

of such systems. 573

Limitations 574

Due to limited resources, we were able to run 575

our experiments on one dataset (FOLIO valida- 576

tion (Han et al., 2022)) and with iteration up to 577

four. However, the workflow of our system is not 578

specific to any dataset. Therefore, with some sim- 579

ple data pre-processing it can be used on multiple 580

datasets and with different provers. 581

Ethics Statement 582

No ethical violations were anticipated or encoun- 583

tered during the course of this research. As such, 584

no ethical approval was required for this work. 585
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A.1 Pre-processing 907

In order to pre-process the data, we follow the 908

same technique done in LINC (Olausson et al., 909

2023). We first reformat the dataset with correct 910

symbols accepted by Prover9 and Mace4. For one 911

of our baselines LogicLLAMA*, we preprocess 912

the dataset generated through LogicLLAMA model 913

(Yang et al., 2023) the same way. 914
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A.2 Few-shot examples915

For in-context learning (ICL) we consider the train-916

ing set of the FOLIO dataset. We pick six diverse917

examples whose labels were "True", "False" and918

"Uncertain". We consider the following examples919

from the Yale-LILY/FOLIO website with the fol-920

lowing 24, 61, 149, 262, 264, 685. We do not921

provide the labels of the examples during few-shot922

learning. For our baseline and ILENS(Mode-1) we923

randomly pick four and two out of these six exam-924

ples respectively.925

B Prompts used for FOL generation926

For our system, we use in-context learning, there-927

fore using prompts to ask the GPT-4 API to gener-928

ate FOL expressions or correct/update FOL expres-929

sions. We have provided the details of the prompts930

we have used in Table: 1931

C Detailed result of ILENS (Mode-1) and932

LogicaLLAMA*933

We provide below the performances of934

ILENS(Mode-1) and LogicLLAMA* in Fig-935

ure 8. For ILENS(Mode-1), we can see a clear936

improvement in performance over ILENS−.937

However, there still exists considerable amount938

of errors which is overcome by ILENS(Mode-2)939

indicating more iterations for logic inference can940

be helpful to draw the truth values.941

LogicaLLAMA* on the other hand, performs very942

poorly on FOLIO dataset. After generating the943

validation dataset with LogicLLAMA (Yang et al.,944

2023) we preprocess the dataset (mentioned under945

Appendix A). Then we pass it through the Prover9946

for logic inference. As we can see from Figure947

8(b), it contains many errors in the conversion.948

The errors include the ones mentioned in Section949

5.3 and several other syntax errors. Also, we know950

that the conversion done by LogicLLAMA* is951

incorrect semantically since most of the labels are952

incorrectly predicted "Uncertain".953
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Figure 8: Confusion Matrix of ILENS(Mode-1) and
LogicLLAMA*.
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ILENS−

I will provide you with premises and conclusions in AMR, and you will convert them into
First Order Logic (FOL) expressions. Follow the given examples for format and syntax.
<Examples:>
Ensure that:
- Symbols are consistently used as either predicates or functions.
- Quantifiers are correctly placed.
- No quotations are required for any proper noun.
- The FOL expressions are valid and well-formed for use in theorem provers like Prover9.
- Make sure the FOL expressions are consistent, syntactically correct, and have balanced
parentheses.
- Make sure the output is not like a chat response.
Your output should be a dictionary with the keys "premise-fol" for
premise_graphs_list with all FOL expressions /in a single list and "conclusion-fol" for
conclusion_graphs_list with all FOL expressions in a single list.

ILENS

(Update
with
counter-
example)

Your task is to read and understand the counter_example generated from Mace4 and
use common sense knowledge to find any missing information or logic chain and generate
First Order Logic (FOL) from the /provided natural language premises and conclusion.
Follow the given example for format and syntax.
<Example:>
Ensure that:
- You do not use symbols/arities as both relation and function.
- The FOL expressions are valid and well-formed for use in theorem provers like Prover9
with consistent arities.
- The FOL expressions are consistent, syntactically correct, and have balanced parentheses.
- You do not describe your answer like a chat. - You do not put quotations around any
proper nouns or person’s names.
- You do not use decimal numbers - You respond only with the JSON dictionary and
nothing else.
- Your output includes both premise and conclusion expressions.
Your output should be a dictionary with the keys "premises-FOL" for premises with
all FOL expressions in a single list and "conclusion-FOL" for conclusion with FOL
expression in a single list.

ILENS

(Fix er-
ror)

Your task is to fix some errors in first order logic statements. I will provide you with
the error, the premise_fol, and the conclusion_fol such that they do not contain that
error. Follow the given examples for format and syntax:
<Examples:>
Ensure that:
- You use common sense and do not use symbols/arities as both relation and function.
- The FOL expressions are valid and well-formed for use in theorem provers like Prover9
with consistent arities.
- The FOL expressions are consistent, syntactically correct, and have balanced parentheses.
- You do not describe your answer like a chat. - You do not use decimal numbers.
- You do not put quotations around any proper nouns or person’s names.
- You respond only with the JSON dictionary and nothing else.
- Your output includes both premise and conclusion expressions.
Your output must be a JSON dictionary with the keys "premises-FOL" for premises (a
single list of FOL expressions) and "conclusion-FOL" for the conclusion (a single list of
FOL expressions).

Table 1: 2-6-shot prompts for ILENS−, ILENS(Mode-1 and Mode-2)
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